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Abstract

Presently, fractal geometry serves as a framework for studies of complex systems of diverse nature.
One of the most fundamental geometric conceptions is the concept of symmetry. Different geometries
can be classified according to the group of transformations under which their propositions remain
true. In particular, the key symmetries of the fractal geometry are the scale and conformal invariance.
Another key paradigm in the fractal geometry is that different properties of a fractal pattern are
associated with different dimension numbers, at least one of which differs from the topological
dimension. Accordingly, the inherent features of a fractal pattern are characterized by a set of generally
independent dimension numbers. These numbers allow for the classification of fractal patterns. In this
review we briefly survey the historical background and the conceptual foundations of fractal geometry.

Keywords: fractals; scale invariance; conformal invariance; dimension numbers; degrees of freedom

1. Introduction
Geometry provides a formal representation of shapes in space. Fractal geometry deals with objects

called fractals. The notion of fractals was put forward by a Polish-born French-American mathematician
Benoit Mandelbrot in reference to irregular but scale invariant patterns that he studied [1]. The word
fractal came from a Latin word fractus meaning broken or fractured. Although there is no canonical
definition of fractals, the fractal can be defined as a scale and/or conformally invariant pattern whose
dimension linked to a suitable defined measure D strictly exceeds the topological dimension d, which
is defined regarding the way how the pattern can be divided into parts of arbitrary sizes [2].

The topological dimension d is a topological invariant, whereas the dimension number D, com-
monly called the fractal dimension, is not necessary invariant under homeomorphic transformations.
For Euclidean patterns D = d, the fractals are characterized by D > d per definition [3]. However,
the dimension number D along is insufficient for fractal characterization. Indeed, the fractal pat-
terns having the same D can possess very different topological, morphological, and topographical
properties [2–5]. Nonetheless, the inherent features of fractals can be specified by a set of generally
independent dimension numbers [2,6]

Another constitutive property of fractals is their invariance under suitable defined scale and/or
conformal transformations. In Figure 1 we present the corresponding classification of fractal patterns.
The scale invariant fractals look the same under some sort of scaling operations. Specifically, a self-
similar fractal is invariant under an appropriate similarity transformation, whereas a self-affine fractal
is invariant under a suitable affine transformation (see, for instance, illustrations in Figure 1). Besides
there are the hierarchical fractals which are only locally scale invariant. The difference between the
scale invariant and locally scale-invariant fractals is illustrated by Figure 2. Finally, a self-conformal
fractal is invariant under a special conformal transformation which locally looks as the scale one
(see, for example, the illustration in Figure 1). Accordingly, the self-conformal fractals are also scale-
independent, but in a stronger sense than the scale invariant fractals.
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Figure 1. Classification of fractals according to the type of invariance.

Figure 2. Iterative construction of: (a) self-similar fractal and (b) hierarchical, locally self-similar fractal.

Although the term fractal was appeared only in 1975, a recursive self-similarity was already
studied in the 17th century by a German mathematician and philosopher Gottfried von Leibniz
(see Ref. [7] and references therein). In his celebrated letter to Guillaume de L’Hôpital von Leibniz
introduced the notion of fractional exponent associated with the recursive self-similarity. Furthermore,
the mathematical foundations of fractal geometry and most of paradigmatic fractals were created
a long time before than the word fractal was invented by Mandelbrot (see, for review, Refs. [6–11]
and references therein). Namely, several important concepts of fractal geometry have their origins in
analytical and geometric constructions of nineteenth or early to mid-twentieth century.

In this review we briefly survey the historical background and conceptual foundations of fractal
geometry. The rest of the paper is organized as follows. Section 2 is devoted to the history of fractal
geometry creation. The conceptual foundations of the fractal geometry are highlighted in Section 3.
Some key issues are outlined in Section 4.

2. Brief Excursion into the History of Fractal Geometry
In 1872 a German mathematician Karl Weierstrass has presented a function

f (x) =
∞

∑
k=0

bk cos
(

πakx
)

,

where a is an odd integer, and ab > 1 + 3π/2. This function is everywhere continuous but nowhere
differentiable, if b ∈ (0, 1). In his seminal paper [12] Weierstrass also stated that Georg Friedrich
Bernhard Riemann was the first (in 1861) to assert that the infinite series ∑∞

k=0 sin(k2x)/k2 is continuous
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but not differentiable. However, it is not clear whether the non-differentiability was proved by Riemann
or not. The Weierstrass work shocked the mathematical community, but the continuous nowhere
differentiable functions remained considered as rare pathologies for a long time. Presently, the existence
of continuous nowhere differentiable functions is crucial to our proper understanding of mathematical
analysis [13]. In particular, the nowhere-differentiability in the conventional sense is inherent feature
of at almost all fractals. The graph of Weierstrass function is shown on in Figure 3). One can see that it
exhibits a fine structure at all scales of observation, such that a smaller scale blow-up looks broadly
similar to the wider plot. So, the Weierstrass graph possesses some form of approximate self-symmetry
which is presently known as the self-affinity [3,14–16].
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Figure 3. The graph of Weierstrass function and its affine transformations.

One of the students attending the Weierstrass’lectures was Georg Cantor who later becomes
a famous mathematician. In 1883 Georg Cantor [17] explored a set of points lying on a single line
segment which can be presented as

C = c1/3 + · · ·+ ck/3k + · · · ,

where ck is 0 or 2 for each integer k. Although the same set was early studied by Henry John Stephen
Smith [18], it was named as the Cantor set since through consideration of this set Cantor helped to
lay the foundations of modern point-set topology [19]. The Cantor set is an example of uncountable
bounded sets that have zero one-dimensional Lebesgue measure (length). It has been also recognized
that the Cantor set is a subset of Euclidean space which is perfect (a closed set that contains no isolated
point) but nowhere dense in any interval, regardless of how small the interval is taken to be (closure
has empty interior). Geometrically, the middle third Cantor set is constructed by repeatedly removing
middle third open intervals from the unit interval [0, 1] ⊂ R as it is shown in Figure 4.

Figure 4. Three steps of iterative construction of the middle third Cantor set.

Due to its remarkable properties, the Cantor set plays a vital role in many branches of mathematics.
In particular, its special place in the theory of compact spaces is coined by the Hausdorff–Alexandroff
theorem which states that any compact metric space is a continuous image of the Cantor set [20]. In
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the fractal geometry the Cantor set constitutes the class of totally disconnected fractals (see, for review,
Refs. [21–23] and references therein).

In the last part of 19 century, Felix Klein and Henri Poincaré introduced a category of objects that
we now call the self-inverse fractals (see, for example, the construction of self-conformal fractal in
Figure 1) and form a part of the self-conformal fractals (see, for review, Refs. [24–27]). Furthermore,
self-inverse fractals have become a special topic of the theory of automorphic functions (see Ref. [24]
and references therein).

In 1890, an Italian mathematician and glottologist Giuseppe Peano [28] has discovered the first
example of curves that passes through every point of a two-dimensional region having a positive Jordan
area (see in Figure 5a). Immediate1y after that a German mathematician David Hilbert [29] replaced
the purely arithmetic definition proposed by Peano on a more descriptive geometric construction
of graphs and thus built up a celebrated variant of Peano curve (see in Figure 5b). Later there were
constructed non-intersecting continuous curves filling the n-dimensional spaces. Presently the class of
space-filling curves is also called the Peano curves [30–32].

Figure 5. Iterative construction of the space-filling curves: (a) Peano curve; (b) Hilbert curve; and (c) Sierpiński
square snowflake.

In 1904, a Swedish mathematician Niels Fabian Helge von Koch [33] has devised the simplest
variant of continuous curve without tangents (see Fig. 6), which is now called the Koch curve. Koch
has showed that there exists a parameterization of the curve x = f (t), y = g(t) for t ∈ [0, 1], where
both functions f (t) and g(t) are continuous but nowhere differentiable. The Koch curve challenges
our notion of a curve. While the curve is connected and contained in a bounded region of the
plane its length is infinite. Moreover, any part of the Koch curve has infinite length (see Figure 6a).
Fitting together three suitably rotated copies of the curve produces a snowflake curve (see Figure 6b),
sometimes also called the Koch island [34]. In the fractal geometry Koch curves constitute the class
of self-avoiding self-similar fractals (see, for review, Refs. [34–36] and references therein). Figure 6c
shows the construction of Koch curve starting from a triangle.

In 1912 by a Polish mathematician Wacław Sierpiński [37] has presented the most famous space-
filling curve nowadays called the Sierpiński square snowflake (see Figure 5c). So it was revealed a
continuous crossover between the Koch and Peano curves [38]. In 1918 two French mathematicians
Pierre Fatou and Gaston Julia found a self-similar behavior associated with mapping complex numbers
and iterative functions [39–41]. The idea of self-similar curves was taken further by Paul Pierre
Lévy, who, in 1938, created a self-similar curve, presently known as the Lévy C curve [42]. In 1915
Sierpiński [43] has devised a self-similar curve having almost all points as the branching points. This
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curve, known as the Sierpiński gasket was constructed by deleting an open middle triangle from a
closed equilateral triangle of unit side and by repeating this step for the remaining sub-triangles ad
infinitum (see Figure 7a). Later Sierpiński [44,45] also proposed to create the same shape as the limit
of the Koch-like arrowhead curve (see Figure 7b). However, in contrast to the Sierpiński gasket with
loops at all scales, the Sierpiński arrowhead curve remains loopless even in the limit of infinite number
of iterations [46]. Further there were suggested many other ways to create the Sierpiński triangle shape
(see, for review, Refs. [47–49] and references therein). Nowadays the Sierpinski triangle is one of the
most studied fractal shapes.

Figure 6. (a), (b) Two ways to construct the Koch curve and (c) building the Koch snowflake

Figure 7. Two ways to construct the Sierpinski triangle shape as the limits of the iterations of the pre-fractal:
(a) Sierpinski gasket and (b) Sierpinski arrowhead curve.

In 1916 Sierpiśki [50] constructed a curve forming an infinitely ramified network (see Figure 8)
nowadays known as the Sierpiński carpet. Analogous curve in three dimensions was presented by
Karl Menger in 1926 [51]. Notice that the Sierpiński carpet and the Menger sponge can be viewed as
the analogs of Cantor set on the plane and in the three dimensional space, respectively (see, for review,
Ref. [21]).

On the other hand, in 1918 Felix Hausdorff [52] has introduced a new definition of covering
measure based on the set size variations with the scale of measurements. The dimension number
D associated with that measure, presently called the Hausdorff dimension, can be fractional. In
particular, Hausdorff proved that the middle-third Cantor set is characterized by fractional dimension
D = ln 2/ ln 3. Further, the conceptual and technical aspects regarding the Hausdorff measure
and dimension were disused by Besicovitch [53,54]. In 1968 a biologist Aristid Lindenmayer [55]
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invented an approach for simulating the development of multicellular organisms, subsequently named
L-systems [56]. The central concept of the Lindenmayer system is that of re-writing. This approach
was specifically created for the description of natural growth processes and so enables us to see in
more detail how a fractal grows (see, for example, Figure 2b). Accordingly, the L-systems represent a
large class of real-world fractals in a mathematical way [57].

Figure 8. Three first iterations of Sierpiński carpet and corresponding Sierpiński network.

In this background Benoit Mandelbrot published his celebrated paper [58] in which he resolved
the Steinhaus Paradox that the measured length of geographic features increases with increasing
map scales. Sometime afterward, Mandelbrot [1] coined the notion of fractals to define a large class
of mathematical and natural objects that possess the property of scale invariance whose covering
dimension strictly exceeds the topological one. In a unified way, the scale-invariant fractals were
created by John Hutchinson [59] using the method of Iterated Function Systems (IFS). Further, the IFS
method was popularized by Barnsley [60] as a generalization of the Banach contraction principle. In
the late 20th century fractals became a topic of rising interest for researchers specializing in diverse
areas of mathematics, physics, and natural sciences (see, for instance, Refs. [61–72] and references
therein). Presently, the fractal geometry still remains a burgeoning area of research (see, for review,
Refs. [73–103] and references therein).

3. Conceptual Foundations of Fractal Geometry
The fractal geometry deals with intricate patterns and irregular shapes possessing the scale and/or

conformal symmetry. In this regard, it is pertinent to note that the scale symmetry is an inherent feature
not only of fractals, but also of the small-world and scale-free networks, as well as of the objects with a
power-law size distribution of the building blocks (see Figure 9). Geometrically, the scale invariance
is associated with the notion of self-similarity or self-affinity, which can be exact (deterministic) or
approximate (statistical). Besides, there are self-conforming fractals that are invariant under special
conformal transformations.

Figure 9. Classification of objects with different kinds of scale symmetry.
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The scale invariance can be characterized by the similarity dimension DS defined via the Hutchin-
son–Moran formula

m

∑
i

cDS
i = 1, (1)

where 0 < ci < 1 are the contraction ratios and m is the number of contractions at each iteration
step [59]. For scale invariant Euclidean patterns the similarity dimension is equal to the topological
one (that is DS = d), whereas for fractals DS > d per definition. The topological dimension is defined
inductively as follows. Let us an empty space has the topological dimension d(∅) = −1. A pattern
has the topological dimension zero if for any point of it there exist arbitrarily small neighborhoods
whose boundary is empty. A pattern P has the topological dimension d = n if there are arbitrarily
small neighborhoods of any point p ∈ P whose boundary is of dimension d ≤ n − 1, where n is a
natural number.

An equivalent recursive definition of topological dimension reads as:

d = dimtP = min{s : ∃S ⊂ P such that dimtS ≤ d − 1 and dimt(P\S) ≤ 0}, (2)

while it is assumed that dimt(ϕ) = −1 [104]. So, the topological dimension stipulates a way to
divide an object into parts of arbitrary sizes. Furthermore, in the Euclidean geometry, the topological
dimension d also:

1) handles the scale invariance of the Euclidean object (DS = d);
2) characterizes the object connectivity;
3) establishes the object ramification;
4) sets the maximum number of mutually orthogonal vectors in the object;
5) governs the Lebesgue measure and other Borel measures on Euclidean space;
6) determines the numbers of spatial and dynamic degrees of freedom of a point walker in the object
7) rules the statistics of thomogeneous Poisson point processes;
8) controls the vibrational dynamics of the object;
9) manages the information flow;
10) settles the values of universal exponents associated with critical phenomena.

Conversely, in the fractal geometry, the above features are associated with a set of different
dimensional numbers, some of which are topological invariants and others are not. Specifically, the
similarity dimension defined by Eq. (2) can be linked to a suitable defined covering measure, e.g. the
Hausdorff, box-counting, packing, or Assouad measure (see, for review, Table 1 and Figure 10. In
this way, it was recognized that the similarity and Hausdorff dimensions are equivalent when the IFS
satisfies the open set condition [64]. Therefore the fractal dimension can be thought of as a measure of
a pattern’s ability to fill the space in which it resides. The scale invariance implies that the number of
boxes needed to cover a fractal pattern scales with the box size ϵ as N ∝ ϵ−D. Accordingly, the fractal
dimension is frequently defined through the scaling relation N(λϵ) ∝ λ−D N(ϵ), where λ > 0 is the
scale factor [17].

Figure 10. Covering schemes associated with: (a) Hausdorff, (b) box-counting, and (c) Assouad measures.
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In contrast to the topological dimension, the fractal dimension is not a topological invariant. Ac-
cordingly the topological features of fractals (see Figure 11) can be characterized by a set of dimension
numbers which generally differ from the fractal and topological dimensions [2].

Intrisic properties of fractal pattern

Morphological features

1. Scale symmetry (in-
variance under the
scale and/or confor-
mal transformations)

2. Non-uniformity
(multi-fractality, multi-
affinity)

3. Non-homgeneity
(lacunarity)

4. Anisotropy (succolar-
ity)

5. Persistent homology

Topological features

1. Connectedness (dis-
connected, totally dis-
connected, connected,
path connected )

2. Connectivity
3. Ramification
4. Loopines
5. Knottiness

Topographical features

1. Multi-scale roughness
2. Coastline and horizon
3. Watersheds
4. Water retention capac-

ity
5. Optimal paths

Metereological attributes

1. Topological invariants
2. Suitable defined measure (self-similarity, Hausdorff, box counting, packing, Assouad,

etc.)
3. Dimension numbers (fractal, connectivity, topological connectivity, spectral dimensions

and Rényi spectral dimensions)
4. Effective degrees of fredom
5. Suitable defined metrics (geodesic, induced by the fractal topology, etc.)
6. Suitable defined entropy (Shannon, Rényi, Tsallis, Deng, etc.)

Figure 11. Inherent features and key attributes of fractal patterns.

Specifically, the pattern’s connectivity can be quantified by the connectivity dimension defined as:

dℓ = [limℓ→∞ lnN (ℓ)/ ln ℓ], (3)

where N(ℓ) is the number of pattern’s points connected with an arbitrary point inside of the dℓ-ball of
diameter l [105]. Accordingly, the connectivity dimension of the fractal network is equal to

dℓ = [limℓ→∞ lnN (ℓ)/ lnD], (4)

where D = W/N 2 is the network diameter defined as the maximum geodesic distance between
two sites on the network, while W(F) = 1

2 ∑x,y∈F ℓ(x, y) is the Wiener index and ℓ(x, y) is the minimum
number of steps needed to go from site x to site y on the network F [97]. It is a straightforward matter
to understand that the ratio of the fractal and connectivity dimensions is equal to the fractal dimension
of geodesic paths [2]. That is the fractal dimension of geodesic paths is equal to

dg = D/dℓ. (5)
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Accordingly, fractals can be either of the metric origin, if d = dℓ < D (see, for instance, Figure 12a),
or of the topological origin, if d < dℓ = D (see Figure 12b). Furthermore, fractals can have combined
origin, such that d < dℓ < D (see, for example, Figure 12c).

Figure 12. Three first iterations of fractals having: (a) metric, (b) topological, and (c) combined origin.

A point-like random walker on a Euclidean pattern has equal numbers of spatial and dynamical
degrees of freedom. Both are equal to the topological dimension of the pattern. In contrast to this, for
fractal patters the number of effective dynamical degrees of freedom ds can be equal to or less than the
number of effective spatial degrees of freedom nγ [106]. The number of effective dynamical degrees
of freedom is defined via the scaling asymptotic behavior of the probability that the random walker
returns to its origin point after t steps (P ∝ t−ds/2), while the number of effective spatial degrees of
freedom can be viewed as the number of independent directions under a constrain imposed by the
fractal topology. In Ref. [106] it has been established that

nγ + ds = 2dℓ. (6)

while the number of effective dynamical degrees of freedom of the point-like random walker is equal
to the spectral dimension of the fractal pattern. The Einstein law relating the drift and diffusion of
charge implies that

ds = 2(DW − ζ)/DW , (7)

where DW is the random walk dimension and ζ is the electrical resistance exponent defined via the
scaling relations ϱ ∝ Lζ if ζ > 0, or ϱ = ϱ∞ − cLζ , if ζ < 0 [107]. Furthermore, many kinds of fractals
obey the Alexander-Orbach relation ds = 2D/DW and so the electrical resistance exponent is equal to
ζ = DW − D [61–63].

Scale invariant fractals can be loopless (see, for example, fractals in Figure 12) or have loops at all
scales (see, for example, fractals in Figs. 7 and 8). For the loopless fractals ζ = dg. Consequently, the
spectral dimension of a loopless fractal is equal to

ds = 2D/(D + dg) = 2dℓ/(dℓ + 1), (8)

whereas for fractals with loops at all scales the spectral dimension is in the range of

2dℓ/(dℓ + 1) ≤ ds ≤ dℓ, (9)
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Accordingly, the fractal loopiness can be characterized by the loopiness index which was defined
in Ref. [2] as

Λ = (ds/nγ)− 1/dℓ, (10)

while for the loopless fractals (Λ = 0) the spectral dimension is equal to ds = nℓ and loopy fractals
(0 < Λ < 1) have ds > nγ/dℓ.

Another important property of patterns is their ramification. Quantitatively, the order of ramifica-
tion Rj at point j on the pattern P is defined as the smallest number of bonds that should be cut in
order to isolate an arbitrarily large bounded set of points Cj ⊂ P connected to the point j. Then the
order of pattern ramification is defined as [108]:

R = minj∈P{Rj(Cj) : Cj ⊂ P}.

Finitely ramified patterns have the finite orders of ramification, whereas the order of ramification
of an infinitely ramified pattern grows with the size L of Cj ⊂ P as Rj ∝ LQj , such that Rj → ∞, as
L → ∞. Accordingly the order of ramification is characterized by the ramification exponent

Q = minj∈P{Q(Cj) : Cj ⊂ P},

while for the finitely ramified patterns Q = 0. In Ref. [109] it was recognized that the ramification
exponent can be related to the topological Hausdorff dimension DtH which was introduced in [104]
via a combination of the definitions of the topological and Hausdorff dimensions:

DtH = min{s : there is a subsetS ⊂ P such that dimHS = d − 1, while dimt(P\S) ≤ 0}, (11)

Further, it was argued that this definition can be generalized to define the topological fractal
dimension DtF with the use of any suitable fractal dimension (see, for instance, Table 1) instead
of the Hausdorff one. The topological fractal dimension is related to the ramification exponent as
DtF = 1 + Q [109]. Generally, d ≤ DtF ≤ D, while for Euclidean patterns d = DtF = D [2].

Table 1. Some different definitions for fractal dimension.

Dimension Definition Measure/Comments

Hausdorff-Besicovitch
dimension

dimH F = inf{S : HS(F) = 0}
= sup{S : HS(F) = ∞}

{Ui}is a cover of F i.e. F ⊂ ∪∞
i=1 with 0 ≤| Ui |≤ δ

where U is any non-empty subset of n-dimensional
Euclidean space, ℜn . Hausdorff meausre is
Hs(F) = limδ→∞ HS

δ (F), where
HS

δ (F) = inf{∑∞
i=0 | Ui |S : {}Ui}, and diameter of U is

| U |= sup{| x − y |: x, y ∈ U}

Minkowski -Bouligand
dimension

∆(F) = limγ→0{log Nδ(F)/ log(1/δ)}
∆(F) ≥ dimH F

Let Nδ(F) denotes the least number of balls in a
covering of F by balls of radius ϵ. It is follows from the
definition of HS

δ that HS
δ (F) ≤ (2δ)S × Nδ(F)

Minkowski dimension dimM
B (F) = n − limδ→0

{
log voln (Fδ )

log δ

} Fδ is the parallel body to F:
Fδ = {x ∈ ℜn : | x − y |≤ δ, for some y ∈ F}, where n is
the topological dimension

Kolmogorov-
Schirelman-Potjrajin DK = limϵ→0{sup log N(ϵ)/ log(1/ϵ)} N(ϵ) is the smallest number of balls of diameter less or

equal to ϵ which are needed to cover fractal

Mandelbrot-Schirelman-
Kolmogorov

DF = lim
ϵ→0

{sup ln Nx(ϵ)/ ln(1/ϵ)}

= inf
{

d ≥ 0, lim
ϵ→0

[
sup ϵd × Nx(ϵ) = 0

]} Nx(ϵ) is the least number of balls of radius less than ϵ
which are needed to cover fractal
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Table 1. Cont.

Dimension Definition Measure/Comments

Upper box-counting
dimension dimB F = limδ→0

{
log Nδ(F)

log δ

}
≥ dimH F

F is non-empty subset of ℜn . Nδ(F) is any of the fol-
lowing:

A) The smallest number of (1) closed balls of radius
δ, (2) cubes of side δ and (3) sets of diameter at
most δ, that cover F

B) The largest number of disjoint ball of radius δ
with center in F

C) The number of δ-mesh cubes that intersect of F.

Lower box-counting
dimension dimB F = limδ→0

{
log Nδ(F)

log δ

}
≥ dimH F

box-counting dimension dimB F = lim
δ→0

{
log Nδ(F)

log δ

}
≥ dimH F

upper modified
box-counting dimension dimMB F = inf

{
sup dimB Fi : F ⊂ ∪∞

i=1 Fi

} If F can be decomposed into a countable number of
pieces Fi in such a way that the largest piece has a small
a dimension as possible.

Lower modified
box-counting dimension dimMB F = inf{sup dimB Fi : F ⊂ ∪∞

i=1 Fi}

Packing dimension
dimP F = inf{S : PS(F) = 0}

= sup{S : PS(F) = ∞},

dimH F ≤ dimP F ≤ ∆(F)

Bi is a collection a disjoint balls of radius at most δ with
center in F. Packing measures is:
PS(F) = inf

{
∑i PS

0 (Fi) : F ⊂ ∪∞
i=1 Fi

}
, where

PS
0 = limδ→0 PS

δ , ¶S
δ = sup{| Bi |S : {Bi}}.

Assouad dimension
DA = {s > 0 : C > 0 such that
Nr [B(x, R) ∩ F] ≤ C(R/r)2 for all x ∈ F and
0 < r < R}

B(x, R) denote the covering balls (see for illustration
Figure 10c).

Divider dimension (of
Jordan curves) DD = limδ→0{log Mδ(C)/ log(1/δ)}

Mδ(C)-maximum number of points x0, x1, . . . xm , on the
curve C, in that order, such that | xk − xk−1 |= δ,
k1, 2, . . . , m.

Likewise the fractal dimension the topological fractal dimension is not topologically invariant.
The topological invariant associated with the fractal ramification was introduced in Ref. [81] and
named the topological connectivity dimension. It is defined as

dtℓ = inf{s : ∃S ⊂ P such that DFℓ(S) ≤ s − 1 and dt(P\S) ≤ 0}, (12)

where DFℓ = D(S)/dg(P) is the fractal dimension of the subset S with respect to the geodesic metric
on the pattern P . The infinitely ramified patterns are characterized by dtℓ > 1, whereas the finitely
ramified patterns have dtℓ = d = 1 [2].

The classification of scale invariant patterns from a topological viewpoint is given in Figure 13.
The fractal attributes of some self-invariant patterns are summarized in Table 2.

Table 2. Fractal attributes of some self-similar patterns.

Figure D d dtℓ dℓ ds nγ Λ

Cantor set C 4 ln 2
ln 3 0 0 See discussion in

Ref. [110]
See discussion in
Ref. [110]

See discussion in
Ref. [110]

See discussion in
Ref. [110]

Cartesian
product C × [0, 1] See Ref. [4] ln 6

ln 3 1 ln 6
ln 3

See discussion in
Ref. [110]

See discussion in
Ref. [110]

See discussion in
Ref. [110]

See discussion in
Ref. [110]
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Table 2. Cont.

Figure D d dtℓ dℓ ds nγ Λ

Cartesian
tartan
C × [0, 1] ∪ C ×
[1, 0]

See Ref. [111] ln 6
ln 3 1 ln 6

ln 3
ln 6
ln 3

ln 6
ln 3

ln 6
ln 3 0.387

Koch curve 6 ln 4
ln 3 1 1 1 1 1 0

Sierpiński
arrowhead
curve

7b ln 3
ln 2 1 1 1 See [112] 1 See [112] 1 0

Koch curve 12a 1.99 1 1 1 1 1 0

Tree 12b ln 5
ln 3 1 1 ln 5

ln 3 1.188... 1.741 0

Leaf 12c 1.756 1 1 ln 5
ln 3 1.188... 1.741 0

Tree 2a ln 5
ln 3 1 1 ln 5

ln 3 1.188... 1.741 0

Diamond
fractal 13(6) ln 6

ln 3 1 1 ln 6
ln 4 1.137 1.448 0.012

Sierpiński
gasket 7a ln 3

ln 2 1 1 ln 3
ln 2

ln 9
ln 5 1.805 0.635

Sierpiśki carpet
SC 8 ln 8

ln 3
ln 6
ln 3

ln 8
ln 3 1.806 1.979 0.384 0.635

Sierpiśki cube See Ref. [92] ln 26
ln 3 2 ln 24

ln 3
ln 26
ln 3 2.933 2.998 0.41

Sierpiśki
waveguide
SC × [0, 1]

See Ref. [2] ln 24
ln 3 2 ln 24

ln 3
ln 24
ln 3 2.806 2.98 0.596

Menger sponge 13(4) ln 20
ln 3 2 ln 12

ln 3
ln 20
ln 3 2.52 2.94 0.49

Complement of
Menger sponge 13(1) 3 3 3 3 3 3 2/3

Percolation
cluste in E2 See Ref. [81] 91/94 1 1.6574 1.6617 1.317 2 0.053

Percolation
cluste in E3 See Ref. [97] 2.52293 1 1.828 1.834 1.327 2.341 0.022

Figure 13. Classification of scale invariant patterns from a topological viewpoint: (1) Euclidean pattern; (2) - (4)
fractals of topological origin; (8) fractal of metric origin; and (5) – (7) fractals of combined origin. (1), (4), (5) -
infinitely ramified; (2), (3), (6) – (8) – finitely ramified. Illustrations: Euclidean compliment of Menger sponge (1);
fractal tree (2); Sierpiński gasket (3); Menger sponge (4); Julia-Mandelbrot set (5); diamond fractal (6); fractal leaf
(7); fractal Koch-like curve (8).
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4. Final Remarks
Fractal geometry is a relatively new branch of mathematics that was launched in the 1970’s.

Since then, it has been linked to many branches of mathematics, including number theory, topology,
differential geometry, statistics, operator algebras, potential theory, mathematical physics, harmonic
analysis, and the theory of dynamical systems. Presently, the fractal geometry remains an active area
of development. In particular, many works were focused on the inherent features of fractal patterns.
The morphological properties of scale invariant patterns were reviewed in Ref. [5]. The topographical
attributes of fractals were discussed in details in Ref. [2]. In this review we discuss the topological
features of fractal patterns. The pattern’s topology can be characterized by calculating so-called
topological invariants. The topological invariants fix certain topological features such as the number
of connected components, the pattern connectivity and ramification, the existence and distribution
of holes and knots in the studied pattern. We state that the fractal loopiness can be characterized
by the ratio between the numbers of effective spatial and effective dynamical degrees of freedom on
the fractal. However, an appropriate characterization of the fractal knottedness remains open (see
Refs. [113–115] and references therein).

In nature, complex irregular and fragmented patterns arise in a wide variety of systems. The
main appeal of fractal geometry is its ability to describe complex patterns that traditional Euclidean
geometry is unable to analyze. Accordingly, fractal geometry has become one of the powerful tools
for image analysis in many fields of science, including computer science, physics, mechanical and
electrical engineering, biophysics, medicine and economics, and others.
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