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Abstract: In this article, some properties of the zero divisor graph Γ(Zn) are investigated when n
is a square free positive integer and it is shown that the zero divisor graph Γ(Zn) of the ring Zn is
a (2k − 2)-partite graph, when the prime decomposition of n contains k distinct square free primes
using the method of congruence relation. We present some examples, accompanied by pictorial
visualizations, to achieve the desired results. Since Zn is a semisimple ring when n is square-free, the
results can be generalized to characterize semisimple rings and modules, as well as rings satisfying
Artinian and Noetherian conditions, through the properties of their zero-divisor graphs.
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1. Introduction
Graph theory is regarded as one of the most intriguing topics, offering a powerful means to

visualize the interconnections between objects. Its applications span various fields in both social and
natural sciences, leveraging its inherent visual representation to simplify complex properties. For a
more comprehensive exploration of graph theory, we refer readers to [1,11,18,21]. Moreover, graph
theory serves as a valuable tool in numerous branches of mathematics, including algebra.

The zero-divisor graph of a commutative ring was first introduced by Beck in 1988 [9] to explore
the structure of the underlying ring. Since then, this concept has been extensively studied by various
researchers [5,13,15,20]. The study of zero-divisor graphs has also been extended to noncommutative
rings [2]. Redmond [19] further generalized this concept to arbitrary rings, demonstrating that for any
ring R, any two vertices in Γ(R)) are connected by a path of length at most 3. It has also been shown
that for any ring R, if Γ(R) contains a cycle, the length of the shortest cycle is at most 4. Anderson
introduced various structural properties of zero-divisor graphs, proving that Γ(R) is always connected
with diam(Γ(R)) ≤ 3. Additionally, they discussed conditions under which Γ(R) becomes a complete
graph or a star graph [6].

Beck [9] defined zero-divisors graph Γ(R) of a ring R as a graph whose vertex set V(R) is the
set of all the elements of R and the edge sets E(R) is defined by the relation on the elements of R as
x, y ∈ V(R) are adjacent if and only if xy = 0 for distinct x, y ∈ R, and it is noted that the relation in a
zero-divisor graph Γ(R) is always symmetric while R is a commutative ring. If the ring is commutative,
then Γ(R) is a simple graph and Γ(R) is an empty graph while R is an integral domain with a slight
modification in the definition. The zero divisor graph is slightly different from the definition given by
Beck [9] is defined by considering the non-zero zero divisors as vertex sets instead of taking all the
elements of the ring as vertex sets [6]. The intention of Anderson and Livingston [6] was to simplify
Γ(R) so that it can be visualized in a simple way without losing the relevant pieces of information
contained in it. Later on, many properties of Γ(R) were studied, for instance, diameter, girth, and
chromatic number (see [6,7]).
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A ring R is called simple if it has no proper nonzero two-sided ideals, and an R module M is
called simple if M is nontrivial and M has no proper nonzero submodules. A simple ring or module
can be treated as the prime number in number theory as Zn is simple while n is a prime. Like primes
are the buliding blocks of numbers, the simple submodules are the building blocks of the module. A
module is called a semisimple (or completely reducible) module if it is the sum of simple (irreducible)
submodules. A ring R with unity is semisimple if RR is a semisimple module. A square-free prime
decomposition of a positive integer n is as simple as the semisimple finite ring Zn, when n is square free.
The ring R = Zp × Zp × ... × Zp is also a semisimple ring for any prime p. This motivated us to study
properties of the zero divisor graphs of Zn while n is square free. As Zn is a semi-simple ring while n
is square-free, our investigation becomes a bit interesting. We would like to know the ring-theoretic
properties of the semisimple ring in terms of its zero divisor graphs. Our aim is to study the interplay
of ring-theoretic properties of semisimple ring R with the graph theoretic properties of Γ(R) connecting
through number theoretic aspects. We could able to find a fine relationship between R and Γ(R) while
R = Zn. The Rest of the work is out of the scope of this article and is under investigation and may be
an outcome as a sequel of this work.

In this article, effort is given to show that Γ(R) is a partite graph with a certain condition on n
and it is also shown that Γ(R) is a complete graph while n = p2 for a prime p. To prove the results,
we took the help of number theoretic congruence relation which grabbed our attention and made the
investigation more interesting. We present some illustrative examples to accomplish the results. It
is to be noted that Γ(Zn) is always connected, and this graph’s diameter and girth are small. Some
examples of zero divisor graphs Zn are given below (Figure 1).

Z4 Z9

Z6
Z25

Figure 1. Zero divisor graphs.

2. Key Definitions and Notations
Definition 1. A ring is a non-empty set R together with two binary operation’s addition (+) and multiplication
(.) for which < R,+ > is a commutative ring, multiplication is associative and multiplication is distributive
over addition from both sides. If multiplication is commutative, then R is called a commutative ring.

Definition 2. [21] A graph G is a collection of objects in which the objects are pairwise related in some sense.
The objects are called vertices and the related or linked vertices are called edges. Formally, it consists of two sets
V and E, where E is a set of unordered pairs {u, v} for some u, v ∈ V called the edges set of G, and it is denoted
by G = (V, E). If V is a finite set, then G is called a finite graph.

Definition 3. Two integers a and b are congruent modulo m iff they have the same remainder when divided by
m [18], denoted by a ≡ b( mod m).

Property 1. [18] The linear congruence equation

ax ≡ b(mod m)

has a solution if and only if d|b, where d = gcd(a, m).
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A path in a graph is an alternating sequence of distinct vertices and edges such that consecutive
vertices in the sequence are adjacent to the graph. For an unweighted graph, the length of a path is the
number of edges on the path. The eccentricity of a vertex is defined as the maximum distance of a
vertex to all other vertex and it is denoted by e(V). If a path is closed, i.e., starting and end vertices are
the same, then the path is called a cycle. A graph is called connected, if always finds a path between
any two vertices. A cycle free connected graph is called a tree. A star graph Sn of order n, sometimes
simply known as n-star is a tree on n nodes with one node having vertex degree n − 1 and the other
n − 1 having vertex degree 1.

Definition 4. [21] The center of a graph is the set of all vertices of minimum eccentricity and the radius of a
graph is the minimum eccentricity of any graph vertex in a graph.

Definition 5. [6] Let R be a commutative ring with 1 and let Z(R) be its set of non-zero zero-divisors. We
associated a simple graph Γ(R) to R with vertex set V = Z(R), the set of non-zero zero divisors of R, and for
distinct x, y ∈ Z(R), the vertices x and y are adjacent if and only if xy = 0.

A graph is called a bi-partite graph if the vertex set can be partitioned into two sets V1 and V2 for
which no two vertices from the same set can be adjacent. A graph is called a k-partite graph if vertices
can be partitioned into k disjoint sets so that no two vertices within the same set are adjacent. It is to be
noted that if k = 2, then the graph is called a bipartite graph.

A complete k- partite graph is a k-partite graph such that every pair of graph vertices in the k sets
are adjacent. If there are p, q, . . . , r graph vertices in the k sets, the complete k-partite graph is denoted
by Kp,q,...,r. If n = 2, then the graph is said to be a complete bi-partite graph.

A graph that is complete k-partite for some k is called a complete multipartite graph. A Turán
graph is a complete multipartite graph whose partite sets are as nearly equal in cardinality as possible.

3. Zero Divisor Graph of Zn, for Square Free n
In this section, we the two main results are proved and discussed some properties.

Theorem 1. If n = p1 p2, the product of two distinct primes, then

1. Γ(Zp1 p2) is a complete bi-partite graph Kp1−1,p2−1. In particular, if p1 = 2, then Γ(Zp1 p2) is a star graph
and the centre of Γ(Zp1 p2)=p2.

2. diameter, i.e., diam(Γ(Zp1 p2)) = 2.
3. radius, rad(Γ(Zp1 p2)) = 1, if p1 = 2 and otherwise 2.

Proof. 1. Let us consider
V = {n1, n2, n3, ..., nt}

be the set of all non-zero zero divisors of Zp1 p2 . Then by the properties of zero divisor we know
that for each i,

(ni, p1 p2) ̸= 1.

Since 0 is always a zero divisor element,

t = p1 p2 − 1 − ϕ(p1 p2),

where ϕ is a Euler’s totient function. It follows that

t = p1 p2 − 1 − (p1 − 1)(p2 − 1)

t = p1 + p2 − 2.
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Therefore,
t = |V(ΓZp1 p2)| = p1 + p2 − 2,

where V is the set of vertices of Γ(Zp1 p2). Now, one of the way to determine the zero-divisors
elements of Zp1,p2 is to solve for the incongruent solution of the congruent equation.

kx ≡ 0( mod p1 p2) (1)

where k is a non-zero zero divisor element of Zp1 p2 .
Now, equation (1) has a solution as

gcd(p1 p2, k) | 0.

We may assume that
k = p1 or k = p2.

Then
kx ≡ 0( mod p1 p2)

can be written as
p1x ≡ 0( mod p1 p2) (2)

or

p2x ≡ 0( mod p1 p2). (3)

Now, from equation (2)
p1 p2 | p1x.

Therefore,
p1x = p1 p2l,

for some l. We note that for incongruent solution, l must be less than p1 p2. It follows that

x = p2l.

Thus the incongruent solutions of equation (2) are given by those integers which are multiples
of p2 and less than p1 p2. Similarly, the incongruent solutions of equation (3) are given by those
integers which are less than p1 p2 and multiples of p1. For instance, if p1=3 and p2=7, then the
solutions of these two congruence equations (2) and (3) will be multiples of 7 and 3, i.e., {7, 14}
and {3, 6, 9, 12, 15, 18}, respectively. Now, let us consider V1= all the incongruent solutions of
equation (2) and V2= all the incongruent solutions of equation (3). Then

|V(Γ(Zp1 p2))| = |V1 ∪ V2| = t.

Since p1 and p2 are distinct primes,
V1 ∩ V2 = ϕ.

Moreover, no two vertices in Vi are connected for each i=1, 2, and every vertices of V1 are
connected to every vertices of V2. If possible, assume

v1, v2 ∈ V1

are connected, then, we have
v1v2 ≡ 0(mod p1 p2).

Since v1, v2 ∈ V1

v1 = p2l1 and v2 = p2l2,
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where l1, l2 < p1. It follows that

p1 p2 | p1l1 p2l2 ⇒ p2l1l2 = p1m.

Since p1 is prime and l1, l2 < p1, we have p1 | p2, which is a contradiction that p1 and p2 are
distinct primes. Since

|V1| = p1 − 1 and |V2| = p2 − 1,

we have Γ(Zp1 p2) is a complete bi-partite graph, i.e., Γ(Zp1 p2) = Kp1−1,p2−1 .
If any of the prime p1 or p2 is 2, say, p1 = 2, then |V1| = 1 and the only vertex in V1 must have an
edge with every vertex in V2 and so Γ(Zp1 p2) is a star graph.

2. To prove this we consider an example as shown in the Figure 2. Since Γ(Zp1 p2)=Γ(Z21) is a
bi-partite graph diameter Γ(Zp1 p2) = 2 and chromatic number,

χ(Zp1 p2) = 2.

v11 v12 v13

v21 v22 v23 v24 v24 v25

v1p1−1 = p1 − 1

v2p2−1= p2 − 1

Figure 2. Example of bi-partite graph of Γ(Zp1−1,p2−1), where p1 and p2 are distinct primes.

p2

n1 = p1

n2 = 3p1

n1 = 2p1

p1(p2 − 3)

p1(p2 − 2)

p1(p2 − 1)

Figure 3. Figure showing the schematic star graph for p1 = 2 and centre Γ(Zp1 p2 ) as p2.
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3. Radius, rad(Γ(Zp1 p2)) = Γ(Z21) is the minimum eccentricity of all the vertex of Γ(Zp1 p2) which is
2.

5 10

3 9 6 12
Figure 4. Example of bi-partite graph of Γ(Z15), where p1 = 3 and p2 = 5.

Theorem 2. If n = p1 p2 p3...pk is a square free prime factorisation, then the non-zero zero divisor graph, Γ(Zn),
is a (2k − 2)-partite graph.

Proof. If n is a prime, i.e., n = p1, then the non-zero zero divisor graph Γ(Zn) is a null graph. Hence,
in this case, the result is true.

If n=p1.p2, then by Theorem 1, the non-zero zero divisor graph, Γ(Zn) is a bipartite graph, i.e.,
(22 − 2)-partite graph. Thus the result is true in this case also.

In the proof of Theorem 1, it can be observed that the partition of the vertex set is obtained by
taking the incongruent solution of the two congruent equations

p1x ≡ 0( mod n) and p2x ≡ 0( mod n),

respectively.
Now, we assume that n=p1 p2 p3. Let V = {n1, n2, n3, ..., nt} be the set of non-zero zero divisor

elements of Zp1 p2 p3 . As we know that for each i

(ni, n) ̸= 1.

It follows that the number of non-zero zero divisor which is also the number of vertices in
Γ(Zp1 p2 p3) can be obtained by

|V| = n − ϕ(n)− 1, where ϕ denotes the Euler totient function.
= p1 p2 p3 − ϕ(p1 p2 p3)− 1
= p1(p2 − 1) + p2(p3 − 1) + p3(p1 − 1).

For any m ∈ V, we have m is a zero divisor of Zn. It follows that there exists x, 1 ≤ x < n such
that n | mx. Therefore to list all such zero divisors of Zn, we must solve for the incongruent solution of
the congruent equation

mx ≡ 0( mod n). (4)

Equation (4) is solvable as gcd(m, n) | 0. Since n = p1 p2 p3 is a product of three distinct primes
and 0 < m < n, some possible values of m which the m may be any one of the primes or product of
primes by taking two primes at a times, namely,

p1, p2, p3, p1 p2, p1 p3, p2 p3.

For our convenience, depending upon the choices of m, we may consider the following cases to
solve the congruence Equation (4).
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Case I: For each i, let m = pi. In this case, we shall have three linear congruence equations,
namely,

pix ≡ 0( mod n),

where i = 1, 2, 3. These three congruence equations can be thought as 3C1 number of choices. Now for
each i, n | pix, whence xpi = (p1 p2 p3)× r, r = 1, 2, 3, .... In this way we shall get 3 sets of solution for
each i, i=1, 2, 3. As we are looking for non-zero zero divisors of Zn only, so x must be greater than 0
and less than n, i.e., 0 < x < n. Now, for a fixed i, (i = 1, 2, 3), the equation xpi = p1 p2 p2 × r can be
reduced to

x = p2 p3r or x = p1 p3r or x = p1 p2r.

Since 0 < x < p1 p2 p3, we have r = 1, 2, 3, ..., pi − 1 for each corresponding to choice of i = 1, 2, 3. Let
us denote these solutions sets by Smi corresponds to each i. We note that then three sets of solution can
be thought as 3 = 3C1 sets of solutions (number of combination of picking 1 member at a time from the
set of 3 members).

Case II:
m = pi pj , i ̸= j.
In this case, we shall have 3C2 sets of solution as we can choose two members from a set of 3

members by 3C2 ways. Thus the congruence equations reduces to

pi pjx ≡ 0( mod n), i ̸= j

whence,
pi pjx = p1 p2 p3r, r = 0, 1, 2, 3, ...

For fixed i and j,
x = plr, where l = 1, 2, 3.

We note that i ̸= j ̸= l.
Since 0 < x < p1 p2 p3, we get r = 1, 2, 3, ..., pi pj, respectively. That is any set of solutions of

these 3C2 congruence equations must be multiples of pl . Let us denote these sets of solutions by Smij

corresponds to pi and pj. It is to be noted that there are

3C1 +
3 C2 = (2k − 2)

sets of solution which may not be mutually disjoint. This process may be continued for n as product of
4, 5,... distinct primes. Suppose

n = p1.p2.p3...pk.

Let,
V = {n1, n2, n3, n5, ..., nq}

be set of non-zero zero divisors elements of Γ(Zn). Then

(ni, n) ̸= 1.

Thus, the number of non-zero zero divisors can be obtained by

|V(ΓZn)| = p1 p2 p3...pk − 1 − ϕ(p1 p2 p3...pk).

Let m ∈ V. Since m is a zero divisor, there exists x, 1 ≤ x < n such that

n | mx.
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Therefore to list all such zero divisors of Zn, we must solve the congruence equation

mx ≡ 0(mod n) (5)

Since m and x are both variables, we have to fixed one. For our convenience , we are fixing m by
choosing some particular values of m. We would like to note that we are choosing m in such a way
so that the totality of such solutions for x provides us the complete set of non-zero zero divisors of
the ring Zn and which further leads to a partition to the vertex set of the non-zero zero divisor graph
Γ(Zn) in the formation of a partite graph.

Now, Equation (5) is solvable as gcd(m, n) | 0. Since n = p1 p2 p3...pk is a product of k distinct
primes and (0 < m < n). To fix m, we choose those zero-divisors which are products of primes by
taking at most K − 1 primes from p1, p2, p3, ..., pk at a time. In this way, we shall have the following
cases.

1. m = pi, i = 1, 2, ..., k( picking one prime at a time).
2. m = pi pj, 1 < i ̸= j < k( picking two distinct primes at a time )

and so on. After k − 2 steps, we have
3. m = p1 p2...pi−1 pi+1...pk( picking k-1 distinct primes at a time).

In this way, we shall have

kC1 +
k C2 + ... +k Ck−1 = 2k − 2

numbers of equations corresponding to which we shall have 2k − 2 sets of solution. Now, we solve the
(2k − 2) equations to get the complete list of non-zero zero divisors of Zn.

Case(1):
If m = pi for some pi (picking one prime at a time), then the Equation (5) reduces to

pix ≡ 0( mod n), for fixed i.

It follows that
p1 p2 p3...pk | pix.

Whence,
x = (p1 p2 p3 pi−1 pi+1...pk)× r, r = 0, 1, 2, 3, ...

Since 0 < x < n, we have 0 < r < pi, that is , r = 1, 2, 3, ..., pi − 1. In this way we shall get k sets
of solution for each i, i = 1, 2, 3, ..., k. Let us denote these solutions set by Smi corresponds to pi, We
note that k = kC1 (Number of combination of picking 1 member at a time from the sets of k members).
Case (2): m = pi pj, i ̸= j( picking two prime at a time ). In this case, we shall have kC2 sets of solution
as we can choose two members from a set of k members by kC2 ways. Thus the congruence equation
reduces to

pi pjx ≡ 0( mod n), i ̸= j.

Whence, pi pjx = p1 p2 p3...pkr, r = 0, 1, 2, 3...
For fixed, i and j , i ̸= j (without loss of generality, we assume, i < j), we have

x = p1 p2...pi−1 pi+1...pj−1 pj+1...pkr.

Since 0 < x < p1 p2...pi pi+1..pj pj+1...pk. , we get r = 1, 2, 3, ..., pi pj − 1. Let us denote these set of
solution by Smi,j corresponds to pi and pj. Continue in this manner, we have the following case.

(K − 1)th case (picking (k − 1) primes at a time):
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In the (k − 1)th case, we shall have kCk−1 sets of solutions corresponding to the congruence
equations

mix ≡ 0(mod n),

where mi = p1.p2 p3...pi−1.pi+1...pk. Whence,

x ≡ 0( mod pi),

where
0 < x < p1 p2...pi−1 pi pi+1...pk.

Let us denote this kCk−1 = k sets of solutions by

Sm1,2,...,i−1,i+1,...,k , i = 1, 2, 3, 4, ..., k.

For each i, the solution set Sm1,2,...,i−1,i+1,...,k is given by

x = pir, r = 1, 2, ..., p1 p2 p3...pi−1.pi+1...pk − 1.

Therefore in total, we shall have

kC1 +
k C2 +

k C3 + ... +k Ck−1 = (2k − 2)

sets of solution of the congruence equation,

mx ≡ 0(mod n).

Construction of (2k − 2)- partite graph:
We note that these 2k − 2 sets of solution may not be a pairwise disjoint but exhausted the set

of all non-zero zero divisors, i.e., union of all such sets of solutions give the set of all non-zero zero
divisors. In our next step, we would like to re-structure the 2k − 2 sets of solutions in such a way that
they are pairwise disjoint and their union is the set of all non-zero zero divisors of the ring Zn which
infact forms a partition of the vertex set of the zero divisor graph Γ(Zn). Now, we shall show that this
2k − 2 sets of solution will act as a partition of the vertex set and forms a (2k − 2)− partite graph. These
2k − 2 sets are splitted into k − 1 number of levels. We shall start with the inner most level. The inner
most level corresponds to sets of solutions

Smi , i = 1, 2, 3, 4, 5, ..., k.

Let us denote them by
V1

i = Smi ,

where
Smi = {p1 p2...pi−1 pi+1...pk, 2p1 p2...pi−1 pi+1...pk, ..., (pi − 1)p1 p2...pi−1 pi+1...pk}.

That is, it is the collection of integers which are multiples of p1 p2...pi−1 pi+1...pk (mod n). In this
way, we shall have

V1
i , i = 1, 2, 3, 4, ..., k

number of sets of vertices and since p′is are distinct primes, these sets of vertices are pairwise disjoint.
In the next outer level, i.e., k − 2(level), we consider those sets of solutions for which each solution m
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is a multiples of the primes p1, p2, p3, ..., pk by removing a pair of primes at a time and it is denoted by
Smi,j and constructed the next level of vertices as follows:

V2
t = Smi,j − Smi − Sj

= Smi,j − Smi ∪ Smj , t = 1, 2, 3, 4, ...,k Ck−2,

where ‘−’ stands for the difference of sets and repeated use of ‘−’ is for cumulative difference in the
sense that if X − A − B, then we mean that it is X − (A ∪ B). Then it can be verified that Vk−2

t ’s are
pair wise disjoint and (⋃

t
V2

t

)
∪
(⋃

t
V1

t

)
=

(⋃
i

Smi

)
∪

⋃
i,j

Smi,j

.

Now, the next outer level should be

V3
t , t = 1, 2, ...,k Ck−3

by considering those sets of solutions for which each solution m is a multiples of the primes
p1, p2, p3, ..., pk by removing three primes at a time. Then

V3
t = Smi,j,k − Smi,j − Smi,k − Smj,k − Smi − Smj − Smk

= Smi,j,k − Smi,j ∪ Smi,k ∪ Smj,k − Smi ∪ Smj ∪ Smk

where,
t = 1, 2, 3, 4, ...,k Ck−3.

It can be observed that Vk−3
t ’s are pairwise disjoint and(⋃

t
V1

t

)
∪
(⋃

t
V2

t

)
∪
(⋃

t
V3

t

)
=

⋃
i,j,k

Smi,j,k

 ∪

⋃
i,j

Smi,j

 ∪
(⋃

i
Smi

)
.

Continuing these process, the outermost level would be (k − 1) level for which corresponding sets
are V1

t , where t = 1, 2, 3, 4, ...,k Ck−(k−1). Now, we consider a sets of solutions for which each solution
m is a multiple of the primes p1, p2, ..., pk by removing k − 1 of primes at a time, and construct the next
level of vertices as follows:

Vk−1
t = Sm1,2,...,i−1,i+1,...,k − ΣSm1,2,...,ir−1,ir+1,...,is−1,is+1,...,k − ... − Smi1

− Smi2
− ... − Smik−1

= Sm1,2,...,i−1,i+1,...,k −
(⋃

Sm1,2,...,ir−1,ir+1,...,is−1,is+1,...,k

)
∪ ... ∪

(⋃
l Smil

)
,

where t = 1, 2, 3, ..., k and(⋃
t V1

t
)
∪
(⋃

t V2
t
)
∪ ... ∪

(⋃
t Vk−1

t

)
=
(⋃

i1,i2,...,ik−1
Smi1,i2,...,ik−1

)
∪
(⋃

i′1,i′2,...,i′k−2
Sm

i
′
1,i

′
2,...,i

′
k−2

)
∪... ∪ (

⋃
i Smi ),

where the sum ΣSm1,2,...,ir−1,ir+1,...,is−1,is+1,...,k runs over all combinations by picking k − 2 distinct elements
from k − 1 elements from i1, i2, i3...ik−1.

Next we claim that no two vertices in the same set of the above partition of the vertex set are
connected by an edge.

From the construction of level sets, it can be observed that for an arbitrary Vm
t , say, we can always

find a prime pi such that pi ∤ v for all v ∈ Vm
t . For instances, if

v ∈ V1
t = Smi ,
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then pi ∤ v. And if
v ∈ V2

t = Smi,j − Smi − Smj ,

then pi ∤ v and pj ∤ v and so on.

Now, if v1, v2 ∈ V j
i are connected, then

v1v2 = 0( mod n).

It follows that n|v1v2. Since pi|n, we have pi|v1v2, which is a contradiction that pi ∤ v1 and pi ∤ v2.
Therefore, any two vertices are non-adjacent whenever they are from the same level set.
Edge formation:

If u ∈ V1
i , v ∈ V1

j , i ̸= j, then all pl’s are divisor of u except pi and divisor of v except pj. Since
i ̸= j, it follows that all pl ’s divides uv, that is, uv ≡ 0( mod n). Thus {u, v} is an edge of the zero-divisor
graph.

Hence, every vertex of an inner most level V1
i is adjacent to all vertices of another same level set

V1
j .

Again, every vertex v ∈ V1
j = Smi must have edge with every vertex of the next outer level set

V2
t = Smp,q − Smp − Smq

for which i is different from p and q, and no vertex of V1
i can have an edge with any vertex of

V2
t = Smp,q − Smp − Smq

for which i is either coincides with p or q.
Similarly, it can be observed that every vertex of inner most level v ∈ V1

i = Smi must have edge
with every vertex of the next outer level set

V3
t = Smp,q,r − Smp,q − Smp,r − Smq,r − Smp − Smq − Smr .

for which i is different from p, q and r, and no vertex of Vk−1
i can have an edge with any vertex of Vk−3

t
for which any one i is either coincides with p or q or r.

Continuing in this process, we get every vertex v ∈ V1
i = Smp must have an edge with every

vertex of the outer most level set

v ∈ Vk−1
t = Sm1,2,...,i−1,i+1,...,k − ΣSm1,2,...,ir−1,ir+1,...,is−1,is+1,...,k − ... − Smi1

− Smi2
− ... − Smik−1

.

only.
Moreover, every vertex v ∈ V2

s = Smi,j − Smi − Smj must have edge with every vertex of an
another set of the same level

V2
t = Smp,q − Smp − Smq

for which i and j is different from p and q, and no vertex of V2
s can have an edge with any vertex of V2

t
for which any one i or j is either coincides with p or q.

Similarly, every vertex of v ∈ V2
s = Smi,j − Smi − Smj must have edge with every vertex of the next

outer level set
V3

t = Smp,q,r − Smp,q − Smp,r − Smq,r − Smp − Smq − Smr .

for which i and j is different from p, q and r, and no vertex of Vk−2
s can have an edge with any vertex

of Vk−3
t = Vk−3

t for which i or j is either coincides with p or q or r. Continuing in this way, it can be
obtained that every vertices of each set of second most inner level have an edge with every vertices of
only one set of second outer most level, and no vertex of a set of second inner most level can have an
edge to any vertex of any set from the outer most level.
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This process will be continued till the outer most level is reached. In the most outer level, vertices
of Vk−1

i are non-adjacent to vertices of Vk−1
j , for i ̸= j.

In this way, we obtain a (2k − 2)-partite structure of the non-zero zero divisor graph Γ(Zn).

4. Algorithm to Determine Γ(Zn), when n Is Square Free
Step 1:
Find the number of non-zero zero divisors of Zn, which is given by

|V(Zn)| = p1 p2 p3..pn(say)− 1 − ϕ(p1 p2 p3...pn).

Step 2:
Find out the number of partitions, which is given by

nC1 +
n C2 +

n C3 + ... +n Cn−1 = 2k − 2

Step 3:
List all the congruence equations in order to get the non-zero zero divisors by using the equation

p1x ≡ 0(mod n).

p1 p2x ≡ 0(mod n).

p1 p2 p3x ≡ 0(mod n).

p1 p2 p3 p4x ≡ 0(mod n).

............

............

............

p1 p2 p3 p4...pn−1x ≡ 0(mod n).

Step 4: Find the incongruent solution for all the congruence equations listed in Step 3.
Step 5: Partitioning of the solution set into level sets Vi

j .
Step 6: Formation of edges, i.e., connecting of vertices to get edges.

5. Illustrated Examples
Example 1. (3-distinct primes) For 3-distinct primes, p1, p2 and p3,
if

n = p1 p2 p3,

then, Zn is a ring in which n is square free. For instance, if p1 = 2, p2 = 3, p3 = 5, then, using the above
algorithm, we can construct a non-zero zero divisor graph of Z30 (see Figure 5).
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Figure 5. Zero divisor graph of Z30.

The number of non-zero zero divisor elements will be given by

|V| = 2.3.5 − 1 − ϕ(2.3.5)
= 30 − 1 − ϕ(2)ϕ(3)ϕ(5)
= 29 − 1.2.4
= 29 − 8
= 21.

According to step 1 of the algorithm, the number of partitions should be

3C1 +
3 C2 = 6.

Thus, the graph must be a 6 - partite graph. Let us denote V be the set of non-zero zero divisor elements of
Z30, Then

V = {2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28}.

The vertex set V can be obtained using the algorithm in terms of solution sets using the method described
above. The number of incongruent equations will be 2x ≡ 0( mod 30), 3x ≡ 0( mod 30) and 5x ≡ 0( mod 30)
by picking 1 member at a time. Similarly (2.3)x ≡ 0( mod 30), (2.5)x ≡ 0( mod 30) and(3.5)x ≡ 0( mod 30)
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by picking 2 member at a time. Solving the incongruent solution of the given congruence equations, we get 6
disjoint subsets of the vertices which can be denoted by V1

1 , V1
2 , V1

3 , V2
1,2, V2

2,3, V2
3,1.

V1
1 = 15x

V1
2 = 10x

V1
3 = 6x

V2
1,2 = 5x − 10x − 15x

V2
2,3 = 2x − 6x − 10x

V2
3,1 = 3x − 6x − 15x,

i.e., solutions of the above equations are given by

V1
1 = {15}.

V1
2 = {10, 20}.

V1
3 = {6, 12, 18, 24}.

V2
1,2 = {5, 25}.

V2
2,3 = {2, 4, 8, 14, 16, 22, 26, 28}.

V2
3,1 = {3, 9, 21, 27}.

Now, edges can be formed using step 6. Once the edges are formed, we get a 6-partite graph Figure 5. It can
be verified that

V1
1 ∪ V1

2 ∪ V1
3 ∪ V2

1,2 ∪ V2
2,3 ∪ V2

1,3 = V.

Remark 1. For the convenience, the zero-divisor graph Γ(Z30) has been represented by single connected edge
among two level sets in the sense that if elements of a level set Vk

i is connected to elements of another level set
V l

j , then the corresponding two level set is connected by a edge. In this way, we can minimize the complexity of
drawing the zero divisor graph and it can take the form as shown in (Figure 6). This phenomenon can be thought
as merging of vertices and edges.
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Figure 6. Simplified form of Γ(Z30) by merging vertices and edges.

Example 2. (4-distinct primes) Let
n = p1 p2 p3 p4,

p1 = 2, p2 = 5, p3 = 7, p4 = 11.

Then, Zn=Z770. The total number of non-zero zero divisor elements of Z770 is given by-

|V| = 2.5.7.11 − 1 − ϕ(2.5.7.11)
= 770 − 1 − ϕ(2)ϕ(5)ϕ(7)ϕ(11)
= 769 − 1.4.6.10
= 769 − 240
= 529 elements.

Here, K = 4, the number of partitions must be

4C1 +
4 C2 +

4 C3 = 4 + 6 + 4 = 14.

The graph must be a 14 − partite graph. Now, to list out all the vertices of Γ(Z770), we must find all the
incongruent solutions of the congruence equations according to step 3 and 4. Using step 5, we can construct 14
disjoint subsets of the vertices which partitioned the vertices. Finally, using step 6, a 14 − partite graph can be
constructed which is depicted in the simplified form (see Figure 7).

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 December 2024 doi:10.20944/preprints202412.2017.v1

https://doi.org/10.20944/preprints202412.2017.v1


16 of 21

V 1
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Figure 7. Simplified form of the zero-divisor graph of Z770.
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The partitioning the vertex as level subsets of Γ(Z770) are as follows:

V1
1 = {385, 770}.

V1
2 = {154, 308, 462, 610, 770}.

V1
3 = {110, 220, 330, 440, 550, 660, 770}.

V1
4 = {70, 140, 210, 280, 350, 420, 490, 560, 630, 700, 770}.

V2
1,2 = {77, 231, 539, 693}.

V2
1,3 = {55, 165, 275, 495, 605, 715}.

V2
1,4 = {35, 105, 175, 245, 315, 455, 525, 595, 665, 735}.

V2
2,3 = {22, 44, 66, 88, 132, 176, 198, 242, 264,

286, 352, 374, 396, 418, 484, 506, 528, 572, 594,
638, 682, 704, 726, 748}.

V2
2,4 = {14, 28, 42, 56, 84, 98, 112, 126, 168, 182, 196, 224, 238,

252, 266, 294, 322, 336, 364, 378, 392, 406, 434, 448, 476,
504, 518, 532, 546, 574, 588, 602, 644, 658, 672, 686, 714,
728, 742, 756}.

V2
3,4 = {10, 20, 30, 40, 50, 60, 80, 90, 100, 120, 130, 150, 160,

170, 180, 190, 200, 230, 240, 250, 260, 270, 290, 300, 310,
320, 340, 360, 370, 380, 390, 400, 410, 430, 450, 460, 470,
480, 500, 510, 520, 530, 540, 570, 580, 590, 600, 610, 620,
640, 650, 670, 680, 690, 710, 720, 730, 740, 750, 760}.

V3
1,2,3 = {11, 33, 99, 121, 143, 187, 209, 253, 297, 319, 341, 363,

407, 429, 451, 473, 517, 561, 583, 627, 649, 671, 737, 759}.

V3
1,4,3 = {5, 15, 25, 45, 65, 75, 85, 95, 115, 125, 135,

145, 155, 185, 195, 205, 215, 225, 235, 255, 265,
285, 295, 305, 325, 335, 345, 355, 365, 375, 395
405, 415, 425, 435, 445, 465, 475, 485, 505, 515,
535, 454, 555, 565, 575, 585, 615, 625, 635, 645,
655, 675, 685, 695, 705, 725, 745, 755, 765}.

V3
1,2,4 = {7, 21, 49, 63, 91, 119, 133, 147, 161, 189, 203,

217, 259, 273, 287, 301, 329, 343, 357, 371, 385,
413, 427, 441, 469, 483, 497, 511, 553, 567, 581,
609, 623, 637, 651, 679, 707, 721, 749, 763}.
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V3
2,3,4 = {2, 4, 6, 8, 12, 16, 18, 24, 26, 32, 34, 36,

38, 46, 48, 52, 54, 58, 62, 64, 68, 72, 74, 76, 78,
82, 86, 92, 94, 96, 102, 104, 106, 108, 114, 116,
118, 122, 124, 128, 134, 136, 138, 142, 144, 146,
148, 152, 156, 158, 162, 164, 166, 172, 174, 178,
184, 186, 188, 194, 202, 204, 206, 208, 212, 214,
216, 218, 222, 226, 228, 232, 234, 236, 244, 246,
248, 254, 256, 258, 262, 268, 272, 274, 276, 278,
282, 284, 288, 292, 296, 298, 302, 304, 306, 312,
314, 316, 318, 324, 326, 328, 332, 334, 338, 342,
344, , 346, 348, 354, 356, 358, 362, 366, 368, 372, 376,
382, 384, 386, 388, 394, 398, 402, 404, 408, 412,
414, 416, 422, 424, 426, 428, 432, 436, 438, 442,
444, 446, 452, 454, 456, 458, 464, 466, 468, 472,
474, 478, 482, 486, 488, 492, 494, 496, 498, 502,
508, 512, 514, 516, 522, 524, 526, 534, 536, 538,
542, 544, 548, 552, 554, 556, 558, 562, 568, 576,
578, 582, 584, 586, 592, 596, 598, 604, 606, 608,
612, 614, 618, 622, 624, 626, 628, 632, 634, 636,
642, 646, 648, 652, 654, 656, 662, 664, 666, 668,
674, 676, 678, 684, 688, 692, 694, 696, 698, 702,
706, 708, 712, 716, 718, 722, 724, 732, 734, 736,
738, 744, 746, 752, 754, 758, 762, 764, 766, 768}.

Remark 2. For our convenience, we denote the level sets as

Vr
suffixes of primes pi’s separated by comma,

where r represents the levels and pi’s denote the family of distinct primes whose product appears in the congruence
relation which particularly means that V1

i = Smi and V2
1,2 = Smp,q and it is to be noted that, Si = Smi − {0}.

For illustration, V1
i is a partition of the vertex set corresponding to solution set Si (a simple component of

Zn) obtained corresponding to the congruence relation pix ≡ 0( mod n), and V2
i,j is a partition of the vertex

set corresponding to solution set Si
⊕

Sj (direct sum of two simple components Zi and Zj of Zn) obtained
corresponding to the congruence relation pi pjx ≡ 0( mod n) in level 2. This notation conveniently allow us find
the edges in such a way that if any suffixes are missing in a particular level set, then vertices in that set must be
connected to every vertices of another level set containing only the missing suffixes. In this way, the graph edges
can be drawn with the help of Table 1 and 2. A similar kind of table can be established in determining the edges
and vertices of non-zero zero-divisors graph of a semi-simple ring R as a semi-simple ring is a direct sum of its
simple components.

Table 1. Formation of partite graphs of Z30.

Equations Solution sets Partition sets Edges formations
2x ≡ 0(mod 30) S1 = Sm1 ∪ {0} = {0, 15} V1

1 = S1 − {0} V2
2,3, V1

2 , V1
3

3x ≡ 0( mod 30) S2 = Sm2 ∪ {0} = {0, 10, 20} V1
2 = S2 − {0} V1

3 , V1
1 , V2

3,1
5x ≡ 0( mod 30) S3 = Sm2 ∪ {0, 6, 12, 18, 24} V1

3 = S3 − {0} V1
2 , V1

1 , V2
1,2

6x ≡ 0( mod 30) S1
⊕

S2 V2
1,2 = S1

⊕
S2 − S1 ∪ S2 V1

3
10x ≡ 0( mod 30) S1

⊕
S3 V2

2,3 = S1
⊕

S3 − S1 ∪ S3 V1
1

15x ≡ 0( mod 30) S2
⊕

S3 V2
3,1 = S2

⊕
S3 − S2 ∪ S3 V1

2
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Table 2. Formation of partite graphs of Z770.

Equations Solution sets Partition sets Edges formations
2x ≡ 0(mod 770) S1 = Sm1 ∪ {0} V1

1 = Sm1 = S1 − {0} V1
2 , V1

3 , V1
4 , V2

2,3, V2
3,4, V2

2,4, V3
2,3,4

5x ≡ 0( mod 770) S2 = Sm2 ∪ {0} V1
2 = Sm2 = S2 − {0} V1

1 , V1
3 , V1

4 , V2
1,3, V2

3,4, V2
1,4, V3

1,3,4
7x ≡ 0( mod 770) S3 = Sm3 ∪ {0} V1

3 = Sm3 = S3 − {0} V1
1 , V1

2 , V1
4 , V2

1,2, V2
2,4, V2

2,3, V3
1,2,4

11x ≡ 0( mod 770) S4 = Sm4 ∪ {0} V1
4 = Sm4 = S4 − {0} V1

1 , V1
2 , V1

3 , V2
2,3, V2

1,2, V2
1,3, V3

1,2,3
2.5x ≡ 0( mod 770) S1

⊕
S2 = Sm1,2 ∪ {0} V2

1,2 = S1
⊕

S2 − S1 ∪ S2 V1
3 , V1

4 , V2
3,4

2.7x ≡ 0( mod 770) S1
⊕

S3 V2
1,3 = S1

⊕
S3 − S1 ∪ S3 V1

4 , V1
2 , V2

2,4
2.11x ≡ 0( mod 770) S1

⊕
S4 V2

1,4 = S1
⊕

S4 − S1 ∪ S4 V1
2 , V1

3 , V2
2,3

5.7x ≡ 0( mod 770) S2
⊕

S3 V2
2,3 = S2

⊕
S3 − S2 ∪ S3 V1

1 , V1
4 , V2

1,4
5.11x ≡ 0( mod 770) S2

⊕
S4 V2

2,4 = S2
⊕

S4 − S2 ∪ S4 V1
1 , V1

3 , V2
1,3

7.11x ≡ 0( mod 770) S3
⊕

S4 V2
3,4 = S3

⊕
S4 − S3 ∪ S4 V1

1 , V1
2 , V2

1,2
2.5.7x ≡ 0( mod 770) S1

⊕
S2
⊕

S3 V3
1,2,3 = S1

⊕
S2
⊕

S3 − [{S1
⊕

S2} ∪ {S1
⊕

S3} ∪ {S2
⊕

S3}] V1
4

2.7.11x ≡ 0( mod 770) S1
⊕

S3
⊕

S4 V3
1,3,4 = S1

⊕
S3
⊕

S4 − [{S1
⊕

S3} ∪ {S1
⊕

S4} ∪ {S3
⊕

S4}] V1
2

5.7.11x ≡ 0( mod 770) S2
⊕

S3
⊕

S4 V3
2,3,4 = S2

⊕
S3
⊕

S4 − [{S2
⊕

S3} ∪ {S2
⊕

S4} ∪ {S3
⊕

S4}] V1
1

5.11.2x ≡ 0( mod 770) S1
⊕

S2
⊕

S4 V3
2,4,1 = S1

⊕
S2
⊕

S4 − [{S1
⊕

S2} ∪ {S1
⊕

S4} ∪ {S2
⊕

S4}] V1
3

Theorem 3. [12] For a prime p, Γ(Zp2) is a complete graph.

Proof. Let
V = {n1, n2, n3...nk}

be the set of vertices of non-zero zero divisors of (Zp2). Then, for each i, (ni, p2) ̸= 1. Since 0 is always
a zero divisor elements of Zp2 . If k is arbitrary elements V, then (k, p2) ̸= 1. Therefore,

Example 3. The zero divisor graphs of z2.2, z3.3, z5.5 and z7.7.

2

a

3 6

b

10

15 20

5

c

7

14

21

42

35

28

d

Figure 8. Zero divisor graphs (a). Γ(Z4) (b). Γ(Z9) (c). Γ(Z25) and (d). Γ(Z49).
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V = p2 − 1 − ϕ(p2)

= p2 − 1 − p2−1(p − 1)
= p2 − 1 − p(p − 1)
= p2 − 1 − p2 + p
= (p − 1) elements.

That is, total number of vertices in Γ(Zp2) is p − 1. Now, in order to list all the vertices of Γ(Zp2),
we shall find all the incongruent solutions of the congruent equation

kx ≡ 0( mod p2), (6)

where k is a non-zero zero divisor of Zp2 .
Now, the congruence linear equation has solution as

gcd(kx, p2) | 0.

Since k is element of Zp2 , we have
0 < k < p2

From equation (6), we get,
p2 | (kx − 0), It follows that

p | x or p | k.

If p | x, we must get k < p. Since, |V| = p − 1, the zero divisors are p, 2p, 3p, ..., (p − 1)p. Since
every vertex is a multiple of p, the product of any two vertices is divisible by p2. Hence each vertex is
connected to every vertex of Γ(Zp2). Therefore Γ(Zp2). is a complete graph Kp−1, where p is a prime
number.

Remark 3. It is obtained that Γ(Zn) when n is square-free is a partite graph. It can be observed that Zpq is a
complete bipartite graph, while Zp2 is a complete graph. On the other hand, the semisimple ring Γ(Zp × Zp) is
not a complete graph. In particular, it is complete bi- partite graph. In fact, Γ(Zp × Zp) is a Turán graph. This
observation leads us to a conjecture that for any finite semisimple ring, the zero divisor graph of them is a partite
graph and some of it’s subgraphs are Turán graph. We will take it as a sequel to our current study.

6. Conclusion
The zero-divisor graph Γ(Zn) of Zn for which n is linearly factored are investigated and it is

shown that Γ(Zn) of the ring Zn is a r = (2k − 2)-partite graph, when n = p1 p2...pk (p1, p2, ..., pk are k
distinct primes). We note that Zn, for n = p1 p2...pk, (p1, p2, ..., pk distinct primes) are semi-simple ring.
We believe the results obtained can be used as tools to investigate the nature and properties of the zero
divisor graphs of semi-simple rings and modules. It is to be noted that the results obtained are solely
applicable to the ring Zn, but may not be applicable to an arbitrary ring of order n. For example, the
ring Z4 and Z2 × Z2 are both of order 4 = 22, but Γ(Z4) and Γ(Z2 × Z2) are two different graphs.
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