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Abstract

Digital twin technology is reshaping modern agriculture. Digital twins are the virtual replicas of real-
world farming systems, which are continuously updated with real-time data, and are revolutionizing
the monitoring, simulation, and optimization of agricultural processes. The literature on agricultural
digital twins is multidisciplinary, growing rapidly, and often fragmented across disciplines, which
lacks well-curated documentation. A bibliometric analysis includes thematic content analysis and
science mapping, which provides research trends, gaps, thematic landscape, and key contributors in
this continuously evolving and emerging field. Therefore, in this study, we conducted a bibliometric
review that included collecting bibliometric data via keyword search strategies on popular scientific
databases. The data was further screened, processed, analyzed, and visualized using bibliometric
tools to map research trends, landscapes, collaborations, and themes. Key findings show that
publications have grown exponentially since 2018, with an annual growth rate of 27.2%. The major
contributing countries were China, the USA, the Netherlands, Germany, and India. We observed a
collaboration network with distinct geographic clusters, with strong intra-European ties and more
localized efforts in China and the USA. The analysis identified seven major research theme clusters
revolving around precision farming, Internet of Things integration, artificial intelligence, cyber-
physical systems, controlled-environment agriculture, sustainability, and food system applications.
We observed that core technologies, such as sensors, artificial intelligence, and data analytics, have
been extensively explored, while identifying gaps in research areas. The emerging interests include
climate resilience, renewable-energy integration, and supply-chain optimization. The observed
transition from task-specific tools to integrated, system-level approaches underline the growing need
for adaptive, data-driven decision support. By outlining research trends and identifying strategic
research gaps, this review offers insights into leveraging digital twins to improve productivity,
sustainability, and resilience in global agriculture.

Keywords: digital twin; sensors; Internet of Things; artificial intelligence; smart farming; precision
farming

1. Introduction

Over the past few decades, global agriculture has been continuously transforming from
conventional farming to digitized and smart farming [1,2]. Integrating the latest agricultural
technologies boosts farm profitability through higher yields and lower input costs [3]. Recent
advances in low-cost sensor technology, improved computational capability, and advanced data-
driven predictive models are enabling the digitization of farming [4-6]. This transformation is driven
by precision, smart, and sustainable agriculture technologies that leverage sensors, data, and models
to increase production efficiency, reduce inputs (e.g., labor, fertilizer, water), and enhance
environmental sustainability [3,7]. Digital farming employs advanced technologies, not limited to
remote sensing, sensors, Internet of Things (IoT) devices, artificial intelligence (AI), data analytics,
and computation tools, but also suggests a significant shift towards integrated sensors, devices, data-
driven predictive models, and computation-intensive agriculture systems [8,9]. The current research
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and development remains more task-centric or system-specific, utilizing a single combination of tools
or approaches to obtain task-specific solutions or objectives. However, there is a growing interest in
developing whole-system-specific methods, suggesting a need for centralized and integrated
solutions that collect, process, and analyze data on a broad system level and simulate, predict, and
optimize the whole system operation in real-time. This framework sets an ideal foundation for the
digital twin technology in agriculture, which is an emerging field that has the potential to redefine
how agriculture systems are optimized for higher production with reduced inputs [10,11].

A digital twin is a virtual representation of a real-world object, system, process, or environment
that is continuously updated with real-time data collected via multiple and interconnected sensors
or devices, along with data-driven models [12]. The concept of the digital twin was first introduced
by NASA in 2010. [11]. This concept outlines the foundational concept of digital twins, emphasizing
their role in integrating modeling, simulation, and real-time data to enhance decision-making in
complex aerospace systems [13]. The concept was later adopted across multiple fields, including
manufacturing [14], healthcare [15], urban planning [16], and agriculture [17], for optimization,
predictive maintenance, and data-driven decision-making. For example, in manufacturing, digital
twins are used to monitor and optimize production lines, enabling predictive maintenance and
improved operational efficiency [14]. The integration of IoT and cyber-physical systems in Industry
4.0 has significantly advanced the application of digital twins. In healthcare, digital twins enable
personalized medicine, treatment planning, and hospital resource management by creating patient-
specific virtual models [15]. These applications are revolutionizing diagnosis and predictive
healthcare through real-time simulations and data analytics. In urban planning, digital twins of cities
are used to model infrastructure, simulate urban growth, and support smart city development [16].
They provide a dynamic platform for urban governance, environmental monitoring, and
transportation management.

Digital twins differ fundamentally from conventional AI models or simulation tools. Traditional
simulation models are typically static, offline, and one-directional: they accept input parameters, run
scenarios, and output results without further interaction with the physical system [18]. In contrast,
digital twins continuously synchronize with live data streams, support bi-directional data exchange
for both monitoring and actuation, and embed advanced diagnostic and prognostic analytics [19].
While traditional models excel at the design-stage, “what-if” analyses, digital twins extend their
capabilities to real-time control with generative learning, enabling closed-loop optimization across
the entire crop or livestock production cycle [20].

In recent years, digital twin technology has gained significant interest in agricultural systems
[21]. Digital twins offer multiple advantages in modern farming [20]. For example, by fusing sensor-
derived soil moisture data, weather forecasts, and crop growth models, digital twin-driven irrigation
management can reduce water use by up to 25% and minimize fertilizer waste by 10-15%, lowering
production costs and negative environmental impact [22]. Moreover, precise, data-informed
interventions such as variable rate seeding or targeted pest control can improve yield uniformity and
overall productivity, as demonstrated in pilots across Europe and North America [23]. The
sustainability objectives are supported through optimized resource allocation and emissions
monitoring, helping farms comply with regulatory standards and achieve climate-smart agriculture
goals [22]. Finally and most importantly, scenario-based simulations enable proactive risk
management by forecasting pest outbreaks, equipment failures, or extreme weather impacts, thus
safeguarding both yields and profitability in a farm or greenhouse [24].

Opverall, the digital twin technologies in agriculture have received significant momentum, with
both research and practical applications accelerating rapidly. However, the existing literature is cross-
disciplinary in scope, yet lacking a unified direction. This highlights the need for systematic
documentation and quantitative assessment to better understand the field’s development and
research landscape. The dispersed and cross-disciplinary research landscape complicates efforts to
assess the field’s development, trends, and key contributors. It is essential to identify thematic trends
and gaps, and understand key contributors, global hotspots, and emerging focus areas. The
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individual case studies focusing on technological development are available but lack a
comprehensive, quantitative analysis that scientifically maps evolution, collaboration patterns,
research hotspots, and underexplored gaps within this emerging domain. To systematically assess
the development of this field, bibliometric analysis, using mathematical and statistical methods to
examine bibliographic data, offers a quantitative approach to uncover research trends, scholarly
influence, and thematic evolution [25].

Therefore, in this study, we conducted a bibliometric and science mapping analysis of global
research on digital twin applications in agriculture. A large amount of bibliometric data was collected
from major scientific databases, which are carefully filtered and systematically assessed via
bibliometric analysis tools to understand publication trends, influential authors, institutions,
collaboration networks, global hotspots, thematic clusters, and keyword evolution. The goal of this
study is to provide a structured overview of the current research landscape, offer insights into
emerging trends, and identify strategic directions for future research and innovation in agricultural
digital technologies. The specific aims of this study are: (1) Quantify publication trends and research
productivity by country, institution, author, and source; (2) Identify research hotspots, core
technologies, and thematic areas through keyword co-occurrence and clustering; (3) Map
collaboration networks among countries and institutions; and (4) Highlight emerging or
underexplored topics and future research directions. This study will offer a structured synthesis of
existing research, highlighting pathways for coordinated and impactful innovation in agricultural
digitalization. This work contributes to the scholarly understanding of digital twins in agriculture
while serving as a strategic resource for advancing digital transformation in food and farming
systems.

2. Materials and Methods

In this study, we adopted a bibliometric review to provide a broader overview of research
trends, hotspots, emerging themes, and patterns of knowledge production on specific research topics
[26]. The primary reason for conducting a bibliometric review was that the initial volume of literature
data was too large for manual review and inspection, while the scope of the study was broad and
qualitative in nature.

2.1. Data Collection

The first step in a bibliometric review involves a collection of extensive and relevant documents
for analysis. Figure 1 provides an overview of an employed literature review procedure for
bibliometric analysis [27]. Although several scientific databases are available for literature search,
Scopus and Web of Science were selected for data collection due to their comprehensiveness,
popularity, and reliability [28]. A combination of keyword search strategies was employed using
relevant keywords and Boolean operators to capture the most comprehensive dataset. The search
was conducted in February 2025 and search queries were as follows: (i) Web of Science: TS = (“digital
twin”) AND TS = (“agriculture” OR “farming systems”); (ii) Scopus: TITLE (“digital twin”) AND
TITLE-ABS-KEY (“agriculture” OR “farming systems”). These queries resulted in 662 documents
from Web of Science and 1,305 documents from Scopus, resulting in a total of 1,967 articles selected
for further bibliometric analysis. The two data sources were combined using the Bibliometrix package
in R, identifying and removing 332 duplicate records, resulting in a dataset of 1,635 unique
documents. The document exclusion criteria were established to remove irrelevant records and
ensure the accuracy of the dataset. The documents were excluded if they were non-English, contained
incomplete metadata, or were irrelevant to the agricultural domain or digital twin systems. These
criteria were applied to 1,635 documents, based on a careful review of their titles, abstracts, and, when
necessary, full-text content. After applying these exclusion criteria, a final total of 597 articles were
included for the bibliometric analysis. The bibliometric data contains descriptive records on
published materials, not limited to authors, journals, publication title, abstract, year, place, keywords,
source, publisher, affiliation, country, and citation.
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Once the bibliometric data were collected, we selected widely recognized bibliometric tools that
support comprehensive analysis and science mapping. Therefore, the data analysis and visualization
were performed using the following most popular bibliometric software tools: (1) Biblioshiny, a web-
based graphical interface for the Bibliometrix R package, which provides an interactive and user-
friendly platform to import, process, and analyze bibliographic data [29]. This tool generated
descriptive statistics, author metrics, and keyword trend analyses. (2) VOSviewer, a specialized
software tool used to construct and visualize bibliometric networks, including keyword co-
occurrence and thematic evolution for science mapping [30]. Both tools are widely used in
bibliometric research [29,30], which allows quantitative analysis and visual exploration of patterns in
the literature on digital twin applications in agriculture.

c B
2 Documents identified through database search:
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£ (il) Web of Science (n = 662),

b5 Total number of documents (n = 1,967)
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Figure 1. An overview of an employed literature selection procedure for bibliometric analysis.

2.2. Data Overview

A summary of the bibliometric dataset, which included a total of 597 documents, is presented in
Table 1. These 597 documents were published across 424 sources, with an average document age of
2.09 years, reflecting a relatively new research domain. Authorship data show contributions from
2,244 authors, with an average of 4.88 co-authors per document, and 12.06% of all publications
involved international collaboration. Collectively, these metrics highlight the field’s emerging status
and growing global engagement.

Table 1. Descriptive summary of the bibliometric dataset on digital twin applications in agriculture.

Category Value
Timespan 2018 to 2025

Sources (Journals, Books, etc.) 424

Total number of documents 597

Document average age 2.09

Average citations per document 8.72
Keywords plus 2,910
Author’s keywords 1,720
Number of authors 2,244
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Single-authored documents 23
Co-authors per document 4.88
International co-authorship % 12.06

3. Results and Discussion

The bibliometric results presented in this study are categorized into two major components: (a)
Performance analysis, which identifies global publication trends, research hotspots, leading
publication sources, and influential authors and institutions [31]; and (b) Science mapping, which
focuses on unstructured textual data, particularly author-supplied keywords, to explore the thematic
structure, research focus areas, and potential knowledge gaps within the field of agriculture [31].

3.1. Publication Trends and Document Types

The annual global scientific literature production on digital twin applications in agriculture has
shown a significant increase in recent years (Figure 2a). The digital twin technology is a relatively
new concept in agriculture [32], with the first document published in 2018 [33]. Thus, the number of
published documents remained relatively low through 2020, with fewer than 30 documents
published cumulatively (Figure 2a). However, a sharp upward trend began in 2021, with exponential
growth observed through 2024, reaching a peak of 210 publications/year. This rapid rise suggests
increasing research interest in digital twin technology in agriculture, likely driven by advances in Al
and the proliferation of low-cost IoT systems [33]. The decline in documents in 2025 is attributed to
incomplete indexing at the time of analysis, conducted in February 2025. Overall, the annual growth
rate of 27.24% was observed in agricultural digital twin literature. The document type distribution
reveals that journal articles and conference proceedings constitute the majority of the literature
(Figure 2b). The high proportion of conference papers and articles suggests that the field is still in its
infancy stages, with researchers favoring quicker dissemination routes for technology-oriented
innovations. Review articles (8.4%), book chapters (5.5%), and other document types (1.5%) together
form a small portion of the literature, highlighting both the emerging nature of digital twin
applications in agriculture and the opportunity for more comprehensive syntheses and educational

integration.
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Figure 2. An overview of an employed literature selection procedure for bibliometric analysis.

3.2. Global Distribution of Scientific Literature

The global distribution of published documents on agricultural digital twin applications is
presented in Figure 3. China leads with the highest number of documents (n > 180), followed by the
USA, Italy, Germany, and India, indicating concentrated research activity in both developed and
emerging economies. Unsurprisingly, China and the USA are at the forefront in agricultural
production in multiple categories [34,35]. This likely reflects their early investments in smart
agriculture, IoT infrastructure, and digital innovation policies. In contrast, European and Southeast
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Asian countries show moderate engagement, while many regions in Africa, South America, and
Central Asia appear underrepresented in this domain. This global distribution identifies research
hotspots and underrepresented regions, further suggesting potential opportunities for international
collaboration, capacity building, and technology transfer to expand the adoption of digital twin
technologies.

Figure 3. Global distribution of scientific literature on digital twin applications in agriculture.

3.3. Global Collaboration Trend and Network

Collaboration is critical when it comes to developing complex, novel, and emerging
technologies, such as digital twins, since it would be efficient and effective if all the expertise,
infrastructure, and resources from multiple institutions or countries could be integrated to develop a
full-scale system. Collaboration can improve research quality, innovation, global relevance via
information or resource sharing, as well as technology transfer [36]. The collaboration among the top
25 most productive countries is presented in Figure 4, which is broadly classified into single-country
publications (SCP) and multi-country publications (MCP). The top five countries (i.e., China, USA,
Italy, Germany, and India) lead in single-country efforts with a SCP percentage greater than 83%. On
the other hand, several European countries (e.g., the United Kingdom, Norway, Switzerland, Greece,
and Portugal) exhibit MCP above 20%, reflecting a strong tendency toward international
collaboration. A few countries, including Denmark, Russia, Latvia, Belgium, and Austria, have
limited to no international collaboration, as evidenced by their predominance of single-country
publications and minimal contributions to multi-country efforts. Apart from the geographic
distribution of research, Figure 4a presents collaborative dynamics, which could potentially provide
insight into national capacity, dependence, and level of global engagement in advancing digital twin
technologies for agriculture, which can be important for policymakers to outline future directions.

The subsequent visualization of the global collaboration network (Figure 4b) visualizes the
collaboration landscape among the countries where the node represents the country, the line
represents the collaborative link, and their respective size or thickness and position represent the
collaboration frequency, strength, and relatedness, respectively. The collaboration landscape is
organized into three distinct clusters, including Red (China, USA, Australia, etc.), Green (Canada,
UK, Germany), and Blue (Norway, Denmark), each with a central hub. The network suggests key
global hubs shaping digital twin research, while suggesting uneven participation with several
countries situated at the network periphery.
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(b) Global collaboration network among the
top publishing countries.
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Figure 4. Top 25 most productive countries in digital twin research in agriculture: (a) collaboration type, (b)

collaboration network.

3.4. Major Institutions, Authors Contribution, and Publishing Sources

Table 2 lists the global academic and research institutions driving innovation at the intersection
of agriculture and digital twin technologies. While China and the USA rank highest in terms of total
research output, the institutional analysis reveals that Wageningen University and Research,
Netherlands, and the Norwegian University of Science and Technology, Norway, are the most
prolific individual institutions. This suggests that the USA and China have a large number of small
contributing institutions, each with relatively lower individual output, whereas, in some European
and Asian countries, research efforts appear to be centralized within a few highly productive

institutions.

Table 2. Institutions ranked by the number of published documents on digital twins in agriculture.

Institutions Number of
Articles
Wageningen University and Research, Netherlands. 30
Norwegian University of Science and Technology, Norway. 19
Samara State Technical University, Russia. 16
China Agricultural University, China. 15
Samara National Research University, Russia. 11
University of California System, United States. 11
National University of Singapore, Singapore, 10
Stellenbosch University, South Africa. 10
Zhejiang University, China. 9
Commonwealth Scientific and Industrial Research Organization (CSIRO), 8

Australia

Most productive authors were identified based on two key metrics: number of publications and
h-index (Figure 5). The h-index is a well-accepted measure of consistent scholarly influence, which
reflects both productivity and citation impact [37]. The study analyzed around 2,244 authors for a
minimum of five articles and five h-index, and only seven authors met this condition. Skobelev P
leads with 14 articles and a seven h-index, followed by Simonova E with 13 articles and a six h-index.
This data suggests that digital twin in agriculture is still an emerging field; high-impact contributions
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are currently concentrated among a relatively small group of researchers, and immense opportunities
exist for further scholarly influence and collaboration.
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Figure 5. Top contributing authors in Digital Twin research in agriculture, based on a number of publications
and h-index.

The study also reveals that authors disseminated their research across a wide range of platforms,
with a total of 424 distinct sources utilized. The most frequently used publication venues are listed in
Table 3. Given the multidisciplinary nature of digital twin technology, it is not surprising that many
of the top sources fall within engineering and applied sciences journals, including “Computers and
Electronics in Agriculture,” “Sensors,” “IEEE ACCESS,” and “Applied Sciences”. These platforms are
highly relevant to the IoT, sensor networks, and real-time monitoring systems, which are the core
components of digital twin frameworks and, hence, are well-suited for research that bridges digital
systems, sensing technologies, and agricultural applications. Besides technical journals, several
agriculture-specific journals were also utilized, such as “Agriculture” and “Frontiers in Plant
Science,” indicating the growing adoption of digital twin methodologies within the agronomic and
plant sciences domain. The dataset also includes a notable number of conference proceedings, such
as “Lecture Notes in Computer Science” and “Lecture Notes in Networks and Systems”, which
highlights the emerging and technical nature of digital twin research, where many innovations are
first introduced in engineering or computer science venues before transitioning into applied
agricultural contexts. Collectively, the data suggests the interdisciplinary nature of digital twin
research in agriculture, spanning domains of engineering, computer science, agronomy, and
environmental science.

Table 3. The most used publication sources for disseminating agricultural digital twin research.

Sources No. of Articles
Computers and Electronics in Agriculture 20
Sensors 13
IEEE ACCESS 10
Applied Sciences 8
Agriculture 7
Energies 7
Frontiers in Plant Science 7
Lecture Notes in Computer Science 7
Digital Twins for Smart Cities and Villages 6
Lecture Notes in Networks and Systems 5
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3.5. Keyword Analysis

In bibliometric studies, keyword analysis allows qualitative analysis on selected topics and helps
understand the thematic structure, research focus, landscape, and evolution within the field [38]. It
examines the keywords appearing in the article title, abstract, and author keywords to identify the
most frequent concepts, tools, technologies, and disciplinary areas, as well as their inter-relationships
[39]. In this study, we selected author keywords that are intentionally selected by authors to best
describe their work. Thus, author keywords are the most accurate reflection of research priorities and
specific focus. The study included a total of 1,720 authors’ keywords. The keyword analysis is
presented in Figure 6, with the help of a word cloud and keyword frequency. A word cloud is a visual
text representation where word size correlates with its frequency in the dataset [40] As expected, the
“digital twin” largely dominates the word cloud with the highest occurrence frequency, pointing to
its central role. Other frequently occurring keywords include “internet of things,” “smart

7] 7] 7]

agriculture,” “artificial intelligence,” “precision agriculture,” “machine learning,” and “cyber-
physical system,” reflecting the interdisciplinary integration of sensors, data, and data-driven
methods or technologies within agricultural contexts. These terms highlight the foundational
components of any digital twin architecture, including sensing systems, data acquisition, and
modeling frameworks, which are well-represented as the most common keywords. In contrast, the
word cloud also reveals less frequent but specific keywords directly related to agricultural
applications, such as “remote sensing,” “phenotyping,” “real-time monitoring,” “plant factory,”
“greenhouse,” “climate change,” “horticulture,” “controlled-environment agriculture,” “wind

farms,” “food industry,” and “agriculture 4.0.” These keywords provide valuable qualitative insights

7] ”ou o

into the research scope and application areas, while also highlighting potential gaps or
underexplored areas within the agricultural digital twin research landscape.

(a) Word cloud of top 50 author keywords. (b) Author keyword quency (top 20 key
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Figure 6. Analysis of author-provided keywords: (a) Word cloud and (b) Keyword occurrence frequency.

3.6. Keyword Trend

Cumulative growth trend analysis of the top four keywords reveals distinct trends in thematic
evolution (Figure 7). “Digital Twin” shows the most significant and rapidly growing keyword,
increasing from just three cumulative mentions in 2018 to over 400 by February 2025, indicating a
sharp acceleration in research activity and the emerging dominance of the concept within the field.
In contrast, the other three keywords (e.g., “Internet of Things,” “Artificial Intelligence,” and “Smart
Agriculture”) displayed a slower, more gradual upward trend, each remaining below 60 cumulative
occurrences by February 2025. This pattern suggests that supporting technologies are steadily gaining
traction, and research centered explicitly around digital twin systems is expanding at a significantly
faster pace.
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Figure 7. Cumulative trend of top four keywords over time.

3.7. Keyword Co-Occurrence Network

A keyword co-occurrence network is shown in Figure 8, which contain three major elements: (1)
Nodes, which represent individual keywords, and their size indicates keyword frequency; (2) Link,
which represents the strength of co-occurrence (i.e., thicker lines indicate a strong relationship and
vice-versa); and (3) Layout where nodes are spatially arranged to show the keyword relatedness
based on co-occurrence. The shorter distance between two keywords shows stronger relatedness and
vice-versa [41].

The central and most dominant node, “digital twin”, is linked to all keywords shown on the
network but with varying link strength and spatial layout. Node size, link strength, and layout
placement within the network provide qualitative insights into the structure and significance of each
research area. Moreover, by tracking the presence, size, and connection strength of individual nodes,
it is possible to infer the existence, prominence, or absence of specific literature themes within the
field [41].

The co-occurrence network includes several broad-level thematic keywords that define the
conceptual landscape of digital innovation in agriculture. For example, keywords such as “digital

”ou i ”ou

agriculture,
4.0” appear as distinct yet interconnected nodes with “digital twin” and other related keywords, often
located at a certain distance from the central node. These keywords represent overlapping and
interconnected methods to modernize agriculture, each focusing on different aspects to improve
agricultural efficiency, productivity, and sustainability while reducing costs, inputs, and labor;
ultimately leading to better outcomes than the conventional farming system [42,43]. The presence of
these keywords suggests that digital twin technology will play a key role in modernizing and

precision farming,” “smart agriculture,” “sustainable agriculture,” and “agriculture

innovating current agricultural systems.
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Figure 8. Keyword co-occurrence network based on keywords provided by authors of publications.

Digital twin technology is in the early stages of development and typically involves significant
cost and infrastructure investment [44]. Therefore, the presence of keywords like “controlled

Y

environment agriculture,” “greenhouse,” “horticulture,” and “plant factory” in the co-occurrence
network is notable and expected. These domains are primarily associated with the production of
high-value crops/produce, where the initial investment in advanced digital technologies is more
economically justifiable due to the potential for higher returns [45,46]. This highlights a logical entry
point for digital twin adoption, where capital-intensive systems can better absorb the cost of
implementation while benefiting from the enhanced monitoring, prediction, and optimization
capabilities that digital twin systems offer. Moreover, greenhouse and controlled environment
agricultural systems are, in general, characterized by a higher level of automation and widespread
sensor adoption than conventional farming, which are key prerequisites for digital twin
implementation [47].

”ou " ou

In the co-occurrence network, keywords such as “phenotyping, real-time
monitoring,” and “decision making” reflect the integration of sensors, data acquisition, and analytical
technologies within agriculture. These terms are relevant to precision agriculture and smart farming,
which aim to gather real-time data on plants and their environmental conditions. On the other hand,
phenotyping allows the rapid collection of morphological and physiological crop traits, combined

with remote sensing technologies, including drones, satellites, and field-based sensors, to provide the

remote sensing,

foundational data streams necessary for building and operating digital twin systems [48,49]. The real-
time monitoring further emphasizes the importance of continuous data flow and system
responsiveness, which are essential for dynamic simulation, forecasting, and anomaly detection in a
digital twin framework [50]. Similarly, the keyword “decision making”, suggests the role of digital
twin in modeling and monitoring agricultural systems, but also in supporting data-driven
management strategies that optimize productivity and sustainability. Collectively, these keywords
highlight the sensor, data, and analytics-driven nature of today’s agriculture, which can be further
exploited with DT technologies.

The presence of keywords such as “machine learning,” “deep learning,” and “artificial
intelligence” in the co-occurrence network reflects the dependence on advanced computational
methods to analyze agricultural data for decision-making. These methods are key components of
digital agriculture and digital twin systems, where large volumes of heterogeneous data collected
from sensors and IoT devices must be interpreted in real-time. Machine learning performs pattern
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recognition and predictive modeling, while deep learning can process large, complex, unstructured
data, not limited to images or time-series signals [51]. Overall, these methods can optimize resources
and support intelligent decision-making in agricultural systems. Network keywords suggest that
agriculture is shifting toward autonomous, data-informed farming systems, where digital twins can
learn and adapt over time based on real-world inputs.

"o "o

Keywords like “Internet of Things (IoT),” “sensor,” “robotics,

"o "o

cyber-physical system,” “multi-
agent system,” and “agricultural machinery” suggest the technological tools or infrastructure needed
for digital twin implementation. For example, sensors provide a primary data source, capturing
environmental, biological, and mechanical information necessary for modeling and monitoring [52].
While IoT serves as the connecting layer, allowing real-time data transfer [53]. Robotics and
agricultural machinery contribute to the automation and execution of physical tasks, often informed
by digital models [54]. Cyber-physical systems integrate computational algorithms with physical
processes, forming the structural core of digital twin systems [55]. Meanwhile, multi-agent systems
facilitate decision-making among multiple autonomous components (e.g., drones, robotic platforms,
or digital services) coordinated within a digital twin framework [56]. Together, these keywords
represent the hardware-software ecosystem, which is an important component of the digital twins
framework.

i

The keywords “climate change,” “sustainability,” and “resilience” are located at the network
periphery, with few connecting links to digital twins, indicating active but underexplored research
areas. However, in recent times, it has been believed that advances in sensors, IoT devices, robotics,
automation, and digital twins may have the potential to solve critical global food production
challenges, including climate change, sustainability, and resilience [57,58].

Notably, the network also includes keywords related to renewable energy sources, such as

"o

“wind energy,” “wind turbine,” and “wind farm,” suggesting active research in these areas as well.
Wind turbines and wind farms include multiple sensors and require predictive maintenance and
performance monitoring. Therefore, the use of digital twin technologies in this context can allow real-
time monitoring, failure prediction, and optimization of renewable energy infrastructure [59,60].
Likewise, keywords such as “food supply chain” and “food industry” indicate an active and growing
interest in applying digital twin approaches within the food systems domain.

The absence of primary agricultural-related keywords (e.g., irrigation, livestock farming, fruit
harvesting, orchard farming from the co-occurrence network suggests that digital twin applications
have not yet been explored to a greater extent in this domain. This notable gap highlights untapped
research opportunities where digital twin technologies could offer significant value, particularly in
optimizing resource use, improving animal health monitoring, and enhancing post-harvest logistics.
The current focus on plant-based systems, controlled environments, and precision crop management
may represent only the initial phase of digital twin integration in agriculture, indicating substantial
potential for future expansion into diverse and traditionally underrepresented areas of the agri-food
system.

The co-occurrence network contains seven clusters, with each node color representing a distinct
and non-overlapping group (Table 4). A broad set of thematic patterns can be inferred from the
grouping of related keywords; therefore, each cluster has been assigned a representative theme based
on the common research focus shared by its keywords [61].

Table 4. Keyword co-occurrence cluster and associated keywords.

Clusters Keywords Common theme
Cluster 1 “anomaly detection”, “data analysis”, “deep learning”, “digital Key digital twin
(Red) agriculture”, “digital twin”, “digitalization”, “greenhouse”, “industry technologies and
4.07, “modeling”, “phenotyping”, “predictive maintenance”, applications

v ou ”ou ”ou

“renewable energy”, “resilience”, “simulation”, “solid modeling”,
"o " ou " ou

“supply chain”, “sustainability”, “virtual reality”, “wind energy”,
“wind turbine”

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.1502.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 July 2025 d0i:10.20944/preprints202507.1502.v1

13 of 17
Cluster 2 “cyber-physical system”, “decision making”, “knowledge base”, Intelligent systems
(Green) “multi-agent system”, “ontology”, “precision farming” and decision support
Cluster 3  “agriculture”, “agriculture 4.0”, “climate change”, “internet of things”, Technological
(Blue) “optimization”, “robotics” convergence and
environmental
integration
Cluster 4 “agricultural machinery”, “controlled environment”, “plant factory”, Controlled
(Yellow) “real-time monitoring”, “smart agriculture” environment
agriculture
Cluster 5 “digital transformation”, “machine-learning”, “monitoring”, “remote Remote sensing and
(Purple) sensing” data-driven
monitoring
Cluster 6 “artificial intelligence”, “horticulture”, “sustainable agriculture”, Sustainability and
(Cyan) “sustainable development” policy-oriented
research
Cluster 7 “food industry”, “food supply chain”, “sensors”, “wind farms” Food systems and
(Orange) infrastructure
monitoring

This study offers valuable insights into the evolution and thematic structure, but it has some
limitations that should be acknowledged. First, the analysis is limited to publications indexed in
Scopus and Web of Science, which, although comprehensive, may exclude relevant literature from
other databases, institutional repositories, or grey literature. Second, the keyword-based search
strategy may not capture all relevant articles if authors used inconsistent or unconventional
terminology to describe digital twin applications. However, the number of documents included in
this study appears to be sufficient to support meaningful bibliometric analysis. Additionally,
bibliometric indicators such as publication counts and h-index metrics may favor older publications
and more established research groups, potentially underrepresenting newer or emerging
contributions. Lastly, this review focuses primarily on quantitative and structural analysis that may
limit qualitative review approaches such as systematic review, which provide a deeper contextual
interpretation since they target specific research questions on a particular topic.

4. Conclusions

In this study, we conducted a bibliometric review of digital twin applications in agriculture. The
review began with the collection of bibliometric data from major scientific databases. The data was
then analyzed and visualized using specialized bibliometric software tools to help understand trends,
patterns, and key insights within the research landscape. The following major conclusions can be
drawn from this study:

e The research on digital twin applications in agriculture has accelerated significantly in recent
years.

e Most active contributors are China, the US, the Netherlands, Russia, and Germany, with
institutions like Wageningen University and China Agricultural University leading in
publication output.

e  The study reveals core research areas, including precision farming, smart agriculture, IoT,
machine learning, and cyber-physical systems, while identifying unexplored areas.

e  The study also reveals distinct thematic clusters and shows the growing convergence between
the digital twin and agricultural technologies, including remote sensing, decision support
systems, and sustainability frameworks.

e The present analysis provides a quantitative and thematic understanding of the digital twin-
agriculture landscape, serving as a strategic roadmap for researchers, practitioners, and
policymakers.
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In summary, the study offers critical insights into the evolution of the digital twin and the
research structure in agriculture. The productivity trends, influential contributors, and thematic
clusters identified in this study highlight current strengths and uncover critical gaps and emerging
opportunities. These findings can guide future research, foster interdisciplinary collaboration, and
support data-driven decision-making technologies for sustainable and resilient agricultural systems.
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