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1 Abstract: The mutual information between the state of a neural network and the state of the external
2 world represents the amount of information stored in the neural network that is associated with the
s external world. In contrast, the surprise of the sensory input indicates the unpredictability of the
« current input. In other words, this is a measure of inference ability, and an upper bound of the
s surprise is known as the variational free energy. According to the free-energy principle (FEP), a
s neural network continuously minimizes the free energy to perceive the external world. For the
»  survival of animals, inference ability is considered to be more important than simply memorized
¢ information. In this study, the free energy is shown to represent the gap between the amount of
o  information stored in the neural network and that available for inference. This concept involves
1o both the FEP and the infomax principle, and will be a useful measure for quantifying the amount of
1 information available for inference.

1= Keywords: free-energy principle; internal model hypothesis; unconscious inference; infomax
1z principle; independent component analysis; principal component analysis

12 1. Introduction

1 Sensory perception comprises complex responses of the brain to sensory inputs. For example,
1e the visual cortex can distinguish objects from their background [1], while the auditory cortex can
1z recognize a certain sound in a noisy place with high sensitivity, a phenomenon known as the cocktail
e party effect [2-7]. The brain (i.e., a neural network) has acquired these perceptual abilities without
1o supervision, which is referred to as unsupervised learning [8-10]. Unsupervised learning, or implicit
20 learning, is defined as the learning that happens in the absence of a teacher or supervisor; it is
xn  achieved through adaptation to past environments, which is necessary for higher brain functions. An
22 understanding of the physiological mechanisms that mediate unsupervised learning is fundamental
= to augmenting our knowledge of information processing in the brain.

24 One of the consequent benefits of unsupervised learning is inference, which is the action of
= guessing unknown matters based on known facts or certain observations; i.e., it is the process of
26 drawing conclusions through reasoning and estimation. While inference is thought to be an act of
2z the conscious mind in the ordinary sense of the word, where consciousness often represents a state of
2s  self-awareness, it can occur even in the unconscious mind. Hermann von Helmholtz, a 19th-century
20 physicist/physiologist, realized that perception often requires inference by the unconscious mind
o and coined the word unconscious inference [11]. According to Helmholtz, conscious inference and
a1 unconscious inference can be distinguished based on whether conscious knowledge is involved in the
sz process. For example, when an astronomer computes the positions or distances of stars in space based
s3  on images taken at various times from different parts of the orbit of the Earth, he or she performs
sa  conscious inference. This is because the process is “based on a conscious knowledge of the laws of
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s optics”; by contrast, “in the ordinary acts of vision, this knowledge of optics is lacking” [11]. Thus,
36 the latter process is performed by the unconscious mind. Nevertheless, the results of conscious and
sz unconscious inference are clearly similar. Similar to conscious inference, unconscious inference is
ss crucial so that cognitive processes in the unconscious mind can estimate the overall picture from
3o partial observations.

40 In the field of theoretical and computational neuroscience, unconscious inference has been
a1 translated as the successive inference of the generative process of the external world (in terms
.2 of Bayesian inference) that animals perform in order to achieve perception. One hypothesis, the
a3 so-called internal model hypothesis [12-19], states that animals reconstruct a model of the external
s« world in their brain through past experiences. This internal model helps animals infer hidden
«s causes and predict future inputs automatically; in other words, this inference process happens
s unconsciously. This is also known as the predictive coding hypothesis [20,21]. In the past decade, a
+z mathematical foundation for unconscious inference, called the free-energy principle (FEP), has been
s proposed [13-17], and is a candidate unified theory of higher brain functions. Briefly, this principle
4 hypothesizes that parameters of the generative model are learned through unsupervised learning,
so while hidden variables are inferred in the subsequent inference step. The FEP provides a unified
s framework for higher brain functions including perceptual learning [14], reinforcement learning [23],
s= motor learning [22,23], communication [24,25], emotion, mental disorders [26,27], and evolution.
ss However, the difference between the FEP and a related theory, namely the information maximization
s« (infomax) principle [28-31], is still not fully understood.

55 In this study, the relationship between the FEP and the infomax principle is investigated. As one
ss of most simple and important examples, the study focuses on blind source separation (BSS), which
sz is the task of separating sensory inputs into hidden sources (or causes) [32-35]. BSS is shown to be a
s subset of the inference problem considered in the FEP, and variational free energy is demonstrated to
so represent the difference between the information stored in the neural network (which is the measure
e of the infomax principle [28]) and the information available for inferring current sensory inputs.

o1 2. Methods

o2 2.1. Definition of a system

63 Let us suppose s = (s1,...,55)7 ~ p(s) = [I; p(s;) as hidden sources; x = (x1,...,xpm)7 ~
Pp 4 iP

s« p(x) as sensory inputs; u = (uy,...,uy)’ ~ p(u) as neural outputs; z = (z1,...,zm)7 ~ p(z)
es as background noises; € = (€1,...,epm)T ~ p(e) as prediction errors; and f € RM, ¢ € RN, and
o 1 € RM as nonlinear functions (see also Table 1). The generative process of the external world (or the
ez environment) is described by a stochastic equation as:

Generative process : x = f(s) + z. (1)

e Recognition and generative models of the neural network are defined as follows:

Recognition model : u = g(x), )
Generative model : x = h(u) + €. 3)

oo Figure 1 illustrates the structure of the system under consideration. For the generative model, the
7o prior distribution of u is defined as p, (1) = TI; pu(u;) and the likelihood function as pe(e) =
7 p*(x|h(u)) = Nle;0,Z], where p* indicates a statistical model and N is a Gaussian distribution.
72 Moreover, suppose 0 ~ p(8), W(e€ RN*M) ~ p(W), and V(€ RM*N) ~ p(V) as parameter sets
= for f, g, and h, respectively, A ~ p(A) as a hyper-parameter set for p(s) and p(z), and v ~ p(7)
7o as a hyper-parameter set for p,(u) and pe(€). Here, hyper-parameters are defined as parameters
7 that determine the shape of distributions (e.g., the covariance matrix of pe(€)). Note that W and V
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Table 1. Glossary of expressions.

Expression Description

Generative process
Recognition model

A set of stochastic equations that generate the external world dynamics
A model in the neural network that imitates the inverse of the generative process

Generative model

A model in the neural network that imitates the generative process

s e RN Hidden sources
x € RM Sensory inputs
0 A set of parameters
A A set of hyper-parameters
9= {s0,A} A set of hidden states of the external world
ueRN Neural outputs
W e RNXM 7 ¢ RMxN Synaptic strength matrices
0% State of neuromodulators
o={uW,V,v} A set of the brain internal states
z€RM Background noises
e cRM Prediction errors
p(x) The actual probability density of x
plelx), p(x, @), p(@) Actual probability densities (posterior densities)
pu(u), pe(€), py(@) Prior densities
p*(x), p*(@|x), p*(x, ¢) Statistical models
dx =1, dx; Finite spatial resolution of x

(
D [p(e)lp* (o)) = {log 22}

Expectation of e over p(x)
Shannon entropy of p(x)dx
Cross entropy of p*(x)dx over p(x)

KLD between p(e) and p*(e)

Mutual information between x and ¢
Surprise

_ pr(x)

S =(S(x))p(x) Surprise expectation
F(x) = S(x) + Dkrlp(@|x)|[p*(¢|x)]  Free energy

F = (F(x))p(x) Free energy expectation

P (x.9)

s
2
=
i
~ I
<)

& p)p(e) >p(x,q0)

Utilizable information between x and ¢

76 are assumed as synaptic strength matrices for feedforward and backward paths, respectively, while
7z 7y is assumed as a state of neuromodulators similarly to [13-15]. Egs. (1)-(3) are transformed into

7s  probabilistic representations

Generative process : p(s,x|0,A) = p(x|s,0,A)p(s|A)

= [ 6(x = f(5:6) — 2)p(elA)p(slA)dz @
=p(z=x—fIN)p(s|A),
Recognition model : p(x, u|W) = p(x|u, W)p(u|W)
= p(ulx, W)p(x) ®)
= 0(u—g(; W))p(x),
Generative model : p*(x,u|V,v) = p*(x|u, V,v)pu(u|y)
=/3@—hWﬂO—€WAd7WAM7M€ ©6)

= pe(e = x — hly)pu(uly).
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Figure 1. Schematic images of a generative process of the environment (left) and recognition and
generative models of the neural network (right). Note that the neural network can access only the
states in the right side of the dashed line, including x (see text in Section 3). Black arrows are causal
relationships, while blue arrows are information flows of the neural network. See main text and Table
1 for meanings of variables and functions.

7o Note that d(e) is Dirac’s delta function and p*(x|u, V,v) = p(x|u, V, v, m) is a statistical model given
so amodel structure m. For simplification, let ¢ = {s,6, A} be a set of hidden states of the external world
sr and ¢ = {u, W, V, v} be a set of internal states of the neural network. By multiplying p(6,A) to Eq.
sz (4)and p(W,V, ) to Egs. (5)(6), Egs. (4)-(6) become

p p(8), @)
Recognition model : p(x, ¢) = p(x|@)p(¢@) = p(e = x —h)p(¢), (8)
pe(€ =x—h)py(9), )

ss  Where p, is the prior distribution for ¢ and p*(x, ¢) = p(x, ¢|m) is a statistical model given a model
sa structure m, which is determined by the shapes of p, and pe. The expression of p*(x, ¢) is used
ss instead of p(x, |m) to emphasize the difference between p(x, ¢) and p*(x, ¢). While p(x, ¢) is the
ss actual joint probability of (x, ¢) (which corresponds to the posterior distribution), p*(x, ¢), i.e., the
ez product of the likelihood function and the prior distribution, represents the generative model that the
s« neural network expects (x, ¢) to follow. As shown later, the inference and learning are achieved by
so minimizing the difference between p(x, ¢) and p*(x, ¢).

Generative process : p(x,9) = p(x|9)p(d) = p(z =

Generative model : p*(x, 9) = p*(x|@)py(@) =

oo 2.2. Information stored in the neural network

01 Information is defined as the negative log of probability [36]. When Prob(x) is the probability of
= given sensory inputs x, its information is given by — log Prob(x) [nat], where 1 nat = 1.4427 bits. When
s x takes continuous values, by coarse graining, — logProb(x) is replaced with —log(p(x)dx), where
ea p(x) is the probability density of x and dx = [];dx; is the product of the finite spatial resolutions
os  Of x’s elements. The expectation of —log(p(x)dx) over p(x) gives the Shannon entropy (or average
s information), which is defined by

Hlp(x)] = (~log(p(x)dx)) () [nat], (10)

v where (o), = J ep(x)dx represents the expectation of e over p(x). Note that the use
s Of —log(p(x)dx) instead of —logp(x) is useful because this H[p(x)] is non-negative (because
oo dProb(x) = p(x)dx takes a value between 0 and 1), while the addition of constant —logdx has no
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100 effect except for sliding the offset value. If and only if p(x) is Dirac’s delta function, H[p(x)] = 0
11 is realized. For the system under consideration (Eqs. (7)—(9)), the information shared between the
102 external world states (x,9) and the internal states of the neural network ¢ is defined by mutual
103 information [37]

o = p(x,9,9)
13,0391 = (108 100 >p(w,¢) Inat] (n
10a  Note that p(x, 9, ¢) is the joint probability of (x,®) and ¢. Moreover p(x,d) and p(¢) are their
15 marginal distributions, respectively. This mutual information takes a non-negative value and
10 quantifies how much (x,9) and ¢ are related with each other. High mutual information indicates
107 the internal states are informative to explain the external world states, while zero mutual information
10e means they are independent of each other.

100 However, the only information that the neural network can directly access is the sensory input.
1o This is the case because the system under consideration can be described as Bayesian network, see [38,
a1 39] for the detail on Markov blanket. Hence, entropy of the external world states under a fixed sensory
12 input gives the information that the neural network cannot infer. Moreover, there is no feedback
us  control from the neural network to the external world in this setup. Thus, under a fixed x, ¢ and ¢
ua  are conditionally independent of each other. From p (8, ¢|x) = p(d|x)p(¢|x), we can obtain

1[(x, 9); 9] = <10 p(B1x)p(glx)p(x)

_ (10g PL2I¥)
p(8|x)p(x)p(e) >p(19|x)p((p|x)p(x) ; <1 &

= I|x; ¢|.
p(e) >p<¢,x) el 2)

us  Using Shannon entropy, I[x; ¢| becomes

I[x; 9] = H{p(x)] - H[x[g] [nat], (13)

e Where

Hx|g] = ( —log (p(x|g)dx)) —log (ple)dx)) = (HlpE))yy (4

p(x,9) - < p(e)p(e)

17 is the conditional entropy of x given ¢. Thus, maximization of I[(x, ¢); ¢] is the same as maximization
us  Of I[x; @] for this system. Because I[x; ¢], H[p(x)], and H[x|¢] are non-negative, I[x; ¢] has the range
e 0 < I[x; 9] < H[p(x)]. Zero mutual information occurs if and only if x and ¢ are independent, while
120 I[x;p] = H[p(x)] occurs if and only if x is fully explained by ¢. In this manner, I[x; ¢] describes
121 the information about the external world stored in the neural network. Note that this I[(x, 9); ¢] can
122 be expressed using the Kullback-Leibler divergence (KLD) [40] as I[x; ¢] = Dkr [p(x, o)l p(x)p(go)} .
123 KLD takes a non-negative value and indicates the divergence between two distributions.

124 The infomax principle states that “the network connections develop in such a way as to maximize
125 the amount of information that is preserved when signals are transformed at each processing stage,
126 subject to certain constraints” [28], see also [29-31]. According to the infomax principle, the neural
12z network is hypothesized to maximize I[x; ¢] to perceive the external world. However, I[x; ¢| does not
126 fully explain the inference capability of a neural network. For example, if neural outputs just express
120 the sensory input itself (u = x), I[x; ¢] = H[p(x)] is easily achieved, but this does not mean that the
130 neural network can predict input statistics. This is considered in the next section.

1 2.3. Free-energy principle

132 If one has a statistical model determined by model structure m, the information calculated based
13 on m is given by the negative log likelihood — log p(x|m), which is termed as the (marginal) surprise
13s  of the sensory input and expresses the unpredictability of the sensory input for the individual. The
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135 neural network is considered to minimize the surprise in the sensory input using the knowledge
136 about the external world, to perceive the external world [13]. To infer if an event is likely to
137 happen based on the past observation, a statistical (i.e., generative) model is necessary; otherwise
13e it is difficult to generalize sensory inputs [41]. Note that the surprise is the marginal over the
13s  generative model; hence, the neural network can reduce the surprise by optimizing its internal states,
120 while Shannon entropy of the input is determined by the environment. When the actual probability
12 density and a generative model are given by p(x) and p*(x) = p(x|m), respectively, the cross
12 entropy (—log(p*(x)dx)),(,) is always larger than or equal to Shannon entropy H|[p(x)] because
13 of the non-negativity of KLD. Hence, in this study, the input surprise is defined by

S(x) = —logp*(x) +logp(x) [nat] (15)

1 and its expectation over p(x) by

S

(5(x))p(xr) = Drelp(0)|[p"(x)] = (= log(p" (x)dx)) ;) — HIp(x)] [nat]. (16)

ws  This definition of S(x) is to ensure S is non-negative and S = 0 if and only if p*(x) = p(x). Since
s H[p(x)] is determined by the environment and constant for the neural network, minimization of this
w7 S is the same meaning as minimization of (— log(p* (x)dx)>p(x).

148 Because the sensory input is generated by the external world generative process, consideration
s Of the structure and dynamics placed in the background of the sensory input can provide accurate
10 inference. According to the internal model hypothesis, animals develop the internal model in their
11 brain to increase the accuracy and efficiency of inference [12-15,17-19]; thus, internal states of the
152 neural network ¢ are hypothesized to imitate the hidden states of the external world ¢. A problem is
13 that —log p*(x) = —log([ p*(x, ¢)d¢) is intractable for the neural network, because the integral of
s p*(x, @) placed in the logarithm function. The FEP hypothesizes that the neural network calculates
155 an upper bound of —log p*(x) instead of the exact value, which is more tractable [13]. This upper
16 bound is termed as variational free energy:

F(x) = S(x) + Diclp(gl0)lp" (plx)] = (~log p* (x,9) + log p(x,9)) gy Inatl:  (17)

157 Note that p(¢|x) expresses the belief about hidden states of the external world encoded by internal
1ss  states of the neural network, termed as the recognition density. Due to the non-negativity of KLD,
1o F(x) is guaranteed to be an upper bound of S(x) and F(x) = S(x) holds if and only if p*(¢|x) =
10 p(¢|x). Furthermore, the expectation of F(x) over p(x) is defined by

F

(F())p(x) = Prelp(x, @)llp* (x, )] = (U(x, 9)) 1,0y — HP(x, 9)]  [nat], (18)

1 where U(x,¢) = —log(p*(x,¢)dxde) is termed as the internal energy and H[p(x,¢)] =
12 (—log(p(x, 9)dxdg)) (e is the joint entropy of x and ¢. F indicates the difference between the
1z actual probability p(x, ¢) and the generative model p*(x, ¢). Because of the non-negativity of KLD,
1 F is always larger than or equal to S(> 0) and F = S = 0 holds if and only if p*(x, ¢) = p(x, @).

165 Internal energy U(x,¢) quantifies the amplitude of the prediction error at a given moment
16 [13]. Minimization of (U(x, ¢)) (x,¢) is the so-called maximum a posteriori (MAP) estimation (or the
167 maximum likelihood estimation if the priors are uniform distributions) [10] and provides a solution
s that (at least locally) minimizes the prediction error. Whereas, maximization of H[p(x, ¢)] increases
1es the independency between internal states, which helps neurons to establish an efficient representation
1o as pointed out by Jaynes” max entropy principle [42,43]. This is essential for BSS [32-35] because the
i optimal parameters that minimize (U(x, ¢)) (x,q) are not always determined identically. Due to this,
12 the MAP estimation alone does not always identify the generative process behind the sensory inputs.
173 As T is the sum of costs for the MAP estimation and BSS, free-energy minimization is the rule to
17a  simultaneously minimize the prediction error and maximize the independency of the internal states.
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175 It is recognized that animals perform BSS [2-7]. Interestingly, even in vitro neural networks perform
e BSS which is accompanied by significant reduction of free energy in accordance with the FEP and
177 Jaynes’ max entropy principle [44].

we  2.4. Information available for inference

179 We now consider how free energy expectation F relates to mutual information I[x; ¢]. According
10 to unconscious inference and the internal model hypothesis, the aim of a neural network is to predict
11 X, and for this purpose, it infers hidden states of the external world. While the neural network is
1.2 conventionally hypothesized to express sufficient statistics of the hidden states of the external world
13 [14], here it is hypothesized that internal states of the neural network are random variables and
1sa the probability distribution of them imitates the probability distribution of the hidden states of the
s external world. Thereby, the aim of the neural network is to match the probability distribution of the
186 internal states with that of the hidden states of the external world. To do so, the neural network shifts
1s7 the actual probability of internal states p(x, ¢) = p(e)p(¢) closer to those of the generative model
e P (X, @) = pe(€)py(e) that the neural network expects (x, @) to follow. From this viewpoint, the
10 difference between these two distributions is associated with the loss of information.

190 The amount of information available for inference can be calculated using the following three
101 values related to information loss: (i) Because H[p(x)] is information of the sensory input and
12 I[x; ¢] is information stored in the neural network, H[p(x)] — I[x; 9] = (H[p(€)]),(,) indicates the
103 information loss in the recognition model (Fig. 2). (ii) The difference between actual and desired
ws (prior) distributions of internal states Dy [p(¢)||py(¢)] quantifies the information loss for inferring
15 internal states (i.e., blind state separation). (iii) The difference between distributions of the actual
s reconstruction error and the prediction error under the given model (Dk.[p(x|9)|[p* (x|@)]) p(p) =
w7 (Dkr[p(€)||pe(€)]) () quantifies the information loss for representing inputs using internal states.
1s Therefore, by subtracting these three values from H[p(x)], a mutual-information-like measure
100 representing the inference capability is obtained:

X[x; 9] = H[p(x)] = (H[p(e)]) p(g) — Prelp(@)lIpe(9)] = (Dxelp(e)l[pe(e)]) py)

_ (rog L2 2). n (19)
B <10g P(x)P(§9) >p(x,q)) [ at],

200 which is called utilizable information in this study. This utilizable information X[x; ¢] is defined by
201 replacing p(x, ¢) in I[x; ] with p*(x, ¢), immediately yielding

F=I[x;¢] — X[x; 9] [nat]. (20)

202 Hence, F represents the gap between the amount of information stored in the neural network and the
203 amount that is available for inference, which is equivalent to the information loss in the generative
202 model. Note that the sum of losses in the recognition and generative models H[p(x)] — X[x; ¢] =
205 F+ (H[p(€)])(y) is an upper bound of F because of the non-negativity of (H[p(€)]),(,) (Fig. 2).
200 Because (H[p(e)]),(,) is generally nonzero, F(x) + (H[p(€)]),(,) does not usually reach zero, even
r wohen p(x, ¢) = p* (x,¢).

208 Furthermore, X[x; ¢] is transformed into

X[x; 9] = H[p(x)] — Lx — La, (21)

200 Where

Lx = (= log(pe(€)dx)) (e () (22)
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Information [nat]

A
Shannon entropy of sensory inputs
Hlp(x)] =
g A
og
S5 | (HIxloD i) = (HIpED ()
o
- 0
I 2 Information stored in the neural network
[x; @] " Ly
é g F = (DKL [p(&')”ps(g)] )p((p)
2% J
&8s | vy N v
5
Dier [p(@) 1P (0)] = La
v
X[x; QD] Information available for inference

Figure 2. Relationship between information measures. The mutual information between the inputs
and internal states of the neural network (I[x; ¢]) is less than or equal to the Shannon entropy
of the inputs (H[p(x)]) because of the information loss in the recognition model. The utilizable
information (X[x; ¢]) is less than or equal to the mutual information and the gap between them gives
the expectation of the variational free energy (F), which quantifies the loss in the generative model.
The sum of PCA and ICA costs (Lx + L 4) is equal to the gap between the Shannon entropy and the
utilizable information, expressing the sum of losses in the recognition and generative models.

20 is the so-called reconstruction error, which is similar to the reconstruction error for principal
2 component analysis (PCA) [45], while

La = Drelp(9)lpe(9)] (23)
212 is a generalization of Amari’s cost function for independent component analysis (ICA) [46].
213 PCA is one of the most popular dimensionality reduction methods. It is used to remove

2a background noise and extract important features from sensory inputs [45,47]. In contrast, ICA is a
25 BSS method used to decompose a mixture set of sensory inputs into independent hidden sources
ze [33,35,46,48,49]. Theoreticians hypothesize that the PCA- and ICA-like learning underlies BSS in
21z the brain [3]. This kind of extractions of the hidden representation is also an important problem in
21e - machine learning [50,51]. Equation (21) indicates that X[x; ¢| consists of PCA- and ICA-like parts,
210 1.6, maximization of X[x; ¢] can perform both dimensionality reduction and BSS (Fig. 2). Their
220 relationship is discussed in the next section.

222 3. Comparison between the free-energy principle and related theories

222 In this section, the FEP is compared with other theories. As described in the Methods, the aim of
22s  the infomax principle is to maximize mutual information I[x; ¢| (Eq. (13)), while the aim of the FEP is
22¢ to minimize free energy expectation F (Eq. (18)), and maximization of utilizable information X[x; ¢]
225 (Eq. (19)) means to do both of them simultaneously.


http://dx.doi.org/10.20944/preprints201711.0020.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 May 2018 d0i:10.20944/preprints201711.0020.v2

9of 14

226 3.1. Infomax principle

227 The generative process and recognition- and generative models defined in Eqgs. (1)-(3) are
226 assumed. For simplification, suppose W,V and < follow Dirac’s delta functions; then, the goal of
220 the infomax principle is simplified as maximization of mutual information between x and u:

p(x,u) >
I[x;u] = ( log ———~ = H|p(x)| — H|x|u] = H|p(u)| — H|u|x|. (24)
[x; u] < B p0p) / o [p(x)] = H[x|u] = H[p(u)] — H[ul|x]
20 If dim(x) > dim(u) and a linear recognition model u = ¢(x) = Wx with full-rank matrix W is

2 supposed, because H[u|x] = 0 and u has an infinite range, I[x; u] = H|[p(u)] monotonically increases
22 as the variance of u increases. Thus, maximization of I[x;u] cannot perform either PCA or ICA. To
233 perform PCA and ICA based on the infomax principle, one needs to consider mutual information
23s  between sensory inputs and nonlinearly transformed neural outputs (u) = (¢¥(u1),...,P(un))T
s with an injective nonlinear function ¢(e). This mutual information is given by

x;p(u)] = Pl ple))
Ix; (u)] <log p(x)P(ll’(”))>p(x,¢(u))

23s  When nonlinear neural outputs have a finite range (e.g., between 0 and 1), the variance of u
23z should be maintained in the appropriate range. The infomax based ICA [48,49] is formulated based
23 on this constraint. From p(y(u)) = |ou/0yp(u)|p(u) = (T4 (w;)) *p(u), H{p(p(u))] becomes

20 Hlp(p(u))] = (—log{(IT; ¢’ (u:)) "' p(u)du})py = Hp(u)] + (T;log ' (14;)) (s Since H[gp(u)|x] =
20 0 hold, Eq. (25) becomes

= Hlp(p(u))] — Hp(u)|x]. (25)

I y(u)] = Hlp(w)] + <Zlog¢/<ui>> . 6)
! p(u)
21 In what follows, it is described that maximization of Eq. (26) as well as the FEP performs PCA and
242 ICA.

2a3 3.2, Principal component analysis

244 Both the infomax principle and the FEP give a cost function of PCA. Suppose dim(x) > dim(u),
s V =WT, and —logy'(u;) = u7/2 + const. From Eq. (24), H[p(#)] = H|[p(x)] — (H[p(€)]) () holds.
2es  Since the prediction error is given by € = x — Wlu = (I — WIW)x, we obtain (H[p(¢)])

ple) —
27 (—log{p(x)[0x/0de|dx}),(x ) = H[p(x)] + (log|I — WTW|)p((p). Thus, Eq. (26) becomes

I ()] = —( log|1 - WTW|>p((P) _ ;<|u|2>p(u). 27)

2es  The first term of Eq. (27) is maximized if WWT = I holds (i.e, W is an orthogonal matrix). To
240 maximize the second term, outputs u need to be involved in a subspace spanned by the first to the
20 N-th major principal components of x. Therefore, maximization of Eq. (27) performs PCA.

251 PCA is also derived by minimization of Lx (Eq. (22)) under the assumption that pe(€) is a
252 Gaussian distribution pc(€) = N[e; 0,y ~'I] with a scalar hyper-parameter oy > 0. This is given by

Ly = <’2y€T€ — %log |’y|> + const. (28)
p(e)

23 The derivative of Eq. (28) gives the update rule for the least square error PCA [45], which is similar to

zs  the well-known Oja’s subspace rule for PCA [47]. This Ly is also the same form as the cost function

25 for auto-encoder [50]. Moreover, when the priors of u, W, V, and v are flat, free energy expectation

2ss  (Eq. (18)) becomes F = Ly — (H[p(e)]) p(p) — Hlp(u)] = Lx + const.; thus, under this condition Fis

=7 equivalent to the PCA cost function.
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ze  3.3. Independent component analysis

250 Both the infomax principle and the FEP give a cost function of ICA. Suppose that sources
20 S1,...,5N independently follow an identical distribution py(s;). The infomax based ICA is derived
21 from Eq. (26) [48,49]. If y(u;) is defined to satisfy ¢'(u;) = po(u;), negative mutual information
22 —I[x;1P(u)] becomes KLD between actual and prior distributions up to constant term,

— ()] ~logdu = (logp(u) ~logpo(w)) = Dalp@llpo(w] =La- @9

26s This L4 is known as Amari’s ICA cost function [46]. While both —I[x; ¢(u)] and L4 provide the same
2a  gradient descent rule, formulating I[x; {(u)] requires the nonlinearly transformed neural outputs
2s  P(u). By contrast, L4 straightforwardly represents that minimization of KLD between p(u) and po(u)
2s  performs ICA. Indeed, if dim(u) = dim(x) = N, the background noise is small, and the priors
27 of W, V, and 7 are flat, we obtain F = Dy [p(u)||po(u)] = La. Therefore, ICA is a subset of the
26 inference problem considered in the FEP, and the derivation from the FEP is simpler while both the
20 infomax principle and the FEP give the same ICA algorithm.

270 Furthermore, when dim(x) > dim(u), minimization of F can perform both dimensionality
xnn reduction and BSS. When the priors of W,V, and « are flat, free energy expectation (Eq. (18))
22 approximately becomes F ~ Ly + Lg + const. = —X|[x;u] + const. The ratio of PCA to ICA

2z is controlled by 7. Unlike the case with scalar 7 described above, if L () is fine tuned by

27 high-dimensional y to minimize F, £ = (ee’), is obtained. Under this condition, Ly is equal

AE 7ple) X
2rs to H[x|u] up to constant term and thereby F = L4 + const. is obtained. This indicates that F consists
2re  only of the ICA part. These comparisons suggest that low-dimensional 7y is better to perform noise

27z reduction.

27s 4. Simulation and results

279 The difference between the infomax principle and the FEP is illustrated by a simple simulation
20 using a linear generative process and a linear neural network (Fig. 3). For simplification, it is assumed
21 that the dynamics of u quickly converge to the optimum that minimizes F(x) compared to the change
2.2 0of s (adiabatic approximation).

283 For the results shown in Fig. 3, s denotes two-dimensional hidden sources following an identical
2es Laplace distribution with zero mean and unit variance; x denotes four-dimensional sensory inputs;
2es 11 denotes two-dimensional neural outputs; z denotes four-dimensional background Gaussian noises
28s  following N[z; 0, Z;]; 6 denotes a 4 x 2-dimensional mixing matrix; W is a 2 x 4-dimensional synaptic
2z strength matrix for the bottom-up path; V is a 4 x 2-dimensional synaptic strength matrix for the
2ee  top-down path; and the priors of W,V, and < are flat priors. Sensory inputs are determined by
280 X = 05+ z, while neural outputs are determined by u = Wx. The prediction error is given by
20 € = x — Vu and used to calculate H[p(e)] and L,. Horizontal and vertical axes in the figure
201 are conditional entropy H[x|¢] (Eq. (14)) and free energy expectation F (Eq. (18)), respectively.
202 Simulations were conducted 100 times with randomly selected 6 and X, for each condition. For each
203 simulation, 10 random sample points were generated and probability distributions were calculated
204 using the histogram method.

205 First, when W is randomly chosen and V is defined by V = W7, both H[x|¢] and F are scattered
206 (black circles in Fig. 3) because neural outputs represent random mixtures of sources and noises.
207 Next, when W is optimized according to either Eq. (27) or (28) under the constraint of V = wrT,
208 the neural outputs express the major principal components of the inputs; i.e., the network performs
200 PCA (blue circles in Fig. 3). This is the case when H|[x|¢] is minimized. In contrast, when W, V,
s0 and X.(7) are optimized according to the FEP (see Eq. (??)), the neural outputs represent the
;1 independent components that match the prior source distribution; i.e., the network performs BSS
sz or ICA while minimizing the prediction error (red circles in Fig. 3). For linear generative processes,
203 the minimization of F can reliably and accurately perform both dimensionality reduction and BSS
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Figure 3. Difference between the infomax principle and FEP when sources follow a non-Gaussian
distribution. Black, blue, and red circles indicate the results when W is a random matrix, optimized
for the infomax principle (i.e., PCA), and optimized for the FEP, respectively.

s0s  because the outputs become independent of each other and match the prior belief if and only if the
s0s outputs represent true sources up to permutation and sign-flip. Because the utilizable information
s0s  consists of PCA and ICA cost functions (see Eq. (21)), the maximization of X[x; ¢] leads to a solution
;07 that is a compromise between the solutions for the infomax principle and the FEP. Interestingly, the
s0s infomax optimization (i.e., PCA) provides a W that makes F closer to zero than random states, which
oo indicates that the infomax optimization contributes to the free energy minimization. Note that, for
a0 nonlinear systems, there are many different transformations that make the outputs independent of
s each other [52]. Hence, there is no guarantee that minimization of F can identify the true sources of
sz nonlinear generative models.

313 In sum, the aims of the FEP and infomax principle are similar to each other. In particular, when
a1 both the sources and noises follow Gaussian distributions, their aims become the same. Conversely,
a5 the optimal synaptic weights under the FEP are different from those under the infomax principle
s1.6  when sources follow non-Gaussian distributions. Under this condition, the maximization of the
a1z utilizable information leads to a compromise solution between those for the FEP and the infomax
ae  principle.

s10 5. Discussion

320 In this study, the FEP is linked with the infomax principle, PCA, and ICA. It is more likely
sz that the purpose of a neural network in a biological system is to minimize the surprise of sensory
sz inputs to realize better inference rather than maximize the amount of stored information. For
;23 example, the visual input captured by a video camera contributes to the stored information, but
s2¢ this amount of information is not equal to the amount of information available for inference. The
;25 surprise expectation represents the difference between actual and inferred observations; the free
s energy expectation provides the difference between recognition and generative models. Utilizable
;27 information is introduced to quantify the inference and generalization capability of sensory inputs.
s2¢  Using this approach, the free energy expectation can be explained as the gap between the information
320 stored in the neural network and that available for inference. Moreover, the derivation of ICA
330 is simplified by the FEP. To perform ICA based on the infomax principle, one needs to tune the
s1 nonlinearity of the neural outputs to ensure the derivative of the nonlinear I/O function matches
sz the prior distribution. Conversely, under the FEP, ICA is straightforwardly derived from the KLD
:33  between the actual probability distribution and the prior distribution of u. Especially, in the absence
ssa of background noise and prior knowledge of the parameters and hyper-parameters, the free energy
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;s expectation is equivalent to the surprise expectation as well as Amari’s ICA cost function, which
s3s  indicates that ICA is a subproblem of the FEP.

337 The FEP is a rigorous and promising theory from theoretical and engineering viewpoints because
s various learning rules are derived from the FEP [14,15]. However, to be a physiologically plausible
330 theory of the brain, the FEP needs to satisfy certain physiological requirements. There are two major
a0 requirements: first, physiological evidence that shows the existence of learning or self-organizing
s processes under the FEP is required. The model structure under the FEP is consistent with the
sz structure of cortical microcircuits [19]. Moreover, in vitro neural networks performing BSS reduce
sas  free energy [44]. It is known that the spontaneous prior activity of a visual area enables it to learn
sas  the properties of natural pictures [53]. These results suggest the physiological plausibility of the
sas  FEP. Nevertheless, further experiments and consideration of information-theoretical optimization
s under physiological constraints [54] are required to prove the existence of the FEP in the biological
a7 brain. Second, the update rule must be a biologically plausible local learning rule; i.e., synaptic
se  strengths must be changed by signals from connected cells or widespread liquid factors. While the
20 synaptic update rule for a discrete system is local [17], the current rule for a continuous system [14]
350 is a non-local rule. Recently developed biologically-plausible three-factor learning models in which
51 Hebbian learning is mediated by a third modulatory factor [55-58] may help reveal the neuronal
52 mechanism underlying unconscious inference. Therefore, it is necessary to investigate how actual
353 neural networks infer the dynamics placed in the background of the sensory input and if this is
ssa  consistent with the FEP, see also [59] for the relationship between the FEP and spike-timing dependent
sss plasticity [60,61]. This may help develop a biologically plausible learning algorithm through which
ss6  an actual neural network might develop its internal model. Characterization of information from
ss7  physical viewpoint may also help understand how the brain physically embodies the information
e [62,63]. In the subsequent work, we would like to see their relationship.

359 In summary, this study investigated the differences between two types of
30 information—information stored in the neural network and information available for inference.
1 It was demonstrated that free energy represents the gap between these two types of information.
sz This result clarifies the difference between the FEP and related theories and can be utilized for
ses understanding unconscious inference from a theoretical viewpoint.
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