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Abstract 

Digital twin technology is reshaping modern agriculture. Digital twins are the virtual replicas of real-
world farming systems, which are continuously updated with real-time data, and are revolutionizing 
the monitoring, simulation, and optimization of agricultural processes. The literature on agricultural 
digital twins is multidisciplinary, growing rapidly, and often fragmented across disciplines, which 
lacks well-curated documentation. A bibliometric analysis includes thematic content analysis and 
science mapping, which provides research trends, gaps, thematic landscape, and key contributors in 
this continuously evolving and emerging field. Therefore, in this study, we conducted a bibliometric 
review that included collecting bibliometric data via keyword search strategies on popular scientific 
databases. The data was further screened, processed, analyzed, and visualized using bibliometric 
tools to map research trends, landscapes, collaborations, and themes. Key findings show that 
publications have grown exponentially since 2018, with an annual growth rate of 27.2%. The major 
contributing countries were China, the USA, the Netherlands, Germany, and India. We observed a 
collaboration network with distinct geographic clusters, with strong intra-European ties and more 
localized efforts in China and the USA. The analysis identified seven major research theme clusters 
revolving around precision farming, Internet of Things integration, artificial intelligence, cyber-
physical systems, controlled-environment agriculture, sustainability, and food system applications. 
We observed that core technologies, such as sensors, artificial intelligence, and data analytics, have 
been extensively explored, while identifying gaps in research areas. The emerging interests include 
climate resilience, renewable-energy integration, and supply-chain optimization. The observed 
transition from task-specific tools to integrated, system-level approaches underline the growing need 
for adaptive, data-driven decision support. By outlining research trends and identifying strategic 
research gaps, this review offers insights into leveraging digital twins to improve productivity, 
sustainability, and resilience in global agriculture. 

Keywords: digital twin; sensors; Internet of Things; artificial intelligence; smart farming; precision 
farming 
 

1. Introduction 

Over the past few decades, global agriculture has been continuously transforming from 
conventional farming to digitized and smart farming [1,2]. Integrating the latest agricultural 
technologies boosts farm profitability through higher yields and lower input costs [3]. Recent 
advances in low-cost sensor technology, improved computational capability, and advanced data-
driven predictive models are enabling the digitization of farming [4–6]. This transformation is driven 
by precision, smart, and sustainable agriculture technologies that leverage sensors, data, and models 
to increase production efficiency, reduce inputs (e.g., labor, fertilizer, water), and enhance 
environmental sustainability [3,7]. Digital farming employs advanced technologies, not limited to 
remote sensing, sensors, Internet of Things (IoT) devices, artificial intelligence (AI), data analytics, 
and computation tools, but also suggests a significant shift towards integrated sensors, devices, data-
driven predictive models, and computation-intensive agriculture systems [8,9]. The current research 
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and development remains more task-centric or system-specific, utilizing a single combination of tools 
or approaches to obtain task-specific solutions or objectives. However, there is a growing interest in 
developing whole-system-specific methods, suggesting a need for centralized and integrated 
solutions that collect, process, and analyze data on a broad system level and simulate, predict, and 
optimize the whole system operation in real-time. This framework sets an ideal foundation for the 
digital twin technology in agriculture, which is an emerging field that has the potential to redefine 
how agriculture systems are optimized for higher production with reduced inputs [10,11]. 

A digital twin is a virtual representation of a real-world object, system, process, or environment 
that is continuously updated with real-time data collected via multiple and interconnected sensors 
or devices, along with data-driven models [12]. The concept of the digital twin was first introduced 
by NASA in 2010. [11]. This concept outlines the foundational concept of digital twins, emphasizing 
their role in integrating modeling, simulation, and real-time data to enhance decision-making in 
complex aerospace systems [13]. The concept was later adopted across multiple fields, including 
manufacturing [14], healthcare [15], urban planning [16], and agriculture [17], for optimization, 
predictive maintenance, and data-driven decision-making. For example, in manufacturing, digital 
twins are used to monitor and optimize production lines, enabling predictive maintenance and 
improved operational efficiency [14]. The integration of IoT and cyber-physical systems in Industry 
4.0 has significantly advanced the application of digital twins. In healthcare, digital twins enable 
personalized medicine, treatment planning, and hospital resource management by creating patient-
specific virtual models [15]. These applications are revolutionizing diagnosis and predictive 
healthcare through real-time simulations and data analytics. In urban planning, digital twins of cities 
are used to model infrastructure, simulate urban growth, and support smart city development [16]. 
They provide a dynamic platform for urban governance, environmental monitoring, and 
transportation management. 

Digital twins differ fundamentally from conventional AI models or simulation tools. Traditional 
simulation models are typically static, offline, and one-directional: they accept input parameters, run 
scenarios, and output results without further interaction with the physical system [18]. In contrast, 
digital twins continuously synchronize with live data streams, support bi-directional data exchange 
for both monitoring and actuation, and embed advanced diagnostic and prognostic analytics [19]. 
While traditional models excel at the design-stage, “what-if” analyses, digital twins extend their 
capabilities to real-time control with generative learning, enabling closed-loop optimization across 
the entire crop or livestock production cycle [20]. 

In recent years, digital twin technology has gained significant interest in agricultural systems 
[21]. Digital twins offer multiple advantages in modern farming [20]. For example, by fusing sensor-
derived soil moisture data, weather forecasts, and crop growth models, digital twin-driven irrigation 
management can reduce water use by up to 25% and minimize fertilizer waste by 10-15%, lowering 
production costs and negative environmental impact [22]. Moreover, precise, data-informed 
interventions such as variable rate seeding or targeted pest control can improve yield uniformity and 
overall productivity, as demonstrated in pilots across Europe and North America [23]. The 
sustainability objectives are supported through optimized resource allocation and emissions 
monitoring, helping farms comply with regulatory standards and achieve climate-smart agriculture 
goals [22]. Finally and most importantly, scenario-based simulations enable proactive risk 
management by forecasting pest outbreaks, equipment failures, or extreme weather impacts, thus 
safeguarding both yields and profitability in a farm or greenhouse [24]. 

Overall, the digital twin technologies in agriculture have received significant momentum, with 
both research and practical applications accelerating rapidly. However, the existing literature is cross-
disciplinary in scope, yet lacking a unified direction. This highlights the need for systematic 
documentation and quantitative assessment to better understand the field’s development and 
research landscape. The dispersed and cross-disciplinary research landscape complicates efforts to 
assess the field’s development, trends, and key contributors. It is essential to identify thematic trends 
and gaps, and understand key contributors, global hotspots, and emerging focus areas. The 
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individual case studies focusing on technological development are available but lack a 
comprehensive, quantitative analysis that scientifically maps evolution, collaboration patterns, 
research hotspots, and underexplored gaps within this emerging domain. To systematically assess 
the development of this field, bibliometric analysis, using mathematical and statistical methods to 
examine bibliographic data, offers a quantitative approach to uncover research trends, scholarly 
influence, and thematic evolution [25]. 

Therefore, in this study, we conducted a bibliometric and science mapping analysis of global 
research on digital twin applications in agriculture. A large amount of bibliometric data was collected 
from major scientific databases, which are carefully filtered and systematically assessed via 
bibliometric analysis tools to understand publication trends, influential authors, institutions, 
collaboration networks, global hotspots, thematic clusters, and keyword evolution. The goal of this 
study is to provide a structured overview of the current research landscape, offer insights into 
emerging trends, and identify strategic directions for future research and innovation in agricultural 
digital technologies. The specific aims of this study are: (1) Quantify publication trends and research 
productivity by country, institution, author, and source; (2) Identify research hotspots, core 
technologies, and thematic areas through keyword co-occurrence and clustering; (3) Map 
collaboration networks among countries and institutions; and (4) Highlight emerging or 
underexplored topics and future research directions. This study will offer a structured synthesis of 
existing research, highlighting pathways for coordinated and impactful innovation in agricultural 
digitalization. This work contributes to the scholarly understanding of digital twins in agriculture 
while serving as a strategic resource for advancing digital transformation in food and farming 
systems. 

2. Materials and Methods 

In this study, we adopted a bibliometric review to provide a broader overview of research 
trends, hotspots, emerging themes, and patterns of knowledge production on specific research topics 
[26]. The primary reason for conducting a bibliometric review was that the initial volume of literature 
data was too large for manual review and inspection, while the scope of the study was broad and 
qualitative in nature. 

2.1. Data Collection 

The first step in a bibliometric review involves a collection of extensive and relevant documents 
for analysis. Figure 1 provides an overview of an employed literature review procedure for 
bibliometric analysis [27]. Although several scientific databases are available for literature search, 
Scopus and Web of Science were selected for data collection due to their comprehensiveness, 
popularity, and reliability [28]. A combination of keyword search strategies was employed using 
relevant keywords and Boolean operators to capture the most comprehensive dataset. The search 
was conducted in February 2025 and search queries were as follows: (i) Web of Science: TS = (“digital 
twin”) AND TS = (“agriculture” OR “farming systems”); (ii) Scopus: TITLE (“digital twin”) AND 
TITLE-ABS-KEY (“agriculture” OR “farming systems”). These queries resulted in 662 documents 
from Web of Science and 1,305 documents from Scopus, resulting in a total of 1,967 articles selected 
for further bibliometric analysis. The two data sources were combined using the Bibliometrix package 
in R, identifying and removing 332 duplicate records, resulting in a dataset of 1,635 unique 
documents. The document exclusion criteria were established to remove irrelevant records and 
ensure the accuracy of the dataset. The documents were excluded if they were non-English, contained 
incomplete metadata, or were irrelevant to the agricultural domain or digital twin systems. These 
criteria were applied to 1,635 documents, based on a careful review of their titles, abstracts, and, when 
necessary, full-text content. After applying these exclusion criteria, a final total of 597 articles were 
included for the bibliometric analysis. The bibliometric data contains descriptive records on 
published materials, not limited to authors, journals, publication title, abstract, year, place, keywords, 
source, publisher, affiliation, country, and citation. 
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Once the bibliometric data were collected, we selected widely recognized bibliometric tools that 
support comprehensive analysis and science mapping. Therefore, the data analysis and visualization 
were performed using the following most popular bibliometric software tools: (1) Biblioshiny, a web-
based graphical interface for the Bibliometrix R package, which provides an interactive and user-
friendly platform to import, process, and analyze bibliographic data [29]. This tool generated 
descriptive statistics, author metrics, and keyword trend analyses. (2) VOSviewer, a specialized 
software tool used to construct and visualize bibliometric networks, including keyword co-
occurrence and thematic evolution for science mapping [30]. Both tools are widely used in 
bibliometric research [29,30], which allows quantitative analysis and visual exploration of patterns in 
the literature on digital twin applications in agriculture. 

 

Figure 1. An overview of an employed literature selection procedure for bibliometric analysis. 

2.2. Data Overview 

A summary of the bibliometric dataset, which included a total of 597 documents, is presented in 
Table 1. These 597 documents were published across 424 sources, with an average document age of 
2.09 years, reflecting a relatively new research domain. Authorship data show contributions from 
2,244 authors, with an average of 4.88 co-authors per document, and 12.06% of all publications 
involved international collaboration. Collectively, these metrics highlight the field’s emerging status 
and growing global engagement. 

Table 1. Descriptive summary of the bibliometric dataset on digital twin applications in agriculture. 

Category Value 
Timespan 2018 to 2025 

Sources (Journals, Books, etc.) 424 
Total number of documents 597 

Document average age 2.09 
Average citations per document 8.72 

Keywords plus 2,910 
Author’s keywords 1,720 
Number of authors 2,244 
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Single-authored documents 23 
Co-authors per document 4.88 

International co-authorship % 12.06 

3. Results and Discussion 

The bibliometric results presented in this study are categorized into two major components: (a) 
Performance analysis, which identifies global publication trends, research hotspots, leading 
publication sources, and influential authors and institutions [31]; and (b) Science mapping, which 
focuses on unstructured textual data, particularly author-supplied keywords, to explore the thematic 
structure, research focus areas, and potential knowledge gaps within the field of agriculture [31]. 

3.1. Publication Trends and Document Types 

The annual global scientific literature production on digital twin applications in agriculture has 
shown a significant increase in recent years (Figure 2a). The digital twin technology is a relatively 
new concept in agriculture [32], with the first document published in 2018 [33]. Thus, the number of 
published documents remained relatively low through 2020, with fewer than 30 documents 
published cumulatively (Figure 2a). However, a sharp upward trend began in 2021, with exponential 
growth observed through 2024, reaching a peak of 210 publications/year. This rapid rise suggests 
increasing research interest in digital twin technology in agriculture, likely driven by advances in AI 
and the proliferation of low-cost IoT systems [33]. The decline in documents in 2025 is attributed to 
incomplete indexing at the time of analysis, conducted in February 2025. Overall, the annual growth 
rate of 27.24% was observed in agricultural digital twin literature. The document type distribution 
reveals that journal articles and conference proceedings constitute the majority of the literature 
(Figure 2b). The high proportion of conference papers and articles suggests that the field is still in its 
infancy stages, with researchers favoring quicker dissemination routes for technology-oriented 
innovations. Review articles (8.4%), book chapters (5.5%), and other document types (1.5%) together 
form a small portion of the literature, highlighting both the emerging nature of digital twin 
applications in agriculture and the opportunity for more comprehensive syntheses and educational 
integration. 

 

Figure 2. An overview of an employed literature selection procedure for bibliometric analysis. 

3.2. Global Distribution of Scientific Literature 

The global distribution of published documents on agricultural digital twin applications is 
presented in Figure 3. China leads with the highest number of documents (n > 180), followed by the 
USA, Italy, Germany, and India, indicating concentrated research activity in both developed and 
emerging economies. Unsurprisingly, China and the USA are at the forefront in agricultural 
production in multiple categories [34,35]. This likely reflects their early investments in smart 
agriculture, IoT infrastructure, and digital innovation policies. In contrast, European and Southeast 
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Asian countries show moderate engagement, while many regions in Africa, South America, and 
Central Asia appear underrepresented in this domain. This global distribution identifies research 
hotspots and underrepresented regions, further suggesting potential opportunities for international 
collaboration, capacity building, and technology transfer to expand the adoption of digital twin 
technologies. 

 

Figure 3. Global distribution of scientific literature on digital twin applications in agriculture. 

3.3. Global Collaboration Trend and Network 

Collaboration is critical when it comes to developing complex, novel, and emerging 
technologies, such as digital twins, since it would be efficient and effective if all the expertise, 
infrastructure, and resources from multiple institutions or countries could be integrated to develop a 
full-scale system. Collaboration can improve research quality, innovation, global relevance via 
information or resource sharing, as well as technology transfer [36]. The collaboration among the top 
25 most productive countries is presented in Figure 4, which is broadly classified into single-country 
publications (SCP) and multi-country publications (MCP). The top five countries (i.e., China, USA, 
Italy, Germany, and India) lead in single-country efforts with a SCP percentage greater than 83%. On 
the other hand, several European countries (e.g., the United Kingdom, Norway, Switzerland, Greece, 
and Portugal) exhibit MCP above 20%, reflecting a strong tendency toward international 
collaboration. A few countries, including Denmark, Russia, Latvia, Belgium, and Austria, have 
limited to no international collaboration, as evidenced by their predominance of single-country 
publications and minimal contributions to multi-country efforts. Apart from the geographic 
distribution of research, Figure 4a presents collaborative dynamics, which could potentially provide 
insight into national capacity, dependence, and level of global engagement in advancing digital twin 
technologies for agriculture, which can be important for policymakers to outline future directions. 

The subsequent visualization of the global collaboration network (Figure 4b) visualizes the 
collaboration landscape among the countries where the node represents the country, the line 
represents the collaborative link, and their respective size or thickness and position represent the 
collaboration frequency, strength, and relatedness, respectively. The collaboration landscape is 
organized into three distinct clusters, including Red (China, USA, Australia, etc.), Green (Canada, 
UK, Germany), and Blue (Norway, Denmark), each with a central hub. The network suggests key 
global hubs shaping digital twin research, while suggesting uneven participation with several 
countries situated at the network periphery. 
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Figure 4. Top 25 most productive countries in digital twin research in agriculture: (a) collaboration type, (b) 
collaboration network. 

3.4. Major Institutions, Authors Contribution, and Publishing Sources 

Table 2 lists the global academic and research institutions driving innovation at the intersection 
of agriculture and digital twin technologies. While China and the USA rank highest in terms of total 
research output, the institutional analysis reveals that Wageningen University and Research, 
Netherlands, and the Norwegian University of Science and Technology, Norway, are the most 
prolific individual institutions. This suggests that the USA and China have a large number of small 
contributing institutions, each with relatively lower individual output, whereas, in some European 
and Asian countries, research efforts appear to be centralized within a few highly productive 
institutions. 

Table 2. Institutions ranked by the number of published documents on digital twins in agriculture. 

Institutions 
Number of 

Articles 
Wageningen University and Research, Netherlands. 30 
Norwegian University of Science and Technology, Norway. 19 
Samara State Technical University, Russia. 16 
China Agricultural University, China. 15 
Samara National Research University, Russia. 11 
University of California System, United States. 11 
National University of Singapore, Singapore, 10 
Stellenbosch University, South Africa. 10 
Zhejiang University, China. 9 
Commonwealth Scientific and Industrial Research Organization (CSIRO), 
Australia 

8 

Most productive authors were identified based on two key metrics: number of publications and 
h-index (Figure 5). The h-index is a well-accepted measure of consistent scholarly influence, which 
reflects both productivity and citation impact [37]. The study analyzed around 2,244 authors for a 
minimum of five articles and five h-index, and only seven authors met this condition. Skobelev P 
leads with 14 articles and a seven h-index, followed by Simonova E with 13 articles and a six h-index. 
This data suggests that digital twin in agriculture is still an emerging field; high-impact contributions 
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are currently concentrated among a relatively small group of researchers, and immense opportunities 
exist for further scholarly influence and collaboration. 

 

Figure 5. Top contributing authors in Digital Twin research in agriculture, based on a number of publications 
and h-index. 

The study also reveals that authors disseminated their research across a wide range of platforms, 
with a total of 424 distinct sources utilized. The most frequently used publication venues are listed in 
Table 3. Given the multidisciplinary nature of digital twin technology, it is not surprising that many 
of the top sources fall within engineering and applied sciences journals, including “Computers and 
Electronics in Agriculture,” “Sensors,” “IEEE ACCESS,” and “Applied Sciences”. These platforms are 
highly relevant to the IoT, sensor networks, and real-time monitoring systems, which are the core 
components of digital twin frameworks and, hence, are well-suited for research that bridges digital 
systems, sensing technologies, and agricultural applications. Besides technical journals, several 
agriculture-specific journals were also utilized, such as “Agriculture” and “Frontiers in Plant 
Science,” indicating the growing adoption of digital twin methodologies within the agronomic and 
plant sciences domain. The dataset also includes a notable number of conference proceedings, such 
as “Lecture Notes in Computer Science” and “Lecture Notes in Networks and Systems”, which 
highlights the emerging and technical nature of digital twin research, where many innovations are 
first introduced in engineering or computer science venues before transitioning into applied 
agricultural contexts. Collectively, the data suggests the interdisciplinary nature of digital twin 
research in agriculture, spanning domains of engineering, computer science, agronomy, and 
environmental science. 

Table 3. The most used publication sources for disseminating agricultural digital twin research. 

Sources No. of Articles 
Computers and Electronics in Agriculture 20 

Sensors 13 
IEEE ACCESS 10 

Applied Sciences 8 
Agriculture 7 

Energies 7 
Frontiers in Plant Science 7 

Lecture Notes in Computer Science 7 
Digital Twins for Smart Cities and Villages 6 

Lecture Notes in Networks and Systems 5 
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3.5. Keyword Analysis 

In bibliometric studies, keyword analysis allows qualitative analysis on selected topics and helps 
understand the thematic structure, research focus, landscape, and evolution within the field [38]. It 
examines the keywords appearing in the article title, abstract, and author keywords to identify the 
most frequent concepts, tools, technologies, and disciplinary areas, as well as their inter-relationships 
[39]. In this study, we selected author keywords that are intentionally selected by authors to best 
describe their work. Thus, author keywords are the most accurate reflection of research priorities and 
specific focus. The study included a total of 1,720 authors’ keywords. The keyword analysis is 
presented in Figure 6, with the help of a word cloud and keyword frequency. A word cloud is a visual 
text representation where word size correlates with its frequency in the dataset [40] As expected, the 
“digital twin” largely dominates the word cloud with the highest occurrence frequency, pointing to 
its central role. Other frequently occurring keywords include “internet of things,” “smart 
agriculture,” “artificial intelligence,” “precision agriculture,” “machine learning,” and “cyber-
physical system,” reflecting the interdisciplinary integration of sensors, data, and data-driven 
methods or technologies within agricultural contexts. These terms highlight the foundational 
components of any digital twin architecture, including sensing systems, data acquisition, and 
modeling frameworks, which are well-represented as the most common keywords. In contrast, the 
word cloud also reveals less frequent but specific keywords directly related to agricultural 
applications, such as “remote sensing,” “phenotyping,” “real-time monitoring,” “plant factory,” 
“greenhouse,” “climate change,” “horticulture,” “controlled-environment agriculture,” “wind 
farms,” “food industry,” and “agriculture 4.0.” These keywords provide valuable qualitative insights 
into the research scope and application areas, while also highlighting potential gaps or 
underexplored areas within the agricultural digital twin research landscape. 

 

Figure 6. Analysis of author-provided keywords: (a) Word cloud and (b) Keyword occurrence frequency. 

3.6. Keyword Trend 

Cumulative growth trend analysis of the top four keywords reveals distinct trends in thematic 
evolution (Figure 7). “Digital Twin” shows the most significant and rapidly growing keyword, 
increasing from just three cumulative mentions in 2018 to over 400 by February 2025, indicating a 
sharp acceleration in research activity and the emerging dominance of the concept within the field. 
In contrast, the other three keywords (e.g., “Internet of Things,” “Artificial Intelligence,” and “Smart 
Agriculture”) displayed a slower, more gradual upward trend, each remaining below 60 cumulative 
occurrences by February 2025. This pattern suggests that supporting technologies are steadily gaining 
traction, and research centered explicitly around digital twin systems is expanding at a significantly 
faster pace. 
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Figure 7. Cumulative trend of top four keywords over time. 

3.7. Keyword Co-Occurrence Network 

A keyword co-occurrence network is shown in Figure 8, which contain three major elements: (1) 
Nodes, which represent individual keywords, and their size indicates keyword frequency; (2) Link, 
which represents the strength of co-occurrence (i.e., thicker lines indicate a strong relationship and 
vice-versa); and (3) Layout where nodes are spatially arranged to show the keyword relatedness 
based on co-occurrence. The shorter distance between two keywords shows stronger relatedness and 
vice-versa [41]. 

The central and most dominant node, “digital twin”, is linked to all keywords shown on the 
network but with varying link strength and spatial layout. Node size, link strength, and layout 
placement within the network provide qualitative insights into the structure and significance of each 
research area. Moreover, by tracking the presence, size, and connection strength of individual nodes, 
it is possible to infer the existence, prominence, or absence of specific literature themes within the 
field [41]. 

The co-occurrence network includes several broad-level thematic keywords that define the 
conceptual landscape of digital innovation in agriculture. For example, keywords such as “digital 
agriculture,” “precision farming,” “smart agriculture,” “sustainable agriculture,” and “agriculture 
4.0” appear as distinct yet interconnected nodes with “digital twin” and other related keywords, often 
located at a certain distance from the central node. These keywords represent overlapping and 
interconnected methods to modernize agriculture, each focusing on different aspects to improve 
agricultural efficiency, productivity, and sustainability while reducing costs, inputs, and labor; 
ultimately leading to better outcomes than the conventional farming system [42,43]. The presence of 
these keywords suggests that digital twin technology will play a key role in modernizing and 
innovating current agricultural systems. 
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Figure 8. Keyword co-occurrence network based on keywords provided by authors of publications. 

Digital twin technology is in the early stages of development and typically involves significant 
cost and infrastructure investment [44]. Therefore, the presence of keywords like “controlled 
environment agriculture,” “greenhouse,” “horticulture,” and “plant factory” in the co-occurrence 
network is notable and expected. These domains are primarily associated with the production of 
high-value crops/produce, where the initial investment in advanced digital technologies is more 
economically justifiable due to the potential for higher returns [45,46]. This highlights a logical entry 
point for digital twin adoption, where capital-intensive systems can better absorb the cost of 
implementation while benefiting from the enhanced monitoring, prediction, and optimization 
capabilities that digital twin systems offer. Moreover, greenhouse and controlled environment 
agricultural systems are, in general, characterized by a higher level of automation and widespread 
sensor adoption than conventional farming, which are key prerequisites for digital twin 
implementation [47]. 

In the co-occurrence network, keywords such as “phenotyping,” “remote sensing,” “real-time 
monitoring,” and “decision making” reflect the integration of sensors, data acquisition, and analytical 
technologies within agriculture. These terms are relevant to precision agriculture and smart farming, 
which aim to gather real-time data on plants and their environmental conditions. On the other hand, 
phenotyping allows the rapid collection of morphological and physiological crop traits, combined 
with remote sensing technologies, including drones, satellites, and field-based sensors, to provide the 
foundational data streams necessary for building and operating digital twin systems [48,49]. The real-
time monitoring further emphasizes the importance of continuous data flow and system 
responsiveness, which are essential for dynamic simulation, forecasting, and anomaly detection in a 
digital twin framework [50]. Similarly, the keyword “decision making”, suggests the role of digital 
twin in modeling and monitoring agricultural systems, but also in supporting data-driven 
management strategies that optimize productivity and sustainability. Collectively, these keywords 
highlight the sensor, data, and analytics-driven nature of today’s agriculture, which can be further 
exploited with DT technologies. 

The presence of keywords such as “machine learning,” “deep learning,” and “artificial 
intelligence” in the co-occurrence network reflects the dependence on advanced computational 
methods to analyze agricultural data for decision-making. These methods are key components of 
digital agriculture and digital twin systems, where large volumes of heterogeneous data collected 
from sensors and IoT devices must be interpreted in real-time. Machine learning performs pattern 
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recognition and predictive modeling, while deep learning can process large, complex, unstructured 
data, not limited to images or time-series signals [51]. Overall, these methods can optimize resources 
and support intelligent decision-making in agricultural systems. Network keywords suggest that 
agriculture is shifting toward autonomous, data-informed farming systems, where digital twins can 
learn and adapt over time based on real-world inputs. 

Keywords like “Internet of Things (IoT),” “sensor,” “robotics,” “cyber-physical system,” “multi-
agent system,” and “agricultural machinery” suggest the technological tools or infrastructure needed 
for digital twin implementation. For example, sensors provide a primary data source, capturing 
environmental, biological, and mechanical information necessary for modeling and monitoring [52]. 
While IoT serves as the connecting layer, allowing real-time data transfer [53]. Robotics and 
agricultural machinery contribute to the automation and execution of physical tasks, often informed 
by digital models [54]. Cyber-physical systems integrate computational algorithms with physical 
processes, forming the structural core of digital twin systems [55]. Meanwhile, multi-agent systems 
facilitate decision-making among multiple autonomous components (e.g., drones, robotic platforms, 
or digital services) coordinated within a digital twin framework [56]. Together, these keywords 
represent the hardware-software ecosystem, which is an important component of the digital twins 
framework. 

The keywords “climate change,” “sustainability,” and “resilience” are located at the network 
periphery, with few connecting links to digital twins, indicating active but underexplored research 
areas. However, in recent times, it has been believed that advances in sensors, IoT devices, robotics, 
automation, and digital twins may have the potential to solve critical global food production 
challenges, including climate change, sustainability, and resilience [57,58]. 

Notably, the network also includes keywords related to renewable energy sources, such as 
“wind energy,” “wind turbine,” and “wind farm,” suggesting active research in these areas as well. 
Wind turbines and wind farms include multiple sensors and require predictive maintenance and 
performance monitoring. Therefore, the use of digital twin technologies in this context can allow real-
time monitoring, failure prediction, and optimization of renewable energy infrastructure [59,60]. 
Likewise, keywords such as “food supply chain” and “food industry” indicate an active and growing 
interest in applying digital twin approaches within the food systems domain. 

The absence of primary agricultural-related keywords (e.g., irrigation, livestock farming, fruit 
harvesting, orchard farming from the co-occurrence network suggests that digital twin applications 
have not yet been explored to a greater extent in this domain. This notable gap highlights untapped 
research opportunities where digital twin technologies could offer significant value, particularly in 
optimizing resource use, improving animal health monitoring, and enhancing post-harvest logistics. 
The current focus on plant-based systems, controlled environments, and precision crop management 
may represent only the initial phase of digital twin integration in agriculture, indicating substantial 
potential for future expansion into diverse and traditionally underrepresented areas of the agri-food 
system. 

The co-occurrence network contains seven clusters, with each node color representing a distinct 
and non-overlapping group (Table 4). A broad set of thematic patterns can be inferred from the 
grouping of related keywords; therefore, each cluster has been assigned a representative theme based 
on the common research focus shared by its keywords [61]. 

Table 4. Keyword co-occurrence cluster and associated keywords. 

Clusters Keywords Common theme 
Cluster 1 

(Red) 
“anomaly detection”, “data analysis”, “deep learning”, “digital 

agriculture”, “digital twin”, “digitalization”, “greenhouse”, “industry 
4.0”, “modeling”, “phenotyping”, “predictive maintenance”, 

“renewable energy”, “resilience”, “simulation”, “solid modeling”, 
“supply chain”, “sustainability”, “virtual reality”, “wind energy”, 

“wind turbine” 

Key digital twin 
technologies and 

applications 
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Cluster 2 
(Green) 

“cyber-physical system”, “decision making”, “knowledge base”, 
“multi-agent system”, “ontology”, “precision farming” 

Intelligent systems 
and decision support 

Cluster 3 
(Blue) 

“agriculture”, “agriculture 4.0”, “climate change”, “internet of things”, 
“optimization”, “robotics” 

Technological 
convergence and 
environmental 

integration 
Cluster 4 
(Yellow) 

“agricultural machinery”, “controlled environment”, “plant factory”, 
“real-time monitoring”, “smart agriculture” 

Controlled 
environment 
agriculture 

Cluster 5 
(Purple) 

“digital transformation”, “machine-learning”, “monitoring”, “remote 
sensing” 

Remote sensing and 
data-driven 
monitoring 

Cluster 6 
(Cyan) 

“artificial intelligence”, “horticulture”, “sustainable agriculture”, 
“sustainable development” 

Sustainability and 
policy-oriented 

research 
Cluster 7 
(Orange) 

“food industry”, “food supply chain”, “sensors”, “wind farms” Food systems and 
infrastructure 

monitoring 

This study offers valuable insights into the evolution and thematic structure, but it has some 
limitations that should be acknowledged. First, the analysis is limited to publications indexed in 
Scopus and Web of Science, which, although comprehensive, may exclude relevant literature from 
other databases, institutional repositories, or grey literature. Second, the keyword-based search 
strategy may not capture all relevant articles if authors used inconsistent or unconventional 
terminology to describe digital twin applications. However, the number of documents included in 
this study appears to be sufficient to support meaningful bibliometric analysis. Additionally, 
bibliometric indicators such as publication counts and h-index metrics may favor older publications 
and more established research groups, potentially underrepresenting newer or emerging 
contributions. Lastly, this review focuses primarily on quantitative and structural analysis that may 
limit qualitative review approaches such as systematic review, which provide a deeper contextual 
interpretation since they target specific research questions on a particular topic. 

4. Conclusions 

In this study, we conducted a bibliometric review of digital twin applications in agriculture. The 
review began with the collection of bibliometric data from major scientific databases. The data was 
then analyzed and visualized using specialized bibliometric software tools to help understand trends, 
patterns, and key insights within the research landscape. The following major conclusions can be 
drawn from this study: 
• The research on digital twin applications in agriculture has accelerated significantly in recent 

years. 
• Most active contributors are China, the US, the Netherlands, Russia, and Germany, with 

institutions like Wageningen University and China Agricultural University leading in 
publication output. 

• The study reveals core research areas, including precision farming, smart agriculture, IoT, 
machine learning, and cyber-physical systems, while identifying unexplored areas. 

• The study also reveals distinct thematic clusters and shows the growing convergence between 
the digital twin and agricultural technologies, including remote sensing, decision support 
systems, and sustainability frameworks. 

• The present analysis provides a quantitative and thematic understanding of the digital twin-
agriculture landscape, serving as a strategic roadmap for researchers, practitioners, and 
policymakers. 
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In summary, the study offers critical insights into the evolution of the digital twin and the 
research structure in agriculture. The productivity trends, influential contributors, and thematic 
clusters identified in this study highlight current strengths and uncover critical gaps and emerging 
opportunities. These findings can guide future research, foster interdisciplinary collaboration, and 
support data-driven decision-making technologies for sustainable and resilient agricultural systems. 
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