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Abstract: Peak detection is a fundamental task in spectral and time-series data analysis across diverse
scientific and engineering disciplines, yet traditional approaches are highly sensitive to the choice of
algorithm parameters, complicating reliable and consistent interpretation. Triggered by the require-
ment of the energy calibration for the 128 detectors of the PI3SO gamma ray scanner, we introduce
a versatile methodology inspired by concepts from persistent homology, extending the traditional
notion of persistence to a multi-parameter setting. Our approach systematically explores the space
defined by multiple detection parameters and quantifies peak robustness through the hyper-volume
in parameter space where each peak is consistently identified. This volumetric multi-parameter per-
sistence (VM-PP) measure enables robust peak ranking and significantly reduces the sensitivity of
detection outcomes to individual parameter selection, demonstrating utility across simulated and
experimental spectral datasets. Extensive validation reveals that this method reliably differentiates
genuine peaks from noise-induced fluctuations under diverse noise conditions, proving effective
in practical spectroscopic calibration scenarios. This framework, general by design, can be readily
adapted to diverse signal-processing applications, enhancing interpretability and reliability in complex
feature-detection tasks.

Keywords: peak detection; automatic energy calibration; topological data analysis; multi-parameter
persistence; persistent homology

1. Introduction
Peak detection is a fundamental task in signal processing, underpinning applications in spec-

troscopy, mass spectrometry, astrophysics, and biomedical signal analysis [1,2]. This study was
specifically motivated by the challenge of performing energy calibration for the 128 scintillation de-
tectors of the PI3SO gamma-ray scanner [3]. In this context, spectra are acquired from standardized
gamma-ray sources—typically 137Cs, 60Co, and 22Na—and a linear calibration is then applied to con-
vert the known peak positions from channel units to energy units. However, identifying the peaks and
determining their centroids is still largely a manual or semi-manual process: even when automated
routines are used, close supervision and frequent corrections are often required. Traditional algorithms,
including those based on wavelet transforms [4] or built-in functions from mathematical software
packages, depend heavily on user-defined hyperparameters such as peak width and inter-peak dis-
tance. These methods are highly sensitive to small changes in parameter values, often resulting in
inconsistent outcomes: a slight adjustment can lead to missing genuine peaks or, conversely, detecting
spurious peaks caused by noise [5,6]. Recent advances have sought to mitigate these issues by either
training Deep Neural Networks on raw Liquid Chromatography–Mass Spectrometry (LC–MS) [5],
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or employing statistical modeling to reduce reliance on arbitrary thresholds validating a Bayesian
framework for peak detection on challenging data coming from two-dimensional Gas Chromatogra-
phy coupled with Time-Of-Flight mass spectrometry (GC×GC-TOF MS) [2]. Similarly, Kilgour et al. [7]
introduced an unsupervised threshold optimization approach tailored to mass spectrometry, signif-
icantly enhancing detection reliability across instruments. While these methods mitigate noise and
offer improvements in robustness, they either remain highly sensitive to individual hyper-parameter
settings, or often obscure why a peak is retained or rejected, leaving room for approaches that more
transparently quantify feature stability. Motivated by these challenges, our work draws inspiration
from the field of topological data analysis (TDA) and the concept of persistent homology, which has
been celebrated for its ability to capture the underlying shape of data through so called barcode plots
that display the interval for which a feature is detected when varying a single filtration parameter: by
plotting the ranges in which all features (e.g. peaks in a noisy signal) appear and vanish (the birth-death
intervals), barcode plots highlight long-lived, and therefore significant, features [8]. Along this line,
Scholkmann and colleagues [1] have presented the Automatic Multiscale Peak Detection (AMPD)
algorithm, which considers a peak robust if it remains a local maximum at many scales on periodic
data. Although effective in single-parameter scenarios, rigorously extending these ideas to multiple
parameters encounters fundamental challenges as barcode plots fully characterize data shape for
single-parameter filtrations only while, as shown by Carlsson and Zomorodian [9], no equally simple
and complete representation exists for multiparameter settings. To address this, we introduce a practi-
cal framework that aggregates peak detection outcomes across a multidimensional hyperparameter
space Θ, deliberately simplifying the representation by disregarding detailed shape information. We
quantify peak robustness as a scalar measure, defined as the accumulated hyper-volume within the
hyperparameter space Θ over which each peak is consistently identified. Concretely, each detected
peak corresponds to a specific sub-region of Θ, as shown in Figure 1: panels (b) and (c) in particular
show that peaks which appear visually more significant in the raw spectra naturally occupy larger
associated hyper-volumes, providing an intuitive basis for ranking stability using their persistence.
While exploring an mn hyperparameter space—where m represents the number of discretized values
per parameter and n the number of parameters—can potentially lead to significant computational
costs, we effectively mitigate this by employing computationally efficient peak detection routines
and extensive parallelization techniques, keeping the runtime of the energy calibration conducted in
Section 3.2 at around 40 spectra (each consisting of 2048 channels) per second running the code locally
on a laptop. Additionally, our framework is well-suited for future enhancements such as adaptive
sampling strategies on the parameter space Θ, which can significantly reduce computational overhead
by concentrating computational resources in regions of Θ where peak detection outcomes exhibit
greater variability.

The remainder of the paper is organized as follows. Section 2 describes our methodology in detail,
Section 3.1 presents validation on simulated data, and Section 3.2 demonstrates the application of our
method to the real case of the PI3SO spectroscopic data.

2. Materials and Methods
The identification of peaks in spectral or time-series data typically requires careful tuning of

various hyperparameters. Traditional methods evaluate these parameters individually or in lim-
ited combinations, resulting in peak detection outcomes that are highly sensitive to specific set-
tings. Our methodology, inspired by the field of Topological Data Analysis and persistent homology
techniques [8–11], addresses this by introducing the concept of Volumetric Multi-Parameter Persis-
tence or VM-PP. Here, the robustness of a detected peak is quantified by systematically exploring and
aggregating detection results across a multi-dimensional parameter space.

Formally, we define the hyperparameter space Θ as a discrete grid spanned by the following
parameters, each defined as:
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• Smoothing window size: number of neighboring data points averaged to smooth short-
term fluctuations.

• Bin aggregation factor: number of adjacent spectral channels combined into one, reducing
spectral resolution and noise.

• Prominence: the minimum vertical distance between the peak and the lowest point one must
descend to reach a higher peak. It quantifies how much a peak stands out from its surrounding
landscape—not just its immediate neighbors—in the context of the whole signal.

• Threshold: the minimum vertical difference between the peak and its immediate neighbors. Unlike
prominence, this is a strictly local criterion: it filters out small fluctuations or noise spikes that do
not sufficiently rise above their direct surroundings.

• Width: required minimum width of detected peaks at half-prominence.
• Peak-to-peak distance: minimum separation allowed between neighboring peaks.

The grid cells in this parameter space correspond to unique parameter combinations, each having
equal volume ∆V. While cell volume could be defined proportional to parameter step sizes, such an
approach may disproportionately emphasize parameters explored more coarsely. Thus, for simplicity
and fairness, we assign each cell unitary volume, making the persistence of a peak simply equal to the
count of parameter cells where it is detected:

P( f ) = ∑
k∈K( f )

∆Vk (1)

where K( f ) denotes the set of cells in parameter space where feature f is identified. In other words,
under this simplification, the method simply measures the fraction of parameter combinations that
result in a peak being detected, using this value as a metric proportional to the peak significance. While
this may seem a trivial approach, our tests (exemplified visually by Figures 1 and 2) show a remarkable
ability of the method to robustly separate genuine peaks from noise induced fluctuations, minimizing
spurious detections when evaluated on simulated signals (Figure 3). Even though in the following we
will always apply this simplification, the method remains flexible for future tasks that may benefit
from setting specific weights to each explored dimension in order to tune each cell’s volume based on
the impact of individual parameters on peak detection.

Peak detection within each cell utilizes Python’s scipy.signal.find_peaks function. To enhance
computational efficiency, the parameter exploration is structured in two nested grids: an outer grid
iterates over preprocessing parameters (smoothing and bin aggregation), while an inner grid exten-
sively covers detection parameters (prominence, width, threshold, and distance). For each outer grid
configuration, data is preprocessed once, and peak detection is executed in parallel across all inner
grid configurations. Detected peaks in closely adjacent positions (within a predefined spatial merging
tolerance) are merged and mapped back to their original spectral channels when bin aggregation is
applied. Each peak thus acquires a persistence value quantifying its detection robustness across the
parameter space. Peaks are ranked according to their persistence scores, which correlate directly with
physical significance and detection stability.

For illustrative clarity, Figure 1 panels (c) and (d) visualize this concept explicitly, showing the
hyper-volumes occupied by the top ranked peaks in the parameter space. Specifically, panel (c) shows
a linear projection of all 6 explored dimensions that is useful for tuning the ranges of parameters to
explore, while panel (d) shows the 3D Width-Threshold-Prominence parameter sub-space, with the
region occupied by the most persistent peak of the signal in panel (a) colored in red. This approach
is able to effectively separate genuine peaks from noise induced fluctuations even in intense noise
conditions, as showcased in Figure 2, where the amplitude of fluctuations has a comparable scale
to the clean signal. When the number k of expected peaks in a spectrum is known a-priori, as is
the case for the spectra employed for energy calibration detailed in Section 3.2, one can simply rank
all detected peaks by their persistence and take the top k most persistent peaks, discarding all others
without the need of additional hyper-parameters. For more agnostic exploratory tasks where the
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number of expected peaks is not known, we can select a persistence threshold below which peaks are
discarded: the bottom panel of Figure 2 shows that the method effectively separates genuine peaks
from noise induced detections, making the appropriate range for this threshold quite wide even for
very noisy spectra.

Figure 1. (a) Simulated signal, obtained by adding a bounded-range noise (σ = 0.05) to a clean spectrum consisting
of 3 gaussian peaks, overlaid with the top 4 most persistent detected peaks: because only 3 true peaks exist,
rank 4 necessarily corresponds to noise. (b) True peaks (ranks 1–3) exhibit markedly higher persistence than
any noise-induced candidate; the rank 4 point (dark circle) lies well below the true peaks, demonstrating easy
separability. (c) Radar chart projecting the six-dimensional persistence hyper-volumes to 2D. This is useful for
tuning the parameter ranges to explore but, because of linear projection, the axis magnitudes do not preserve the
true volume ratios seen in panel b. (d) 3D slice of the threshold–width–prominence subspace, with the region in
which the rank 1 peak is consistently detected shaded in red.
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Figure 2. Top panel: simulated test spectra composed of Gaussian, Lorentzian, and asymmetric peaks under intense
Gaussian noise (σ = 0.15). Vertical lines indicate detected peak channels. Bottom panel: VM-PP of peaks expressed
in percentage of the total parameter space, allowing to discard peaks that fall below the 25% persistence threshold.

Figure 3. Performance of the multi-parameter persistence approach under varying noise conditions. Panel (a)
plots the Relative Mean-Square-Error (%) against Noise-Scale for Gaussian (blue) and Uniform bounded-range
(orange) noise, with a horizontal red line marking the 1% threshold; Panel (b) displays maps of detection rate as a
function of noise scale (x-axis) and relative tolerance (y-axis) for Uniform (left) and Gaussian (right) noise types.
Cooler colors in the heatmaps indicate higher detection rates. It is worth underscoring that the ranges explored
represent quite heavy noise conditions, as shown in Figure 2 which reports an example spectrum under gaussian
noise with σ = 0.15.
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To contextualize computational performance, our implementation processes approximately 30 to
50 spectra per second (depending on the resolution and size of the parameter space) using parallel
computation on a standard laptop (Python version 3.11.x, tested primarily on macOS Sequoia 15.4
but portable to any platform supporting Python), for spectra consisting of 2048 channels. Despite
the exponential scaling inherent to a full mn exploration of the parameter space (with m steps per n
parameters), computational costs can be mitigated: specifically, the use of scipy.signal.find_peaks
ensures minimal per-cell runtime, while independent parameter grid cells are evaluated in parallel us-
ing multiprocessing or distributed frameworks. Moreover, because the detection function is piecewise
continuous (Appendix A) over the parameter space, adaptive sampling strategies can be employed in
future implementations to reduce the number of necessary evaluations. The methodology described
has been fully implemented in Python, leveraging parallelization libraries to ensure efficiency. To foster
reproducibility and support the scientific community, our implementation, along with an interactive
demonstration, is publicly accessible via GitHub [18].

3. Results
The following section is divided into two parts: in the first, we benchmark our method on synthetic

data and evaluate its performance upon varying noise conditions; in the second, we showcase an
application of our method to real spectroscopy data.

3.1. Synthetic Data Benchmark

To evaluate the robustness of our multi-parameter persistence method under controlled conditions,
we generated a synthetic dataset consisting of 5000 test spectra. Each test spectrum contained three
distinct peaks: one Gaussian, one Lorentzian, and one asymmetric, carefully positioned to avoid
overlap. The amplitudes of these peaks were normalized so that each clean (noise-free) spectrum
remained within the range (0, 1), ensuring that no individual peak exceeded an amplitude of 1.

To simulate realistic measurement conditions, we introduced two types of noise separately into
each test spectrum:

• Uniform noise, where each data point was randomly perturbed by an amount between −a and
+a, with the noise amplitude a varied from 0 to 0.3.

• Gaussian noise (Additive White Gaussian Noise, AWGN), where each data point was perturbed
by a value drawn from a Gaussian distribution with mean 0 and standard deviation σ varied
from 0 to 0.3.

An example synthetic spectrum with moderate Gaussian noise (σ = 0.15) is shown in Figure 2.
Detected peaks are marked by vertical dashed lines. The bottom panel illustrates peak persistence
scores, clearly showing how the three true peaks stand out significantly from random noise fluctuations.

The performance of our detection method across varying noise levels is summarized in Figure 3.
To quantify detection accuracy clearly, we defined two separate metrics:

• Relative Mean Detection Error: For each detected peak, we measured the absolute difference
between the predicted channel (detected peak position) and the actual known peak position. This
error was normalized relative to the full range of the spectrum to produce a percentage error. We
then averaged this error over all three peaks in each spectrum and over all 5000 test spectra for
each noise level. Panel (a) displays this averaged error metric, showing how detection accuracy
degrades with increasing noise.

• Detection Rate (F1 Score): To assess how reliably peaks were found, we used a common clas-
sification metric known as the F1 score. This metric combines two important aspects into a
single value:

1. Recall: The fraction of actual peaks successfully detected.
2. Precision: The fraction of detected peaks that corresponded to actual (rather than noise-

induced) peaks.
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The F1 score is defined as the harmonic mean of Recall and Precision and reaches its maximum
value of 1.0 (100%) when all true peaks are detected correctly without false positives. For instance,
an F1 score of 0.98 indicates that overall, about 2% of detections were incorrect—either missed
true peaks or included spurious noise peaks.
Panels (b) and (c) of Figure 3 show the F1 score for varying noise levels and different tolerance
values. The relative tolerance refers to how close a detected peak must be to the true peak position
to be considered a correct detection, again expressed as a percentage of the full spectral range.
Darker blue areas in the heatmaps indicate excellent detection performance (close to 1), whereas
lighter (warmer) colors indicate lower reliability.

The heatmaps demonstrate that our approach maintains strong performance under substantial
noise. The uniform noise scenario (panel b) consistently showed excellent performance, while the
Gaussian noise scenario (panel c) exhibited slightly lower but still robust detection rates, reflecting the
more challenging nature of unbounded Gaussian fluctuations.

In summary, the synthetic tests clearly demonstrate that our multi-parameter persistence approach
reliably detects and accurately locates peaks even under high noise conditions. The results underscore
both the method’s ability to consistently identify all peaks (high recall) and avoid false detections (high
precision), qualities that directly translate into practical advantages when applied to experimental
spectroscopic data.

3.2. Validation on Spectroscopy Data

To validate the effectiveness of our peak detection and classification methodology, we utilized
experimental gamma-ray spectroscopy data obtained using the Proximity Imaging System for Sort and
Segregate Operations (PI3SO) [3]. This advanced spectroscopic system automates the identification
of gamma-ray emitting sources within radioactive waste, specifically targeting Intermediate Level
Waste (ILW), Low Level Waste (LLW), and Very Low Level Waste (VLLW) [12,13]. The PI3SO system
can improve radwaste (re)conditioning and management by rapidly identifying radioactive hotspots
withminimum human intervention.

3.2.1. PI3SO Spectroscopic System

The PI3SO project primarily addresses two interconnected tasks: Hot Spot Search and Gamma
Spectrometry. Hot spot search involves identifying areas containing radioactive objects (see Figure 4-
Panel (a)). Once identified, these hotspots become regions of interest (ROI) for subsequent detailed
gamma spectroscopic analyses, as illustrated in Figure 4-Panel (b).

Figure 4. (a): System operation diagram: Radioactive waste is distributed over the scanning table to identify
radioactive hotspots. (b): Visualization of the result of a scan of three different radioactive point-like sources; color
scale on the right report the activity in cps. Red circle: source of 137Cs with an activity of 1.4000 MBq; yellow
circle: source of 60Co with an activity of 0.0560 MBq; blue circle: source of 22Na with an activity of 0.0154 MBq.

The PI3SO instrumentation consists of a robust table coupled with a mechanical sliding bridge.
Two linear arrays of 64 gamma-ray detectors, are arranged above and beneath the table. Each array
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contains four modules of 16 detectors, each detector coupling a cubic (1 cm3) CsI(Tl) scintillator with a
Silicon Photomultiplier (SiPM). The detectors are encapsulated in reflective casings enhancing photon
collection efficiency. The structural layout and module configuration are detailed in Figure 5.

Figure 5. Top: Sketch of a single component of one of the two linear arrays, which consists of 4 modules like
the one shown, placed next to each other in a row; each module houses a total of 16 CsI(Tl) embedded in a
reflective resin case and coupled to as many SiPMs that are housed on an electronic board. Bottom: Sketch of a
single detector: in gray is the reflective mask in which the 1×1×1 cm3 crystal of CsI(Tl) (in yellow) is embedded;
the latter is optically coupled through its free face to a 6×6 mm2 SiPM (blue), which is housed in the electronic
board (green).

CsI(Tl) crystals were chosen for their optimal properties, including high-density (4.51 g/cm3),
superior energy resolution, and significant light yield ( 60,000 photons/MeV) with a peak emission
around 550 nm [14,15]. Each scintillator is coupled to an MPPC (Multi-Pixel Photon Counter) SiPM
from Hamamatsu, featuring an active area of 6×6 mm2 and 14,331 cells [16]. Previous tests confirmed
an energy resolution (FWHM) around 5-6% for the entire detection system [3]. Signals from each
detector are digitized using two VX2745 digitizers [17], each one capable of simultaneously sampling
signals from 64 SiPM channels at 125 MSamples/s with a 16-bit resolution. Data acquisition is synchro-
nized via timestamps, allowing precise temporal alignment of detected events. The acquisition system,
interfaced via Ethernet, supports real-time data analysis, spectral generation, and comprehensive
event logging. During typical calibration or operational measurements, nearly all 128 detectors are
actively engaged, generating extensive datasets. Each dataset typically comprises multiple gamma-ray
spectra requiring energy calibration and isotope identification. Given the complexity and volume of
data, manual analysis is impractical. Consequently, an automated, robust peak identification system
becomes essential.

Our validation procedure leveraged detector calibration tasks involving three standardized
radioactive sources: 137Cs (1.4000 MBq, 0.662 MeV), 60Co (0.0560 MBq, 1.173 MeV and 1.331 MeV), and
22Na (0.0154 MBq, 0.511 MeV and 1.274 MeV). Each of the 128 detectors was exposed to these sources
individually to validate automated peak detection and classification without manual intervention.
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3.2.2. Peak Ranking and Automatic Selection

Figure 6 illustrates the application of our VM-PP method to typical emission spectra from Sodium,
Cesium, and Cobalt radioactive sources, for which the noise scale was estimated between σ = 0.05 and
σ = 0.10 (lower noise scales could be achieved at the cost of increasing the exposure time), highlighting
the robustness of the peak-ranking process across spectra with varying complexities. Using our
multi-parameter persistence ranking, we select from each detector the top k most persistent peaks. The
choice of k depends on the source’s spectral shape, but requires almost no additional filtering:

• For Sodium, we set k = 2 to catch both the backscattering peak and the main emission peak at
higher energy (0.511 MeV).

• For Cesium, k = 2 again recovers the main peak (0.662 MeV) plus a secondary region at
lower energy.

• For Cobalt, k = 5 covers the overall complexity of the spectrum well; the two highest-energy
peaks of those five correspond to the known 1.17 and 1.33 MeV lines.

Initially, three detectors were excluded from the analysis due to severe hardware damage, clearly
identified by significant deviations in their calibration fits (Figure 7 (b-c)). Among the remaining
125 detectors, the correct calibration peaks were identified directly within the top-k sets for 123 cases
without any additional processing. However, in two detectors, the peaks of interest were ranked
just outside the top-k set, appearing as the (k + 1)-th most persistent peaks. We found that minimal
additional filtering—such as applying a broad energy/channel cut to eliminate clear backscattering
peaks—was sufficient to recover these peaks accurately. Ultimately, using the persistence-based
ranking approach combined with this minor post-processing step in the two challenging instances, we
successfully identified all four targeted emission peaks across the full set of 125 operational detectors.

Figure 6. VM-PP applied to peak detection on 3 sample sources: top panel shows the emission spectra of Sodium,
Cobalt and Cesium sources, normalized by area under curve and annotated with the top k most persistent peaks
for each source; bottom panel shows the persistence of detected peaks, reported as the percentage of volume in
parameter space where the peak is detected. For all 3 spectra, despite significant differences in peak shapes, the
same portion of parameters space is explored, showcasing the versatility and robustness of our method.
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Figure 7. Calibration results: (a) An example linear best fit on a single detector’s data, using 4 emission peaks of
known energy from Sodium (0.511 MeV), Cesium (0.662 MeV) and Cobalt (1.17 and 1.33 MeV). (b) The leave-one-
out (LOO) cross-validation (CV) error of each detector’s calibration, highlighting 3 outlier crossed points resulting
from faulty detectors. The 2 remaining points with poor performance are easily recovered with minimal post
processing steps, the results of which are shown as stars. (c) Distribution of best-fit slope and intercept parameters
across all detectors, colored by the LOO-CV error. Negative intercept values arise from well known non-linearities
near the extremes of detectors’ ranges.

3.2.3. Calibration Outcomes

Once the correct peak positions are identified in channel space, a simple linear fit converts channel
number to energy. The fit uses the known energies of each peak as the x values and the measured
channel positions as the y values. In Figure 7, we illustrate the overall calibration performance:

Panel (a) of Figure 7 shows a typical example of a linear energy calibration fit for a single detector,
using the four known gamma-ray emission peaks. To evaluate the reliability of these calibrations
across all detectors, we employed a standard technique known as leave-one-out cross-validation
(LOO-CV). In this procedure, the calibration is repeated four times per detector, each time leaving
out one of the four reference peaks, fitting a line to the remaining three, and then computing the
prediction error on the omitted point. Panels (b) and (c) summarize the results of this analysis across
the full detector array. For each detector, the individual prediction errors from the four LOO-CV
iterations are averaged to yield a single scalar error value. These average errors are reported in
Panel (b) as a measure of calibration reliability and are also used to color-code the corresponding
slope and intercept values in Panel (c). Lower average error indicates that all four calibration peaks
lie close to a consistent linear fit, while higher error suggests issues such as misidentified peaks or
detector faults. In particular, the three marked detectors with extremely high errors were identified
as irreparably damaged and removed from subsequent analyses. The remaining two elevated-error
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points arise from the two detectors in which the primary Cobalt peaks initially ranked as (k + 1)-th.
Because the correct peaks are nonetheless detected (just slightly lower in the persistence order), a mild
filter on backscattering peaks fixes the issue.

Panel (c) in Figure 7 summarizes how fit parameters vary across the detectors. Most calibrations
cluster around consistent slope/intercept values, with small variations attributed to manufacturing
differences, gain settings, or mild hardware non-linearities. Negative intercepts persist in all detectors,
reflecting known edge effects and electronic offsets but still yielding an accurate mapping over the
region of interest.

3.2.4. Channel-to-Energy Translations

To visualize the overall outcome of this multi-detector calibration, we compare raw (channel-
space) spectra to their energy-space equivalents. Figure 8 shows, for a Cobalt source, how the large
spread of peak positions among the 128 detectors (left) collapses into well-aligned peaks once the
linear transformations are applied and the 3 faulty detectors removed (right).

Figure 8. Example Cobalt emission spectra from all detectors, annotated with the top 5 most persistent peaks.
Left: raw data in channel space reveal large variability in apparent peak locations. Right: the same spectra after
linear calibration and removal of 3 faulty detectors, translating channel to energy. The highest two (energy-wise)
of these 5 persistent peaks correspond precisely to the known 1.17 MeV and 1.33 MeV emissions. The triangular
shaped shadows visible in the region around 0.3 MeV with a periodicity of 16 detectors depends on the different
counting rates due to different center-to-side solid angle when placing the pointlike source in front of each 16-unit
detector module.

By ranking peaks via multiparameter persistence, each detector automatically yields the relevant
peaks. Even small deviations in detection (as for the 2 problematic detectors mentioned above) are
trivially corrected by discarding the low-energy backscattering regions. Hence, without ever manually
labeling any peak, we successfully identify all calibration peaks for 125 detectors, requiring minimal
filtering to recover even the two initially mislabeled peaks. This amounts to detecting (and correctly
matching) 4 × 125 = 500 emission peaks across all spectra, confirming the robustness of the proposed
persistence-based approach for automating detector calibration.

4. Discussion
The proposed multi-parameter persistence framework demonstrates substantial advantages in

robustness, interpretability, and practical utility for peak detection across both simulated and real-world
datasets. The methodology generalizes traditional single-parameter persistence concepts, quantifying
the stability of detected features by integrating across multiple influential detection parameters such
as prominence, distance, width, and threshold. This comprehensive approach significantly mitigates
the sensitivity to arbitrary parameter selection, an inherent limitation of conventional peak detection
algorithms. Validation on test datasets (Section 3.1) underscores the robustness of this approach.
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Our experiments revealed consistently low detection errors—under 1%—across a wide range of
noise intensities, including challenging scenarios with both Gaussian and uniform noise distributions.
Heatmap analyses further confirmed the method’s resilience, highlighting expansive parameter regions
where near-perfect detection rates were consistently achieved, thus establishing its reliability under
various practical conditions. When applied to real-world spectroscopic data for detector calibration
(Section 3.2), the method’s effectiveness was clearly demonstrated. Using automated, persistence-based
peak ranking without manual labeling, all critical calibration peaks across a large detector array were
successfully identified. The framework proved not only capable of accurately calibrating functional
detectors but also adept at diagnosing and isolating hardware faults, streamlining the instrument
maintenance process. In cases where the automated method initially ranked correct peaks slightly
lower in persistence, minimal post-processing sufficed for full recovery, highlighting the practicality
and flexibility of the approach.

An important strength of this method lies in its intuitive interpretability. By assigning
each detected feature a clear scalar metric—the accumulated hyper-volume across parameter
space—practitioners gain a straightforward and quantitative measure of peak robustness. This metric
inherently simplifies the feature-ranking process, distinguishing meaningful peaks from noise-induced
artifacts effectively and transparently. From a theoretical standpoint, this work bridges traditional
signal processing techniques with concepts from multi-parameter persistent homology (MPH). While
formal MPH can offer meaningful insights by analyzing data through intricate topological invariants,
our simpler volumetric persistence measure provides an accessible yet powerful alternative that is
both computationally efficient and easy to interpret. Future research could further explore adaptive
or probabilistic sampling strategies to optimize computational efficiency or integrate formal MPH
invariants to uncover additional structural insights in complex multi-dimensional datasets.

In conclusion, the multi-parameter persistence method introduced here represents a robust,
versatile, and intuitive solution to feature detection tasks across a variety of applications. Its successful
application in simulated and real-world spectroscopic scenarios demonstrates its broad potential,
offering enhanced reliability, reduced parameter sensitivity, and clear interpretability that are essential
for modern scientific and engineering analyses.
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Abbreviations
The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
LOOCV Leave-One-Out Cross-Validation
MPP Multi-Parameter Persistence
LC–MS Liquid Chromatography–Mass Spectrometry
GC×GC-TOF MS 2D Gas Chromatography with Time-Of-Flight mass spectrometry
VM-PP Volumetric Multi-Parameter Persistence

Appendix A
Piecewise Continuity of the Detection Function

In this section we establish that, under reasonable assumptions, the detection function used in
our methodology is piecewise continuous. Let Θ ⊂ Rn denote the hyperparameter space and consider
the function

f : Θ → {0, 1},

where f (θ) = 1 indicates that a particular feature (e.g., a peak) is detected for the hyperparameter
setting θ, and f (θ) = 0 otherwise.

We assume that the underlying data function D(x) is continuous and that the detection of a
feature at a candidate location x0 is determined by inequalities of the form

D(x0) ≥ τ(θ) and D(x0)− D(x) ≥ δ(θ)

for x in a neighborhood of x0, where τ : Θ → R and δ : Θ → R are continuous functions representing,
respectively, a detection threshold and a margin requirement.

Suppose first that for some θ0 ∈ Θ the detection conditions are satisfied (i.e., f (θ0) = 1). By the
continuity of τ and δ, there exists an open neighborhood U ⊂ Θ containing θ0 such that the inequalities

D(x0) ≥ τ(θ) and D(x0)− D(x) ≥ δ(θ)

continue to hold for all θ ∈ U. Hence, f (θ) = 1 for all θ ∈ U. Conversely, if f (θ0) = 0, then the failure
of the detection condition persists in an open neighborhood V ⊂ Θ about θ0, so that f (θ) = 0 for all
θ ∈ V.

Thus, aside from the boundaries where the detection outcome changes, the function f is con-
stant—and therefore continuous—on open subsets of Θ. The discontinuities, if any, are confined to
the boundaries between these open regions, which are typically of lower dimension. In this sense, the
detection function f is piecewise continuous.

This property is essential for justifying adaptive sampling strategies. In regions where f is
continuous, a coarse sampling suffices to capture its behavior, while finer resolution can be concentrated
near the transition boundaries, thereby mitigating the computational burden of a uniform grid search.

Connection to Multiparameter Persistent Homology

From a TDA perspective, detecting and tracking features across an n-dimensional parameter
space is akin to multiparameter persistence. Classical persistence homology often focuses on a single
parameter (e.g., a filtration value), but Θ here involves multiple dimensions—leading to more com-
plex invariants in multiparameter persistent homology (MPH) [11]. In principle, one could model
feature detections themselves (e.g., peaks) as 0D topological features that appear or vanish across the
hyperparameter lattice.

Our extension of “persistence” to a higher-dimensional hyperparameter domain is conceptually
aligned with MPH, yet we opt for a simpler, domain-specific aggregator: the accumulated hyper-
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volume in which a feature is detected. This single scalar score captures the same spirit of “robustness
under parameter variation” without the overhead of constructing a full multiparameter barcode. It is:

• Straightforward to compute: A grid search (or analogous sampling) across the parameter space
directly yields the measure of persistence for each feature.

• Intuitive to interpret: It quantifies how “hard” it is to destroy a feature by shifting the
algorithm’s hyperparameters.

• Avoids complexity: Formal MPH approaches may require identifying complex topological in-
variants which can lead to intricate representations of the data and high computational overhead.

In the TDA literature, advanced tools like bigraded Betti numbers or rank functions can become
unwieldy in higher dimensions, because multiparameter persistence is known to be “wild” from
a representation-theoretic perspective [8–11]. By contrast, our aggregated volume measure is easy
to compute and well-suited to routine signal-processing tasks. Nevertheless, an interesting future
direction is to compare our hyper-volume aggregator with more formal MPH tools, to see whether
further insights or additional topological structures might be revealed. We view this approach as
a simple, application-driven extension of persistence ideas into robust feature detection while still
connecting to the broader multiparameter TDA framework [9].

References
1. Scholkmann, F.; Boss, J.; Wolf, M. An Efficient Algorithm for Automatic Peak Detection in Noisy Periodic and

Quasi-Periodic Signals. Algorithms 2012, 5, 588–603. https://doi.org/10.3390/a5040588.
2. Kim, S.; Ouyang, M.; Jeong, J.; Shen, C.; Zhang, X. A New Method of Peak Detection for Analysis of

Comprehensive Two-Dimensional GC×GC-TOF Mass Spectrometry Data. Ann. Appl. Stat. 2014, 8, 1209–1231.
https://www.jstor.org/stable/24522093.

3. Poma, G. E.; Failla, C. R.; Amaducci, S.; Cosentino, L.; Longhitano, F.; Vecchio, G.; Finocchiaro, P. PI3SO:
A Spectroscopic γ-Ray Scanner Table for Sort and Segregate Radwaste Analysis. Inventions 2024, 9, 85.
https://doi.org/10.3390/inventions9040085.

4. Guo, Tiantian and Zhang, Tongpo and Lim, Enggee and López-Benítez, Miguel and Ma, Fei and Yu, Limin;
IEEE Access; A Review of Wavelet Analysis and Its Applications: Challenges and Opportunities; DOI:
10.1109/ACCESS.2022.3179517

5. Deep Learning for the Precise Peak Detection in High-Resolution LC–MS Data. Arsenty D. Mel-
nikov, Yuri P. Tsentalovich, and Vadim V. Yanshole Analytical Chemistry 2020 92 (1), 588-592 DOI:
10.1021/acs.analchem.9b04811

6. Zhang, J.; Gonzalez, E.; Hestilow, T.; Haskins, W.; Huang, Y. Review of Peak Detection Algorithms in Liquid-
Chromatography–Mass Spectrometry. Curr. Genomics 2009, 10, 388–401. DOI: 10.2174/138920209789177638.

7. Kilgour, D.P.A., Hughes, S., Kilgour, S.L. et al. Autopiquer - a Robust and Reliable Peak Detection Algorithm
for Mass Spectrometry. J. Am. Soc. Mass Spectrom. 28, 253–262 (2017). https://doi.org/10.1007/s13361-016-
1549-z

8. Ghrist, R. Barcodes: The Persistent Topology of Data. Bull. Amer. Math. Soc. 2008, 45, 61–75.
DOI:10.1090/S0273-0979-07-01191-3

9. Carlsson, G., Zomorodian, A. The Theory of Multidimensional Persistence. Discrete Comput Geom 42, 71–93
(2009). https://doi.org/10.1007/s00454-009-9176-0

10. Lesnick, M.; Wright, M. Interactive Visualization of 2-D Persistence Modules. arXiv 2015, 1512.00180. Available
online: https://doi.org/10.48550/arXiv.1512.00180

11. Botnan, M. B.; Lesnick, M. An Introduction to Multiparameter Persistence. arXiv 2022, 2203.14289. Available
online: https://doi.org/10.48550/arXiv.2203.14289

12. Bernardini, G. Definizione Normativa e Classificazione dei Rifiuti Radioattivi. Cammino Diritto,
22 October 2022. Available online: https://rivista.camminodiritto.it/public/pdfarticoli/8838_10-2022.pdf
(accessed 22 October 2022).

13. IAEA. Classification of Radioactive Waste. IAEA Safety Standards Series No. GSG-1; IAEA: Vienna, 2009.
Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1419_web.pdf.

14. Rossi, F.; Cosentino, L.; Longhitano, F.; Minutoli, S.; Musico, P.; Osipenko, M.; Poma, G. E.; Ripani, M.;
Finocchiaro, P. The Gamma and Neutron Sensor System for Rapid Dose Rate Mapping in the CLEANDEM
Project. Sensors 2023, 23, 4210. https://doi.org/10.3390/s23094210.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 June 2025 doi:10.20944/preprints202506.0487.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://rivista.camminodiritto.it/public/pdfarticoli/8838_10-2022.pdf
https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1419_web.pdf
https://doi.org/10.20944/preprints202506.0487.v1
http://creativecommons.org/licenses/by/4.0/


15 of 15

15. Longhitano, F.; Poma, G. E.; Cosentino, L.; Finocchiaro, P. A Scintillator Array Table with Spectroscopic
Features. Sensors 2022, 22, 4754. https://doi.org/10.3390/s22134754.

16. Hamamatsu Photonics. MPPC S14160-6050HS. Available online: https://www.hamamatsu.com/eu/en/
product/optical-sensors/mppc/mppc-array/S14160-6050HS.html (accessed 2023).

17. CAEN Digitizer VX2745. Available online: https://www.caen.it/products/vx2745/(accessedon31May2025).
18. https://github.com/gullo97/Volumetric-MPP

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 June 2025 doi:10.20944/preprints202506.0487.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://www.hamamatsu.com/eu/en/product/optical-sensors/mppc/mppc-array/S14160-6050HS.html
https://www.hamamatsu.com/eu/en/product/optical-sensors/mppc/mppc-array/S14160-6050HS.html
https://www.caen.it/products/vx2745/ (accessed on 31 May 2025).
https://doi.org/10.20944/preprints202506.0487.v1
http://creativecommons.org/licenses/by/4.0/

