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Abstract

Presently, fractal geometry serves as a framework for studies of complex systems of diverse nature.
One of the most fundamental geometric conceptions is the concept of symmetry. Different geometries
can be classified according to the group of transformations under which their propositions remain
true. In particular, the key symmetries of the fractal geometry are the scale and conformal invariance.
Another key paradigm in the fractal geometry is that different properties of a fractal pattern are
associated with different dimension numbers, at least one of which differs from the topological
dimension. Accordingly, the inherent features of a fractal pattern are characterized by a set of generally
independent dimension numbers. These numbers allow for the classification of fractal patterns. In this
review we briefly survey the historical background and the conceptual foundations of fractal geometry.

Keywords: fractals; scale invariance; conformal invariance; dimension numbers; degrees of freedom

1. Introduction

Geometry provides a formal representation of shapes in space. Fractal geometry deals with objects
called fractals. The notion of fractals was put forward by a Polish-born French-American mathematician
Benoit Mandelbrot in reference to irregular but scale invariant patterns that he studied [1]. The word
fractal came from a Latin word fractus meaning broken or fractured. Although there is no canonical
definition of fractals, the fractal can be defined as a scale and/or conformally invariant pattern whose
dimension linked to a suitable defined measure D strictly exceeds the topological dimension 4, which
is defined regarding the way how the pattern can be divided into parts of arbitrary sizes [2].

The topological dimension d is a topological invariant, whereas the dimension number D, com-
monly called the fractal dimension, is not necessary invariant under homeomorphic transformations.
For Euclidean patterns D = d, the fractals are characterized by D > d per definition [3]. However,
the dimension number D along is insufficient for fractal characterization. Indeed, the fractal pat-
terns having the same D can possess very different topological, morphological, and topographical
properties [2-5]. Nonetheless, the inherent features of fractals can be specified by a set of generally
independent dimension numbers [2,6]

Another constitutive property of fractals is their invariance under suitable defined scale and/or
conformal transformations. In Figure 1 we present the corresponding classification of fractal patterns.
The scale invariant fractals look the same under some sort of scaling operations. Specifically, a self-
similar fractal is invariant under an appropriate similarity transformation, whereas a self-affine fractal
is invariant under a suitable affine transformation (see, for instance, illustrations in Figure 1). Besides
there are the hierarchical fractals which are only locally scale invariant. The difference between the
scale invariant and locally scale-invariant fractals is illustrated by Figure 2. Finally, a self-conformal
fractal is invariant under a special conformal transformation which locally looks as the scale one
(see, for example, the illustration in Figure 1). Accordingly, the self-conformal fractals are also scale-
independent, but in a stronger sense than the scale invariant fractals.
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Figure 2. Iterative construction of: (a) self-similar fractal and (b) hierarchical, locally self-similar fractal.

Although the term fractal was appeared only in 1975, a recursive self-similarity was already
studied in the 17th century by a German mathematician and philosopher Gottfried von Leibniz
(see Ref. [7] and references therein). In his celebrated letter to Guillaume de L'Ho6pital von Leibniz
introduced the notion of fractional exponent associated with the recursive self-similarity. Furthermore,
the mathematical foundations of fractal geometry and most of paradigmatic fractals were created
a long time before than the word fractal was invented by Mandelbrot (see, for review, Refs. [6-11]
and references therein). Namely, several important concepts of fractal geometry have their origins in
analytical and geometric constructions of nineteenth or early to mid-twentieth century.

In this review we briefly survey the historical background and conceptual foundations of fractal
geometry. The rest of the paper is organized as follows. Section 2 is devoted to the history of fractal
geometry creation. The conceptual foundations of the fractal geometry are highlighted in Section 3.
Some key issues are outlined in Section 4.

2. Brief Excursion into the History of Fractal Geometry

In 1872 a German mathematician Karl Weierstrass has presented a function
oo
flx) =Y v cos(mlk ),
k=0
where a is an odd integer, and ab > 1 + 37/2. This function is everywhere continuous but nowhere

differentiable, if b € (0,1). In his seminal paper [12] Weierstrass also stated that Georg Friedrich
Bernhard Riemann was the first (in 1861) to assert that the infinite series Y 5> ; sin(k?x) /k? is continuous
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but not differentiable. However, it is not clear whether the non-differentiability was proved by Riemann
or not. The Weierstrass work shocked the mathematical community, but the continuous nowhere
differentiable functions remained considered as rare pathologies for a long time. Presently, the existence
of continuous nowhere differentiable functions is crucial to our proper understanding of mathematical
analysis [13]. In particular, the nowhere-differentiability in the conventional sense is inherent feature
of at almost all fractals. The graph of Weierstrass function is shown on in Figure 3). One can see that it
exhibits a fine structure at all scales of observation, such that a smaller scale blow-up looks broadly
similar to the wider plot. So, the Weierstrass graph possesses some form of approximate self-symmetry
which is presently known as the self-affinity [3,14-16].
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Figure 3. The graph of Weierstrass function and its affine transformations.

One of the students attending the Weierstrass'lectures was Georg Cantor who later becomes
a famous mathematician. In 1883 Georg Cantor [17] explored a set of points lying on a single line
segment which can be presented as

C=c1/3+ -+ /3 +---,

where ¢y is 0 or 2 for each integer k. Although the same set was early studied by Henry John Stephen
Smith [18], it was named as the Cantor set since through consideration of this set Cantor helped to
lay the foundations of modern point-set topology [19]. The Cantor set is an example of uncountable
bounded sets that have zero one-dimensional Lebesgue measure (length). It has been also recognized
that the Cantor set is a subset of Euclidean space which is perfect (a closed set that contains no isolated
point) but nowhere dense in any interval, regardless of how small the interval is taken to be (closure
has empty interior). Geometrically, the middle third Cantor set is constructed by repeatedly removing
middle third open intervals from the unit interval [0, 1] C R as it is shown in Figure 4.

1/9
1 .

k=0 k=1 k=2 k=3

| 1 1/27=3}

Figure 4. Three steps of iterative construction of the middle third Cantor set.

Due to its remarkable properties, the Cantor set plays a vital role in many branches of mathematics.
In particular, its special place in the theory of compact spaces is coined by the Hausdorff-Alexandroff
theorem which states that any compact metric space is a continuous image of the Cantor set [20]. In
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the fractal geometry the Cantor set constitutes the class of totally disconnected fractals (see, for review,
Refs. [21-23] and references therein).

In the last part of 19 century, Felix Klein and Henri Poincaré introduced a category of objects that
we now call the self-inverse fractals (see, for example, the construction of self-conformal fractal in
Figure 1) and form a part of the self-conformal fractals (see, for review, Refs. [24-27]). Furthermore,
self-inverse fractals have become a special topic of the theory of automorphic functions (see Ref. [24]
and references therein).

In 1890, an Italian mathematician and glottologist Giuseppe Peano [28] has discovered the first
example of curves that passes through every point of a two-dimensional region having a positive Jordan
area (see in Figure 5a). Immediately after that a German mathematician David Hilbert [29] replaced
the purely arithmetic definition proposed by Peano on a more descriptive geometric construction
of graphs and thus built up a celebrated variant of Peano curve (see in Figure 5b). Later there were
constructed non-intersecting continuous curves filling the n-dimensional spaces. Presently the class of
space-filling curves is also called the Peano curves [30-32].

{a) " P FUL U
| TR RATE

(b)

k=1 k=2 k=3 k=4

Figure 5. Iterative construction of the space-filling curves: (a) Peano curve; (b) Hilbert curve; and (c) Sierpiriski
square snowflake.

In 1904, a Swedish mathematician Niels Fabian Helge von Koch [33] has devised the simplest
variant of continuous curve without tangents (see Fig. 6), which is now called the Koch curve. Koch
has showed that there exists a parameterization of the curve x = f(t), y = g(t) for t € [0,1], where
both functions f(t) and g(t) are continuous but nowhere differentiable. The Koch curve challenges
our notion of a curve. While the curve is connected and contained in a bounded region of the
plane its length is infinite. Moreover, any part of the Koch curve has infinite length (see Figure 6a).
Fitting together three suitably rotated copies of the curve produces a snowflake curve (see Figure 6b),
sometimes also called the Koch island [34]. In the fractal geometry Koch curves constitute the class
of self-avoiding self-similar fractals (see, for review, Refs. [34-36] and references therein). Figure 6¢
shows the construction of Koch curve starting from a triangle.

In 1912 by a Polish mathematician Wactaw Sierpiiski [37] has presented the most famous space-
filling curve nowadays called the Sierpiniski square snowflake (see Figure 5c). So it was revealed a
continuous crossover between the Koch and Peano curves [38]. In 1918 two French mathematicians
Pierre Fatou and Gaston Julia found a self-similar behavior associated with mapping complex numbers
and iterative functions [39-41]. The idea of self-similar curves was taken further by Paul Pierre
Lévy, who, in 1938, created a self-similar curve, presently known as the Lévy C curve [42]. In 1915
Sierpiniski [43] has devised a self-similar curve having almost all points as the branching points. This
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curve, known as the Sierpiniski gasket was constructed by deleting an open middle triangle from a
closed equilateral triangle of unit side and by repeating this step for the remaining sub-triangles ad
infinitum (see Figure 7a). Later Sierpiniski [44,45] also proposed to create the same shape as the limit
of the Koch-like arrowhead curve (see Figure 7b). However, in contrast to the Sierpiriski gasket with
loops at all scales, the Sierpiriski arrowhead curve remains loopless even in the limit of infinite number
of iterations [46]. Further there were suggested many other ways to create the Sierpiriski triangle shape
(see, for review, Refs. [47-49] and references therein). Nowadays the Sierpinski triangle is one of the
most studied fractal shapes.
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Figure 6. (a), (b) Two ways to construct the Koch curve and (c) building the Koch snowflake
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Figure 7. Two ways to construct the Sierpinski triangle shape as the limits of the iterations of the pre-fractal:
(a) Sierpinski gasket and (b) Sierpinski arrowhead curve.

In 1916 Sierpiski [50] constructed a curve forming an infinitely ramified network (see Figure 8)
nowadays known as the Sierpiniski carpet. Analogous curve in three dimensions was presented by
Karl Menger in 1926 [51]. Notice that the Sierpiriski carpet and the Menger sponge can be viewed as
the analogs of Cantor set on the plane and in the three dimensional space, respectively (see, for review,
Ref. [21]).

On the other hand, in 1918 Felix Hausdorff [52] has introduced a new definition of covering
measure based on the set size variations with the scale of measurements. The dimension number
D associated with that measure, presently called the Hausdorff dimension, can be fractional. In
particular, Hausdorff proved that the middle-third Cantor set is characterized by fractional dimension
D = In2/In3. Further, the conceptual and technical aspects regarding the Hausdorff measure
and dimension were disused by Besicovitch [53,54]. In 1968 a biologist Aristid Lindenmayer [55]
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invented an approach for simulating the development of multicellular organisms, subsequently named
L-systems [56]. The central concept of the Lindenmayer system is that of re-writing. This approach
was specifically created for the description of natural growth processes and so enables us to see in
more detail how a fractal grows (see, for example, Figure 2b). Accordingly, the L-systems represent a
large class of real-world fractals in a mathematical way [57].

Network

Figure 8. Three first iterations of Sierpiriski carpet and corresponding Sierpiriski network.

In this background Benoit Mandelbrot published his celebrated paper [58] in which he resolved
the Steinhaus Paradox that the measured length of geographic features increases with increasing
map scales. Sometime afterward, Mandelbrot [1] coined the notion of fractals to define a large class
of mathematical and natural objects that possess the property of scale invariance whose covering
dimension strictly exceeds the topological one. In a unified way, the scale-invariant fractals were
created by John Hutchinson [59] using the method of Iterated Function Systems (IFS). Further, the IFS
method was popularized by Barnsley [60] as a generalization of the Banach contraction principle. In
the late 20th century fractals became a topic of rising interest for researchers specializing in diverse
areas of mathematics, physics, and natural sciences (see, for instance, Refs. [61-72] and references
therein). Presently, the fractal geometry still remains a burgeoning area of research (see, for review,
Refs. [73-103] and references therein).

3. Conceptual Foundations of Fractal Geometry

The fractal geometry deals with intricate patterns and irregular shapes possessing the scale and/or
conformal symmetry. In this regard, it is pertinent to note that the scale symmetry is an inherent feature
not only of fractals, but also of the small-world and scale-free networks, as well as of the objects with a
power-law size distribution of the building blocks (see Figure 9). Geometrically, the scale invariance
is associated with the notion of self-similarity or self-affinity, which can be exact (deterministic) or
approximate (statistical). Besides, there are self-conforming fractals that are invariant under special
conformal transformations.
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Figure 9. Classification of objects with different kinds of scale symmetry.
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The scale invariance can be characterized by the similarity dimension Dg defined via the Hutchin-
son-Moran formula

Y s =1, 1)

where 0 < ¢; < 1 are the contraction ratios and m is the number of contractions at each iteration
step [59]. For scale invariant Euclidean patterns the similarity dimension is equal to the topological
one (that is Dg = d), whereas for fractals Dg > d per definition. The topological dimension is defined
inductively as follows. Let us an empty space has the topological dimension d(@) = —1. A pattern
has the topological dimension zero if for any point of it there exist arbitrarily small neighborhoods
whose boundary is empty. A pattern P has the topological dimension d = n if there are arbitrarily
small neighborhoods of any point p € P whose boundary is of dimension d < n — 1, where n is a
natural number.
An equivalent recursive definition of topological dimension reads as:

d = dimyP = min{s : 3§ C P such that dim;S < d — 1and dim;(P\S) < 0}, )

while it is assumed that dim(¢) = —1 [104]. So, the topological dimension stipulates a way to
divide an object into parts of arbitrary sizes. Furthermore, in the Euclidean geometry, the topological
dimension 4 also:

1)  handles the scale invariance of the Euclidean object (Dg = d);

2)  characterizes the object connectivity;

3) establishes the object ramification;

4)  sets the maximum number of mutually orthogonal vectors in the object;

5)  governs the Lebesgue measure and other Borel measures on Euclidean space;

6) determines the numbers of spatial and dynamic degrees of freedom of a point walker in the object
7)  rules the statistics of thomogeneous Poisson point processes;

8)  controls the vibrational dynamics of the object;

9) manages the information flow;

10) settles the values of universal exponents associated with critical phenomena.

Conversely, in the fractal geometry, the above features are associated with a set of different
dimensional numbers, some of which are topological invariants and others are not. Specifically, the
similarity dimension defined by Eq. (2) can be linked to a suitable defined covering measure, e.g. the
Hausdorff, box-counting, packing, or Assouad measure (see, for review, Table 1 and Figure 10. In
this way, it was recognized that the similarity and Hausdorff dimensions are equivalent when the IFS
satisfies the open set condition [64]. Therefore the fractal dimension can be thought of as a measure of
a pattern’s ability to fill the space in which it resides. The scale invariance implies that the number of
boxes needed to cover a fractal pattern scales with the box size € as N « e ~P. Accordingly, the fractal
dimension is frequently defined through the scaling relation N(Ae) « A"PN(e), where A > 0 is the
scale factor [17].

(c)

Figure 10. Covering schemes associated with: (a) Hausdorff, (b) box-counting, and (c) Assouad measures.
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In contrast to the topological dimension, the fractal dimension is not a topological invariant. Ac-
cordingly the topological features of fractals (see Figure 11) can be characterized by a set of dimension
numbers which generally differ from the fractal and topological dimensions [2].

Intrisic properties of fractal pattern

Morphological features Topological features Topographical features
1.  Scale symmetry (in- 1.  Connectedness (dis- 1.  Multi-scale roughness
variance under the connected, totally dis- 2. Coastline and horizon
scale and/or confor- connected, connected, 3.  Watersheds
mal transformations) path connected ) 4. Water retention capac-
2. Non-uniformity 2. Connectivity ity
(multi-fractality, multi- 3.  Ramification 5. Optimal paths
affinity) 4. Loopines
3. Non-homgeneity 5. Knottiness
(lacunarity) 1
4. Anisotropy (succolar-
ity)
5. Persistent homology

Y y

Metereological attributes

1.  Topological invariants
2. Suitable defined measure (self-similarity, Hausdorff, box counting, packing, Assouad,
etc.)

3.  Dimension numbers (fractal, connectivity, topological connectivity, spectral dimensions
and Rényi spectral dimensions)

Effective degrees of fredom

Suitable defined metrics (geodesic, induced by the fractal topology, etc.)

6. Suitable defined entropy (Shannon, Rényi, Tsallis, Deng, etc.)

S

Figure 11. Inherent features and key attributes of fractal patterns.

Specifically, the pattern’s connectivity can be quantified by the connectivity dimension defined as:
dp = [limy_,o InN(£)/ In¥], 3)

where N (/) is the number of pattern’s points connected with an arbitrary point inside of the d,-ball of
diameter 1 [105]. Accordingly, the connectivity dimension of the fractal network is equal to

dg = [limgﬁoo 11’1./\/'(£)/ In 'D}, (4)

where D = W/N? is the network diameter defined as the maximum geodesic distance between
two sites on the network, while W (F) = } Yxyer L(x,y) is the Wiener index and ¢(x, y) is the minimum
number of steps needed to go from site x to site y on the network F [97]. It is a straightforward matter
to understand that the ratio of the fractal and connectivity dimensions is equal to the fractal dimension
of geodesic paths [2]. That is the fractal dimension of geodesic paths is equal to

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Accordingly, fractals can be either of the metric origin, if d = d; < D (see, for instance, Figure 12a),
or of the topological origin, if d < d; = D (see Figure 12b). Furthermore, fractals can have combined
origin, such that d < dy, < D (see, for example, Figure 12c).

(@) (b) ©

Figure 12. Three first iterations of fractals having: (a) metric, (b) topological, and (c) combined origin.

A point-like random walker on a Euclidean pattern has equal numbers of spatial and dynamical
degrees of freedom. Both are equal to the topological dimension of the pattern. In contrast to this, for
fractal patters the number of effective dynamical degrees of freedom d can be equal to or less than the
number of effective spatial degrees of freedom 7, [106]. The number of effective dynamical degrees
of freedom is defined via the scaling asymptotic behavior of the probability that the random walker
returns to its origin point after t steps (P o« t~%/2), while the number of effective spatial degrees of
freedom can be viewed as the number of independent directions under a constrain imposed by the
fractal topology. In Ref. [106] it has been established that

1y + ds = 2d,. (6)

while the number of effective dynamical degrees of freedom of the point-like random walker is equal
to the spectral dimension of the fractal pattern. The Einstein law relating the drift and diffusion of
charge implies that

ds = 2(Dw — {)/ Dy, @)

where Dyy is the random walk dimension and ( is the electrical resistance exponent defined via the
scaling relations ¢ o L if { > 0, or ¢ = g — cL¢, if { < 0[107]. Furthermore, many kinds of fractals
obey the Alexander-Orbach relation d; = 2D /Dy and so the electrical resistance exponent is equal to
¢ = Dy — D [61-63].

Scale invariant fractals can be loopless (see, for example, fractals in Figure 12) or have loops at all
scales (see, for example, fractals in Figs. 7 and 8). For the loopless fractals { = dg. Consequently, the
spectral dimension of a loopless fractal is equal to

ds =2D/(D +dg) =2d,/(dy+1), (8)
whereas for fractals with loops at all scales the spectral dimension is in the range of

2dy/(dp+1) <ds < dy, )

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Accordingly, the fractal loopiness can be characterized by the loopiness index which was defined
in Ref. [2] as

A = (ds/n) —1/d,, (10)

while for the loopless fractals (A = 0) the spectral dimension is equal to ds = n, and loopy fractals
(0 < A <1)haveds > n,/dy.

Another important property of patterns is their ramification. Quantitatively, the order of ramifica-
tion R; at point j on the pattern P is defined as the smallest number of bonds that should be cut in
order to isolate an arbitrarily large bounded set of points C; C P connected to the point j. Then the
order of pattern ramification is defined as [108]:

R = mm]ep{R](C]) : C] C P}

Finitely ramified patterns have the finite orders of ramification, whereas the order of ramification
of an infinitely ramified pattern grows with the size L of C; C P as R; LY, such that Rj — o0, as
L — oo. Accordingly the order of ramification is characterized by the ramification exponent

Q = minjep{Q(C)) : C; C P},

while for the finitely ramified patterns Q = 0. In Ref. [109] it was recognized that the ramification
exponent can be related to the topological Hausdorff dimension Dy which was introduced in [104]
via a combination of the definitions of the topological and Hausdorff dimensions:

Diy = min{s : there is a subsetS C P such that dimyS = d — 1, while dim;(P\S) <0},  (11)

Further, it was argued that this definition can be generalized to define the topological fractal
dimension D;r with the use of any suitable fractal dimension (see, for instance, Table 1) instead
of the Hausdorff one. The topological fractal dimension is related to the ramification exponent as
Dir =1+ Q[109]. Generally, d < D;r < D, while for Euclidean patterns d = Dyr = D [2].

Table 1. Some different definitions for fractal dimension.

Dimension Definition Measure/Comments

{U;}is a cover of Fie. F C UX, with 0 <| U; [< 6
where U is any non-empty subset of n-dimensional
Hausdorff-Besicovitch dimyF = inf{S:HS(F) =0} Euclidean space, . Hausdorff meausre is

dimension B S HS(F) = H?(F) = lim;_,0 H (F), where
= sup{S: H(F) = oo} HS(F) = inf{¥% | U; |°: {}U;}, and diameter of U is
| U |=sup{|x—y|:xyeU}
: : : _ T Let N;(F) denotes the least number of balls in a
- A(F = 1 log N5 (F)/ log(1/0 3
lc\l/kaOWSkl Bouligand (") 1%117%0{ 0g Ns(F)/ log(1/0)} covering of F by balls of radius e. It is follows from the
imension A(F) > dimyF definition of Hj that H3 (F) < (26)% x N;(F)
losool" (- F; is the parallel body to F:
Minkowski dimension dim¥(F) = n — limgﬁo{ %{;")} Es={x€R" :|x—y|< 4, forsomey € F}, where 1 is
the topological dimension
Kolmogorov- N(e) is the smallest number of balls of diameter less or

Schirelman-Potjrajin D = limeo{sup log N(e)/log(1/¢€)}

equal to € which are needed to cover fractal

Mandelbrot-Schirelman- Dr = lii%{sup InNe(e)/In(1/€)}

Kolmogorov

N (€) is the least number of balls of radius less than e

. . d which are needed to cover fractal
= inf{d >0, hrré [sup €’ x Ny(e) = O}
€—
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Table 1. Cont.

Dimension Definition Measure/Comments

F is non-empty subset of %#".  N;(F) is any of the fol-
lowing:

A) The smallest number of (1) closed balls of radius

_ . 4, (2) cubes of side ¢ and (3) sets of diameter at
gpper }?OX Countmg WBF _ m&ﬁo{ log N5 (F) } > dimyF most 6, that cover F
lmension logé N B) The largest number of disjoint ball of radius ¢
with center in F
Q) The number of é-mesh cubes that intersect of F.
Lower box-counting ) ) log N (F) )
dimension dimyF = hgmdao{ “lons } > dimpF
g
box-counting dimension dimgF = lim log N5 (F) > dimyF
50 logd

. - If F can be decomposed into a countable number of
dimpypF = inf{sup dimpF; : F C U;’LF,-} pieces F; in such a way that the largest piece has a small
a dimension as possible.

upper modified
box-counting dimension

Lower modified

. . . di F =inf dimgF; : F > Fi
box-counting dimension MBS T 1 {sup dimyF; : F < UZ B}

B; is a collection a disjoint balls of radius at most  with
dimpF = inf{S:PS(F) =0} center in F. Packing measures is:
= sup{S:P5(F) = o}, P5(F) = inf{y,; P§(F) : F C U2 F}, where
POS = lim(s‘}(] P‘SS,(]IE = sup{\ B,‘ ‘SZ {Bz}}

Packing dimension

Dy ={s >0 : C > 0such that

Assouad dimension Ny[B(x,R)NF] < C(R/r)?forall x € F and llzi(xl,lrIi)]c(l)i;lote the covering balls (see for illustration
0<r<R} 8 '

Divider di . : M;(C)-maximum number of points xg, X1, . . . X, on the

]olr‘garfrcui‘l\llleesr)lsmn (© Dp = lim,_o{log Ms(C)/ log(1/6)} ]C(lllr;e .(,T, i;;that order, such that | x — x¢_1 |= 6,

Likewise the fractal dimension the topological fractal dimension is not topologically invariant.
The topological invariant associated with the fractal ramification was introduced in Ref. [81] and
named the topological connectivity dimension. It is defined as

dyp = inf{s : 3§ C P such that Dg/(S) < s —1and d;(P\S) < 0}, (12)

where Dy = D(S)/dg(P) is the fractal dimension of the subset S with respect to the geodesic metric
on the pattern P. The infinitely ramified patterns are characterized by d;; > 1, whereas the finitely
ramified patterns have d;y =d =1 [2].

The classification of scale invariant patterns from a topological viewpoint is given in Figure 13.
The fractal attributes of some self-invariant patterns are summarized in Table 2.

Table 2. Fractal attributes of some self-similar patterns.

Figure D d d w d Y d s Ny A
In2 See discussionin ~ See discussionin  See discussionin  See discussion in
Cantor set C 4 ms 0 0 Ref. [110] Ref. [110] Ref. [110] Ref. [110]
Cartesian SeeRef.[4] M6 g In6  Seediscussionin  See discussionin  See discussionin  See discussion in
product C x [0,1] : n3 In3  Ref. [110] Ref. [110] Ref. [110] Ref. [110]
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Table 2. Cont.

Figure D d d 17 d Vi d s Ny A

Cartesian
tartan In6 In6 In6 In6 In6
Cx[0,1]UC x See Ref. [111] n3 1 n3 n3 n3 n3 0.387
(1,0]
Koch curve 6 4 11 1 1 1 0
Sierpiriski
arrowhead 7b }E% 1 1 1 See [112] 1 See [112] 1 0
curve
Koch curve 12a 1.99 1 1 1 1 1 0
Tree 12b 2 1 1 2 1.188.. 1741 0
Leaf 12¢ 1.756 1 1 In5 1.188... 1.741 0
Tree 2a In5 1 1 In5 1.188.. 1.741 0
Diamond In6 In6
foneo] 13(6) e 1 1 né 1.137 1.448 0.012
Sierpiriski In3 In3 In9
gasket 7a In3 1 1 In3 B3 1.805 0.635
Sierpigki carpet In8 In6 In8
o 8 s n¢ pf 1.806 1.979 0.384 0.635
Sierpiskicube  SeeRef.[92] 120 2 Izt I 2,933 2.998 041
Sierpiski
waveguide See Ref. [2] % 2 % % 2.806 2.98 0.596
SC x [0,1]
Menger sponge  13(4) tn2) 2 iz Iy 2.52 2.94 0.49
f,["mpleme“t of 130 3 3 3 3 3 3 2/3

enger sponge
Percolation SeeRef. [81]  91/94 1 16574 16617 1317 2 0.053
cluste in E
Percolation SeeRef. [97] 252293 1 1.828  1.834 1.327 2341 0.022
cluste in E

D=dy>die=d
dg=n,/d,

D>dy=dy=d
d; =n,/d;

~ AT

(8) E (2)

D>d;>dy=d
ds =n,/d,
£
e LTS
N0

SCALE INVARIANT P
PATTERNS A o

D=dp>dy>d
ds >ny/dy

D>dy>dy=d
ds >n,/d,

% )

D>dp>dy>d
dg >n,/dy

Figure 13. Classification of scale invariant patterns from a topological viewpoint: (1) Euclidean pattern; (2) - (4)
fractals of topological origin; (8) fractal of metric origin; and (5) — (7) fractals of combined origin. (1), (4), (5) -
infinitely ramified; (2), (3), (6) — (8) — finitely ramified. Illustrations: Euclidean compliment of Menger sponge (1);
fractal tree (2); Sierpiniski gasket (3); Menger sponge (4); Julia-Mandelbrot set (5); diamond fractal (6); fractal leaf
(7); fractal Koch-like curve (8).
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4. Final Remarks

Fractal geometry is a relatively new branch of mathematics that was launched in the 1970’s.
Since then, it has been linked to many branches of mathematics, including number theory, topology,
differential geometry, statistics, operator algebras, potential theory, mathematical physics, harmonic
analysis, and the theory of dynamical systems. Presently, the fractal geometry remains an active area
of development. In particular, many works were focused on the inherent features of fractal patterns.
The morphological properties of scale invariant patterns were reviewed in Ref. [5]. The topographical
attributes of fractals were discussed in details in Ref. [2]. In this review we discuss the topological
features of fractal patterns. The pattern’s topology can be characterized by calculating so-called
topological invariants. The topological invariants fix certain topological features such as the number
of connected components, the pattern connectivity and ramification, the existence and distribution
of holes and knots in the studied pattern. We state that the fractal loopiness can be characterized
by the ratio between the numbers of effective spatial and effective dynamical degrees of freedom on
the fractal. However, an appropriate characterization of the fractal knottedness remains open (see
Refs. [113-115] and references therein).

In nature, complex irregular and fragmented patterns arise in a wide variety of systems. The
main appeal of fractal geometry is its ability to describe complex patterns that traditional Euclidean
geometry is unable to analyze. Accordingly, fractal geometry has become one of the powerful tools
for image analysis in many fields of science, including computer science, physics, mechanical and
electrical engineering, biophysics, medicine and economics, and others.
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