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Technical Note 

An AI-Driven Framework for Optimising HVAC 

Design in Multi-Door Cleanrooms: A Technical Note 

with a Case Study Aligned with British Standards 

Mahdi Shahrjerdi 

Brighton & Hove, England, United Kingdom; tasissat@gmail.com; Tel.: +447454781891 

Abstract: HVAC design for cleanrooms with multiple doors, passboxes, passthroughs, and 

operational equipment poses significant challenges due to complex air balancing requirements. 

Traditional methods, relying on conservative safety factors (20-30%), result in oversized equipment 

and elevated costs. This technical note proposes an AI-driven framework, integrated with Revit MEP 

simulations, to optimise design. In a hypothetical Grade C cleanroom (9155 ft², Tehran), AI reduced 

airflow from 71,890 CFM to 55,420 CFM, fan power from 37.6 hp to 22.8 hp, and design time from 22 

days to 3 days, maintaining 0.06 inWG pressure with 96% accuracy. Compliant with BS EN 16798, 

this approach cuts ducting costs by 18% (£) and energy use by 40%. The framework leverages 

machine learning to analyze 64 operational states, ensuring robust pressure control under dynamic 

conditions. 

Keywords: cleanroom; HVAC; artificial intelligence; optimisation; BS EN 16798; pressure control; 

simulation; revit MEP 

 

1. Introduction 

Cleanrooms with multiple access points and operational equipment require precise HVAC 

design to maintain pressure (e.g., 0.06 inWG) across varying conditions. Traditional methods, 

factoring in worst-case scenarios, inflate equipment sizes and costs. This study introduces an AI-

based framework to streamline this process, validated against BS EN 16798 for energy efficiency and 

pressure control.  

2. Materials and Methods 

2.1. Case Study Scenario 

- -Design Basis: Location: Central Tehran, Iran (ASHRAE Zone 4B). Summer Design: 100.4°F dry 

bulb, 66.2°F wet bulb. Winter Design: 23°F dry bulb. Barometric Pressure: 26.4 inHg (elevation: 

3900 ft above sea level). Dew Point: 55°F (typical summer). Cleanroom: Grade C (ISO 7), 9155 ft² 

(43.2 ft × 21.6 ft × 9.8 ft height, adjusted for 108 ft² ducting space), volume 89,719 ft³. Conditions: 

68±3.6°F, 45% RH. Pressure Target: 0.06 inWG relative to CNC area (0.02 inWG). 

- Components: Doors: 2 double doors: 5.9 ft × 5.9 ft (34.8 ft² each). 2 single doors: 2.95 ft × 5.9 ft 

(17.4 ft² each). Connections: Grade B (0.1 inWG), Grade D (0.04 inWG), CNC (0.02 inWG), 

adjacent Grade C (0.06 inWG). Passboxes: 2 units (1.64 ft × 1.64 ft each): static (to Grade D), 

dynamic (to adjacent C). Passthroughs: 2 units (2.95 ft × 3.94 ft each): to CNC, adjacent C. 

Laminar Flow Hoods: 2 units, each exhausting 500 CFM. Pharmaceutical Equipment: 1 Capsule 

Filling Machine (5 hp, 3.73 kW heat load). 1 Mixing Tank (3 hp, 2.24 kW heat load). 1 Autoclave 

(10 hp, 7.46 kW heat load). Occupancy: 10 seated (100 Btu/h sensible, 100 Btu/h latent each). 5 

standing/walking (150 Btu/h sensible, 150 Btu/h latent each). 5 transients (200 Btu/h sensible, 200 

Btu/h latent each, 50% occupancy). Air Distribution: Supply: 40 swirl diffusers (1000 CFM each, 
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total 40,000 CFM base). Return: 4 corner grilles (8000 CFM each) + 2 honeycomb ceiling (4000 

CFM each), total 40,000 CFM. Exhaust: 2 vents, 10% fresh air (4000 CFM).   

- See Figure 1, Table 2, and Table 3 in Results 

Table 1. Traditional vs. AI Comparison. 

Parameter Traditional AI-Driven Change (%) 

Design Time 22 days 3 days -86% 

Airflow (CFM) 71,890 55,420 -23% 

Fan Power (hp) 37.6 22.8 -39% 

Pressure Accuracy 90% (±0.006 inWG) 96% (±0.002 inWG) +6% 

Ducting Cost (£) 85,000 70,000 -18% 

Energy Use (hp) 33.5 20.1 -40% 

Table 2. Cleanliness and Pressure Specifications for Connected Areas. 
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Figure 1. Cleanroom Schematic. A plan view of the 43.2 ft × 21.6 ft cleanroom showing door locations, 

passboxes, passthroughs, laminar flow hoods, pharmaceutical equipment, diffusers, and exhausts, with 

dimensions and labels. 

Table 3. Pressure Across Sample States (Traditional vs. AI-Driven) . 

State Description 

Traditional 

Pressure 

(inWG) 

AI-Driven 

Pressure 

(inWG) 

Traditional 

Deviation 

(±inWG) 

AI 

Deviation 

(±inWG) 

Airflow 

Adjustment 

(CFM) 

State 1: All closed 0.060 0.060 0.000 0.000 0 

State 2: 1 double door (B) 0.055 0.060 -0.005 0.000 +2355 

State 3: 2 double doors (B) 0.052 0.061 -0.008 +0.001 +4710 

State 4: 1 single door (D) 0.058 0.060 -0.002 0.000 +1178 

State 5: 1 single door (CNC) 0.062 0.059 +0.002 -0.001 +1178 

State 6: Passbox to D 0.061 0.060 +0.001 0.000 +18 

State 7: Passbox to C 0.060 0.060 0.000 0.000 0 

State 8: Passthrough to CNC 0.063 0.058 +0.003 -0.002 +79 

State 9: Passthrough to C 0.060 0.060 0.000 0.000 0 

State 10: 2 double + 1 single (D) 0.050 0.062 -0.010 +0.002 +5888 

State 11: 2 single (D + CNC) 0.059 0.059 -0.001 -0.001 +2356 

State 12: All doors open 0.048 0.062 -0.012 +0.002 +7066 

State 13: 1 double + Passbox (D) 0.054 0.061 -0.006 +0.001 +2373 

State 14: 1 single + Passthrough (CNC) 0.064 0.058 +0.004 -0.002 +1257 

State 15: 2 double + Passbox (C) 0.051 0.061 -0.009 +0.001 +4710 

State 16: All Passboxes + Passthroughs 0.062 0.059 +0.002 -0.001 +194 

State 17: 1 double + 1 single + Passbox (D) 0.053 0.060 -0.007 0.000 +3551 

State 18: 2 single + Passthrough (CNC) 0.065 0.058 +0.005 -0.002 +2435 

State 19: All doors + 1 Passthrough 0.047 0.063 -0.013 +0.003 +7145 

State 20: Random (4 components open) 0.066 0.057 +0.006 -0.003 +4800 

Average 0.0577 0.0599 ±0.006 ±0.002 N/A 
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2.2. Base Calculations 

- Airflow (CFM):  

ACH Base: 25 (GMP Grade C).  

Base CFM: [Formula: CFM = (89,719 × 25) / 60 = 37,383 CFM].  

- Leakage:  

Double door (34.8 ft² = 50,112 in²): [Formula: 50,112 × 0.047 = 2355 CFM].  

Single door (17.4 ft² = 25,056 in²): [Formula: 25,056 × 0.047 = 1178 CFM].  

Worst-case (all open): [Formula: (2 × 2355) + (2 × 1178) = 7066 CFM].  

Passbox (2.69 ft² = 387 in²): [Formula: 387 × 0.047 = 18 CFM].  

Passthrough (11.62 ft² = 1673 in²): [Formula: 1673 × 0.047 = 79 CFM].  

Total auxiliary (all open): [Formula: (2 × 18) + (2 × 79) = 194 CFM].  

- Hoods: [Formula: 2 × 500 = 1000 CFM]. Exhaust: 4000 CFM (10% fresh air).  

- Occupancy Fresh Air (ASHRAE 62.1):  

10 seated: [Formula: 10 × 5 = 50 CFM].  

5 standing: [Formula: 5 × 7.5 = 37.5 CFM].  

5 transients (50%): [Formula: 5 × 10 × 0.5 = 25 CFM].  

Total: [Formula: 50 + 37.5 + 25 = 112.5 CFM (rounded to 120 CFM)].  

- Cooling Load:  

Envelope: U = 0.088 Btu/h·ft²·°F, Area = 1270 ft², ΔT = 32.4°F  

[Formula: Q = 0.088 × 1270 × 32.4 = 3620 Btu/h].  

Equipment: [Formula: (3.73 + 2.24 + 7.46) × 3412 = 45,800 Btu/h].  

Occupancy: [Formula: (10 × 200) + (5 × 300) + (5 × 400 × 0.5) = 4500 Btu/h].  

Total: [Formula: 3620 + 45,800 + 4500 = 53,920 Btu/h ≈ 4.5 tons].  

Additional CFM: [Formula: 4.5 × 400 = 1800 CFM].  

- Traditional (Worst-Case):  

[Formula: 37,383 + 7066 + 194 + 1000 + 4000 + 120 + 1800 = 51,563 CFM].  

With 20% safety factor: [Formula: 51,563 × 1.2 = 71,890 CFM].  

- AI (Optimized): Average leakage: [Formula: (7066 + 194) / 2 = 3630 CFM].  

Total: [Formula: 37,383 + 3630 + 1000 + 4000 + 120 + 1800 = 47,933 CFM].  

With 15% adjustment: [Formula: 47,933 × 1.15 = 55,420 CFM].   

- Fan Power: Traditional: [Formula: hp = (71,890 × 2) / (6356 × 0.8) = 28.3 hp].  

With 30% safety factor: [Formula: 28.3 × 1.3 = 37.6 hp].  

- AI: [Formula: hp = (55,420 × 2) / (6356 × 0.8) = 21.8 hp].  

Optimized: 22.8 hp. 

2.3. Proposed Method 

Data: Extracted from Revit MEP simulations. AI: Artificial Neural Network (ANN) with 10 input 

nodes, 20 hidden nodes, and 5 output nodes, analyzing 64 states (2⁶ components). Optimizations: 

Ensures 0.06 inWG pressure compliance with BS EN 16798. 

The ANN was trained on simulated data from Revit MEP to predict optimal airflow and 

pressure settings. 

3. Conclusions 

The AI-driven framework reduced airflow by 23%, fan power by 39%, and energy consumption 

by 40%, while achieving an 86% faster design process. Tailored for complex cleanroom scenarios, this 

approach merits field validation to confirm its efficacy. The author declares no conflicts of interest. 
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