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Abstract: This paper provides a set of category-theoretic analyses of Godel’s incompleteness
theorems and Tarski’s indefinability theorem (see Appendix). We view the first-order theory as a
mathematical language and introduce the notion of "language charge" as a monad within a category.
For each analysis, we introduce a pair of adjunct categories: a syntactic category and a semantic
category. We show that the Godel numbering can be modeled as a pair of adjoint functors between
these categories—a right functor from syntax to semantics and a left functor in the reverse direction.
We prove that the Godel numbering functor serves as a limit in a functor category. Additional
analyses focus on the expressibility and definability in the twin theorems. Each of these is linked to
natural transformations. In addition, we establish a formal account of "spontaneous naturality
breaking" in the context of Godel’s independent statements and Tarski’s indefinability. Finally, it
touches higher order categories. By composing a syntactic category and a semantic category, we
constructed a 2-Category with two layers of structures. Note that 2-category is one of the current
research interests in category theory. Further, by decomposing and recomposing the syntactic
category, we constructed a 3-Category.

Keywords: Category; Godel; Tarski; first-order theory; syntax; semantics; structure; high-order
category; expressibility; definability

1. Mathematical Language as a Monad Structure

In this paper, we presume the first-order theory [4] without delving into its detailed expansion
in metamathematics. We conceptualize the first-order theory as a mathematical language and
formalize it using a monad structure in category theory, referred to as the Godel charge. This
approach not only simplifies and clarifies the rich structures inherent in Godel [4] and Tarski’s work
[5] but also aligns more effectively with category-theoretic characterizations without compromising
generality.

The syntactic and semantic aspects of a first-order theory can be captured using two categories:
the syntactic category (I') and the semantic category (N) [2]. The relationship between these categories
is mediated by the Godel charge, which establishes a correspondence between the formal (syntactic)
world and the arithmetic (semantic) world.

1.1. Syntactic Category (I')

The syntactic category I' corresponds to the abstract world of symbols, formulas, and proofs.
This category encodes the structure of logical expressions and derivations in a formal system.

Definition 1 (Objects in I'). The objects of I' are sorts, formulas, and proofs. Sorts are the basic
types from which more complex expressions are built. These types are typically the sorts from the
signature Y. Formulas are logical expressions involving sorts, function symbols, and relation
symbols. Formulas are constructed using the logical connectives (A, V, =) and quantifiers (V, 3). Proofs
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are sequences of formulas, following rules of inference, that establish the logical derivability of one
formula from a collection of premises.

Definition 2 (Morphisms in I'). Morphisms in I' correspond to formation rules and inference
rules. Formation rules describe how to build formulas from terms, function symbols, and relation
symbols. Inference rules capture logical entailment. Identity morphisms correspond to tautological
proof steps, where a formula entails itself (P = P). Composition of morphisms reflects the transitivity
of logical entailment (if ¢ = 1\ and ¢} = ¥, then ¢ = ¥).

The syntactic category I' can be endowed with a monadic structure. This arises from the
observation that I' is a free Cartesian category generated by the signature L. The free Cartesian
construction naturally defines a monad on the underlying category of sorts. The monad T on the
category of sorts is given by the free functor that takes a set of sorts S and produces the set of all finite
products, function symbols, and formulas that can be generated from those sorts. The unit of this
monad injects a sort into the space of terms (viewing a sort as a trivial term), and the multiplication
flattens nested products and formulas. This monadic structure reflects the compositional nature of
logical derivations, allowing terms and proofs to be built recursively.

1.2. Semantic Category (N)

The semantic category N captures the concrete meaning of the syntactic structure. While the
syntactic world is abstract and symbolic, the semantic world is concrete and typically based on
arithmetic interpretations or arithmetic-theoretic models.

Definition 3 (Objects in N). The objects in N are Godel numbers and arithmetic structures. Godel
numbers encode syntactic objects (like formulas, terms, and proofs) as natural numbers. Arithmetic
structures are sets (like N or Z) that interpret the sorts from X as concrete domains of computation.
For example, if A is a sort in L, its interpretation in N could be the set N (natural numbers).

Definition 4 (Morphisms in N). Morphisms in N are defined using arithmetic operations and
logical rules. These morphisms include functions on Godel numbers, such as primitive recursive
functions. Morphisms also reflect the way logical entailments are mapped into arithmetic statements.
Identity morphisms in N are functions that map a Godel number to itself. Composition of morphisms
in N follows the composition of arithmetic functions.

The semantic category N can also be endowed with a monadic structure. The monadic structure
on N can be seen as the list monad, where each syntactic object (like a proof) is assigned a Godel
number, and recursive computations on these numbers follow the structure of primitive recursive
functions. The monad's unit injects an arithmetic object (like a number) into the computational
context, and the multiplication of the monad corresponds to concatenating computational steps.

2. Godel Numbering as a Functor

Godel numbering is one of the key techniques used in Godel’s incompleteness theorem [4] and
Tarski’s indefinability theorem [5]. The necessary backgrounds of Godel’s theorem and Tarski’s
theorem are given in the appendix. Below we explain the Godel numbering method. Mathematical
language always deals with symbols, formulas, and derivations. For a mathematical framework, even
though its base domains (such as real or complex fields) are uncountable infinities (i.e., the
continuum), the number of symbols used to denote variables, functions, operators, etc., is infinite but
countably many. Thus, we can have an effective procedure to mechanically assign a unique odd
number to each and every symbol in order, called Gidel number. For a given symbol e, its Godel
number is written as g(e), which can be seen as a function or an odd number. A formula is a finite
string of symbols, written as

L=eiex... ... én (1.1)
The Godel number of a formula can be calculated by
g(l)y= q9€Vq,9€)  q, 900 (1.2)

where g is the first i prime numbers in its natural order, and g(e;) is the Godel number of the ith
symbol in the formula L. A derivation is a finite sequence of formulas, written as

Der(L) =< ui,uz, ..., Um > (1.3)

The Godel number of a derivation can be calculated by
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g(L)= qlg(ul)ng(uz)_._ qmg(um) (1.4)
where g(u:) is the Godel number of the ith formula in the derivation sequence. The Gédel number of
any given formula or derivation is always an even number, which is also a composite number.

The above method is called Gddel numbering [4]. The beauty and power of Godel numbering is
that, based on the so-called first theorem of arithmetic (i.e., Pair forming LCM), from a given Godel
number we can uniquely recapture the original derivation, the original formula, or the original symbol
used in the context.

Note that logic has nothing to do with the content. So that the first-order characterization in terms
of category theory only requires three conditions. First, the syntactic components can be represented
by a Godel number. Second, any given derivation of a particular kind and its Godel number can be
used interchangeably. Third, it allows to introduce new predicates or function terms.

Essentially, Godel numbering encodes symbols, formulas, and proofs into natural numbers. This
encoding can be viewed as a functor between the syntactic category I' and the semantic category N.
The functor maps each object in I" (such as a symbol, formula, or derivation) to its corresponding
Godel number in N. For morphisms in I, such as formation and inference rules, the functor assigns
arithmetic operations that mirror these logical transformations in N. Consequently, the Godel
numbering functor preserves the logical structure of derivations, enabling a categorical
correspondence between syntactic operations and their semantic counterparts.

In addition to this, it is possible to define an adjoint functor from the semantic category N back
to the syntactic category I'. This adjoint functor essentially reconstructs the syntactic representation
corresponding to a given Godel number in N. For each object (a Gédel number) in N, the adjoint
functor identifies the corresponding syntactic construct in I', such as a symbol, formula, or derivation.
Morphisms in N, which are arithmetic operations on Godel numbers, are mapped to syntactic
morphisms like logical inference steps. This adjoint relationship establishes a bidirectional
correspondence between the syntactic and semantic realms, reinforcing the duality that underpins
Godel’s incompleteness theorem.

This adjunction can be captured via the concept of Godel charge, which connects the syntactic
world (I') to the semantic world (N) via monadic structures. Specifically, the Godel charge is a
monadic natural transformation from the monad on I' to the monad on N. This transformation maps
objects in the syntactic monad (like terms and proofs) to objects in the semantic monad (Godel
numbers). It reflects how the composition of terms in I' maps to the composition of arithmetic
operations on Godel numbers in N.

3. Godel Numbering as A Limit of Functors

We have now defined the Godel functor G: I' — N and its adjoint G*: N — I'. In fact, all possible
functors from the syntactic category I' to the semantic category N form a new category, denoted as
Fun(I', N). We now demonstrate that the Godel functor G serves as a limit of this category [1],
meaning that it is the most "concise and informationally complete" functor among all possible
functors in Fun([, N).

A functor G: T — N is said to be a limit of a category of functors Fun(T, N) if for every functor F:
I' = N, there exists a unique natural transformation n: F — G. This property implies that every functor
in Fun(I', N) factors through G in a unique way, making G a universal recipient for natural
transformations from any other functor F to N.

To understand why the Godel functor serves as a limit, consider how it interacts with the
syntactic and semantic categories. The objects of I include symbols, strings of symbols (formulas),
and derivations. The Gddel functor G maps each of these objects to their Godel numbers in N. For
morphisms (which correspond to formation rules and inference rules) in I, the Godel functor applies
arithmetic transformations to the corresponding Godel numbers.

Suppose F: T’ — N is an arbitrary functor. For every object X in I, F(X) is an object in N. To define
a natural transformation n: F — G, we assign to each object X € I' a morphism nx: F(X) — G(X) in N.
By the definition of Godel numbering, each element in N corresponds to a unique syntactic construct
in I'. Thus, for each X € T, there is a canonical mapping from F(X) to G(X), since G explicitly tracks
the syntactic structure of X via its Godel number.
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The uniqueness of 1 follows from the fact that the Gédel numbering scheme is injective and
reflects the structure of I' in a complete and lossless manner. In essence, every syntactic structure in
I' has a unique image in N via the Godel numbering. Any other functor F mapping from I' to N can
be related to G by a natural transformation, but since G retains all the structural information, the
transformation is unique. In formal terms, for every object X € I', we have a commutative diagram of

the form:
F(f)
F(X) — F()
L nx Ly
G(f)

GX) — G)

for every morphism f: X — Y in I'. This commutative square ensures that the transformation
from F to G respects the morphisms in I and is, therefore, a natural transformation.

This universal property [2] highlights the fundamental role of Godel numbering as a canonical
method for encoding syntactic objects as semantic objects. In the categorical perspective, G captures
the essence of the Godel numbering process, and its status as a limit reflects its role as the most
"informationally complete” mapping from syntax to semantics.

4. The Expressibility Functor

Definition 5 (Expressibility). In the first-order theory, if the relation R(ay, ..., an) holds in N,
then P(ay, ..., an) is provable in W If the relation R(ay, ..., an) does not hold in N, then -P(ay, ..., ax)
is provable in V.

We can write this definition in a fully symbolic format:

(i) En R(a,...,an) — Fy P(ay, ..a,).

(i) # N R(ay ..., an) — Fy —P(ay ..ay).

Now we can define two categories in an abstract but simple way:

Definition 6. The Category A contains three objects and two morphism arrows below:

Object 1. M, (the syntactic monad stands for the language of the first-order theory);

Object 2. +y P(ay, ..ay);

Object 3. +y —P(ay, ..ay ).

Arrow 1. The reducing arrow from an object to the monad.

Arrow 2. The contradiction arrow between Object 2 and Object 3.

Definition 7. Category B contains three objects and two morphism arrows below:

Object 1. My (the semantic monad stands for the language of the first-order theory);

Object 2. Ey R(ay, ..., ap);

Object 3. # NR(ay, ..., a,);

Arrow 1. The reducing arrow from an object to the monad.

Arrow 2. The contradiction arrow between Object 2 and Object 3.

Now we can define the Experessibility functor from Category B to Category A:

(i) En R(a,...,an) — Fy P(ay, ..a,);

(i1) ¥EnR(ay, ..., an) — Fy ﬂP(al, an,);

(i) My — M,.

This functor fully captures the information in the definition of expressibility. We denote this
functor as F. Obviously, this is a logical factor. Interestingly, from the perspectives of category theory,
we may also construct an anti-logic functor from B to A as follows.

Definition. An anti-logic functor, denoted as D, is defined as:

(1) En Ry, ..., an) — Fy ﬂP(al, an,);

(i) ¥x R(@, ..., an) — Fy P(ay, ..a, );

(i) Mg — M,.

Actually, D is well-defined in terms of category theory. Obviously, there exists a natural
transformation from D to F. Here the meaning of the naturality tells us not only the difference
between being logical and anti-logical, but also the relation of them. Being logical or being anti logical
are both based on what we mean by logic. However, this question goes beyond the scope of category
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theory. The natural transformation (from D to F) also indicates that category theory focuses on the
abstract structures. Any contents are only represented by objects and arrows.

5. The Definability Functor and Functor Breaking

Consider a mother statement P(x) and assume its Godel number g(P (x)) =m. We may
construct a self-reflective daughter statement S = P("/y), assume g(S (m)) = n. Given this, we can
introduce a semantic relation d(m, n). According, we can syntactically have D(m, n). Tarski introduced
the notion of definability, which says that d(m, n) defines D(m, n).

Now we can introduce the definability functor, denoted as D. Let A be the syntactic category,
which contains a monad and a family of objects in forms of D(m, n). Let B be the semantic category,
which contain a monad and a family of objects in form of d(m, n). Then we can define a definability
functor from B to A with map below:

(/) the monad in B — the monad in A;

(ii) each d(m, n) in B — the corresponding D(m, n) in A.

Obviously, this is a well-defined one-to-one mapping. However, a problem will occur shortly.

Tarski constructed a statement with a free variable x below:

PG) =vy(Dxy) > -T®) (1)

Assume its Godel number g(P (x)) = m. We can construct a self-reflective statement,

L = P("M/y), by substituting m for x. Assume its Godel number g(L) = n. Thus, by the definition
earlier, we can have d(m, n), which defines D(m, n). In this sense, we say d(m, n) is a model of D(m,
n). By (5.1), we can logically infer Vy—T(y). If the truth predicate T is definable, it supposes to have
a model

X={L, | X E Ly, meaning Ly is presupposed to be true under X}.

Tarski’ indefinability theorem (see Appendix) show that this mode X is null. Thus, predicate T
is indefinable. Notice that T(y) is part of original mother formula P(x). Hence, the indefinability of T
is carried by the Godel number m of P(x), and this information is transferred in to the daughter
formulas L and its Godel number 7, and continue to be transferred into d(m, n) and D(m, n). In other
words, the definability functor D contains the information of indefinability of T. We refer this
phenomenon as spontaneous functor breaking.

6. Godel Proof and Independent Statement

Godel theorem (1931) has a special but interesting structure, which can be characterized in
category theory. Godel theorem involves two categories, the syntactic category A4 and the semantic
category B, and the Godel theorem itself serves as a functor between the two categories and it also
causes the spontaneous functor breaking.

The category A contains the following objects: a monad and a family of triplets, denoted as <O,
02, O3>, which is defined as follows.

O1 stands for a statement with one free variable, write P(x), called the mother sentence.

O: stands for a self-reflective statement S = P(i/ x), where i = g(P(x)).

Os stands for the proof of S, denoted as Bew(S).

A contains only two families of morphism arrows. One is the identity arrow of each triplet, and
the other is from any triplet to the monad.

The category B contains the following objects: a monad and a family of ordered triplets, denoted
as < g1,92 93 > , which are defined as below: g; = g(P(x)); g, =g(S); gs = g(Bew(S)). B
contains two morphism arrows. One is from a mother statement P(x) to its mother statement S, and
the other is from S to Bew(S). B contains only two families of morphism arrows. One is the identity
arrow of each triplet, and the other is from any triplet to the monad.

It is obvious that there is a one-to-one bidirectional mapping from A to B and wvice versa. We
name it as the Godel proof functor. However, there is a problem up to this point. Godel constructed
a statement as below:

P(x) = Vy=G(x,y) (6.1)
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Godel found (1931) that for this particular mother formula, P(x), in its corresponding triplet
<04, 0;, O3>, Osis null; i.e., Bew(S) does not exist! This means that it is no model triplet < g, g», g3 >
in B. We refer this phenomenon as spontaneous proof breaking. Godel also found the same situation for
=S. Thus, S is called an independent statement.

7. Higher Order Categories

Consider the syntactic category I' and the semantic category N introduced in Section 1. We can
define a new general category II, which contains two objects I' and N. We know that the objects in I’
are one-one-corresponding to their Godel numbers in N. Let C be the Cartesian product of I' and N
[3], we have

€ =TxN={(xgb)l

where x € T'and g(x) € N. Thus, the newly introduced general category Il contains two objects
and one morphism. This is the first structural layer.

From Section 1, I and N are well-defined categories, each with its own structures. This is the
second structural layer. In other words, the new category I has two layers of structures. The
category of this kind is called 2-Category [1]. Notice that for the 2-category II, the arrows in the first
layer structure and the second layer are all morphisms but not functors.

Similar treatment can be applied to the category I' alone. As defined earlier, I contains three
families of objects, namely, symbols, well-formed-formulas, and proofs. It also contains two arrows,
one is for formation rules and the other for inference rules. Now we decompose I into two categories.
I'' contains only two families of objects, symbols and formulas, and one arrow stands for the
formation rules. I'? contains two families of objects, formulas and proofs, and one arrow stands for
inference rules. Then, by composing I'* and I'?, it yields a new category I, which add a third layer
of structures to the grandmother category II, write II'. Up to this point, we may refer II' as a 3-
category.

8. Conclusions

In this paper, we have provided a unified categorical treatment of Godel’s incompleteness
theorem and Tarski’s indefinability theorem. By treating first-order logic as categories, we introduced
the concept of Godel charge as a monadic structure and demonstrated how syntactic and semantic
categories interact via Godel numbering, expressibility, and definability. The main contributions are
summarized as follows:

Godel charge: The syntactic category has a free Cartesian monad for constructing terms and
formulas, while the semantic category has a list monad on Godel numbers. The Godel charge acts as
a monadic natural transformation linking the two.

Gddel Numbering as a Limit Functor: We established that Godel numbering is a limit functor
between the syntactic category I' and the semantic category N. This functor serves as the most
complete mapping, preserving all syntactic information.

Expressibility and Definability Functors: We formalized the concepts of expressibility and
definability as categorical functors. While the expressibility functor retains natural transformations
for provability, the definability functor experiences spontaneous functor breaking, reflecting Tarski’s
theorem on the indefinability of truth as a predicate.

Spontaneous Functor Breaking: We formalized how the definability and proof functors experience
“spontaneous breaking” when dealing with self-referential statements. This concept provides a
categorical insight into the limitations of formal systems in representing truth and provability.

Higher Order Category: By composing a syntactic category and a semantic category, we
constructed a 2-category with two layers of structures. Note that 2-category is one of the current
research interests in category theory. By further decomposing and recomposing a syntactic category,
we constructed a 3-category with three layers of structures.

By unifying Godel’s and Tarski’s theorems through the lens of category theory, we offer a new
perspective on the duality between syntax and semantics. The framework of natural transformations,
adjoint functors, and functor limits serves as a robust mathematical foundation for exploring the
intrinsic limitations of formal logical systems.
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Appendix. Twin Theorems of Gddel and Tarski [6]

We assume readers are familiar with the first order logic (PL), the first order theory (W), and the
arithmetic theory (N). Intuitive natural numbers used in N are given by n, and the corresponding
enumerers used in V are denoted by bold n. Enumerers are constructed by starting from the empty
set @ and the so-called successor function, such that @ = 0, {#} = 1, {8, {@}} =2, and so forth. In the
following, we introduce Godel’s theorem first, and Tarski’s theorem second.

Definition of Expressibility: If R(as, ..., an) holds in N, then P(ay, ..., an) is provable in V. If R(a1,
..., an) does not hold in N, then ~P(ay, ..., an) is provable in V.

Definition of Consistency: For any given formula "L" in V', either L is provable, or else —L is provable,
but not both.

For a given formula L, denote its proof by Bew(L). Assume g(L) = i and g(Bew(L)) = j, where i
and j are Godel numbers. We introduce a relation G(i, j) in N, and define a function term G(i, ) in
N. Godel constructed a formula,

P(x) = Vy=G(x, y),

in which x is a free variable. Let g[P(x)] = i, by substituting x with i, we can use,

S = P(i) = Vy-G(i, )

This is a so-called self-reflection sentence.

Gddel First Theorem Neither S nor —S is provable in V.

We now briefly sketch a proof. First, we prove that S is not provable. Assume for contradiction
that S is provable, then it must have a proof, write Bew(S), let g(Bew(L)) = j and g(S) =i, so that G(i,
j) in N. By the expressibility, G(i, j) must be provable in N; but S said that for any j, =G(i, j). This
contradiction shows that the assumption is impossible. Hence, S is not provable in V.

Second, we prove that —S is unprovable in V. Assume for contradiction that =S is provable. Then
by consistency, S is unprovable, so that for any j, g(Bew(S)) # j. Hence, for any j, G(i, j) does not hold
in N; by expressibility, =G(i, j), for any j. As such, by w_consistency, we have Vy—G(i, y), which
means S is provable in . This contradicts to the assumption that S is unprovable. Thus =S is
unprovable in V.

The above result shows that the consistency of I is independent of V. Now let us speculate
about what S expresses. S is a self-reflection sentence, it says that S is unprovable, and we have just
proved it above; thus, S is true, but not provable in V', which by definition means that V" is incomplete.
This is the well-known Godel Incompleteness Theorem. We now turn to Tarski’s indefinability
theorem.

Definition of Definability: Let g(P(x)) = m, and g(P(m)) = n, we can hold a binary relation d(m,
n) in N. Accordingly, we say D(m, n) is definable in V', meaning D(m, n) has a model, which is not null.

Tarski introduced a new predicate of being true, denoted by T, and he constructed a sentence
below:

A(x) = Vy[D(x, y) — —T(y)]

Let g[A(x)] = m, substituting x by m, we have

B(m) = Vy[D(m, y) — -T(y)]

Let g[B(m)] =n, we have d(m,n) which holds in N; hence, D(x, y) is definable in V. Then, by
standard logic, we can infer =T (y). Now we show that 7" is not definable, meaning its model is null.
Denote B(m) by L.If L is pre-assumed as true, denote it by Lt, and write Lg = g(L). As such, we
may assume for contradiction that T had a model X;

X={Lg | X eL; ie.,Ltispresupposed to be true under X}

Since Lg = g(Lt), i.e., Lg is the Godel number of B(m). By the definition of d(m,n),we have

d(m, Lg), hence D(m, Lg) is definable in V. However, recalling the logical structure of B(m),
which is a universally quantified conditional statement, we may infer =T (Lg), i.e., Lt is not true in
model X; hence, Lg ¢ X, which shows that X may only be null. In other words, since T has no model,
the truth predicate function is arithmetically undefinable.

Acknowledgments: The authors thank Zhangju Liu for his insightful and useful discussions.
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