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Abstract: This paper provides a set of category-theoretic analyses of Gödel’s incompleteness 

theorems and Tarski’s indefinability theorem (see Appendix). We view the first-order theory as a 

mathematical language and introduce the notion of "language charge" as a monad within a category. 

For each analysis, we introduce a pair of adjunct categories: a syntactic category and a semantic 

category. We show that the Gödel numbering can be modeled as a pair of adjoint functors between 

these categories—a right functor from syntax to semantics and a left functor in the reverse direction. 

We prove that the Gödel numbering functor serves as a limit in a functor category. Additional 

analyses focus on the expressibility and definability in the twin theorems. Each of these is linked to 

natural transformations. In addition, we establish a formal account of "spontaneous naturality 

breaking" in the context of Gödel’s independent statements and Tarski’s indefinability. Finally, it 

touches higher order categories. By composing a syntactic category and a semantic category, we 

constructed a 2-Category with two layers of structures. Note that 2-category is one of the current 

research interests in category theory. Further, by decomposing and recomposing the syntactic 

category, we constructed a 3-Category.  

Keywords: Category; Gödel; Tarski; first-order theory; syntax; semantics; structure; high-order 

category; expressibility; definability 

 

1. Mathematical Language as a Monad Structure 

In this paper, we presume the first-order theory [4] without delving into its detailed expansion 

in metamathematics. We conceptualize the first-order theory as a mathematical language and 

formalize it using a monad structure in category theory, referred to as the Gödel charge. This 

approach not only simplifies and clarifies the rich structures inherent in Gödel [4] and Tarski’s work 

[5] but also aligns more effectively with category-theoretic characterizations without compromising 

generality. 

The syntactic and semantic aspects of a first-order theory can be captured using two categories: 

the syntactic category (Γ) and the semantic category (ℕ) [2]. The relationship between these categories 

is mediated by the Gödel charge, which establishes a correspondence between the formal (syntactic) 

world and the arithmetic (semantic) world. 

1.1. Syntactic Category (Γ) 

The syntactic category Γ corresponds to the abstract world of symbols, formulas, and proofs. 

This category encodes the structure of logical expressions and derivations in a formal system. 

Definition 1 (Objects in Γ). The objects of Γ are sorts, formulas, and proofs. Sorts are the basic 

types from which more complex expressions are built. These types are typically the sorts from the 

signature Σ. Formulas are logical expressions involving sorts, function symbols, and relation 

symbols. Formulas are constructed using the logical connectives (∧, ∨, ¬) and quantifiers (∀, ∃). Proofs 
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are sequences of formulas, following rules of inference, that establish the logical derivability of one 

formula from a collection of premises. 

Definition 2 (Morphisms in Γ). Morphisms in Γ correspond to formation rules and inference 

rules. Formation rules describe how to build formulas from terms, function symbols, and relation 

symbols. Inference rules capture logical entailment. Identity morphisms correspond to tautological 

proof steps, where a formula entails itself (P ⇒ P). Composition of morphisms reflects the transitivity 

of logical entailment (if φ ⇒ ψ and ψ ⇒ χ, then φ ⇒ χ). 

The syntactic category Γ can be endowed with a monadic structure. This arises from the 

observation that Γ is a free Cartesian category generated by the signature Σ. The free Cartesian 

construction naturally defines a monad on the underlying category of sorts. The monad T on the 

category of sorts is given by the free functor that takes a set of sorts S and produces the set of all finite 

products, function symbols, and formulas that can be generated from those sorts. The unit of this 

monad injects a sort into the space of terms (viewing a sort as a trivial term), and the multiplication 

fla�ens nested products and formulas. This monadic structure reflects the compositional nature of 

logical derivations, allowing terms and proofs to be built recursively. 

1.2. Semantic Category (ℕ) 

The semantic category ℕ captures the concrete meaning of the syntactic structure. While the 

syntactic world is abstract and symbolic, the semantic world is concrete and typically based on 

arithmetic interpretations or arithmetic-theoretic models.  

Definition 3 (Objects in ℕ). The objects in ℕ are Gödel numbers and arithmetic structures. Gödel 

numbers encode syntactic objects (like formulas, terms, and proofs) as natural numbers. Arithmetic 

structures are sets (like ℕ or ℤ) that interpret the sorts from Σ as concrete domains of computation. 

For example, if A is a sort in Σ, its interpretation in ℕ could be the set ℕ (natural numbers). 

Definition 4 (Morphisms in ℕ). Morphisms in ℕ are defined using arithmetic operations and 

logical rules. These morphisms include functions on Gödel numbers, such as primitive recursive 

functions. Morphisms also reflect the way logical entailments are mapped into arithmetic statements. 

Identity morphisms in ℕ are functions that map a Gödel number to itself. Composition of morphisms 

in ℕ follows the composition of arithmetic functions. 

The semantic category ℕ can also be endowed with a monadic structure. The monadic structure 

on ℕ can be seen as the list monad, where each syntactic object (like a proof) is assigned a Gödel 

number, and recursive computations on these numbers follow the structure of primitive recursive 

functions. The monad's unit injects an arithmetic object (like a number) into the computational 

context, and the multiplication of the monad corresponds to concatenating computational steps. 

2. Gödel Numbering as a Functor 

Gödel numbering is one of the key techniques used in Gödel’s incompleteness theorem [4] and 

Tarski’s indefinability theorem [5]. The necessary backgrounds of Gödel’s theorem and Tarski’s 

theorem are given in the appendix. Below we explain the Gödel numbering method. Mathematical 

language always deals with symbols, formulas, and derivations. For a mathematical framework, even 

though its base domains (such as real or complex fields) are uncountable infinities (i.e., the 

continuum), the number of symbols used to denote variables, functions, operators, etc., is infinite but 

countably many. Thus, we can have an effective procedure to mechanically assign a unique odd 

number to each and every symbol in order, called Gödel number. For a given symbol e, its Gödel 

number is wri�en as �(�), which can be seen as a function or an odd number. A formula is a finite 

string of symbols, wri�en as 

� = �1�2 … … ��        (1.1) 

The Gödel number of a formula can be calculated by 

�(�) =  ��
�(��)��

�(��)…��
�(��)   (1.2)

 
where �� is the first i prime numbers in its natural order, and �(��) is the Gödel number of the ith 

symbol in the formula L. A derivation is a finite sequence of formulas, wri�en as 

���(�) ≡ < �1, �2, …, �� >   (1.3) 

The Gödel number of a derivation can be calculated by 
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 �(�) =  ��
�(��)��

�(��)… ��
�(��)   (1.4)

 
where �(��) is the Gödel number of the ith formula in the derivation sequence. The Gödel number of 

any given formula or derivation is always an even number, which is also a composite number. 

The above method is called Gödel numbering [4]. The beauty and power of Gödel numbering is 

that, based on the so-called first theorem of arithmetic (i.e., Pair forming LCM), from a given Gödel 

number we can uniquely recapture the original derivation, the original formula, or the original symbol 

used in the context. 

Note that logic has nothing to do with the content. So that the first-order characterization in terms 

of category theory only requires three conditions. First, the syntactic components can be represented 

by a Gödel number. Second, any given derivation of a particular kind and its Gödel number can be 

used interchangeably. Third, it allows to introduce new predicates or function terms. 

Essentially, Gödel numbering encodes symbols, formulas, and proofs into natural numbers. This 

encoding can be viewed as a functor between the syntactic category Γ and the semantic category ℕ. 

The functor maps each object in Γ (such as a symbol, formula, or derivation) to its corresponding 

Gödel number in ℕ. For morphisms in Γ, such as formation and inference rules, the functor assigns 

arithmetic operations that mirror these logical transformations in ℕ. Consequently, the Gödel 

numbering functor preserves the logical structure of derivations, enabling a categorical 

correspondence between syntactic operations and their semantic counterparts. 

In addition to this, it is possible to define an adjoint functor from the semantic category ℕ back 

to the syntactic category Γ. This adjoint functor essentially reconstructs the syntactic representation 

corresponding to a given Gödel number in ℕ. For each object (a Gödel number) in ℕ, the adjoint 

functor identifies the corresponding syntactic construct in Γ, such as a symbol, formula, or derivation. 

Morphisms in ℕ, which are arithmetic operations on Gödel numbers, are mapped to syntactic 

morphisms like logical inference steps. This adjoint relationship establishes a bidirectional 

correspondence between the syntactic and semantic realms, reinforcing the duality that underpins 

Gödel’s incompleteness theorem. 

This adjunction can be captured via the concept of Gödel charge, which connects the syntactic 

world (Γ) to the semantic world (ℕ) via monadic structures. Specifically, the Gödel charge is a 

monadic natural transformation from the monad on Γ to the monad on ℕ. This transformation maps 

objects in the syntactic monad (like terms and proofs) to objects in the semantic monad (Gödel 

numbers). It reflects how the composition of terms in Γ maps to the composition of arithmetic 

operations on Gödel numbers in ℕ. 

3. Gödel Numbering as A Limit of Functors 

We have now defined the Gödel functor G: Γ → ℕ and its adjoint G*: ℕ → Γ. In fact, all possible 

functors from the syntactic category Γ to the semantic category ℕ form a new category, denoted as 

Fun(Γ, ℕ). We now demonstrate that the Gödel functor G serves as a limit of this category [1], 

meaning that it is the most "concise and informationally complete" functor among all possible 

functors in Fun(Γ, ℕ). 

A functor G: Γ → ℕ is said to be a limit of a category of functors Fun(Γ, ℕ) if for every functor F: 

Γ → ℕ, there exists a unique natural transformation η: F → G. This property implies that every functor 

in Fun(Γ, ℕ) factors through G in a unique way, making G a universal recipient for natural 

transformations from any other functor F to ℕ. 

To understand why the Gödel functor serves as a limit, consider how it interacts with the 

syntactic and semantic categories. The objects of Γ include symbols, strings of symbols (formulas), 

and derivations. The Gödel functor G maps each of these objects to their Gödel numbers in ℕ. For 

morphisms (which correspond to formation rules and inference rules) in Γ, the Gödel functor applies 

arithmetic transformations to the corresponding Gödel numbers. 

Suppose F: Γ → ℕ is an arbitrary functor. For every object X in Γ, F(X) is an object in ℕ. To define 

a natural transformation η: F → G, we assign to each object X ∈ Γ a morphism ηX: F(X) → G(X) in ℕ. 

By the definition of Gödel numbering, each element in ℕ corresponds to a unique syntactic construct 

in Γ. Thus, for each X ∈ Γ, there is a canonical mapping from F(X) to G(X), since G explicitly tracks 

the syntactic structure of X via its Gödel number. 
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The uniqueness of η follows from the fact that the Gödel numbering scheme is injective and 

reflects the structure of Γ in a complete and lossless manner. In essence, every syntactic structure in 

Γ has a unique image in ℕ via the Gödel numbering. Any other functor F mapping from Γ to ℕ can 

be related to G by a natural transformation, but since G retains all the structural information, the 

transformation is unique. In formal terms, for every object X ∈ Γ, we have a commutative diagram of 

the form: 

�(�) 
�(�)
�⎯�  �(�) 

↓ ��      ↓ �� 

�(�)   
�(�)
�⎯�    �(�)

 

for every morphism f: X → Y in Γ. This commutative square ensures that the transformation 

from F to G respects the morphisms in Γ and is, therefore, a natural transformation. 

This universal property [2] highlights the fundamental role of Gödel numbering as a canonical 

method for encoding syntactic objects as semantic objects. In the categorical perspective, G captures 

the essence of the Gödel numbering process, and its status as a limit reflects its role as the most 

"informationally complete" mapping from syntax to semantics. 

4. The Expressibility Functor 

Definition 5 (Expressibility). In the first-order theory, if the relation �(�1, … , ��) holds in N, 

then �(��, … , ��) is provable in �. If the relation �(�1, … , ��) does not hold in N, then ¬�(��, … , ��) 

is provable in �.  

We can write this definition in a fully symbolic format: 

(i)   ⊨� �(�1, … , ��) ⟶ ⊢� P���, … ��,�.  

  (ii)  ⊭ N �(�1, … , ��) ⟶ ⊢� ¬P���, … ��,�. 

Now we can define two categories in an abstract but simple way: 

Definition 6. The Category � contains three objects and two morphism arrows below:  

Object 1. M� (the syntactic monad stands for the language of the first-order theory); 

Object 2. ⊢� P���, … ��,�; 

Object 3. ⊢� ¬P���, … ��  �. 

Arrow 1. The reducing arrow from an object to the monad.  

Arrow 2. The contradiction arrow between Object 2 and Object 3. 

Definition 7. Category ℬ contains three objects and two morphism arrows below:  

Object 1. M� (the semantic monad stands for the language of the first-order theory); 

Object 2.  ⊨� R(��, … , a�); 

Object 3.  ⊭ NR(��, … , ��); 

Arrow 1. The reducing arrow from an object to the monad.  

Arrow 2. The contradiction arrow between Object 2 and Object 3. 

Now we can define the Experessibility functor from Category ℬ to Category �: 

(i)   ⊨� �(�1, … , ��) ⟶ ⊢� P���, … ��,�; 

(ii) ⊭��(�1, … , ��) ⟶ ⊢� ¬P���, … ��,�; 

(iii) ��  ⟶  ��. 

This functor fully captures the information in the definition of expressibility. We denote this 

functor as F. Obviously, this is a logical factor. Interestingly, from the perspectives of category theory, 

we may also construct an anti-logic functor from ℬ to � as follows.  

Definition. An anti-logic functor, denoted as D, is defined as: 

(i)   ⊨� �(�1, … , ��) ⟶ ⊢� ¬P���, … ��,�; 

(ii)  ⊭� �(�1, … , ��) ⟶ ⊢� P���, … ��  �; 

(iii) �B  ⟶  �A. 

Actually, D is well-de�ined in terms of category theory. Obviously, there exists a natural 

transformation from D to F. Here the meaning of the naturality tells us not only the difference 

between being logical and anti-logical, but also the relation of them. Being logical or being anti logical 

are both based on what we mean by logic. However, this question goes beyond the scope of category 
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theory. The natural transformation (from D to F) also indicates that category theory focuses on the 

abstract structures. Any contents are only represented by objects and arrows.  

5. The Definability Functor and Functor Breaking 

Consider a mother statement �(�)  and assume its Gödel number ���(�)� = � . We may 

construct a self-reflective daughter statement � = �(�
�⁄ ), assume ���(�)� = �. Given this, we can 

introduce a semantic relation d(m, n). According, we can syntactically have D(m, n). Tarski introduced 

the notion of definability, which says that d(m, n) defines D(m, n).  

Now we can introduce the definability functor, denoted as D.  Let � be the syntactic category, 

which contains a monad and a family of objects in forms of D(m, n). Let B be the semantic category, 

which contain a monad and a family of objects in form of d(m, n). Then we can define a definability 

functor from ℬ to � with map below: 

(i) the monad in ℬ ⟶ the monad in �; 

(ii) each d(m, n) in ℬ ⟶ the corresponding D(m, n) in �.  

Obviously, this is a well-defined one-to-one mapping. However, a problem will occur shortly. 

Tarski constructed a statement with a free variable x below:  

�(�) = ∀���(�, �) → ¬�(�)�   (5.1) 

Assume its Gödel number  ���(�)� = �. We can construct a self-reflective statement, 

� = �(�
�⁄ ), by substituting m for x. Assume its Gödel number  �(�) = �. Thus, by the definition 

earlier, we can have d(m, n), which defines D(m, n). In this sense, we say d(m, n) is a model of D(m, 

n). By (5.1), we can logically infer ∀y¬T(y). If the truth predicate � is definable, it supposes to have 

a model  

� = { �� | � ⊨ ��, meaning L� is presupposed to be true under �}. 

Tarski’ indefinability theorem (see Appendix) show that this mode X is null. Thus, predicate T 

is indefinable. Notice that T(y) is part of original mother formula P(x). Hence, the indefinability of T 

is carried by the Gödel number m of P(x), and this information is transferred in to the daughter 

formulas L and its Gödel number n, and continue to be transferred into d(m, n) and D(m, n). In other 

words, the definability functor D contains the information of indefinability of T. We refer this 

phenomenon as spontaneous functor breaking.  

6. Gödel Proof and Independent Statement 

Gödel theorem (1931) has a special but interesting structure, which can be characterized in 

category theory. Gödel theorem involves two categories, the syntactic category � and the semantic 

category ℬ, and the Gödel theorem itself serves as a functor between the two categories and it also 

causes the spontaneous functor breaking.  

The category � contains the following objects: a monad and a family of triplets, denoted as <O1, 

O2, O3>, which is defined as follows.  

O1 stands for a statement with one free variable, write P(x), called the mother sentence.  

O2 stands for a self-reflective statement � = ���
�� �, where � = �(�(�)). 

O3 stands for the proof of S, denoted as Bew(S).  

� contains only two families of morphism arrows. One is the identity arrow of each triplet, and 

the other is from any triplet to the monad.   

The category ℬ contains the following objects: a monad and a family of ordered triplets, denoted 

as < ��, ��, �� >  , which are defined as below:  �� = ���(�)� ; �� = �(�) ; �� = �����(�)� .  ℬ 

contains two morphism arrows. One is from a mother statement P(x) to its mother statement S, and 

the other is from S to Bew(S). ℬ contains only two families of morphism arrows. One is the identity 

arrow of each triplet, and the other is from any triplet to the monad.   

It is obvious that there is a one-to-one bidirectional mapping from  A to B and  ���� versa. We 

name it as the Gödel proof functor. However, there is a problem up to this point. Gödel constructed 

a statement as below: 

�(�) = ∀�¬�(�, �)   (6.1) 
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Gödel found (1931) that for this particular mother formula, �(�), in its corresponding triplet 

<O1, O2, O3>, O3 is null; i.e., Bew(S) does not exist! This means that it is no model triplet < ��, ��, �� > 

in ℬ. We refer this phenomenon as spontaneous proof breaking. Gödel also found the same situation for 

¬�. Thus, � is called an independent statement.  

7. Higher Order Categories 

Consider the syntactic category Γ and the semantic category ℕ introduced in Section 1. We can 

define a new general category Π, which contains two objects  Γ and ℕ. We know that the objects in Γ 

are one-one-corresponding to their Gödel numbers in ℕ. Let � be the Cartesian product of Γ and ℕ 

[3], we have  

� = Γ× ℕ = {(x, g(x))} 

where � ∈ Γ and g(x) ∈ ℕ. Thus, the newly introduced general category Π contains two objects 

and one morphism. This is the first structural layer.  

From Section 1, Γ and ℕ are well-defined categories, each with its own structures. This is the 

second structural layer. In other words, the new category Π  has two layers of structures. The 

category of this kind is called 2-Category [1]. Notice that for the 2-category Π, the arrows in the first 

layer structure and the second layer are all morphisms but not functors.  

Similar treatment can be applied to the category Γ alone. As defined earlier, Γ contains three 

families of objects, namely, symbols, well-formed-formulas, and proofs. It also contains two arrows, 

one is for formation rules and the other for inference rules. Now we decompose Γ into two categories. 

Γ�  contains only two families of objects, symbols and formulas, and one arrow stands for the 

formation rules. Γ� contains two families of objects, formulas and proofs, and one arrow stands for 

inference rules. Then, by composing Γ� and Γ�, it yields a new category Γ�, which add a third layer 

of structures to the grandmother category Π , write Π� . Up to this point, we may refer Π�  as a 3-

category.  

8. Conclusions 

In this paper, we have provided a unified categorical treatment of Gödel’s incompleteness 

theorem and Tarski’s indefinability theorem. By treating first-order logic as categories, we introduced 

the concept of Gödel charge as a monadic structure and demonstrated how syntactic and semantic 

categories interact via Gödel numbering, expressibility, and definability. The main contributions are 

summarized as follows: 

Gödel charge: The syntactic category has a free Cartesian monad for constructing terms and 

formulas, while the semantic category has a list monad on Gödel numbers. The Gödel charge acts as 

a monadic natural transformation linking the two.  

Gödel Numbering as a Limit Functor: We established that Gödel numbering is a limit functor 

between the syntactic category Γ and the semantic category ℕ. This functor serves as the most 

complete mapping, preserving all syntactic information. 

Expressibility and Definability Functors: We formalized the concepts of expressibility and 

definability as categorical functors. While the expressibility functor retains natural transformations 

for provability, the definability functor experiences spontaneous functor breaking, reflecting Tarski’s 

theorem on the indefinability of truth as a predicate. 

Spontaneous Functor Breaking: We formalized how the definability and proof functors experience 

“spontaneous breaking” when dealing with self-referential statements. This concept provides a 

categorical insight into the limitations of formal systems in representing truth and provability. 

Higher Order Category: By composing a syntactic category and a semantic category, we 

constructed a 2-category with two layers of structures. Note that 2-category is one of the current 

research interests in category theory. By further decomposing and recomposing a syntactic category, 

we constructed a 3-category with three layers of structures.  

By unifying Gödel’s and Tarski’s theorems through the lens of category theory, we offer a new 

perspective on the duality between syntax and semantics. The framework of natural transformations, 

adjoint functors, and functor limits serves as a robust mathematical foundation for exploring the 

intrinsic limitations of formal logical systems. 
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Appendix.  Twin Theorems of Gödel and Tarski [6] 

We assume readers are familiar with the first order logic (PL), the first order theory (�), and the 

arithmetic theory (N). Intuitive natural numbers used in N are given by �, and the corresponding 

enumerers used in � are denoted by bold �. Enumerers are constructed by starting from the empty 

set ∅ and the so-called successor function, such that ∅ = �, {∅} = �, {∅, {∅}} =�, and so forth. In the 

following, we introduce Gödel’s theorem first, and Tarski’s theorem second. 

Definition of Expressibility: If �(�1, … , ��) holds in N, then �(��, … , ��) is provable in �. If �(�1, 

… , ��) does not hold in N, then ¬�(��, … , ��) is provable in �. 

Definition of Consistency: For any given formula "�" in �, either � is provable, or else ¬� is provable, 

but not both.  

For a given formula L, denote its proof by Bew(L). Assume �(�) = � and �(���(�)) = �, where � 

and � are Gödel numbers. We introduce a relation �(�, �) in �, and define a function term �(�, �) in 

�. Gödel constructed a formula, 

�(�) = ∀�¬�(�, �), 

in which � is a free variable. Let �[�(�)] = �, by substituting � with �, we can use, 

� = �(�) = ∀�¬�(�, �) 

This is a so-called self-reflection sentence. 

Gödel First Theorem Neither � nor ¬� is provable in �. 

We now briefly sketch a proof. First, we prove that � is not provable. Assume for contradiction 

that � is provable, then it must have a proof, write ���(�), let �(���(�)) = � and �(�) = �, so that �(�, 

�) in �. By the expressibility, �(�, �) must be provable in �; but � said that for any � , ¬�(�, �). This 

contradiction shows that the assumption is impossible. Hence, � is not provable in �. 

Second, we prove that ¬� is unprovable in �. Assume for contradiction that ¬� is provable. Then 

by consistency, � is unprovable, so that for any j, �(���(�)) ≠ �. Hence, for any j, �(�, �) does not hold 

in �; by expressibility, ¬�(�, �), for any �. As such, by �_�����������, we have ∀�¬�(�, �), which 

means � is provable in �. This contradicts to the assumption that � is unprovable. Thus ¬� is 

unprovable in �. 

The above result shows that the consistency of � is independent of �. Now let us speculate 

about what � expresses. � is a self-reflection sentence, it says that � is unprovable, and we have just 

proved it above; thus, � is true, but not provable in �, which by definition means that � is incomplete. 

This is the well-known Gödel Incompleteness Theorem. We now turn to Tarski’s indefinability 

theorem. 

Definition of Definability: Let �(�(�)) = �, and �(�(�)) = �, we can hold a binary relation �(�, 

�) in �. Accordingly, we say �(�, �) is definable in �, meaning �(�, �) has a model, which is not null. 

Tarski introduced a new predicate of being true, denoted by T, and he constructed a sentence 

below: 

�(�) = ∀�[�(�, �) → ¬�(�)] 

Let �[�(�)] = �, substituting � by �, we have 

�(�) = ∀�[�(�, �) → ¬�(�)] 

Let �[�(�)] = �, we have �(�, �) which holds in �; hence, �(�, �) is definable in �. Then, by 

standard logic, we can infer ¬�(�). Now we show that T is not definable, meaning its model is null. 

Denote �(�) by L.If L is pre-assumed as true, denote it by ��, and write �� = �(�). As such, we 

may assume for contradiction that T had a model X; 

� = { �� | � ⊨ �;  i. e. , �� is presupposed to be true under �} 

Since �� = �( ��) , i.e., �� is the Gödel number of �(�). By the definition of �(�, �),we have 

�(�, ��), hence �(�, ��) is definable in �. However, recalling the logical structure of �(�), 

which is a universally quantified conditional statement, we may infer ¬�(��), i.e., �� is not true in 

model �; hence, �� ∉ �, which shows that � may only be null. In other words, since T has no model, 

the truth predicate function is arithmetically undefinable. 
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