

Article

A Measure of Information Available for Inference

Takuya Isomura ^{1*}

¹ Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.

* Correspondence: takuya.isomura@riken.jp; Tel.: +81-48-467-9644

Academic Editor: name

Version May 11, 2018 submitted to Entropy

Abstract: The mutual information between the state of a neural network and the state of the external world represents the amount of information stored in the neural network that is associated with the external world. In contrast, the surprise of the sensory input indicates the unpredictability of the current input. In other words, this is a measure of inference ability, and an upper bound of the surprise is known as the variational free energy. According to the free-energy principle (FEP), a neural network continuously minimizes the free energy to perceive the external world. For the survival of animals, inference ability is considered to be more important than simply memorized information. In this study, the free energy is shown to represent the gap between the amount of information stored in the neural network and that available for inference. This concept involves both the FEP and the infomax principle, and will be a useful measure for quantifying the amount of information available for inference.

Keywords: free-energy principle; internal model hypothesis; unconscious inference; infomax principle; independent component analysis; principal component analysis

1. Introduction

Sensory perception comprises complex responses of the brain to sensory inputs. For example, the visual cortex can distinguish objects from their background [1], while the auditory cortex can recognize a certain sound in a noisy place with high sensitivity, a phenomenon known as the cocktail party effect [2–7]. The brain (i.e., a neural network) has acquired these perceptual abilities without supervision, which is referred to as unsupervised learning [8–10]. Unsupervised learning, or implicit learning, is defined as the learning that happens in the absence of a teacher or supervisor; it is achieved through adaptation to past environments, which is necessary for higher brain functions. An understanding of the physiological mechanisms that mediate unsupervised learning is fundamental to augmenting our knowledge of information processing in the brain.

One of the consequent benefits of unsupervised learning is inference, which is the action of guessing unknown matters based on known facts or certain observations; i.e., it is the process of drawing conclusions through reasoning and estimation. While inference is thought to be an act of the conscious mind in the ordinary sense of the word, where consciousness often represents a state of self-awareness, it can occur even in the unconscious mind. Hermann von Helmholtz, a 19th-century physicist/physiologist, realized that perception often requires inference by the unconscious mind and coined the word *unconscious inference* [11]. According to Helmholtz, conscious inference and unconscious inference can be distinguished based on whether conscious knowledge is involved in the process. For example, when an astronomer computes the positions or distances of stars in space based on images taken at various times from different parts of the orbit of the Earth, he or she performs conscious inference. This is because the process is “based on a conscious knowledge of the laws of

35 optics"; by contrast, "in the ordinary acts of vision, this knowledge of optics is lacking" [11]. Thus,
 36 the latter process is performed by the unconscious mind. Nevertheless, the results of conscious and
 37 unconscious inference are clearly similar. Similar to conscious inference, unconscious inference is
 38 crucial so that cognitive processes in the unconscious mind can estimate the overall picture from
 39 partial observations.

40 In the field of theoretical and computational neuroscience, unconscious inference has been
 41 translated as the successive inference of the generative process of the external world (in terms
 42 of Bayesian inference) that animals perform in order to achieve perception. One hypothesis, the
 43 so-called internal model hypothesis [12–19], states that animals reconstruct a model of the external
 44 world in their brain through past experiences. This internal model helps animals infer hidden
 45 causes and predict future inputs automatically; in other words, this inference process happens
 46 unconsciously. This is also known as the predictive coding hypothesis [20,21]. In the past decade, a
 47 mathematical foundation for unconscious inference, called the free-energy principle (FEP), has been
 48 proposed [13–17], and is a candidate unified theory of higher brain functions. Briefly, this principle
 49 hypothesizes that parameters of the generative model are learned through unsupervised learning,
 50 while hidden variables are inferred in the subsequent inference step. The FEP provides a unified
 51 framework for higher brain functions including perceptual learning [14], reinforcement learning [23],
 52 motor learning [22,23], communication [24,25], emotion, mental disorders [26,27], and evolution.
 53 However, the difference between the FEP and a related theory, namely the information maximization
 54 (infomax) principle [28–31], is still not fully understood.

55 In this study, the relationship between the FEP and the infomax principle is investigated. As one
 56 of most simple and important examples, the study focuses on blind source separation (BSS), which
 57 is the task of separating sensory inputs into hidden sources (or causes) [32–35]. BSS is shown to be a
 58 subset of the inference problem considered in the FEP, and variational free energy is demonstrated to
 59 represent the difference between the information stored in the neural network (which is the measure
 60 of the infomax principle [28]) and the information available for inferring current sensory inputs.

61 2. Methods

62 2.1. Definition of a system

63 Let us suppose $s \equiv (s_1, \dots, s_N)^T \sim p(s) \equiv \prod_i p(s_i)$ as hidden sources; $x \equiv (x_1, \dots, x_M)^T \sim$
 64 $p(x)$ as sensory inputs; $u \equiv (u_1, \dots, u_N)^T \sim p(u)$ as neural outputs; $z \equiv (z_1, \dots, z_M)^T \sim p(z)$
 65 as background noises; $\epsilon \equiv (\epsilon_1, \dots, \epsilon_M)^T \sim p(\epsilon)$ as prediction errors; and $f \in \mathbb{R}^M$, $g \in \mathbb{R}^N$, and
 66 $h \in \mathbb{R}^M$ as nonlinear functions (see also Table 1). The generative process of the external world (or the
 67 environment) is described by a stochastic equation as:

$$68 \text{Generative process : } x = f(s) + z. \quad (1)$$

68 Recognition and generative models of the neural network are defined as follows:

$$69 \text{Recognition model : } u = g(x), \quad (2)$$

$$70 \text{Generative model : } x = h(u) + \epsilon. \quad (3)$$

71 Figure 1 illustrates the structure of the system under consideration. For the generative model, the
 72 prior distribution of u is defined as $p_u(u) = \prod_i p_u(u_i)$ and the likelihood function as $p_e(\epsilon) =$
 $p^*(x|h(u)) = \mathcal{N}[\epsilon; 0, \Sigma_\epsilon]$, where p^* indicates a statistical model and \mathcal{N} is a Gaussian distribution.
 73 Moreover, suppose $\theta \sim p(\theta)$, $W(\in \mathbb{R}^{N \times M}) \sim p(W)$, and $V(\in \mathbb{R}^{M \times N}) \sim p(V)$ as parameter sets
 74 for f , g , and h , respectively, $\lambda \sim p(\lambda)$ as a hyper-parameter set for $p(s)$ and $p(z)$, and $\gamma \sim p(\gamma)$
 75 as a hyper-parameter set for $p_u(u)$ and $p_e(\epsilon)$. Here, hyper-parameters are defined as parameters
 that determine the shape of distributions (e.g., the covariance matrix of $p_e(\epsilon)$). Note that W and V

Table 1. Glossary of expressions.

Expression	Description
Generative process	A set of stochastic equations that generate the external world dynamics
Recognition model	A model in the neural network that imitates the inverse of the generative process
Generative model	A model in the neural network that imitates the generative process
$s \in \mathbb{R}^N$	Hidden sources
$x \in \mathbb{R}^M$	Sensory inputs
θ	A set of parameters
λ	A set of hyper-parameters
$\vartheta \equiv \{s, \theta, \lambda\}$	A set of hidden states of the external world
$u \in \mathbb{R}^N$	Neural outputs
$W \in \mathbb{R}^{N \times M}, V \in \mathbb{R}^{M \times N}$	Synaptic strength matrices
γ	State of neuromodulators
$\varphi \equiv \{u, W, V, \gamma\}$	A set of the brain internal states
$z \in \mathbb{R}^M$	Background noises
$\epsilon \in \mathbb{R}^M$	Prediction errors
$p(x)$	The actual probability density of x
$p(\varphi x), p(x, \varphi), p(\varphi)$	Actual probability densities (posterior densities)
$p_u(u), p_\epsilon(\epsilon), p_\varphi(\varphi)$	Prior densities
$p^*(x), p^*(\varphi x), p^*(x, \varphi)$	Statistical models
$dx \equiv \prod_i dx_i$	Finite spatial resolution of x
$\langle \bullet \rangle_{p(x)} \equiv \int \bullet p(x)dx$	Expectation of \bullet over $p(x)$
$H[p(x)] \equiv \langle -\log(p(x)dx) \rangle_{p(x)}$	Shannon entropy of $p(x)dx$
$\langle -\log(p^*(x)dx) \rangle_{p(x)}$	Cross entropy of $p^*(x)dx$ over $p(x)$
$\mathcal{D}_{KL}[p(\bullet) p^*(\bullet)] \equiv \langle \log \frac{p(\bullet)}{p^*(\bullet)} \rangle_{p(\bullet)}$	KLD between $p(\bullet)$ and $p^*(\bullet)$
$I[x; \varphi] \equiv \mathcal{D}_{KL}[p(x, \varphi) p(x)p(\varphi)]$	Mutual information between x and φ
$S(x) \equiv \log \frac{p(x)}{p^*(x)}$	Surprise
$\bar{S} \equiv \langle S(x) \rangle_{p(x)}$	Surprise expectation
$F(x) \equiv S(x) + \mathcal{D}_{KL}[p(\varphi x) p^*(\varphi x)]$	Free energy
$\bar{F} \equiv \langle F(x) \rangle_{p(x)}$	Free energy expectation
$X[x; \varphi] \equiv \left\langle \log \frac{p^*(x, \varphi)}{p(x)p(\varphi)} \right\rangle_{p(x, \varphi)}$	Utilizable information between x and φ

⁷⁶ are assumed as synaptic strength matrices for feedforward and backward paths, respectively, while
⁷⁷ γ is assumed as a state of neuromodulators similarly to [13–15]. Eqs. (1)–(3) are transformed into
⁷⁸ probabilistic representations

$$\begin{aligned}
 \text{Generative process : } p(s, x|\theta, \lambda) &= p(x|s, \theta, \lambda)p(s|\lambda) \\
 &= \int \delta(x - f(s; \theta) - z)p(z|\lambda)p(s|\lambda)dz \\
 &= p(z = x - f|\lambda)p(s|\lambda),
 \end{aligned} \tag{4}$$

$$\begin{aligned}
 \text{Recognition model : } p(x, u|W) &= p(x|u, W)p(u|W) \\
 &= p(u|x, W)p(x) \\
 &= \delta(u - g(x; W))p(x),
 \end{aligned} \tag{5}$$

$$\begin{aligned}
 \text{Generative model : } p^*(x, u|V, \gamma) &= p^*(x|u, V, \gamma)p_u(u|\gamma) \\
 &= \int \delta(x - h(u; V) - \epsilon)p_\epsilon(\epsilon|\gamma)p_u(u|\gamma)d\epsilon \\
 &= p_\epsilon(\epsilon = x - h|\gamma)p_u(u|\gamma).
 \end{aligned} \tag{6}$$

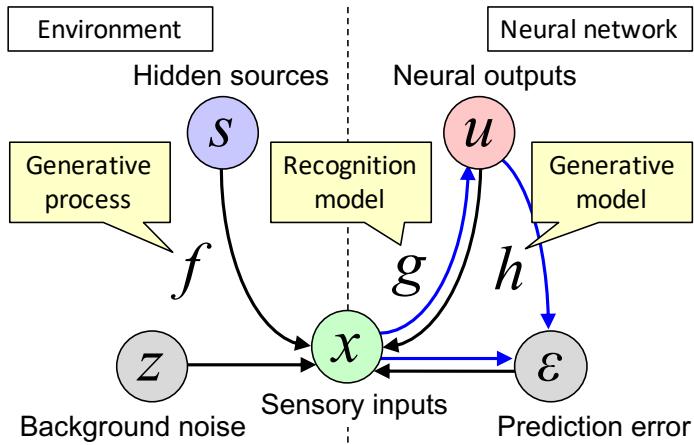


Figure 1. Schematic images of a generative process of the environment (left) and recognition and generative models of the neural network (right). Note that the neural network can access only the states in the right side of the dashed line, including x (see text in Section 3). Black arrows are causal relationships, while blue arrows are information flows of the neural network. See main text and Table 1 for meanings of variables and functions.

79 Note that $\delta(\bullet)$ is Dirac's delta function and $p^*(x|u, V, \gamma) \equiv p(x|u, V, \gamma, m)$ is a statistical model given
 80 a model structure m . For simplification, let $\vartheta \equiv \{s, \theta, \lambda\}$ be a set of hidden states of the external world
 81 and $\varphi \equiv \{u, W, V, \gamma\}$ be a set of internal states of the neural network. By multiplying $p(\theta, \lambda)$ to Eq.
 82 (4) and $p(W, V, \gamma)$ to Eqs. (5)(6), Eqs. (4)-(6) become

$$\text{Generative process : } p(x, \vartheta) = p(x|\vartheta)p(\vartheta) = p(z = x - f)p(\vartheta), \quad (7)$$

$$\text{Recognition model : } p(x, \varphi) = p(x|\varphi)p(\varphi) = p(\epsilon = x - h)p(\varphi), \quad (8)$$

$$\text{Generative model : } p^*(x, \varphi) = p^*(x|\varphi)p_\varphi(\varphi) = p_\epsilon(\epsilon = x - h)p_\varphi(\varphi), \quad (9)$$

83 where p_φ is the prior distribution for φ and $p^*(x, \varphi) \equiv p(x, \varphi|m)$ is a statistical model given a model
 84 structure m , which is determined by the shapes of p_φ and p_ϵ . The expression of $p^*(x, \varphi)$ is used
 85 instead of $p(x, \varphi|m)$ to emphasize the difference between $p(x, \varphi)$ and $p^*(x, \varphi)$. While $p(x, \varphi)$ is the
 86 actual joint probability of (x, φ) (which corresponds to the posterior distribution), $p^*(x, \varphi)$, i.e., the
 87 product of the likelihood function and the prior distribution, represents the generative model that the
 88 neural network expects (x, φ) to follow. As shown later, the inference and learning are achieved by
 89 minimizing the difference between $p(x, \varphi)$ and $p^*(x, \varphi)$.

90 2.2. Information stored in the neural network

91 Information is defined as the negative log of probability [36]. When $\text{Prob}(x)$ is the probability of
 92 given sensory inputs x , its information is given by $-\log \text{Prob}(x)$ [nat], where 1 nat = 1.4427 bits. When
 93 x takes continuous values, by coarse graining, $-\log \text{Prob}(x)$ is replaced with $-\log(p(x)dx)$, where
 94 $p(x)$ is the probability density of x and $dx \equiv \prod_i dx_i$ is the product of the finite spatial resolutions
 95 of x 's elements. The expectation of $-\log(p(x)dx)$ over $p(x)$ gives the Shannon entropy (or average
 96 information), which is defined by

$$H[p(x)] \equiv \langle -\log(p(x)dx) \rangle_{p(x)} [\text{nat}], \quad (10)$$

97 where $\langle \bullet \rangle_{p(x)} \equiv \int \bullet p(x)dx$ represents the expectation of \bullet over $p(x)$. Note that the use
 98 of $-\log(p(x)dx)$ instead of $-\log p(x)$ is useful because this $H[p(x)]$ is non-negative (because
 99 $d\text{Prob}(x) = p(x)dx$ takes a value between 0 and 1), while the addition of constant $-\log dx$ has no

100 effect except for sliding the offset value. If and only if $p(x)$ is Dirac's delta function, $H[p(x)] = 0$
 101 is realized. For the system under consideration (Eqs. (7)–(9)), the information shared between the
 102 external world states (x, ϑ) and the internal states of the neural network φ is defined by mutual
 103 information [37]

$$I[(x, \vartheta); \varphi] \equiv \left\langle \log \frac{p(x, \vartheta, \varphi)}{p(x, \vartheta)p(\varphi)} \right\rangle_{p(x, \vartheta, \varphi)} [\text{nat}]. \quad (11)$$

104 Note that $p(x, \vartheta, \varphi)$ is the joint probability of (x, ϑ) and φ . Moreover $p(x, \vartheta)$ and $p(\varphi)$ are their
 105 marginal distributions, respectively. This mutual information takes a non-negative value and
 106 quantifies how much (x, ϑ) and φ are related with each other. High mutual information indicates
 107 the internal states are informative to explain the external world states, while zero mutual information
 108 means they are independent of each other.

109 However, the only information that the neural network can directly access is the sensory input.
 110 This is the case because the system under consideration can be described as Bayesian network, see [38,
 111 39] for the detail on Markov blanket. Hence, entropy of the external world states under a fixed sensory
 112 input gives the information that the neural network cannot infer. Moreover, there is no feedback
 113 control from the neural network to the external world in this setup. Thus, under a fixed x, ϑ and φ
 114 are conditionally independent of each other. From $p(\vartheta, \varphi|x) = p(\vartheta|x)p(\varphi|x)$, we can obtain

$$I[(x, \vartheta); \varphi] = \left\langle \log \frac{p(\vartheta|x)p(\varphi|x)p(x)}{p(\vartheta|x)p(x)p(\varphi)} \right\rangle_{p(\vartheta|x)p(\varphi|x)p(x)} = \left\langle \log \frac{p(\varphi|x)}{p(\varphi)} \right\rangle_{p(\varphi|x)} = I[x; \varphi]. \quad (12)$$

115 Using Shannon entropy, $I[x; \varphi]$ becomes

$$I[x; \varphi] = H[p(x)] - H[x|\varphi] \quad [\text{nat}], \quad (13)$$

116 where

$$H[x|\varphi] \equiv \left\langle -\log(p(x|\varphi)dx) \right\rangle_{p(x|\varphi)} \equiv \left\langle -\log(p(\epsilon)dx) \right\rangle_{p(\epsilon)p(\varphi)} \equiv \langle H[p(\epsilon)] \rangle_{p(\varphi)} \quad (14)$$

117 is the conditional entropy of x given φ . Thus, maximization of $I[(x, \vartheta); \varphi]$ is the same as maximization
 118 of $I[x; \varphi]$ for this system. Because $I[x; \varphi]$, $H[p(x)]$, and $H[x|\varphi]$ are non-negative, $I[x; \varphi]$ has the range
 119 $0 \leq I[x; \varphi] \leq H[p(x)]$. Zero mutual information occurs if and only if x and φ are independent, while
 120 $I[x; \varphi] = H[p(x)]$ occurs if and only if x is fully explained by φ . In this manner, $I[x; \varphi]$ describes
 121 the information about the external world stored in the neural network. Note that this $I[(x, \vartheta); \varphi]$ can
 122 be expressed using the Kullback–Leibler divergence (KLD) [40] as $I[x; \varphi] \equiv \mathcal{D}_{KL}[p(x, \varphi)||p(x)p(\varphi)]$.
 123 KLD takes a non-negative value and indicates the divergence between two distributions.

124 The infomax principle states that "the network connections develop in such a way as to maximize
 125 the amount of information that is preserved when signals are transformed at each processing stage,
 126 subject to certain constraints" [28], see also [29–31]. According to the infomax principle, the neural
 127 network is hypothesized to maximize $I[x; \varphi]$ to perceive the external world. However, $I[x; \varphi]$ does not
 128 fully explain the inference capability of a neural network. For example, if neural outputs just express
 129 the sensory input itself ($u = x$), $I[x; \varphi] = H[p(x)]$ is easily achieved, but this does not mean that the
 130 neural network can predict input statistics. This is considered in the next section.

131 2.3. Free-energy principle

132 If one has a statistical model determined by model structure m , the information calculated based
 133 on m is given by the negative log likelihood $-\log p(x|m)$, which is termed as the (marginal) surprise
 134 of the sensory input and expresses the unpredictability of the sensory input for the individual. The

135 neural network is considered to minimize the surprise in the sensory input using the knowledge
 136 about the external world, to perceive the external world [13]. To infer if an event is likely to
 137 happen based on the past observation, a statistical (i.e., generative) model is necessary; otherwise
 138 it is difficult to generalize sensory inputs [41]. Note that the surprise is the marginal over the
 139 generative model; hence, the neural network can reduce the surprise by optimizing its internal states,
 140 while Shannon entropy of the input is determined by the environment. When the actual probability
 141 density and a generative model are given by $p(x)$ and $p^*(x) \equiv p(x|m)$, respectively, the cross
 142 entropy $\langle -\log(p^*(x)dx) \rangle_{p(x)}$ is always larger than or equal to Shannon entropy $H[p(x)]$ because
 143 of the non-negativity of KLD. Hence, in this study, the input surprise is defined by

$$S(x) \equiv -\log p^*(x) + \log p(x) \text{ [nat]} \quad (15)$$

144 and its expectation over $p(x)$ by

$$\bar{S} \equiv \langle S(x) \rangle_{p(x)} = \mathcal{D}_{KL}[p(x)||p^*(x)] = \langle -\log(p^*(x)dx) \rangle_{p(x)} - H[p(x)] \text{ [nat]}. \quad (16)$$

145 This definition of $S(x)$ is to ensure \bar{S} is non-negative and $\bar{S} = 0$ if and only if $p^*(x) = p(x)$. Since
 146 $H[p(x)]$ is determined by the environment and constant for the neural network, minimization of this
 147 \bar{S} is the same meaning as minimization of $\langle -\log(p^*(x)dx) \rangle_{p(x)}$.

148 Because the sensory input is generated by the external world generative process, consideration
 149 of the structure and dynamics placed in the background of the sensory input can provide accurate
 150 inference. According to the internal model hypothesis, animals develop the internal model in their
 151 brain to increase the accuracy and efficiency of inference [12–15,17–19]; thus, internal states of the
 152 neural network φ are hypothesized to imitate the hidden states of the external world ϑ . A problem is
 153 that $-\log p^*(x) = -\log(\int p^*(x, \varphi)d\varphi)$ is intractable for the neural network, because the integral of
 154 $p^*(x, \varphi)$ placed in the logarithm function. The FEP hypothesizes that the neural network calculates
 155 an upper bound of $-\log p^*(x)$ instead of the exact value, which is more tractable [13]. This upper
 156 bound is termed as variational free energy:

$$F(x) \equiv S(x) + \mathcal{D}_{KL}[p(\varphi|x)||p^*(\varphi|x)] = \langle -\log p^*(x, \varphi) + \log p(x, \varphi) \rangle_{p(\varphi|x)} \text{ [nat]}. \quad (17)$$

157 Note that $p(\varphi|x)$ expresses the belief about hidden states of the external world encoded by internal
 158 states of the neural network, termed as the recognition density. Due to the non-negativity of KLD,
 159 $F(x)$ is guaranteed to be an upper bound of $S(x)$ and $F(x) = S(x)$ holds if and only if $p^*(\varphi|x) =$
 160 $p(\varphi|x)$. Furthermore, the expectation of $F(x)$ over $p(x)$ is defined by

$$\bar{F} \equiv \langle F(x) \rangle_{p(x)} = \mathcal{D}_{KL}[p(x, \varphi)||p^*(x, \varphi)] = \langle U(x, \varphi) \rangle_{p(x, \varphi)} - H[p(x, \varphi)] \text{ [nat]}, \quad (18)$$

161 where $U(x, \varphi) \equiv -\log(p^*(x, \varphi)dxd\varphi)$ is termed as the internal energy and $H[p(x, \varphi)] \equiv$
 162 $\langle -\log(p(x, \varphi)dxd\varphi) \rangle_{p(x, \varphi)}$ is the joint entropy of x and φ . \bar{F} indicates the difference between the
 163 actual probability $p(x, \varphi)$ and the generative model $p^*(x, \varphi)$. Because of the non-negativity of KLD,
 164 \bar{F} is always larger than or equal to $\bar{S}(\geq 0)$ and $\bar{F} = \bar{S} = 0$ holds if and only if $p^*(x, \varphi) = p(x, \varphi)$.

165 Internal energy $U(x, \varphi)$ quantifies the amplitude of the prediction error at a given moment
 166 [13]. Minimization of $\langle U(x, \varphi) \rangle_{p(x, \varphi)}$ is the so-called maximum a posteriori (MAP) estimation (or the
 167 maximum likelihood estimation if the priors are uniform distributions) [10] and provides a solution
 168 that (at least locally) minimizes the prediction error. Whereas, maximization of $H[p(x, \varphi)]$ increases
 169 the independency between internal states, which helps neurons to establish an efficient representation
 170 as pointed out by Jaynes' max entropy principle [42,43]. This is essential for BSS [32–35] because the
 171 optimal parameters that minimize $\langle U(x, \varphi) \rangle_{p(x, \varphi)}$ are not always determined identically. Due to this,
 172 the MAP estimation alone does not always identify the generative process behind the sensory inputs.
 173 As \bar{F} is the sum of costs for the MAP estimation and BSS, free-energy minimization is the rule to
 174 simultaneously minimize the prediction error and maximize the independency of the internal states.

175 It is recognized that animals perform BSS [2–7]. Interestingly, even *in vitro* neural networks perform
 176 BSS which is accompanied by significant reduction of free energy in accordance with the FEP and
 177 Jaynes' max entropy principle [44].

178 2.4. *Information available for inference*

179 We now consider how free energy expectation \bar{F} relates to mutual information $I[x; \varphi]$. According
 180 to unconscious inference and the internal model hypothesis, the aim of a neural network is to predict
 181 x , and for this purpose, it infers hidden states of the external world. While the neural network is
 182 conventionally hypothesized to express sufficient statistics of the hidden states of the external world
 183 [14], here it is hypothesized that internal states of the neural network are random variables and
 184 the probability distribution of them imitates the probability distribution of the hidden states of the
 185 external world. Thereby, the aim of the neural network is to match the probability distribution of the
 186 internal states with that of the hidden states of the external world. To do so, the neural network shifts
 187 the actual probability of internal states $p(x, \varphi) = p(\epsilon)p(\varphi)$ closer to those of the generative model
 188 $p^*(x, \varphi) = p_\epsilon(\epsilon)p_\varphi(\varphi)$ that the neural network expects (x, φ) to follow. From this viewpoint, the
 189 difference between these two distributions is associated with the loss of information.

190 The amount of information available for inference can be calculated using the following three
 191 values related to information loss: (i) Because $H[p(x)]$ is information of the sensory input and
 192 $I[x; \varphi]$ is information stored in the neural network, $H[p(x)] - I[x; \varphi] = \langle H[p(\epsilon)] \rangle_{p(\varphi)}$ indicates the
 193 information loss in the recognition model (Fig. 2). (ii) The difference between actual and desired
 194 (prior) distributions of internal states $\mathcal{D}_{KL}[p(\varphi) || p_\varphi(\varphi)]$ quantifies the information loss for inferring
 195 internal states (i.e., blind state separation). (iii) The difference between distributions of the actual
 196 reconstruction error and the prediction error under the given model $\langle \mathcal{D}_{KL}[p(x|\varphi) || p^*(x|\varphi)] \rangle_{p(\varphi)} =$
 197 $\langle \mathcal{D}_{KL}[p(\epsilon) || p_\epsilon(\epsilon)] \rangle_{p(\varphi)}$ quantifies the information loss for representing inputs using internal states.
 198 Therefore, by subtracting these three values from $H[p(x)]$, a mutual-information-like measure
 199 representing the inference capability is obtained:

$$X[x; \varphi] \equiv H[p(x)] - \langle H[p(\epsilon)] \rangle_{p(\varphi)} - \mathcal{D}_{KL}[p(\varphi) || p_\varphi(\varphi)] - \langle \mathcal{D}_{KL}[p(\epsilon) || p_\epsilon(\epsilon)] \rangle_{p(\varphi)} \\ = \left\langle \log \frac{p^*(x, \varphi)}{p(x)p(\varphi)} \right\rangle_{p(x, \varphi)} \text{ [nat]}, \quad (19)$$

200 which is called utilizable information in this study. This utilizable information $X[x; \varphi]$ is defined by
 201 replacing $p(x, \varphi)$ in $I[x; \varphi]$ with $p^*(x, \varphi)$, immediately yielding

$$\bar{F} = I[x; \varphi] - X[x; \varphi] \quad \text{[nat].} \quad (20)$$

202 Hence, \bar{F} represents the gap between the amount of information stored in the neural network and the
 203 amount that is available for inference, which is equivalent to the information loss in the generative
 204 model. Note that the sum of losses in the recognition and generative models $H[p(x)] - X[x; \varphi] =$
 205 $\bar{F} + \langle H[p(\epsilon)] \rangle_{p(\varphi)}$ is an upper bound of \bar{F} because of the non-negativity of $\langle H[p(\epsilon)] \rangle_{p(\varphi)}$ (Fig. 2).
 206 Because $\langle H[p(\epsilon)] \rangle_{p(\varphi)}$ is generally nonzero, $\bar{F} + \langle H[p(\epsilon)] \rangle_{p(\varphi)}$ does not usually reach zero, even
 207 when $p(x, \varphi) = p^*(x, \varphi)$.

208 Furthermore, $X[x; \varphi]$ is transformed into

$$X[x; \varphi] = H[p(x)] - L_X - L_A, \quad (21)$$

209 where

$$L_X \equiv \langle -\log(p_\epsilon(\epsilon)dx) \rangle_{p(\epsilon)p(\varphi)} \quad (22)$$

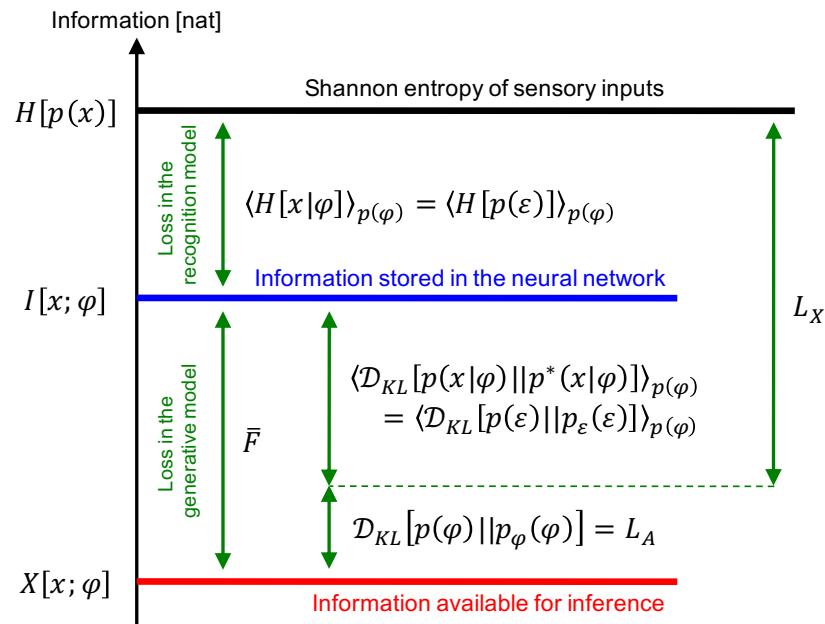


Figure 2. Relationship between information measures. The mutual information between the inputs and internal states of the neural network ($I[x; \varphi]$) is less than or equal to the Shannon entropy of the inputs ($H[p(x)]$) because of the information loss in the recognition model. The utilizable information ($X[x; \varphi]$) is less than or equal to the mutual information and the gap between them gives the expectation of the variational free energy (\bar{F}), which quantifies the loss in the generative model. The sum of PCA and ICA costs ($L_X + L_A$) is equal to the gap between the Shannon entropy and the utilizable information, expressing the sum of losses in the recognition and generative models.

210 is the so-called reconstruction error, which is similar to the reconstruction error for principal
 211 component analysis (PCA) [45], while

$$L_A \equiv \mathcal{D}_{KL}[p(\varphi) || p_\varphi(\varphi)] \quad (23)$$

212 is a generalization of Amari's cost function for independent component analysis (ICA) [46].

213 PCA is one of the most popular dimensionality reduction methods. It is used to remove
 214 background noise and extract important features from sensory inputs [45,47]. In contrast, ICA is a
 215 BSS method used to decompose a mixture set of sensory inputs into independent hidden sources
 216 [33,35,46,48,49]. Theoreticians hypothesize that the PCA- and ICA-like learning underlies BSS in
 217 the brain [3]. This kind of extractions of the hidden representation is also an important problem in
 218 machine learning [50,51]. Equation (21) indicates that $X[x; \varphi]$ consists of PCA- and ICA-like parts,
 219 i.e., maximization of $X[x; \varphi]$ can perform both dimensionality reduction and BSS (Fig. 2). Their
 220 relationship is discussed in the next section.

221 3. Comparison between the free-energy principle and related theories

222 In this section, the FEP is compared with other theories. As described in the Methods, the aim of
 223 the infomax principle is to maximize mutual information $I[x; \varphi]$ (Eq. (13)), while the aim of the FEP is
 224 to minimize free energy expectation \bar{F} (Eq. (18)), and maximization of utilizable information $X[x; \varphi]$
 225 (Eq. (19)) means to do both of them simultaneously.

226 3.1. Infomax principle

227 The generative process and recognition- and generative models defined in Eqs. (1)-(3) are
 228 assumed. For simplification, suppose W, V and γ follow Dirac's delta functions; then, the goal of
 229 the infomax principle is simplified as maximization of mutual information between x and u :

$$I[x; u] = \left\langle \log \frac{p(x, u)}{p(x)p(u)} \right\rangle_{p(x, u)} = H[p(x)] - H[x|u] = H[p(u)] - H[u|x]. \quad (24)$$

230 If $\dim(x) \geq \dim(u)$ and a linear recognition model $u = g(x) = Wx$ with full-rank matrix W is
 231 supposed, because $H[u|x] = 0$ and u has an infinite range, $I[x; u] = H[p(u)]$ monotonically increases
 232 as the variance of u increases. Thus, maximization of $I[x; u]$ cannot perform either PCA or ICA. To
 233 perform PCA and ICA based on the infomax principle, one needs to consider mutual information
 234 between sensory inputs and nonlinearly transformed neural outputs $\psi(u) = (\psi(u_1), \dots, \psi(u_N))^T$
 235 with an injective nonlinear function $\psi(\bullet)$. This mutual information is given by

$$I[x; \psi(u)] = \left\langle \log \frac{p(x, \psi(u))}{p(x)p(\psi(u))} \right\rangle_{p(x, \psi(u))} = H[p(\psi(u))] - H[\psi(u)|x]. \quad (25)$$

236 When nonlinear neural outputs have a finite range (e.g., between 0 and 1), the variance of u
 237 should be maintained in the appropriate range. The infomax based ICA [48,49] is formulated based
 238 on this constraint. From $p(\psi(u)) = |\partial u / \partial \psi(u)| p(u) = (\prod_i \psi'(u_i))^{-1} p(u)$, $H[p(\psi(u))]$ becomes
 239 $H[p(\psi(u))] = \langle -\log \{(\prod_i \psi'(u_i))^{-1} p(u) du\} \rangle_{p(u)} = H[p(u)] + \langle \sum_i \log \psi'(u_i) \rangle_{p(u)}$. Since $H[\psi(u)|x] =$
 240 0 hold, Eq. (25) becomes

$$I[x; \psi(u)] = H[p(u)] + \left\langle \sum_i \log \psi'(u_i) \right\rangle_{p(u)}. \quad (26)$$

241 In what follows, it is described that maximization of Eq. (26) as well as the FEP performs PCA and
 242 ICA.

243 3.2. Principal component analysis

244 Both the infomax principle and the FEP give a cost function of PCA. Suppose $\dim(x) > \dim(u)$,
 245 $V = W^T$, and $-\log \psi'(u_i) = u_i^2/2 + \text{const}$. From Eq. (24), $H[p(u)] = H[p(x)] - \langle H[p(\epsilon)] \rangle_{p(\varphi)}$ holds.
 246 Since the prediction error is given by $\epsilon = x - W^T u = (I - W^T W)x$, we obtain $\langle H[p(\epsilon)] \rangle_{p(\varphi)} =$
 247 $\langle -\log \{p(x) |\partial x / \partial \epsilon| dx\} \rangle_{p(x, \varphi)} = H[p(x)] + \langle \log |I - W^T W| \rangle_{p(\varphi)}$. Thus, Eq. (26) becomes

$$I[x; \psi(u)] = -\left\langle \log |I - W^T W| \right\rangle_{p(\varphi)} - \frac{1}{2} \left\langle |u|^2 \right\rangle_{p(u)}. \quad (27)$$

248 The first term of Eq. (27) is maximized if $WW^T = I$ holds (i.e., W is an orthogonal matrix). To
 249 maximize the second term, outputs u need to be involved in a subspace spanned by the first to the
 250 N -th major principal components of x . Therefore, maximization of Eq. (27) performs PCA.

251 PCA is also derived by minimization of L_X (Eq. (22)) under the assumption that $p_\epsilon(\epsilon)$ is a
 252 Gaussian distribution $p_\epsilon(\epsilon) = \mathcal{N}[\epsilon; 0, \gamma^{-1}I]$ with a scalar hyper-parameter $\gamma > 0$. This is given by

$$L_X = \left\langle \frac{\gamma}{2} \epsilon^T \epsilon - \frac{1}{2} \log |\gamma| \right\rangle_{p(\varphi)} + \text{const.} \quad (28)$$

253 The derivative of Eq. (28) gives the update rule for the least square error PCA [45], which is similar to
 254 the well-known Oja's subspace rule for PCA [47]. This L_X is also the same form as the cost function
 255 for auto-encoder [50]. Moreover, when the priors of u, W, V , and γ are flat, free energy expectation
 256 (Eq. (18)) becomes $\bar{F} = L_X - \langle H[p(\epsilon)] \rangle_{p(\varphi)} - H[p(u)] = L_X + \text{const.}$; thus, under this condition \bar{F} is
 257 equivalent to the PCA cost function.

258 3.3. Independent component analysis

259 Both the infomax principle and the FEP give a cost function of ICA. Suppose that sources
 260 s_1, \dots, s_N independently follow an identical distribution $p_0(s_i)$. The infomax based ICA is derived
 261 from Eq. (26) [48,49]. If $\psi(u_i)$ is defined to satisfy $\psi'(u_i) = p_0(u_i)$, negative mutual information
 262 $-I[x; \psi(u)]$ becomes KLD between actual and prior distributions up to constant term,

$$-I[x; \psi(u)] - \log du = \left\langle \log p(u) - \log p_0(u) \right\rangle_{p(u)} = \mathcal{D}_{KL}[p(u) || p_0(u)] \equiv L_A. \quad (29)$$

263 This L_A is known as Amari's ICA cost function [46]. While both $-I[x; \psi(u)]$ and L_A provide the same
 264 gradient descent rule, formulating $I[x; \psi(u)]$ requires the nonlinearly transformed neural outputs
 265 $\psi(u)$. By contrast, L_A straightforwardly represents that minimization of KLD between $p(u)$ and $p_0(u)$
 266 performs ICA. Indeed, if $\dim(u) = \dim(x) = N$, the background noise is small, and the priors
 267 of W, V , and γ are flat, we obtain $\bar{F} = \mathcal{D}_{KL}[p(u) || p_0(u)] = L_A$. Therefore, ICA is a subset of the
 268 inference problem considered in the FEP, and the derivation from the FEP is simpler while both the
 269 infomax principle and the FEP give the same ICA algorithm.

270 Furthermore, when $\dim(x) > \dim(u)$, minimization of \bar{F} can perform both dimensionality
 271 reduction and BSS. When the priors of W, V , and γ are flat, free energy expectation (Eq. (18))
 272 approximately becomes $\bar{F} \approx L_X + L_A + \text{const.} = -X[x; u] + \text{const.}$ The ratio of PCA to ICA
 273 is controlled by γ . Unlike the case with scalar γ described above, if $\Sigma_\epsilon(\gamma)$ is fine tuned by
 274 high-dimensional γ to minimize \bar{F} , $\Sigma_\epsilon = \langle \epsilon \epsilon^T \rangle_{p(\epsilon)}$ is obtained. Under this condition, L_X is equal
 275 to $H[x|u]$ up to constant term and thereby $\bar{F} = L_A + \text{const.}$ is obtained. This indicates that \bar{F} consists
 276 only of the ICA part. These comparisons suggest that low-dimensional γ is better to perform noise
 277 reduction.

278 4. Simulation and results

279 The difference between the infomax principle and the FEP is illustrated by a simple simulation
 280 using a linear generative process and a linear neural network (Fig. 3). For simplification, it is assumed
 281 that the dynamics of u quickly converge to the optimum that minimizes $F(x)$ compared to the change
 282 of s (adiabatic approximation).

283 For the results shown in Fig. 3, s denotes two-dimensional hidden sources following an identical
 284 Laplace distribution with zero mean and unit variance; x denotes four-dimensional sensory inputs;
 285 u denotes two-dimensional neural outputs; z denotes four-dimensional background Gaussian noises
 286 following $\mathcal{N}[z; 0, \Sigma_z]$; θ denotes a 4×2 -dimensional mixing matrix; W is a 2×4 -dimensional synaptic
 287 strength matrix for the bottom-up path; V is a 4×2 -dimensional synaptic strength matrix for the
 288 top-down path; and the priors of W, V , and γ are flat priors. Sensory inputs are determined by
 289 $x = \theta s + z$, while neural outputs are determined by $u = Wx$. The prediction error is given by
 290 $\epsilon = x - Vu$ and used to calculate $H[p(\epsilon)]$ and L_A . Horizontal and vertical axes in the figure
 291 are conditional entropy $H[x|\varphi]$ (Eq. (14)) and free energy expectation \bar{F} (Eq. (18)), respectively.
 292 Simulations were conducted 100 times with randomly selected θ and Σ_z for each condition. For each
 293 simulation, 10^8 random sample points were generated and probability distributions were calculated
 294 using the histogram method.

295 First, when W is randomly chosen and V is defined by $V = W^T$, both $H[x|\varphi]$ and \bar{F} are scattered
 296 (black circles in Fig. 3) because neural outputs represent random mixtures of sources and noises.
 297 Next, when W is optimized according to either Eq. (27) or (28) under the constraint of $V = W^T$,
 298 the neural outputs express the major principal components of the inputs; i.e., the network performs
 299 PCA (blue circles in Fig. 3). This is the case when $H[x|\varphi]$ is minimized. In contrast, when W, V ,
 300 and $\Sigma_\epsilon(\gamma)$ are optimized according to the FEP (see Eq. (??)), the neural outputs represent the
 301 independent components that match the prior source distribution; i.e., the network performs BSS
 302 or ICA while minimizing the prediction error (red circles in Fig. 3). For linear generative processes,
 303 the minimization of \bar{F} can reliably and accurately perform both dimensionality reduction and BSS

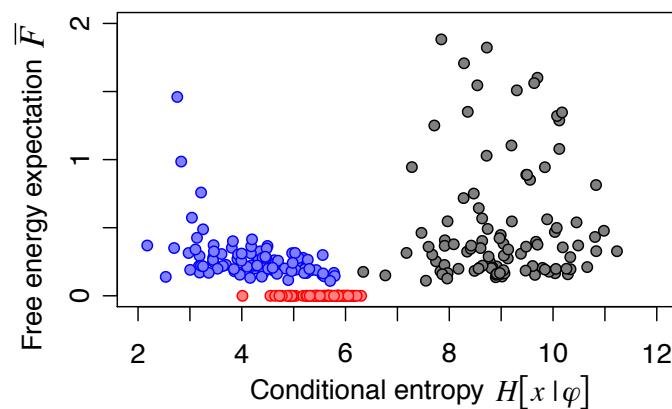


Figure 3. Difference between the infomax principle and FEP when sources follow a non-Gaussian distribution. Black, blue, and red circles indicate the results when W is a random matrix, optimized for the infomax principle (i.e., PCA), and optimized for the FEP, respectively.

304 because the outputs become independent of each other and match the prior belief if and only if the
 305 outputs represent true sources up to permutation and sign-flip. Because the utilizable information
 306 consists of PCA and ICA cost functions (see Eq. (21)), the maximization of $X[x; \varphi]$ leads to a solution
 307 that is a compromise between the solutions for the infomax principle and the FEP. Interestingly, the
 308 infomax optimization (i.e., PCA) provides a W that makes \bar{F} closer to zero than random states, which
 309 indicates that the infomax optimization contributes to the free energy minimization. Note that, for
 310 nonlinear systems, there are many different transformations that make the outputs independent of
 311 each other [52]. Hence, there is no guarantee that minimization of \bar{F} can identify the true sources of
 312 nonlinear generative models.

313 In sum, the aims of the FEP and infomax principle are similar to each other. In particular, when
 314 both the sources and noises follow Gaussian distributions, their aims become the same. Conversely,
 315 the optimal synaptic weights under the FEP are different from those under the infomax principle
 316 when sources follow non-Gaussian distributions. Under this condition, the maximization of the
 317 utilizable information leads to a compromise solution between those for the FEP and the infomax
 318 principle.

319 5. Discussion

320 In this study, the FEP is linked with the infomax principle, PCA, and ICA. It is more likely
 321 that the purpose of a neural network in a biological system is to minimize the surprise of sensory
 322 inputs to realize better inference rather than maximize the amount of stored information. For
 323 example, the visual input captured by a video camera contributes to the stored information, but
 324 this amount of information is not equal to the amount of information available for inference. The
 325 surprise expectation represents the difference between actual and inferred observations; the free
 326 energy expectation provides the difference between recognition and generative models. Utilizable
 327 information is introduced to quantify the inference and generalization capability of sensory inputs.
 328 Using this approach, the free energy expectation can be explained as the gap between the information
 329 stored in the neural network and that available for inference. Moreover, the derivation of ICA
 330 is simplified by the FEP. To perform ICA based on the infomax principle, one needs to tune the
 331 nonlinearity of the neural outputs to ensure the derivative of the nonlinear I/O function matches
 332 the prior distribution. Conversely, under the FEP, ICA is straightforwardly derived from the KLD
 333 between the actual probability distribution and the prior distribution of u . Especially, in the absence
 334 of background noise and prior knowledge of the parameters and hyper-parameters, the free energy

335 expectation is equivalent to the surprise expectation as well as Amari's ICA cost function, which
336 indicates that ICA is a subproblem of the FEP.

337 The FEP is a rigorous and promising theory from theoretical and engineering viewpoints because
338 various learning rules are derived from the FEP [14,15]. However, to be a physiologically plausible
339 theory of the brain, the FEP needs to satisfy certain physiological requirements. There are two major
340 requirements: first, physiological evidence that shows the existence of learning or self-organizing
341 processes under the FEP is required. The model structure under the FEP is consistent with the
342 structure of cortical microcircuits [19]. Moreover, *in vitro* neural networks performing BSS reduce
343 free energy [44]. It is known that the spontaneous prior activity of a visual area enables it to learn
344 the properties of natural pictures [53]. These results suggest the physiological plausibility of the
345 FEP. Nevertheless, further experiments and consideration of information-theoretical optimization
346 under physiological constraints [54] are required to prove the existence of the FEP in the biological
347 brain. Second, the update rule must be a biologically plausible local learning rule; i.e., synaptic
348 strengths must be changed by signals from connected cells or widespread liquid factors. While the
349 synaptic update rule for a discrete system is local [17], the current rule for a continuous system [14]
350 is a non-local rule. Recently developed biologically-plausible three-factor learning models in which
351 Hebbian learning is mediated by a third modulatory factor [55–58] may help reveal the neuronal
352 mechanism underlying unconscious inference. Therefore, it is necessary to investigate how actual
353 neural networks infer the dynamics placed in the background of the sensory input and if this is
354 consistent with the FEP, see also [59] for the relationship between the FEP and spike-timing dependent
355 plasticity [60,61]. This may help develop a biologically plausible learning algorithm through which
356 an actual neural network might develop its internal model. Characterization of information from
357 physical viewpoint may also help understand how the brain physically embodies the information
358 [62,63]. In the subsequent work, we would like to see their relationship.

359 In summary, this study investigated the differences between two types of
360 information—information stored in the neural network and information available for inference.
361 It was demonstrated that free energy represents the gap between these two types of information.
362 This result clarifies the difference between the FEP and related theories and can be utilized for
363 understanding unconscious inference from a theoretical viewpoint.

364 **Acknowledgments:** This work was supported by RIKEN Center for Brain Science.

365 **Conflicts of Interest:** The author declares no competing financial interests. The funding sponsor had no role
366 in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
367 and in the decision to publish the results.

368 References

- 369 1. DiCarlo, J.J.; Zoccolan, D.; Rust, N.C. How does the brain solve visual object recognition? *Neuron* **2012**, *73*,
370 415–434.
- 371 2. Bronkhorst, A.W. The cocktail party phenomenon: A review of research on speech intelligibility in
372 multiple-talker conditions. *Acta Acustica united with Acustica* **2000**, *86*, 117–128.
- 373 3. Brown, G.D.; Yamada, S.; Sejnowski, T.J. Independent component analysis at the neural cocktail party. *Trends
374 in neurosciences* **2001**, *24*, 54–63.
- 375 4. Haykin, S.; Chen, Z. The cocktail party problem. *Neural Comput* **2005**, *17*, 1875–1902.
- 376 5. Narayan, R.; Best, V.; Ozmeral, E.; McClaine, E.; Dent, M.; Shinn-Cunningham, B.; Sen, K. Cortical
377 interference effects in the cocktail party problem. *Nat Neurosci* **2007**, *10*, 1601–1607.
- 378 6. Mesgarani, N.; Chang, E.F. Selective cortical representation of attended speaker in multi-talker speech
379 perception. *Nature* **2012**, *485*, 233–236.
- 380 7. Golumbic, E.M.Z.; Ding, N.; Bickel, S.; Lakatos, P.; Schevon, C.A.; McKhann, G.M.; Schroeder, C.E.
381 Mechanisms underlying selective neuronal tracking of attended speech at a “cocktail party”. *Neuron* **2013**,
382 *77*, 980–991.

383 8. Dayan, P.; Abbott, L.F. *Theoretical neuroscience: computational and mathematical modeling of neural systems*; MIT
384 Press, London, 2001.

385 9. Gerstner, W.; Kistler, W. *Spiking Neuron Models. Single Neurons, Populations, Plasticity*; Cambridge University
386 Press, Cambridge, 2002.

387 10. Bishop, C.M. *Pattern Recognition and Machine Learning*; Springer Verlag, 2006.

388 11. von Helmholtz, H. *Treatise on physiological optics (Vol. 3)*; The Optical Society of America, 1925.

389 12. Dayan, P.; Hinton, G.E.; Neal, R.M.; Zemel, R.S. The helmholtz machine. *Neural Comput* **1995**, *7*, 889-904.

390 13. Friston, K.; Kilner, J.; Harrison, L. A free energy principle for the brain. *Journal of Physiology-Paris* **2006**, *100*,
391 70-87.

392 14. Friston, K.J. Hierarchical model in the brain. *PLoS Comput Biol* **2008**, *4*, e1000211.

393 15. Friston, K. The free-energy principle: a unified brain theory? *Nat Rev Neurosci* **2010**, *11*, 127-138.

394 16. Friston, K. A free energy principle for biological systems. *Entropy* **2012**, *14*, 2100-2121.

395 17. Friston, K.; Fitzgerald, T.; Rigoli, F.; Schwartenbeck, P.; Pezzulo, G. Active inference: A process theory.
396 *Neural Comput* **2017**, *29*(1), 1-49.

397 18. George, D.; Hawkins, J. Towards a mathematical theory of cortical micro-circuits. *PLoS Comput Biol*, **2009**, *5*,
398 e1000532.

399 19. Bastos, A.M.; Usrey, W.M.; Adams, R.A.; Mangun, G.R.; Fries, P.; Friston, K.J. Canonical microcircuits for
400 predictive coding. *Neuron* **2012**, *76*, 695-711.

401 20. Rao, R.P.; Ballard, D.H. Predictive coding in the visual cortex: a functional interpretation of some
402 extra-classical receptive-field effects. *Nat Neurosci* **1999**, *2*, 79-87.

403 21. Friston, K. A theory of cortical responses. *Philos Trans R Soc Lond B Biol Sci* **2005**, *360*, 815-836.

404 22. Kilner, J.M.; Friston, K.J.; Firth, C.D. Predictive coding: an account of the mirror neuron system. *Cognitive
405 Processing* **2007**, *8*, 159-166.

406 23. Friston, K.; Mattout, J.; Kilner, J. Action understanding and active inference. *Biological Cybernetics*, **2011**, *104*,
407 137-160.

408 24. Friston, K.J.; Firth, C.D. Active inference, communication and hermeneutics. *Cortex* **2015**, *68*, 129-143.

409 25. Friston, K.; Firth, C. A duet for one. *Consciousness and Cognition* **2015**, *36*, 390-405.

410 26. Fletcher, P.C.; Firth, C.D. Perceiving is believing: a Bayesian approach to explaining the positive symptoms
411 of schizophrenia. *Nat Rev Neurosci*, **2009**, *10*, 48-58.

412 27. Friston, K.J.; Stephan, K.E.; Montague, R.; Dolan, R.J. Computational psychiatry: the brain as a phantastic
413 organ. *The Lancet Psychiatry*, **2014**, *1*, 148-158.

414 28. Linsker, R. Self-organization in a perceptual network. *Computer* **1988**, *21*, 105-117.

415 29. Linsker, R. Local synaptic learning rules suffice to maximize mutual information in a linear network. *Neural
416 Comput* **1992**, *4*, 691-702.

417 30. Lee, T.W.; Girolami, M.; Bell, A.J.; Sejnowski, T.J. A unifying information-theoretic framework for
418 independent component analysis. *Comput Math Appl* **2000**, *39*, 1-21.

419 31. Simoncelli, E.P.; Olshausen, B.A. Natural image statistics and neural representation. *Ann Rev Neurosci* **2001**,
420 24, 1193-1216.

421 32. Belouchrani, A.; Abed-Meraim, K.; Cardoso, J.F.; Moulines, E. A blind source separation technique using
422 second-order statistics. *Signal Processing IEEE Trans on* **1997**, *45*, 434-444.

423 33. Choi, S.; Cichocki, A.; Park, H.M.; Lee, S.Y. Blind source separation and independent component analysis:
424 A review. *Neural Information Processing-Letters and Reviews* **2005**, *6*, 1-57.

425 34. Cichocki, A.; Zdunek, R.; Phan, A.H.; Amari, S.I. *Nonnegative Matrix and Tensor Factorizations: Applications to
426 Exploratory Multi-way Data Analysis and Blind Source Separation*; John Wiley & Sons, 2009.

427 35. Comon, P.; Jutten, C. *Handbook of Blind Source Separation: Independent Component Analysis and Applications*;
428 Academic Press, 2010.

429 36. Shannon, C.E.; Weaver, W. *The mathematical theory of communication*; University of Illinois Press, 1998.

430 37. Cover, T.M.; Thomas, J.A. *Elements of information theory* John Wiley & Sons, New York, NY, 1991.

431 38. Pearl, J. *Probabilistic reasoning in intelligent systems: networks of plausible inference*; San Francisco, CA: Morgan
432 Kaufmann, 1988.

433 39. Friston, K.J. Life as we know it. *J R Soc Interface*, **2013**, *10*, 20130475.

434 40. Kullback, S.; Leibler, R.A. On information and sufficiency. *Ann Math Stat*, **1951**, *22*, 79-86.

435 41. Arora, S.; Risteski, A. Provable benefits of representation learning. *arXiv*, arXiv:1706.04601.

436 42. Jaynes, E.T. Information theory and statistical mechanics. *Physical Review*, **1957**, *106*, 620-630.

437 43. Jaynes, E.T. Information theory and statistical mechanics. II. *Physical Review*, **1957**, *108*, 171-190.

438 44. Isomura, T.; Kotani, K.; Jimbo, Y. Cultured Cortical Neurons Can Perform Blind Source Separation According
439 to the Free-Energy Principle. *PLoS Comput Biol* **2015**, *11*, e1004643.

440 45. Xu, L. Least mean square error reconstruction principle for self-organizing neural-nets. *Neural Netw* **1993**, *6*,
441 627-648.

442 46. Amari, S.I.; Cichocki, A.; Yang, H.H. A new learning algorithm for blind signal separation. *Adv Neural Inf
443 Proc Sys* **1996**, *8*, 757-763.

444 47. Oja, E. Neural networks, principal components, and subspaces. *Int J Neural Syst* **1989**, *1*, 61-68.

445 48. Bell, A.J.; Sejnowski, T.J. An information-maximization approach to blind separation and blind
446 deconvolution. *Neural Comput* **1995**, *7*, 1129-1159.

447 49. Bell, A.J.; Sejnowski, T.J. The “independent components” of natural scenes are edge filters. *Vision Res* **1997**,
448 *37*, 3327-3338.

449 50. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. *Science* **2006**,
450 *313*, 504-507.

451 51. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. *Nature* **2015**, *521*, 436.

452 52. Hyvärinen, A.; Pajunen, P. Nonlinear independent component analysis: Existence and uniqueness results.
453 *Neural Netw* **1999**, *12*, 429-439.

454 53. Berkes, P.; Orbán, G.; Lengyel, M.; Fiser, J. Spontaneous cortical activity reveals hallmarks of an optimal
455 internal model of the environment. *Science* **2011**, *331*, 83-87.

456 54. Sengupta, B.; Stemmler, M.B.; Friston, K.J. Information and efficiency in the nervous system—a synthesis.
457 *PLoS Comput Biol* **2013**, *9*, e1003157.

458 55. Frémaux, N.; Gerstner, W. Neuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor
459 Learning Rules. *Front Neural Circuits* **2016**, *9*, doi:10.3389/fncir.2015.00085.

460 56. Isomura, T.; Toyoizumi, T. A Local Learning Rule for Independent Component Analysis. *Sci Rep* **2016**, *6*,
461 28073.

462 57. Kuśmierz, Ł.; Isomura, T.; Toyoizumi T. Learning with three factors: modulating Hebbian plasticity with
463 errors. *Curr Opin Neurobiol* **2017**, *46*, 170-177.

464 58. Isomura, T.; Toyoizumi, T. Error-gated Hebbian rule: a local learning rule for principal and independent
465 component analysis. *Sci Rep* **2018**, *8*, 1835.

466 59. Isomura, T.; Sakai, K.; Kotani, K.; Jimbo, Y. Linking neuromodulated spike-timing dependent plasticity with
467 the free-energy principle. *Neural Comput* **2016**, *28*, 1859-1888.

468 60. Markram, H.; Lübke, J.; Frotscher, M.; Sakmann, B. Regulation of synaptic efficacy by coincidence of
469 postsynaptic APs and EPSPs. *Science* **1997**, *275*, 213-215.

470 61. Bi, G.Q.; Poo, M.M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing,
471 synaptic strength, and postsynaptic cell type. *J Neurosci* **1998**, *18*, 10464-10472.

472 62. Karnani, M.; Paakkonen, K.; Annila, A. The physical character of information. *Proc R Soc Lond A Math Phys
473 Eng Sci* **2009**, *465*, 2155-2175.

474 63. Annila, A. On the character of consciousness. *Front Sys Neurosci* **2016**, *10*, 27.