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Abstract: The mutual information between the state of a neural network and the state of the external1

world represents the amount of information stored in the neural network that is associated with the2

external world. In contrast, the surprise of the sensory input indicates the unpredictability of the3

current input. In other words, this is a measure of inference ability, and an upper bound of the4

surprise is known as the variational free energy. According to the free-energy principle (FEP), a5

neural network continuously minimizes the free energy to perceive the external world. For the6

survival of animals, inference ability is considered to be more important than simply memorized7

information. In this study, the free energy is shown to represent the gap between the amount of8

information stored in the neural network and that available for inference. This concept involves9

both the FEP and the infomax principle, and will be a useful measure for quantifying the amount of10

information available for inference.11

Keywords: free-energy principle; internal model hypothesis; unconscious inference; infomax12

principle; independent component analysis; principal component analysis13

1. Introduction14

Sensory perception comprises complex responses of the brain to sensory inputs. For example,15

the visual cortex can distinguish objects from their background [1], while the auditory cortex can16

recognize a certain sound in a noisy place with high sensitivity, a phenomenon known as the cocktail17

party effect [2–7]. The brain (i.e., a neural network) has acquired these perceptual abilities without18

supervision, which is referred to as unsupervised learning [8–10]. Unsupervised learning, or implicit19

learning, is defined as the learning that happens in the absence of a teacher or supervisor; it is20

achieved through adaptation to past environments, which is necessary for higher brain functions. An21

understanding of the physiological mechanisms that mediate unsupervised learning is fundamental22

to augmenting our knowledge of information processing in the brain.23

One of the consequent benefits of unsupervised learning is inference, which is the action of24

guessing unknown matters based on known facts or certain observations; i.e., it is the process of25

drawing conclusions through reasoning and estimation. While inference is thought to be an act of26

the conscious mind in the ordinary sense of the word, where consciousness often represents a state of27

self-awareness, it can occur even in the unconscious mind. Hermann von Helmholtz, a 19th-century28

physicist/physiologist, realized that perception often requires inference by the unconscious mind29

and coined the word unconscious inference [11]. According to Helmholtz, conscious inference and30

unconscious inference can be distinguished based on whether conscious knowledge is involved in the31

process. For example, when an astronomer computes the positions or distances of stars in space based32

on images taken at various times from different parts of the orbit of the Earth, he or she performs33

conscious inference. This is because the process is “based on a conscious knowledge of the laws of34
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optics”; by contrast, “in the ordinary acts of vision, this knowledge of optics is lacking” [11]. Thus,35

the latter process is performed by the unconscious mind. Nevertheless, the results of conscious and36

unconscious inference are clearly similar. Similar to conscious inference, unconscious inference is37

crucial so that cognitive processes in the unconscious mind can estimate the overall picture from38

partial observations.39

In the field of theoretical and computational neuroscience, unconscious inference has been40

translated as the successive inference of the generative process of the external world (in terms41

of Bayesian inference) that animals perform in order to achieve perception. One hypothesis, the42

so-called internal model hypothesis [12–19], states that animals reconstruct a model of the external43

world in their brain through past experiences. This internal model helps animals infer hidden44

causes and predict future inputs automatically; in other words, this inference process happens45

unconsciously. This is also known as the predictive coding hypothesis [20,21]. In the past decade, a46

mathematical foundation for unconscious inference, called the free-energy principle (FEP), has been47

proposed [13–17], and is a candidate unified theory of higher brain functions. Briefly, this principle48

hypothesizes that parameters of the generative model are learned through unsupervised learning,49

while hidden variables are inferred in the subsequent inference step. The FEP provides a unified50

framework for higher brain functions including perceptual learning [14], reinforcement learning [23],51

motor learning [22,23], communication [24,25], emotion, mental disorders [26,27], and evolution.52

However, the difference between the FEP and a related theory, namely the information maximization53

(infomax) principle [28–31], is still not fully understood.54

In this study, the relationship between the FEP and the infomax principle is investigated. As one55

of most simple and important examples, the study focuses on blind source separation (BSS), which56

is the task of separating sensory inputs into hidden sources (or causes) [32–35]. BSS is shown to be a57

subset of the inference problem considered in the FEP, and variational free energy is demonstrated to58

represent the difference between the information stored in the neural network (which is the measure59

of the infomax principle [28]) and the information available for inferring current sensory inputs.60

2. Methods61

2.1. Definition of a system62

Let us suppose s ≡ (s1, . . . , sN)
T ∼ p(s) ≡ ∏i p(si) as hidden sources; x ≡ (x1, . . . , xM)T ∼63

p(x) as sensory inputs; u ≡ (u1, . . . , uN)
T ∼ p(u) as neural outputs; z ≡ (z1, . . . , zM)T ∼ p(z)64

as background noises; ϵ ≡ (ϵ1, . . . , ϵM)T ∼ p(ϵ) as prediction errors; and f ∈ RM, g ∈ RN , and65

h ∈ RM as nonlinear functions (see also Table 1). The generative process of the external world (or the66

environment) is described by a stochastic equation as:67

Generative process : x = f (s) + z. (1)

Recognition and generative models of the neural network are defined as follows:68

Recognition model : u = g(x), (2)

Generative model : x = h(u) + ϵ. (3)

Figure 1 illustrates the structure of the system under consideration. For the generative model, the69

prior distribution of u is defined as pu(u) = ∏i pu(ui) and the likelihood function as pϵ(ϵ) =70

p∗(x|h(u)) = N [ϵ; 0, Σϵ], where p∗ indicates a statistical model and N is a Gaussian distribution.71

Moreover, suppose θ ∼ p(θ), W(∈ RN×M) ∼ p(W), and V(∈ RM×N) ∼ p(V) as parameter sets72

for f , g, and h, respectively, λ ∼ p(λ) as a hyper-parameter set for p(s) and p(z), and γ ∼ p(γ)73

as a hyper-parameter set for pu(u) and pϵ(ϵ). Here, hyper-parameters are defined as parameters74

that determine the shape of distributions (e.g., the covariance matrix of pϵ(ϵ)). Note that W and V75
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Table 1. Glossary of expressions.

Expression Description

Generative process A set of stochastic equations that generate the external world dynamics
Recognition model A model in the neural network that imitates the inverse of the generative process
Generative model A model in the neural network that imitates the generative process

s ∈ RN Hidden sources
x ∈ RM Sensory inputs

θ A set of parameters
λ A set of hyper-parameters

ϑ ≡ {s, θ, λ} A set of hidden states of the external world
u ∈ RN Neural outputs

W ∈ RN×M, V ∈ RM×N Synaptic strength matrices
γ State of neuromodulators

φ ≡ {u, W, V, γ} A set of the brain internal states
z ∈ RM Background noises
ϵ ∈ RM Prediction errors

p(x) The actual probability density of x
p(φ|x), p(x, φ), p(φ) Actual probability densities (posterior densities)
pu(u), pϵ(ϵ), pφ(φ) Prior densities

p∗(x), p∗(φ|x), p∗(x, φ) Statistical models
dx ≡ ∏i dxi Finite spatial resolution of x

⟨•⟩p(x) ≡
∫
•p(x)dx Expectation of • over p(x)

H[p(x)] ≡ ⟨− log(p(x)dx)⟩p(x) Shannon entropy of p(x)dx
⟨− log(p∗(x)dx)⟩p(x) Cross entropy of p∗(x)dx over p(x)

DKL[p(•)||p∗(•)] ≡
⟨

log p(•)
p∗(•)

⟩
p(•)

KLD between p(•) and p∗(•)
I[x; φ] ≡ DKL[p(x, φ)||p(x)p(φ)] Mutual information between x and φ

S(x) ≡ log p(x)
p∗(x) Surprise

S ≡ ⟨S(x)⟩p(x) Surprise expectation
F(x) ≡ S(x) +DKL[p(φ|x)||p∗(φ|x)] Free energy

F ≡ ⟨F(x)⟩p(x) Free energy expectation

X[x; φ] ≡
⟨

log p∗(x,φ)
p(x)p(φ)

⟩
p(x,φ)

Utilizable information between x and φ

are assumed as synaptic strength matrices for feedforward and backward paths, respectively, while76

γ is assumed as a state of neuromodulators similarly to [13–15]. Eqs. (1)-(3) are transformed into77

probabilistic representations78

Generative process : p(s, x|θ, λ) = p(x|s, θ, λ)p(s|λ)

=
∫

δ(x − f (s; θ)− z)p(z|λ)p(s|λ)dz

= p(z = x − f |λ)p(s|λ),

(4)

Recognition model : p(x, u|W) = p(x|u, W)p(u|W)

= p(u|x, W)p(x)

= δ(u − g(x; W))p(x),

(5)

Generative model : p∗(x, u|V, γ) = p∗(x|u, V, γ)pu(u|γ)

=
∫

δ(x − h(u; V)− ϵ)pϵ(ϵ|γ)pu(u|γ)dϵ

= pϵ(ϵ = x − h|γ)pu(u|γ).

(6)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 May 2018 doi:10.20944/preprints201711.0020.v2

http://dx.doi.org/10.20944/preprints201711.0020.v2


Version May 11, 2018 submitted to Entropy 4 of 14

s u

f g h

Generative 
process

Hidden sources Neural outputs

Recognition 
model

Generative 
model

Neural networkEnvironment

z
Sensory inputs

εx
Background noise Prediction error

Figure 1. Schematic images of a generative process of the environment (left) and recognition and
generative models of the neural network (right). Note that the neural network can access only the
states in the right side of the dashed line, including x (see text in Section 3). Black arrows are causal
relationships, while blue arrows are information flows of the neural network. See main text and Table
1 for meanings of variables and functions.

Note that δ(•) is Dirac’s delta function and p∗(x|u, V, γ) ≡ p(x|u, V, γ, m) is a statistical model given79

a model structure m. For simplification, let ϑ ≡ {s, θ, λ} be a set of hidden states of the external world80

and φ ≡ {u, W, V, γ} be a set of internal states of the neural network. By multiplying p(θ, λ) to Eq.81

(4) and p(W, V, γ) to Eqs. (5)(6), Eqs. (4)-(6) become82

Generative process : p(x, ϑ) = p(x|ϑ)p(ϑ) = p(z = x − f )p(ϑ), (7)

Recognition model : p(x, φ) = p(x|φ)p(φ) = p(ϵ = x − h)p(φ), (8)

Generative model : p∗(x, φ) = p∗(x|φ)pφ(φ) = pϵ(ϵ = x − h)pφ(φ), (9)

where pφ is the prior distribution for φ and p∗(x, φ) ≡ p(x, φ|m) is a statistical model given a model83

structure m, which is determined by the shapes of pφ and pϵ. The expression of p∗(x, φ) is used84

instead of p(x, φ|m) to emphasize the difference between p(x, φ) and p∗(x, φ). While p(x, φ) is the85

actual joint probability of (x, φ) (which corresponds to the posterior distribution), p∗(x, φ), i.e., the86

product of the likelihood function and the prior distribution, represents the generative model that the87

neural network expects (x, φ) to follow. As shown later, the inference and learning are achieved by88

minimizing the difference between p(x, φ) and p∗(x, φ).89

2.2. Information stored in the neural network90

Information is defined as the negative log of probability [36]. When Prob(x) is the probability of91

given sensory inputs x, its information is given by − log Prob(x) [nat], where 1 nat = 1.4427 bits. When92

x takes continuous values, by coarse graining, − log Prob(x) is replaced with − log(p(x)dx), where93

p(x) is the probability density of x and dx ≡ ∏i dxi is the product of the finite spatial resolutions94

of x’s elements. The expectation of − log(p(x)dx) over p(x) gives the Shannon entropy (or average95

information), which is defined by96

H[p(x)] ≡ ⟨− log(p(x)dx)⟩p(x) [nat], (10)

where ⟨•⟩p(x) ≡
∫
•p(x)dx represents the expectation of • over p(x). Note that the use97

of − log(p(x)dx) instead of − log p(x) is useful because this H[p(x)] is non-negative (because98

dProb(x) = p(x)dx takes a value between 0 and 1), while the addition of constant − log dx has no99
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effect except for sliding the offset value. If and only if p(x) is Dirac’s delta function, H[p(x)] = 0100

is realized. For the system under consideration (Eqs. (7)–(9)), the information shared between the101

external world states (x, ϑ) and the internal states of the neural network φ is defined by mutual102

information [37]103

I[(x, ϑ); φ] ≡
⟨

log
p(x, ϑ, φ)

p(x, ϑ)p(φ)

⟩
p(x,ϑ,φ)

[nat]. (11)

Note that p(x, ϑ, φ) is the joint probability of (x, ϑ) and φ. Moreover p(x, ϑ) and p(φ) are their104

marginal distributions, respectively. This mutual information takes a non-negative value and105

quantifies how much (x, ϑ) and φ are related with each other. High mutual information indicates106

the internal states are informative to explain the external world states, while zero mutual information107

means they are independent of each other.108

However, the only information that the neural network can directly access is the sensory input.109

This is the case because the system under consideration can be described as Bayesian network, see [38,110

39] for the detail on Markov blanket. Hence, entropy of the external world states under a fixed sensory111

input gives the information that the neural network cannot infer. Moreover, there is no feedback112

control from the neural network to the external world in this setup. Thus, under a fixed x, ϑ and φ113

are conditionally independent of each other. From p(ϑ, φ|x) = p(ϑ|x)p(φ|x), we can obtain114

I[(x, ϑ); φ] =

⟨
log

p(ϑ|x)p(φ|x)p(x)
p(ϑ|x)p(x)p(φ)

⟩
p(ϑ|x)p(φ|x)p(x)

=

⟨
log

p(φ|x)
p(φ)

⟩
p(φ,x)

= I[x; φ]. (12)

Using Shannon entropy, I[x; φ] becomes115

I[x; φ] = H[p(x)]− H[x|φ] [nat], (13)

where116

H[x|φ] ≡
⟨
− log

(
p(x|φ)dx

)⟩
p(x,φ)

≡
⟨
− log

(
p(ϵ)dx

)⟩
p(ϵ)p(φ)

≡ ⟨H[p(ϵ)]⟩p(φ) (14)

is the conditional entropy of x given φ. Thus, maximization of I[(x, ϑ); φ] is the same as maximization117

of I[x; φ] for this system. Because I[x; φ], H[p(x)], and H[x|φ] are non-negative, I[x; φ] has the range118

0 ≤ I[x; φ] ≤ H[p(x)]. Zero mutual information occurs if and only if x and φ are independent, while119

I[x; φ] = H[p(x)] occurs if and only if x is fully explained by φ. In this manner, I[x; φ] describes120

the information about the external world stored in the neural network. Note that this I[(x, ϑ); φ] can121

be expressed using the Kullback–Leibler divergence (KLD) [40] as I[x; φ] ≡ DKL

[
p(x, φ)||p(x)p(φ)

]
.122

KLD takes a non-negative value and indicates the divergence between two distributions.123

The infomax principle states that “the network connections develop in such a way as to maximize124

the amount of information that is preserved when signals are transformed at each processing stage,125

subject to certain constraints” [28], see also [29–31]. According to the infomax principle, the neural126

network is hypothesized to maximize I[x; φ] to perceive the external world. However, I[x; φ] does not127

fully explain the inference capability of a neural network. For example, if neural outputs just express128

the sensory input itself (u = x), I[x; φ] = H[p(x)] is easily achieved, but this does not mean that the129

neural network can predict input statistics. This is considered in the next section.130

2.3. Free-energy principle131

If one has a statistical model determined by model structure m, the information calculated based132

on m is given by the negative log likelihood − log p(x|m), which is termed as the (marginal) surprise133

of the sensory input and expresses the unpredictability of the sensory input for the individual. The134
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neural network is considered to minimize the surprise in the sensory input using the knowledge135

about the external world, to perceive the external world [13]. To infer if an event is likely to136

happen based on the past observation, a statistical (i.e., generative) model is necessary; otherwise137

it is difficult to generalize sensory inputs [41]. Note that the surprise is the marginal over the138

generative model; hence, the neural network can reduce the surprise by optimizing its internal states,139

while Shannon entropy of the input is determined by the environment. When the actual probability140

density and a generative model are given by p(x) and p∗(x) ≡ p(x|m), respectively, the cross141

entropy ⟨− log(p∗(x)dx)⟩p(x) is always larger than or equal to Shannon entropy H[p(x)] because142

of the non-negativity of KLD. Hence, in this study, the input surprise is defined by143

S(x) ≡ − log p∗(x) + log p(x) [nat] (15)

and its expectation over p(x) by144

S ≡ ⟨S(x)⟩p(x) = DKL[p(x)||p∗(x)] = ⟨− log(p∗(x)dx)⟩p(x) − H[p(x)] [nat]. (16)

This definition of S(x) is to ensure S is non-negative and S = 0 if and only if p∗(x) = p(x). Since145

H[p(x)] is determined by the environment and constant for the neural network, minimization of this146

S is the same meaning as minimization of ⟨− log(p∗(x)dx)⟩p(x).147

Because the sensory input is generated by the external world generative process, consideration148

of the structure and dynamics placed in the background of the sensory input can provide accurate149

inference. According to the internal model hypothesis, animals develop the internal model in their150

brain to increase the accuracy and efficiency of inference [12–15,17–19]; thus, internal states of the151

neural network φ are hypothesized to imitate the hidden states of the external world ϑ. A problem is152

that − log p∗(x) = − log(
∫

p∗(x, φ)dφ) is intractable for the neural network, because the integral of153

p∗(x, φ) placed in the logarithm function. The FEP hypothesizes that the neural network calculates154

an upper bound of − log p∗(x) instead of the exact value, which is more tractable [13]. This upper155

bound is termed as variational free energy:156

F(x) ≡ S(x) +DKL[p(φ|x)||p∗(φ|x)] = ⟨− log p∗(x, φ) + log p(x, φ)⟩p(φ|x) [nat]. (17)

Note that p(φ|x) expresses the belief about hidden states of the external world encoded by internal157

states of the neural network, termed as the recognition density. Due to the non-negativity of KLD,158

F(x) is guaranteed to be an upper bound of S(x) and F(x) = S(x) holds if and only if p∗(φ|x) =159

p(φ|x). Furthermore, the expectation of F(x) over p(x) is defined by160

F ≡ ⟨F(x)⟩p(x) = DKL[p(x, φ)||p∗(x, φ)] = ⟨U(x, φ)⟩p(x,φ) − H[p(x, φ)] [nat], (18)

where U(x, φ) ≡ − log(p∗(x, φ)dxdφ) is termed as the internal energy and H[p(x, φ)] ≡161

⟨− log(p(x, φ)dxdφ)⟩p(x,φ) is the joint entropy of x and φ. F indicates the difference between the162

actual probability p(x, φ) and the generative model p∗(x, φ). Because of the non-negativity of KLD,163

F is always larger than or equal to S(≥ 0) and F = S = 0 holds if and only if p∗(x, φ) = p(x, φ).164

Internal energy U(x, φ) quantifies the amplitude of the prediction error at a given moment165

[13]. Minimization of ⟨U(x, φ)⟩p(x,φ) is the so-called maximum a posteriori (MAP) estimation (or the166

maximum likelihood estimation if the priors are uniform distributions) [10] and provides a solution167

that (at least locally) minimizes the prediction error. Whereas, maximization of H[p(x, φ)] increases168

the independency between internal states, which helps neurons to establish an efficient representation169

as pointed out by Jaynes’ max entropy principle [42,43]. This is essential for BSS [32–35] because the170

optimal parameters that minimize ⟨U(x, φ)⟩p(x,φ) are not always determined identically. Due to this,171

the MAP estimation alone does not always identify the generative process behind the sensory inputs.172

As F is the sum of costs for the MAP estimation and BSS, free-energy minimization is the rule to173

simultaneously minimize the prediction error and maximize the independency of the internal states.174
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It is recognized that animals perform BSS [2–7]. Interestingly, even in vitro neural networks perform175

BSS which is accompanied by significant reduction of free energy in accordance with the FEP and176

Jaynes’ max entropy principle [44].177

2.4. Information available for inference178

We now consider how free energy expectation F relates to mutual information I[x; φ]. According179

to unconscious inference and the internal model hypothesis, the aim of a neural network is to predict180

x, and for this purpose, it infers hidden states of the external world. While the neural network is181

conventionally hypothesized to express sufficient statistics of the hidden states of the external world182

[14], here it is hypothesized that internal states of the neural network are random variables and183

the probability distribution of them imitates the probability distribution of the hidden states of the184

external world. Thereby, the aim of the neural network is to match the probability distribution of the185

internal states with that of the hidden states of the external world. To do so, the neural network shifts186

the actual probability of internal states p(x, φ) = p(ϵ)p(φ) closer to those of the generative model187

p∗(x, φ) = pϵ(ϵ)pφ(φ) that the neural network expects (x, φ) to follow. From this viewpoint, the188

difference between these two distributions is associated with the loss of information.189

The amount of information available for inference can be calculated using the following three190

values related to information loss: (i) Because H[p(x)] is information of the sensory input and191

I[x; φ] is information stored in the neural network, H[p(x)] − I[x; φ] = ⟨H[p(ϵ)]⟩p(φ) indicates the192

information loss in the recognition model (Fig. 2). (ii) The difference between actual and desired193

(prior) distributions of internal states DKL[p(φ)||pφ(φ)] quantifies the information loss for inferring194

internal states (i.e., blind state separation). (iii) The difference between distributions of the actual195

reconstruction error and the prediction error under the given model ⟨DKL[p(x|φ)||p∗(x|φ)]⟩p(φ) =196

⟨DKL[p(ϵ)||pϵ(ϵ)]⟩p(φ) quantifies the information loss for representing inputs using internal states.197

Therefore, by subtracting these three values from H[p(x)], a mutual-information-like measure198

representing the inference capability is obtained:199

X[x; φ] ≡ H[p(x)]− ⟨H[p(ϵ)]⟩p(φ) −DKL[p(φ)||pφ(φ)]− ⟨DKL[p(ϵ)||pϵ(ϵ)]⟩p(φ)

=

⟨
log

p∗(x, φ)

p(x)p(φ)

⟩
p(x,φ)

[nat],
(19)

which is called utilizable information in this study. This utilizable information X[x; φ] is defined by200

replacing p(x, φ) in I[x; φ] with p∗(x, φ), immediately yielding201

F = I[x; φ]− X[x; φ] [nat]. (20)

Hence, F represents the gap between the amount of information stored in the neural network and the202

amount that is available for inference, which is equivalent to the information loss in the generative203

model. Note that the sum of losses in the recognition and generative models H[p(x)] − X[x; φ] =204

F + ⟨H[p(ϵ)]⟩p(φ) is an upper bound of F because of the non-negativity of ⟨H[p(ϵ)]⟩p(φ) (Fig. 2).205

Because ⟨H[p(ϵ)]⟩p(φ) is generally nonzero, F(x) + ⟨H[p(ϵ)]⟩p(φ) does not usually reach zero, even206

when p(x, φ) = p∗(x, φ).207

Furthermore, X[x; φ] is transformed into208

X[x; φ] = H[p(x)]− LX − LA, (21)

where209

LX ≡ ⟨− log(pϵ(ϵ)dx)⟩p(ϵ)p(φ) (22)
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Figure 2. Relationship between information measures. The mutual information between the inputs
and internal states of the neural network (I[x; φ]) is less than or equal to the Shannon entropy
of the inputs (H[p(x)]) because of the information loss in the recognition model. The utilizable
information (X[x; φ]) is less than or equal to the mutual information and the gap between them gives
the expectation of the variational free energy (F), which quantifies the loss in the generative model.
The sum of PCA and ICA costs (LX + LA) is equal to the gap between the Shannon entropy and the
utilizable information, expressing the sum of losses in the recognition and generative models.

is the so-called reconstruction error, which is similar to the reconstruction error for principal210

component analysis (PCA) [45], while211

LA ≡ DKL[p(φ)||pφ(φ)] (23)

is a generalization of Amari’s cost function for independent component analysis (ICA) [46].212

PCA is one of the most popular dimensionality reduction methods. It is used to remove213

background noise and extract important features from sensory inputs [45,47]. In contrast, ICA is a214

BSS method used to decompose a mixture set of sensory inputs into independent hidden sources215

[33,35,46,48,49]. Theoreticians hypothesize that the PCA- and ICA-like learning underlies BSS in216

the brain [3]. This kind of extractions of the hidden representation is also an important problem in217

machine learning [50,51]. Equation (21) indicates that X[x; φ] consists of PCA- and ICA-like parts,218

i.e., maximization of X[x; φ] can perform both dimensionality reduction and BSS (Fig. 2). Their219

relationship is discussed in the next section.220

3. Comparison between the free-energy principle and related theories221

In this section, the FEP is compared with other theories. As described in the Methods, the aim of222

the infomax principle is to maximize mutual information I[x; φ] (Eq. (13)), while the aim of the FEP is223

to minimize free energy expectation F (Eq. (18)), and maximization of utilizable information X[x; φ]224

(Eq. (19)) means to do both of them simultaneously.225
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3.1. Infomax principle226

The generative process and recognition- and generative models defined in Eqs. (1)-(3) are227

assumed. For simplification, suppose W, V and γ follow Dirac’s delta functions; then, the goal of228

the infomax principle is simplified as maximization of mutual information between x and u:229

I[x; u] =
⟨

log
p(x, u)

p(x)p(u)

⟩
p(x,u)

= H[p(x)]− H[x|u] = H[p(u)]− H[u|x]. (24)

If dim(x) ≥ dim(u) and a linear recognition model u = g(x) = Wx with full-rank matrix W is230

supposed, because H[u|x] = 0 and u has an infinite range, I[x; u] = H[p(u)] monotonically increases231

as the variance of u increases. Thus, maximization of I[x; u] cannot perform either PCA or ICA. To232

perform PCA and ICA based on the infomax principle, one needs to consider mutual information233

between sensory inputs and nonlinearly transformed neural outputs ψ(u) = (ψ(u1), . . . , ψ(uN))
T

234

with an injective nonlinear function ψ(•). This mutual information is given by235

I[x; ψ(u)] =
⟨

log
p(x, ψ(u))

p(x)p(ψ(u))

⟩
p(x,ψ(u))

= H[p(ψ(u))]− H[ψ(u)|x]. (25)

When nonlinear neural outputs have a finite range (e.g., between 0 and 1), the variance of u236

should be maintained in the appropriate range. The infomax based ICA [48,49] is formulated based237

on this constraint. From p(ψ(u)) = |∂u/∂ψ(u)|p(u) = (∏i ψ′(ui))
−1 p(u), H[p(ψ(u))] becomes238

H[p(ψ(u))] = ⟨− log{(∏i ψ′(ui))
−1 p(u)du}⟩p(u) = H[p(u)] + ⟨∑i log ψ′(ui)⟩p(u). Since H[ψ(u)|x] =239

0 hold, Eq. (25) becomes240

I[x; ψ(u)] = H[p(u)] +

⟨
∑

i
log ψ′(ui)

⟩
p(u)

. (26)

In what follows, it is described that maximization of Eq. (26) as well as the FEP performs PCA and241

ICA.242

3.2. Principal component analysis243

Both the infomax principle and the FEP give a cost function of PCA. Suppose dim(x) > dim(u),244

V = WT , and − log ψ′(ui) = u2
i /2 + const. From Eq. (24), H[p(u)] = H[p(x)]− ⟨H[p(ϵ)]⟩p(φ) holds.245

Since the prediction error is given by ϵ = x − WTu = (I − WTW)x, we obtain ⟨H[p(ϵ)]⟩p(φ) =246

⟨− log{p(x)|∂x/∂ϵ|dx}⟩p(x,φ) = H[p(x)] + ⟨log |I − WTW|⟩p(φ). Thus, Eq. (26) becomes247

I[x; ψ(u)] = −
⟨

log |I − WTW|
⟩

p(φ)
− 1

2

⟨
|u|2

⟩
p(u)

. (27)

The first term of Eq. (27) is maximized if WWT = I holds (i.e., W is an orthogonal matrix). To248

maximize the second term, outputs u need to be involved in a subspace spanned by the first to the249

N-th major principal components of x. Therefore, maximization of Eq. (27) performs PCA.250

PCA is also derived by minimization of LX (Eq. (22)) under the assumption that pϵ(ϵ) is a251

Gaussian distribution pϵ(ϵ) = N [ϵ; 0, γ−1 I] with a scalar hyper-parameter γ > 0. This is given by252

LX =

⟨
γ

2
ϵTϵ − 1

2
log |γ|

⟩
p(φ)

+ const. (28)

The derivative of Eq. (28) gives the update rule for the least square error PCA [45], which is similar to253

the well-known Oja’s subspace rule for PCA [47]. This LX is also the same form as the cost function254

for auto-encoder [50]. Moreover, when the priors of u, W, V, and γ are flat, free energy expectation255

(Eq. (18)) becomes F = LX − ⟨H[p(ϵ)]⟩p(φ) − H[p(u)] = LX + const.; thus, under this condition F is256

equivalent to the PCA cost function.257
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3.3. Independent component analysis258

Both the infomax principle and the FEP give a cost function of ICA. Suppose that sources259

s1, . . . , sN independently follow an identical distribution p0(si). The infomax based ICA is derived260

from Eq. (26) [48,49]. If ψ(ui) is defined to satisfy ψ′(ui) = p0(ui), negative mutual information261

−I[x; ψ(u)] becomes KLD between actual and prior distributions up to constant term,262

− I[x; ψ(u)]− log du =
⟨

log p(u)− log p0(u)
⟩

p(u)
= DKL[p(u)||p0(u)] ≡ LA. (29)

This LA is known as Amari’s ICA cost function [46]. While both −I[x; ψ(u)] and LA provide the same263

gradient descent rule, formulating I[x; ψ(u)] requires the nonlinearly transformed neural outputs264

ψ(u). By contrast, LA straightforwardly represents that minimization of KLD between p(u) and p0(u)265

performs ICA. Indeed, if dim(u) = dim(x) = N, the background noise is small, and the priors266

of W, V, and γ are flat, we obtain F = DKL[p(u)||p0(u)] = LA. Therefore, ICA is a subset of the267

inference problem considered in the FEP, and the derivation from the FEP is simpler while both the268

infomax principle and the FEP give the same ICA algorithm.269

Furthermore, when dim(x) > dim(u), minimization of F can perform both dimensionality270

reduction and BSS. When the priors of W, V, and γ are flat, free energy expectation (Eq. (18))271

approximately becomes F ≈ LX + LA + const. = −X[x; u] + const. The ratio of PCA to ICA272

is controlled by γ. Unlike the case with scalar γ described above, if Σϵ(γ) is fine tuned by273

high-dimensional γ to minimize F, Σϵ = ⟨ϵϵT⟩p(ϵ) is obtained. Under this condition, LX is equal274

to H[x|u] up to constant term and thereby F = LA + const. is obtained. This indicates that F consists275

only of the ICA part. These comparisons suggest that low-dimensional γ is better to perform noise276

reduction.277

4. Simulation and results278

The difference between the infomax principle and the FEP is illustrated by a simple simulation279

using a linear generative process and a linear neural network (Fig. 3). For simplification, it is assumed280

that the dynamics of u quickly converge to the optimum that minimizes F(x) compared to the change281

of s (adiabatic approximation).282

For the results shown in Fig. 3, s denotes two-dimensional hidden sources following an identical283

Laplace distribution with zero mean and unit variance; x denotes four-dimensional sensory inputs;284

u denotes two-dimensional neural outputs; z denotes four-dimensional background Gaussian noises285

following N [z; 0, Σz]; θ denotes a 4× 2-dimensional mixing matrix; W is a 2× 4-dimensional synaptic286

strength matrix for the bottom-up path; V is a 4 × 2-dimensional synaptic strength matrix for the287

top-down path; and the priors of W, V, and γ are flat priors. Sensory inputs are determined by288

x = θs + z, while neural outputs are determined by u = Wx. The prediction error is given by289

ϵ = x − Vu and used to calculate H[p(ϵ)] and LA. Horizontal and vertical axes in the figure290

are conditional entropy H[x|φ] (Eq. (14)) and free energy expectation F (Eq. (18)), respectively.291

Simulations were conducted 100 times with randomly selected θ and Σz for each condition. For each292

simulation, 108 random sample points were generated and probability distributions were calculated293

using the histogram method.294

First, when W is randomly chosen and V is defined by V = WT , both H[x|φ] and F are scattered295

(black circles in Fig. 3) because neural outputs represent random mixtures of sources and noises.296

Next, when W is optimized according to either Eq. (27) or (28) under the constraint of V = WT ,297

the neural outputs express the major principal components of the inputs; i.e., the network performs298

PCA (blue circles in Fig. 3). This is the case when H[x|φ] is minimized. In contrast, when W, V,299

and Σϵ(γ) are optimized according to the FEP (see Eq. (??)), the neural outputs represent the300

independent components that match the prior source distribution; i.e., the network performs BSS301

or ICA while minimizing the prediction error (red circles in Fig. 3). For linear generative processes,302

the minimization of F can reliably and accurately perform both dimensionality reduction and BSS303

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 May 2018 doi:10.20944/preprints201711.0020.v2

http://dx.doi.org/10.20944/preprints201711.0020.v2


11 of 14

●

●

●●

●

●

●

●

●

●

●

●●
●

● ●
●●●

● ●

●

●

●●

●

●
●

●

●

●

●
●

●

● ●

●

●●

●
●

●

●

●

●

● ●

●

●
●● ●

● ●
●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●●
●
●

●

●
●

●

●

●●
●

●●●●
●
● ●

● ●● ●● ●
●●●

●
●
● ●

●

●
●
●

●●

●

●●
●

●
●●

● ● ●

●

● ●
●

●

●

●

●
●

●
●

●●
●

●

●
● ●●

●
●

●
●

●●

●

●

●

●
● ●

● ●
●●● ●●

●

●
● ●

●

●●●

●

●

●
●●●

●

● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●●●●●●●● ●●●●● ●●●●●●●●●● ●● ●●● ●●●● ●●●● ●●●●●●●●● ●● ●● ● ●●●●●●●● ●●●●●●● ●●● ●●●●●● ●●● ●●

2 4 6 8 10 12

0
1

2

Conditional entropy        

Fr
ee

 e
ne

rg
y 

ex
pe

ct
at

io
n 

   

€

H x |ϕ[ ]
€

F 

Figure 3. Difference between the infomax principle and FEP when sources follow a non-Gaussian
distribution. Black, blue, and red circles indicate the results when W is a random matrix, optimized
for the infomax principle (i.e., PCA), and optimized for the FEP, respectively.

because the outputs become independent of each other and match the prior belief if and only if the304

outputs represent true sources up to permutation and sign-flip. Because the utilizable information305

consists of PCA and ICA cost functions (see Eq. (21)), the maximization of X[x; φ] leads to a solution306

that is a compromise between the solutions for the infomax principle and the FEP. Interestingly, the307

infomax optimization (i.e., PCA) provides a W that makes F closer to zero than random states, which308

indicates that the infomax optimization contributes to the free energy minimization. Note that, for309

nonlinear systems, there are many different transformations that make the outputs independent of310

each other [52]. Hence, there is no guarantee that minimization of F can identify the true sources of311

nonlinear generative models.312

In sum, the aims of the FEP and infomax principle are similar to each other. In particular, when313

both the sources and noises follow Gaussian distributions, their aims become the same. Conversely,314

the optimal synaptic weights under the FEP are different from those under the infomax principle315

when sources follow non-Gaussian distributions. Under this condition, the maximization of the316

utilizable information leads to a compromise solution between those for the FEP and the infomax317

principle.318

5. Discussion319

In this study, the FEP is linked with the infomax principle, PCA, and ICA. It is more likely320

that the purpose of a neural network in a biological system is to minimize the surprise of sensory321

inputs to realize better inference rather than maximize the amount of stored information. For322

example, the visual input captured by a video camera contributes to the stored information, but323

this amount of information is not equal to the amount of information available for inference. The324

surprise expectation represents the difference between actual and inferred observations; the free325

energy expectation provides the difference between recognition and generative models. Utilizable326

information is introduced to quantify the inference and generalization capability of sensory inputs.327

Using this approach, the free energy expectation can be explained as the gap between the information328

stored in the neural network and that available for inference. Moreover, the derivation of ICA329

is simplified by the FEP. To perform ICA based on the infomax principle, one needs to tune the330

nonlinearity of the neural outputs to ensure the derivative of the nonlinear I/O function matches331

the prior distribution. Conversely, under the FEP, ICA is straightforwardly derived from the KLD332

between the actual probability distribution and the prior distribution of u. Especially, in the absence333

of background noise and prior knowledge of the parameters and hyper-parameters, the free energy334
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expectation is equivalent to the surprise expectation as well as Amari’s ICA cost function, which335

indicates that ICA is a subproblem of the FEP.336

The FEP is a rigorous and promising theory from theoretical and engineering viewpoints because337

various learning rules are derived from the FEP [14,15]. However, to be a physiologically plausible338

theory of the brain, the FEP needs to satisfy certain physiological requirements. There are two major339

requirements: first, physiological evidence that shows the existence of learning or self-organizing340

processes under the FEP is required. The model structure under the FEP is consistent with the341

structure of cortical microcircuits [19]. Moreover, in vitro neural networks performing BSS reduce342

free energy [44]. It is known that the spontaneous prior activity of a visual area enables it to learn343

the properties of natural pictures [53]. These results suggest the physiological plausibility of the344

FEP. Nevertheless, further experiments and consideration of information-theoretical optimization345

under physiological constraints [54] are required to prove the existence of the FEP in the biological346

brain. Second, the update rule must be a biologically plausible local learning rule; i.e., synaptic347

strengths must be changed by signals from connected cells or widespread liquid factors. While the348

synaptic update rule for a discrete system is local [17], the current rule for a continuous system [14]349

is a non-local rule. Recently developed biologically-plausible three-factor learning models in which350

Hebbian learning is mediated by a third modulatory factor [55–58] may help reveal the neuronal351

mechanism underlying unconscious inference. Therefore, it is necessary to investigate how actual352

neural networks infer the dynamics placed in the background of the sensory input and if this is353

consistent with the FEP, see also [59] for the relationship between the FEP and spike-timing dependent354

plasticity [60,61]. This may help develop a biologically plausible learning algorithm through which355

an actual neural network might develop its internal model. Characterization of information from356

physical viewpoint may also help understand how the brain physically embodies the information357

[62,63]. In the subsequent work, we would like to see their relationship.358

In summary, this study investigated the differences between two types of359

information—information stored in the neural network and information available for inference.360

It was demonstrated that free energy represents the gap between these two types of information.361

This result clarifies the difference between the FEP and related theories and can be utilized for362

understanding unconscious inference from a theoretical viewpoint.363
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