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Abstract: In industries like telecommunications and banking, where labeled data is scarce and mis-
predictions cost millions, semi-supervised learning (SSL) and active learning (AL) offer promising
solutions but often falter due to overconfident predictions, redundant sampling, and inflexible pseudo-
labeling thresholds. Traditional approaches tackle these issues separately, limiting their effectiveness
in dynamic, real-world settings. This paper introduces a scalable SSL framework called AdaptiveSSL
that integrates Wasserstein distance for uncertainty calibration, multi-resolution hashing for efficient
diversity-driven sample selection, and Lagrangian optimization for adaptive pseudo-labeling thresh-
olds. By iteratively refining confidence estimates, ensuring representative sampling, and dynamically
adjusting thresholds, our system achieves robust churn prediction with AUC scores up to 0.9326,
outperforming conventional SSL and AL methods by up to 10%, while maintaining execution times
under 90 seconds on large datasets. Tested across four real-world churn datasets, this framework
delivers a practical, industry-ready tool for data-efficient classification, paving the way for broader
adoption in resource-constrained expert systems.

Keywords: semi-supervised learning; adaptive calibration; pseudo-Labeling; diversity sampling;
threshold optimization

1. Introduction

The past decade has seen an unprecedented surge in digital data, reshaping domains such as
healthcare, finance, autonomous systems, and social media. This wealth of information, however,
comes with a persistent challenge: the limited availability of high-quality labeled data. Manual an-
notation, widely regarded as the benchmark for accuracy, is expensive, labor-intensive, and difficult
to scale—particularly in applications like customer churn prediction, where failing to identify at-risk
clients can result in significant financial losses. In contrast, unlabeled data, generated effortlessly
through automated systems, presents a vast and largely untapped resource. This imbalance has
catalyzed the development of semi-supervised learning (SSL) and active learning (AL), two comple-
mentary strategies designed to optimize data use while minimizing human intervention.

SSL enhances model performance by integrating a small pool of labeled data with a much larger
collection of unlabeled data, capitalizing on the structural insights embedded within the latter [1].
Active learning, by contrast, focuses on identifying and labeling the most informative samples from
the unlabeled pool. Recent innovations, such as incorporating self-supervised learning into SSL
frameworks, have demonstrated potential in reducing reliance on labeled data by improving the
quality of pseudo-labels [2]. Despite these advances, both paradigms encounter significant hurdles that
constrain their effectiveness in practical settings. Modern machine learning models, especially deep
neural networks, frequently exhibit overconfidence in their predictions, even when uncertainty is high,
leading to flawed uncertainty estimates that undermine self-training and pseudo-labeling processes [1].
Additionally, conventional uncertainty-based sample selection often prioritizes redundant examples,
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limiting the model’s ability to generalize across diverse data distributions. Compounding these issues,
static pseudo-labeling thresholds fail to adapt to shifts in data characteristics or model performance
during training.

To overcome these limitations, we introduce a semi-supervised framework that integrates three
key advancements: dynamic threshold optimization, diversity-promoting sample selection, and
adaptive calibration. This approach iteratively refines pseudo-label accuracy and model confidence,
drawing inspiration from prior pseudo-labels generated through self-supervised learning [2]. By
addressing the shortcomings of isolated and inflexible methods, our framework offers a robust and
adaptable solution tailored to the complexities of real-world environments.

1.1. Motivation and Problem Definition

The impetus for this research stems from the pressing need to leverage unlabeled data in applica-
tions where errors carry substantial consequences—such as retaining customers in telecommunications
or ensuring accurate diagnoses in healthcare. In these high-stakes contexts, traditional supervised
models often produce predictions with unwarranted confidence, even under uncertain conditions,
which propagates errors when these predictions are repurposed as pseudo-labels. This instability
not only degrades performance but also erodes trust in the training process. Furthermore, existing
SSL techniques, which rely heavily on uncertainty estimates for sample selection, tend to focus on
a narrow subset of ambiguous cases, repeatedly choosing similar examples while overlooking the
broader data landscape. This selective bias hampers generalization. Static or heuristically set pseudo-
labeling thresholds exacerbate the problem, as they cannot adjust to the evolving quality of predictions,
allowing low-quality pseudo-labels to persist and amplify errors over time.

Our framework seeks to address these challenges through a cohesive strategy anchored in three
objectives:

1. Dynamic Prediction Calibration: Implement a mechanism to continuously refine confidence
estimates, ensuring they align with true uncertainty and mitigate overconfidence.

2.  Diverse Sample Selection: Employ methods to select unlabeled samples that reflect the full
spectrum of the data distribution, preventing redundancy and enhancing representativeness.

3. Adaptive Pseudo-Labeling Thresholds: Develop a system that adjusts thresholds in real-time
based on model performance, maintaining the integrity of pseudo-labels throughout training.

By uniting these elements, our approach fosters a resilient learning system capable of harnessing both
labeled and unlabeled data to improve accuracy and robustness.

1.2. Advances and Limitations in Semi-Supervised Learning

Recent progress in SSL underscores the power of combining small labeled datasets with extensive
unlabeled ones to boost accuracy and generalization [1]. Early SSL methods assumed that labeled
and unlabeled data originated from the same underlying distribution—a premise that often does not
hold in real-world scenarios, such as medical imaging, where patient characteristics and image quality
vary widely [3]. Contemporary deep learning models, despite their sophistication, frequently generate
overconfident outputs, skewing uncertainty estimates and complicating self-training processes that
depend on pseudo-labels [4]. Calibration techniques like temperature scaling have been employed to
address this, but they lack the flexibility to adapt to shifting data distributions.

Active learning has similarly evolved, reducing the demand for labeled samples by prioritizing
those with high uncertainty, often measured via entropy or margin sampling. Yet, these strategies
tend to select redundant samples, failing to capture the diversity of the data [5]. Recent efforts
have introduced adaptive thresholding to refine selection [6], though diversity remains a secondary
consideration. Complementary research on uncertainty estimation and noise mitigation [7,8] has
deepened our understanding of SSL and AL, but these studies typically explore issues in isolation
rather than within a unified framework. Meanwhile, semi-supervised transfer boosting demonstrates
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that dynamic thresholding, guided by real-time model evaluation, can curb error propagation [9],
highlighting the value of adaptability.

1.3. Integrating Advances Across Domains

Emerging trends in machine learning emphasize the interconnected nature of SSL and AL chal-
lenges, suggesting that a holistic approach can unlock synergies between calibration, diversity, and
thresholding. For instance, Sohn et al. [10] proposed a dynamic pseudo-labeling strategy that adjusts
thresholds based on ongoing performance, underscoring the importance of adaptability. Berthelot
et al. [11] combined multiple techniques to tackle both calibration and sample diversity, paving the
way for more integrated solutions. In graph classification, semantic prototypes and subgraph-level
uncertainties enhance the handling of unlabeled data [12], refining calibration and providing super-
vision for unknown classes. Qu et al. [13] developed a thresholding method that adjusts confidence
levels according to class frequencies, improving reliability in imbalanced datasets, while Ji et al. [14]
integrated mutual information and error reduction for diverse sample selection. Advances in domain
adaptation, such as joint Wasserstein distance minimization, further stabilize pseudo-labels under
distribution shifts [15], bolstering SSL’s robustness in dynamic contexts.

1.4. Comprehensive Comparison with Recent Studies

Zhou et al. [3] demonstrated that fixed pseudo-labeling thresholds struggle with the variability of
medical imaging data, leading to suboptimal outcomes in tasks like brain lesion segmentation. Xie et
al. [16] found that self-training frameworks suffer from accumulating errors due to poor pseudo-labels,
reinforcing the need for adaptive mechanisms. Minderer et al. [4] highlighted how overconfident
predictions undermine uncertainty reliability, prompting the development of dynamic calibration
methods. Ash et al. [5] noted that uncertainty-based AL often selects redundant samples, limiting
data coverage. Contributions from Rizve et al. [6], Xia et al. [7], and Li et al. [8] offer insights into
uncertainty and noise management, yet their fragmented approaches fall short of addressing SSL and
AL’s multifaceted challenges. Sohn et al. [10] and Yu et al. [17] advance dynamic thresholding, but
often as auxiliary rather than core components. Our framework builds on these findings, integrating
adaptive calibration, diversity, and thresholding into a unified system.

1.5. Identified Gaps and Unresolved Challenges
Despite significant strides, SSL and AL face ongoing obstacles:

e  Static Pseudo-Labeling Thresholds: Fixed thresholds fail to adjust to changes in data quality or
distribution, incorporating unreliable pseudo-labels.

*  Overconfident Predictions: Models overestimate certainty, propagating errors through pseudo-
labels.

¢ Redundant Sample Selection: Uncertainty-driven methods select similar examples, neglecting
data diversity.

¢ Fragmented Approaches: Calibration, diversity, and thresholding are often treated separately,
limiting their combined potential.

* Insufficient Adaptability: Static strategies struggle with evolving data distributions, reducing
effectiveness over time.

¢ Scalability and Efficiency: Computationally intensive methods hinder applicability to large-scale
problems.

Resolving these gaps is critical for deploying SSL and AL in real-world settings.

1.6. Synthesis of Contributions and Novel Framework

Our proposed framework addresses these challenges with a unified, adaptive system:
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1.  Adaptive Calibration and Reliable Uncertainty Estimation: A reweighting mechanism, leverag-
ing Wasserstein temperature scaling and cross-validation, refines confidence estimates to reflect
true uncertainty, reducing overconfidence risks [15].

2. Diversity-Promoting Sample Selection: A linear-time sampler using multi-resolution hashing
ensures selected samples represent the full data distribution, avoiding redundancy.

3. Dynamic Threshold Optimization: A Lagrangian-based optimizer adjusts pseudo-labeling
thresholds based on real-time performance, minimizing error propagation.

4.  Scalability and Integration: Efficient design enables scaling to large datasets, with each compo-
nent enhancing the others’ effectiveness.

This framework not only overcomes individual limitations but also delivers a robust, adaptable
solution for diverse, evolving data landscapes.

1.7. Structure of the Paper

The remainder of the paper is structured as follows. In Section 2, we introduce the proposed
model, explaining its key components and methodologies in detail. Section 3 provides an overview of
the datasets used, along with data preprocessing and feature engineering techniques. In Sections 4 and
5, we present extensive experimental results, comparing our approach with several baseline models,
discusses the computational efficiency of the proposed framework and conducting an ablation study
to assess the contribution of individual components. Section 6 provides a statistical comparison of the
proposed model against various baselines, incorporating multiple statistical tests and performance
analysis techniques, including conditional entropy distribution and ROC curves. Finally, Section 7
concludes the paper by summarizing the key findings, discussing limitations and outlining potential
directions for future research.

2. Proposed Model

In this paper, we introduce an integrated semi-supervised learning framework called Adap-
tiveSSL that combines adaptive probability calibration, diversity-promoting sampling and dynamic
pseudo-label threshold optimization into a unified iterative process. The primary objective is to
enhance classifier performance by effectively incorporating large-scale unlabeled data into the training
procedure. In the following subsections, we describe each component of the framework in detail and
compare the proposed approach with multiple alternative methods to justify our design choices.

2.1. Base Classifier: LightGBM

The base classifier chosen for this framework is LightGBM (Light Gradient Boosting Machine)
[18], a gradient boosting decision tree method. Let f : RY — [0,1]X denote the mapping performed by
the classifier, where d is the dimensionality of the input space and K is the number of classes. For an
input sample x € RY, the classifier outputs a probability vector

PK‘(X)

with YK | pr(x) = 1. LightGBM is selected due to its lightweight structure, fast training speed,
and low memory consumption. These properties are crucial when processing large datasets and
performing multiple iterations in a semi-supervised context. In contrast to more complex deep models,
LightGBM achieves competitive performance with fewer computational resources, making it well-
suited for iterative pseudo-labeling procedures [19]. Furthermore, LightGBM incorporates L1 and
L2 regularization to prevent overfitting, which is crucial in semi-supervised learning where noisy
pseudo-labels can exacerbate this issue. Hyperparameters such as n estimators, learning rate, number
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of leaves and feature fraction are tuned using ROC AUC via a randomized search procedure. We use
RandomizedSearchCV in our implementation to efficiently explore the hyperparameter space and
identify the configuration that maximizes performance on a validation set [20].

2.2. Adaptive Calibration

Overview: A fundamental challenge in classification models is the tendency to produce over-
confident predictions, leading to miscalibration and unreliable uncertainty estimates. To mitigate this
issue, we introduce an adaptive calibration framework that systematically adjusts the predicted class
probabilities. Our objective is to ensure that the output probabilities align with the true likelihood of
each class, thus enhancing the reliability of confidence estimates [21].

Our approach consists of two major components:
¢  Temperature scaling, where the temperature parameter is dynamically adjusted based on an

empirical measure of confidence dispersion.

*  Post-hoc calibration using cross-validation via Calibrated Classifier, which ensures robustness

against overfitting [22].

The complete procedure is outlined in Algorithm 1.

Algorithm 1 Adaptive Calibration

Require: Classifier f, unlabeled data X;;, small constant ¢ > 0
Ensure: Calibrated probabilities P and uncertainty estimates H
1: Compute predicted probabilities: P «— f.predict_proba(X;)
Compute confidence scores: c(x) = maxj<x<g Px(x) for all x € Xy;
Sort confidence scores in ascending order
Compute empirical Wasserstein distance dyy between confidence scores and a uniform distribution
Set adaptive temperature: T < 1+ 2.5 tanh(dy - K)

Apply temperature scaling:
exp( ln(Pk (’12() +£) )

S Uity

7: Compute uncertainty using Rényi entropy:

Py(x) «

H(x)=— In<i Pe(x)? + s)
k=1

8: return P and H

Mathematical Formulation:

For an input x € RY, the classifier produces a probability vector p(x), where py(x) represents the
predicted probability of class k. We define the confidence score as:
c(x) = max pg(x).
(1) = max pe(x)
Let {xj}?gl denote the set of unlabeled samples, and define their corresponding confidence scores as
{e(x)) 7;11 Sorting these confidence scores in ascending order yields the ordered sequence {c(; e
To measure the deviation between this empirical confidence distribution and a perfectly uniform
distribution, we introduce the uniform quantile sequence:

1 i—1
+

, iZl,...,I’lu.
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The discrepancy between these distributions is quantified using the empirical Wasserstein distance
[23]:

1 &

ui=1

Ciy —4qi

Theoretical Justification: The Wasserstein distance is selected for its ability to capture both
the magnitude and structural shifts in the distribution of confidence scores. This dual sensitivity
ensures that even subtle calibration mismatches—indicative of overconfident or underconfident
predictions—are effectively quantified as formalized in [24]. In our framework, this property directly
informs the adaptive temperature parameter:

T =1+ 2.5 tanh(dyy - K),

which scales with both the confidence dispersion dyy and the number of classes K, thus preventing
excessive smoothing while properly adjusting for uncertainty.

2.2.1. Comparative Analysis of Distance Metrics

In order to get a deeper insight into why the Wasserstein distance has been selected, the compari-
son with other popular metrics for distributional similarity measures is provided. Table 1 summarizes
the key advantages and disadvantages associated with the Kullback-Leibler (KL) divergence, total
variation (TV) distance, Hellinger distance and Wasserstein distance. While the Kullback-Leibler
divergence is highly sensitive to distributional shape changes and the total variation distance is
straightforward to interpret thanks to being bounded, both measures ignore the spatial organization of
confidence scores. The Hellinger distance provides symmetry and demonstrates robustness against
tiny fluctuations. however, it is not very successful at capturing the underlying geometric structure. In
contrast, the Wasserstein distance naturally unites magnitude and geometric perspectives, which is
especially useful for stable calibration.

Table 1. Comparison of Distance Metrics for Calibration

Metric Key Strengths Limitations

KL Divergence Sensitive to distribution shape Asymmetric; unstable with low probabilities
TV Distance Bounded and straightforward Ignores underlying data geometry

Hellinger Distance Symmetric; robust to small changes | Limited in capturing spatial structure
Wasserstein Distance | Integrates magnitude and geometry | Higher computational cost

Hyperparameter Rationale: The factor 2.5 in the temperature equation was determined through
empirical validation. Extensive experiments showed that this value provides an optimal balance
between calibration sensitivity and stability, ensuring that T remains within a practical range across
different datasets. Too high a value would lead to excessive smoothing, whereas a lower value would
limit adaptivity.

Once the temperature is set, the calibrated probabilities are obtained via temperature scaling [25]:

exp( R0

()

Finally, uncertainty is quantified using Rényi entropy of order 2 [26]:

Pr(x) =

K
H(x) = —ln<2 pr(x)? +€>.
k=1

Rényi entropy is particularly useful as it amplifies differences in high-confidence regions, providing a
more informative measure of predictive uncertainty.
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2.2.2. Rationale and Comparison: Adaptive Calibration

The proposed adaptive calibration mechanism overcomes the limitations of traditional static
methods by dynamically adjusting the temperature parameter based on the empirical confidence
distribution. Additionally, we incorporate CalibratedClassifierCV from scikit-learn [27] with a 2-
fold cross-validation strategy to further improve reliability. The 2-fold configuration ensures that
the calibration model is trained on separate data partitions, reducing overfitting and enhancing
generalization. Table 2 provides a comparative analysis of various calibration methods.

Table 2. Comparison of Calibration Methods

Method Adaptivity Robustness Complexity
Static Temperature Scaling No Low O(nylognyy)
Platt Scaling No Moderate O(ny)

Isotonic Regression No High (data-dependent) | O(nylogny)
Proposed Adaptive Calibration Yes Very High O(ny lognyy)

As illustrated in Table 2, while methods such as isotonic regression offer high robustness, they
lack adaptivity over iterations. Our proposed method, which combines dynamic temperature scaling
with cross-validation, achieves both adaptivity and high robustness. Robustness here refers to the
method’s ability to maintain calibration performance even in the presence of noisy data or model
misspecification.

The workflow of adaptive calibration is illustrated in Figure 1. The diagram provides a step-by-
step visualization, emphasizing the Wasserstein-based temperature adjustment and entropy-based
uncertainty estimation.

Tnput: p(x) - Compute Set
nput: pix | c(x) = max pi(x) T =1+2.5 tanh(dy - K)
A
A Y
Sort R Calibrate
{ew? Tldwl  plx) |l

Y

Compute
H(x)

Figure 1. Workflow of the Adaptive Calibration component.

2.3. Diversity-Promoting Sampling

After calibration, to ensure that the selected pseudo-labeled samples are representative of the
broader unlabeled data distribution, we employ a diversity-promoting sampling strategy based on
the Linear Diversity Sampler [28]. This method aims to select a diverse subset of samples with
approximately O(n) complexity, where n is the number of unlabeled samples. The steps of the Linear
Diversity Sampler are outlined in Algorithm 2.
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Algorithm 2 Diversity-Promoting Sampling

Require: Unlabeled data X € R"*¥, target sample count T, approximate rank r, number of hyper-
planes 7ppanes
Ensure: Selected indices Igglected
1: Dynamically adjust r < min(r, min(n,d) — 1) to ensure a valid SVD decomposition
2: Compute reduced representation via truncated SVD: obtain U, s, _ such that

X~Uzv',

and set X,oq + U diag(s)
3: For each geometric scaling factor & € {0.5,1.0,2.0}:

e Scale the reduced data: X, < a - Xieq

*  Generate 11pjanes random hyperplanes by sampling each hyperplane w € RF from a standard
normal distribution and normalizing it as

W —

w .
[wl’
e Compute binary partition codes for X, as sign(X, W)

4: Concatenate the binary codes from all scaling factors horizontally and convert them to integers.

5: Compute a unique hash for each data point by applying a hash function to the tuple of concatenated
binary codes, and extract the corresponding unique indices.

6: If the number of unique indices is less than T, employ a fallback mechanism by randomly selecting
additional indices from X until T samples are obtained.

7. return The first T indices from the set of unique indices as Iggjected

The Linear Diversity Sampler leverages several techniques to achieve efficient and effective
diversity sampling:

1. Dimensionality Reduction with SVD: Initially, Singular Value Decomposition (SVD) [29] is
applied to reduce the dimensionality of the unlabeled data. Specifically, we compute the truncated
SVD of the data matrix X € R"*?, approximating it as

X ~uzvrT,

where U € R"*¥ is a matrix of left singular vectors, & € R¥*K is a diagonal matrix of singular
values, and V € R¥*K is a matrix of right singular vectors. We then project the data into a
lower-dimensional subspace by computing

Xreq = U diag(s).

The rank k is set to approx_rank, dynamically adjusted to be no larger than min(n,d) — 1 to
ensure a valid decomposition. This step reduces the computational cost of subsequent hashing
operations and captures the principal components of the data.

2. Multi-Resolution Hashing: After dimensionality reduction, multi-resolution hashing [30] is
performed to capture diversity at multiple scales. The reduced data X,.q is scaled by geometric
factors of 0.5, 1.0, and 2.0, resulting in:

Xo5=05- Xredr X0 = Xred/ X0=20-" Xred-

For each scaled version, 71pjanes random hyperplanes are generated. Each hyperplane is defined
by a normal vector w € R¥, sampled from a normal distribution and normalized by dividing by

its norm:
w

W <— .
[wl
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The partition code for a data point x € R¥ is given by

sign(xT ),

which yields a binary code [31]. This process generates a set of binary partition codes for each
data point at each resolution.

3. Unique Hash Selection: The binary partition codes from all scaling factors are horizontally
stacked and converted to integers. A unique hash for each data point is computed by applying a
hash function (e.g., Python’s built-in hash function) to the tuple of concatenated binary codes.
These unique hash values are then used to identify a set of unique samples.

4.  Fallback Mechanism: In cases where the number of unique hashes is below the target sample
size, a fallback mechanism is employed. Specifically, the sampler randomly selects additional
samples from the unlabeled data until the desired number of samples is reached. This ensures
that the diversity sampler always returns exactly T samples.

The computational complexity of the Linear Diversity Sampler is approximately O(n) due to the
efficiency of the truncated SVD and the linear-time operations involved in multi-resolution hashing
and unique hash selection. The diversity of the selected samples ensures that the model is exposed to a
wide range of data patterns, which can improve its generalization ability.

2.3.1. Rationale and Comparison: Diversity Sampling

Table 3 provides a comparison of our proposed multi-resolution hashing method with several
alternative diversity sampling approaches.

Table 3. Comparison of Diversity Sampling Methods.

Method Scalability Diversity Guarantee Additional Notes

Random Sampling O(ny) Low No explicit diversity
Clustering-Based Sampling (e.g., k-means)| O(ny; -k -d) Moderate Sensitive to initialization
DPP-based Sampling on3) High Computationally prohibitive for large ny;
Proposed Multi-Resolution Hashing O(ny) (excl. SVD) Competitive Scales well with large datasets

As illustrated in Table 3, our multi-resolution hashing method achieves a balance between
scalability and diversity. While DPP-based sampling offers excellent diversity guarantees, its cubic
complexity makes it unsuitable for large-scale scenarios [32]. In contrast, clustering-based approaches
and random sampling either lack robustness or explicit diversity control. Our method, with linear
scalability (excluding the SVD step), is practical for large datasets while ensuring competitive diversity.

Figure 2 illustrates the workflow of the diversity-promoting sampling component.

Truncated SVD
o ny xd

Reduced Space Generate

Xred = U diag(s) Random Hyperplanes

Compute Binary Codes
sgn(-)
Select Unique
Hash Codes

Figure 2. Workflow of the Diversity-Promoting Sampling component.
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2.4. Dynamic Threshold Optimization

Following the diversity-promoting sampling process, which ensures that the pseudo-labeled
samples are representative of the broader unlabeled data distribution, we further refine the pseudo-
labeling by dynamically optimizing the threshold using an adaptive Lagrangian formulation [33].
Determining the optimal pseudo-label threshold is critical for balancing precision and recall. We
frame threshold selection as an optimization problem, where the objective is defined as a weighted
combination of performance metrics, and solve it using a ternary search algorithm [34] combined with
adaptive Lagrangian multiplier updates. In our implementation, the performance targets for both F;
score and recall are implicitly set at 0.8, and the Lagrangian multipliers are updated accordingly based
on an adaptivity factor.

2.4.1. Lagrangian Formulation

Let F; (t) and Recall(t) denote the F1 score and recall at threshold ¢, respectively. In our approach,
we define an objective function as the negative weighted sum of key performance metrics:

Objective(t) = — (0.4 Fi(f) +03J(t) + 0.2 G(t) + 0.05 Precision(t) + 0.05 Recau(t)),

where J(t) is Youden’s J-statistic [35] and G(t) is the G-mean [36]. The weights are selected based on
empirical studies to prioritize overall balance and discrimination ability. While the formulation may
be viewed as implicitly enforcing performance targets (with F; () and Recall(f) expected to exceed
0.8), the adaptive update of Lagrangian multipliers further guides the threshold toward the desired
operating point.

The Lagrangian multipliers A and p are updated as follows:

A < max(0.1, min(10.0, A - (1 + adaptivity_factor))) if Fi(t) < 0.8,
)

otherwise,

p < max(0.1, min(10.0, p - (1 + adaptivity_factor

( ( )
A < max(0.1, min(10.0, A - (1 — adaptivity_factor))
( ( ))) if Recall(t) < 0.8,
( ( )

(
< max(0.1, min(10.0, y - (1 — adaptivity_factor))) otherwise.

Adaptivity Factor:

The adaptivity factor is a step-size parameter that controls the magnitude of adjustments made
to the Lagrangian multipliers during the optimization process. In our implementation, we set the
adaptivity factor to 0.1. This means:

e If Fi(t) or Recall(t) is below the target of 0.8, the corresponding multiplier is increased by 10%

(i.e., multiplied by 1.1).
¢  Conversely, if the metric meets or exceeds 0.8, the multiplier is decreased by 10% (i.e., multiplied

by 0.9).

This choice of 0.1 was determined empirically to balance responsiveness to performance deficits with
the overall stability of the threshold optimization process.

2.4.2. Ternary Search and Adaptive Updates

The optimal threshold t* is determined using a ternary search over the interval [fmin, fmax] =
[0.1,0.9]. Ternary search is particularly efficient for unimodal functions and converges in

O(log ;)
t

iterations, where J; (e.g., 10’3) is the tolerance [37]. The algorithm evaluates two internal points within
the search interval, updates the interval based on the objective function comparison, and iterates until
convergence. Once the threshold is optimized, the adaptive Lagrangian multipliers are updated based
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on the observed F; and recall, ensuring that the search process remains sensitive to the classifier’s

performance [38].

2.4.3. Algorithm and Workflow

Algorithm 3 details the dynamic threshold optimization procedure, while Figure 3 presents a
workflow that distinctly captures the iterative and adaptive aspects of the process.

(" Initialize: Range )
[0.1,0.9]
Tolerance o

!

e 7
Input: Predicted
Probabilities p(x)

- J

!

{Flv

Compute Metrics }
R

Precision, Recall, TPR, FP.

Update
Lagrangian
Multipliers

Al

—

Evaluate
Objective .Z (1)

Convergence?

Ternary Search
Iteration on ¢

Output Optimal
Threshold t*

Figure 3. Workflow of the Dynamic Threshold Optimization Component. This figure illustrates the iterative
process: initializing the search range, computing performance metrics and the objective function, performing
ternary search iterations, adaptively updating the Lagrangian multipliers, and finally outputting the optimal

threshold t*.
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Algorithm 3 Dynamic Threshold Optimization

Require: Predicted probabilities { p(x)}, initial range [tmin, fmax] = [0.1,0.9], tolerance J;
Ensure: Optimized threshold t*
1: Define the objective function:

Objective(t) = — (0.4 Fi(t) +0.3](t) +0.2G(t) + 0.05 Precision(t) + 0.05 Recall(t))

while thax — tmin > 0 do
tl — tmin + tmaxgtmin
2 ¢ fmax — w
if Objective(t;) < Objective(ty) then
tmax < f2
else
fmin < 1
end if
end while
 Set f* - fminctimax
: Update A and p based on observed F; (+*) and Recall(t*) using the adaptivity_factor
: return t*

O
W N PO

2.4.4. Rationale and Comparison: Dynamic Threshold Optimization

Ternary Search: Ternary search is employed because the objective function is observed to be
unimodal within the search interval [0.1,0.9] [37]. Unlike grid search, which requires exhaustive
evaluation of many points, ternary search efficiently narrows down the optimal threshold by evaluating
only two intermediate points per iteration. This reduces the computational cost to O(log 5%) , where §;
is the tolerance level. Such efficiency is crucial in iterative active learning frameworks where threshold
optimization is performed repeatedly [39].

Lagrangian Formulation: The Lagrangian formulation allows us to combine multiple perfor-
mance metrics (i.e., F;, precision, recall, Youden's J-statistic, and G-mean) into a single scalar objective
while implicitly enforcing performance targets [40]. By incorporating Lagrangian multipliers A and
1, we can adaptively penalize deviations from desired levels (set at 0.8 in our case) for F; and recall,
respectively. This formulation not only guides the optimization toward a balanced operating point but
also provides a systematic way to adjust the threshold in response to fluctuations in model performance
[40]. The adaptive update of these multipliers, based on an adaptivity factor, further enhances the
robustness of the threshold optimization process.

Table 4 also compares our proposed dynamic threshold optimization with several alternative
pseudo-label thresholding methods.

Table 4. Comparison of Pseudo-Label Thresholding Methods.

Method Adaptivity | Robustness Search/Optimization Computational Cost
Fixed Threshold No Low N/A O(1)
Heuristic Tuning Partial | Moderate Manual/Ad hoc O(1)

Grid Search No Moderate Exhaustive Search O(ng)
Bayesian Optimization Yes High Probabilistic Modeling O(nyp)
Proposed Dynamic Optimization (Ternary Search) Yes Very High |Ternary Search over [0.1,0.9] O(log 017)

As illustrated in Table 4, our dynamic threshold optimization method, which employs a ternary
search algorithm combined with adaptive Lagrangian multiplier updates, not only adapts to changes
in classifier performance but does so with high robustness and efficiency. While grid search and
Bayesian optimization can also optimize thresholds, they either lack adaptivity or impose a higher
computational burden. Our approach strikes an effective balance between adaptivity, robustness, and
computational cost.
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2.5. Integrated Iterative Framework

Overview: The three components described above are integrated into an iterative semi-supervised
learning framework. In each iteration, the classifier is retrained using the expanded labeled set, and
new pseudo-labels are generated from the unlabeled data. The overall process is as follows:

1.  Classifier Training: Train the LightGBM classifier using the current labeled dataset Dy

2. Prediction: Compute the prediction probabilities p(x) for each sample x € Dy;.

3. Calibration: Apply the adaptive calibration procedure (Algorithm 1) to obtain calibrated proba-
bilities fi(x) and uncertainty estimates H(x).

4. Uncertainty-Based Selection: Identify samples with high uncertainty (as measured by H(x)).

5. Diversity Selection: From the uncertain samples, select a diverse subset using the multi-
resolution hashing method (Algorithm 2).

6. Threshold Optimization: Determine the optimal pseudo-labeling threshold t* via dynamic
threshold optimization (Algorithm 3).

7. Pseudo-Labeling: Assign pseudo-labels to samples in Dy; that satisfy p(x) > t*.

8.  Dataset Update: Augment D; with the newly pseudo-labeled samples and remove these samples
from Dy;.

9. Iteration: Repeat the process until a stopping criterion is met (e.g., when Dy; falls below a
predefined size).

Algorithm 4 Iterative Semi-Supervised Learning Framework

Input: Initial labeled set D;, unlabeled set Dy, termination criterion (e.g., minimum size of Dy;)
for iteration = 1 to N do

Train LightGBM classifier on Dy,

Obtain predictions p(x) for each x € Dy

Apply Adaptive Calibration (Algorithm 1) to get f(x) and H(x)

Select uncertain samples based on high H(x)

Apply Diversity-Promoting Sampling (Algorithm 2) to select a diverse subset of uncertain
samples

8:  Apply Dynamic Threshold Optimization (Algorithm 3) to compute the optimal threshold t*
9: Pseudo-label samples with p(x) > t*

10: Update D;, with the pseudo-labeled samples and remove them from Dy;

11: if termination criterion is met then

12: break

13: end if

14: end for

15: Return: Final classifier trained on the expanded Dy

Figure 4 provides an overall diagram of the iterative framework.
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Train LightGBM Classifier
on Labeled Data (D_L)«Training»

[Predict Probabilities p(x)j

on D_U«Training»

Calibrate Probabilities
(Algorithm 1)«Training»

Sample Selection/

Identify High-Uncertainty Samples
(H(x) > Percentile)«Selection»

v

Apply Diversity Sampling
(Algorithm 2)«Selection»

Repeat Cycle

Threshold Optimization/

(Algorithm 3)«Threshold»

[Compute Optimal Threshold t"]

Dataset Update

Assign Pseudo-Labels

(p(x) = t*)«Update»

[Update D L& D_U«Update»]

Figure 4. Overview of the Integrated Iterative Framework.

2.6. Computational Complexity Analysis

The proposed framework is designed with efficiency in mind. The computational cost of each
component is analyzed as follows:

e Adaptive Calibration: Sorting the ny; confidence scores requires O (ny; log ny;) time, and subse-
quent temperature scaling and entropy computations operate in O(ny;).

*  Diversity Sampling: The truncated SVD has complexity O(ny; - ?), where r is significantly
smaller than d. The multi-resolution hashing itself is computed in O(ny;).

e Dynamic Threshold Optimization: The ternary search converges in O(log(1/4;)) iterations,
with each iteration evaluating the objective function in constant time.

Thus, the overall complexity is dominated by the sorting and SVD operations, ensuring scalability for
large datasets.

Summary

In summary, the proposed model is an integrated semi-supervised learning framework that
leverages adaptive calibration, diversity-promoting sampling, and dynamic threshold optimization
to improve the quality of pseudo-labeling. Each component is rigorously formulated with precise
mathematical notations, and detailed comparisons with alternative methods are provided via tables.
The integration with a lightweight yet effective LightGBM classifier ensures both high performance
and scalability for large-scale applications.
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3. Dataset Information, Preprocessing, and Feature Engineering
3.1. Dataset Selection Rationale

Four binary classification based customer churn based datasets were selected to evaluate model
performance across data scales and structural complexities. These datasets include a large-scale stream-
ing behavior dataset (Sparkify), a structured telecommunications dataset (IBM Telco), a banking dataset
capturing financial churn (Bank Churn), and a high-dimensional service dataset (CrowdAnalytix).
Table 5 summarizes their key attributes and selection rationale.

Table 5. Dataset Overview and Selection Criteria.

Dataset Key Characteristics Selection Rationale

Sparkify Large-scale streaming logs | Tests model scalability and temporal
(12.5GB, 26M records, 22K users) | behavior modeling

IBM Telco Structured telecom customer | Baseline comparison with demo-
data (7,043 customers, 36 fea- | graphic and service-based features
tures)

Bank Churn Banking customer data (10K | Evaluates financial churn predic-
records, 14 financial features) tion and high-cardinality categorical

data

CrowdAnalytix | High-dimensional service met- | Assesses feature selection tech-

rics niques on a large feature space

3.2. Dataset Information
3.2.1. Sparkify Dataset

The Sparkify dataset [41] is a 12.5GB JSON file containing 26,259,199 user interaction records over
a three-month period (Oct-Dec 2018) with 18 features. It includes 12 categorical (e.g., userld, gender,
auth, page) and 6 numerical columns (e.g., sessionld, length, itemInSession). Churn is defined as users
who clicked the "Cancel Confirmation" button, resulting in 5,003 (22.45%) churned users. Preprocessing
involved flattening the nested JSON structure, handling missing values, and session-based feature
extraction.

3.2.2. IBM Telco Dataset

The IBM Telco dataset [42] consists of 7,043 customer records merged from three sources: customer
status, demographics, and service usage. It originally contained 48 features, but 12 were dropped
due to redundancy, leaving 36. Key attributes include contract type (monthly, one-year, two-year),
payment method, tenure, and security services. Churn prediction is strongly influenced by contract
length, service subscriptions, and monthly charges. The dataset has a churn rate of 26.5%. Feature
selection was performed using mutual information, with top contributing features including contract
type, tenure, total charges, and online security.

3.2.3. Bank Churn Dataset

The Bank Churn dataset [43] contains financial information for 10,000 customers across France,
Germany, and Spain. It has 14 raw features, including credit score, balance, number of products, and
estimated salary. One-hot encoding of categorical variables expanded the dataset to 2,948 dimensions.
The churn rate is 20.37% (2,037 churned users). Feature selection based on mutual information
identified NumOfProducts, Age, and IsActiveMember as key predictors.

3.2.4. CrowdAnalytix Dataset

The CrowdAnalytix dataset [44] consists of 51,047 customer records with 58 features, primarily
from the telecommunications domain. It contains both numerical and categorical variables relevant
to customer behavior, such as MonthlyRevenue, MonthlyMinutes, TotalRecurringCharge, and Call
patterns. The dataset also includes demographic and service-related attributes such as Age, Handset
models, Credit Rating, and Marital Status.
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The churn rate in this dataset is 28.83%, with 14,711 churned users and 36,336 non-churned users.
Preprocessing involved handling missing values, encoding categorical variables, and standardizing
numerical attributes.

3.3. Data Preprocessing

Preprocessing steps varied across datasets based on structure and challenges:

*  Sparkify: Flattened nested JSON, removed users with missing IDs, converted timestamps, and
encoded categorical values.

e IBM Telco: Droped irrelevant columns such as Customer ID, Churn Label, Churn Score etc. and
also encoded categorical variables using label encoding.

e  Bank Churn: Encoded categorical features using one-hot encoding, normalized continuous
variables, and dropped irrelevant columns like Customerld and Surname.

¢  CrowdAnalytix: Categorical variables were label-encoded, missing numerical values were im-
puted using mean values, and all features were standardized.

3.4. Feature Engineering

Feature engineering created new predictive variables:

*  Sparkify: Session entropy, monthly session duration, average listen time, ad interruptions, and
offline listening.

¢ IBM Telco: Service bundle compatibility score, contract duration bins, and monthly charge
volatility.

¢  Bank Churn: Credit utilization ratio, customer activity score, and tenure-product interaction
terms.

¢  CrowdAnalytix: Derived features such as call behavior metrics (dropped calls, unanswered calls,
inbound/outbound ratios), and tenure-based segmentation.

3.5. Feature Selection

A hybrid feature selection strategy was applied to reduce dimensionality:

*  Sparkify: Used Chi-Square test [45] and Sequential Feature Selection (SFS) [46] reduced features
from 30 to 7.

e IBM Telco: Used Mutual Information [47] to identify 10 key features.

e  Bank Churn: Used Mutual Information to identify the top 10 features, which included NumOf-
Products, Age and IsActiveMember.

e CrowdAnalytix: Used Mutual Information to identify the top 10 features, which included
AgeHH1, DroppedCalls, DroppedBlockedCalls, BlockedCalls and InboundCalls.

3.6. Class Imbalance Handling

All datasets exhibited class imbalance, necessitating oversampling. Synthetic Minority Over-
sampling Technique (SMOTE) [48] was applied to balance class distributions while maintaining feature
distributions. Table 6 summarizes the impact of SMOTE.

Table 6. Class Distribution Before and After SMOTE.

Dataset Original Balanced
Non-Churn Churn | Non-Churn Churn
Sparkify 17,274 5,003 17,274 17,274
IBM Telco 5174 1,869 5174 5,174
Bank Churn 7,963 2,037 7,963 7,963
CrowdAnalytix 36,336 14,711 36,336 36,336
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3.7. Summary

This study leverages four diverse datasets with varying structures, sizes, and feature spaces to
assess model performance across different domains. Each dataset required tailored preprocessing,
feature engineering, and feature selection strategies. The Sparkify dataset presented challenges in
handling large-scale JSON data, while the IBM Telco and Bank Churn datasets highlighted structured
feature selection complexities and class imbalance issues. Additionally, the CrowdAnalytix dataset
introduced a high-dimensional feature space, requiring advanced dimensionality reduction techniques.
Collectively, these datasets serve as a robust benchmark for evaluating churn prediction models across
multiple industries.

4. Experiment and Results

In this section, we present a comprehensive evaluation of our proposed semi-supervised model
against several state-of-the-art baseline methods. The experiments were conducted on four real-world
datasets described in the above section—Sparkify, IBM Telco, Banking, and CrowdAnalytix—under
two scenarios: using 5% and 10% labeled data. Performance was assessed using multiple metrics
including the Area Under the ROC Curve (AUC), F1 score, True Positive Rate (TPR), and False
Positive Rate (FPR). In addition, we report the execution time of the proposed model to evaluate its
computational efficiency.

Before model training, each dataset was initially split into an 80:20 ratio for training and testing,
respectively. From the training portion, we randomly selected either 5% or 10% of the data to serve as
the labeled set, while the remaining samples were treated as unlabeled. This procedure ensures that
our experiments simulate realistic scenarios where only a limited amount of labeled data is available
for training.

4.1. Hyperparameter Tuning and Baseline Models

As stated before in the proposed model section, our proposed semi-supervised approach is
built upon a LightGBM classifier whose hyperparameters are tuned via a randomized search [49].
Specifically, we optimize over a range of values: the number of estimators is chosen from {600, 1000,
1500, 2000}; the learning rate from {0.01, 0.001, 0.1, 0.0001}; the number of leaves from {20, 31, 100};
the feature fraction from {0.6, 1.0}; and the minimum number of data points in a leaf from {10, 50}.
This tuning is performed using five-fold cross-validation with the area under the ROC curve as the
optimization metric, thereby ensuring that the selected model configuration is well-suited for our
subsequent semi-supervised tasks.

In addition to our proposed model, we compare its performance against several baseline models
that are representative of state-of-the-art active and semi-supervised learning strategies. The active
learning baselines include methods based on uncertainty sampling [50], query-by-committee [51],
diversity sampling [52], core set selection [53], and Bayesian active learning [54], each leveraging
different criteria—ranging from predictive uncertainty to data diversity—for sample selection. On
the semi-supervised side, we evaluate baselines such as self-training [55], MixMatch [56], Pseudo-
Labeling [57], Tri-Training [58], Label Spreading [59], Mean Teacher [60] and CoMatch [61] model.
For neural-based models such as MixMatch, Mean Teacher and CoMatch, we tuned the learning rate
{0.0001, 0.001, 0.01}, batch size {32, 64, 128}, and weight decay {0, 1e-4, 1e-3}, with training performed
for up to 100 epochs with early stopping. For active learning models such as uncertainty sampling,
query-by-committee and diversity sampling, we adjusted selection batch sizes {100, 500, 1000} and
acquisition intervals {1, 5, 10} to optimize query efficiency. Tuning was performed to ensure that no
method had an unfair advantage due to suboptimal configurations.

4.2. Performance Evaluation

Tables 7 and 8 summarize the results across the four datasets under the two labeling regimes.
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Table 7. Performance Comparison of Semi-Supervised Models (5% Labeled Data)

Dataset Model AUC| F1 | TPR | FPR
Proposed Model 0.9107|0.8296|0.86430.2177
Pseudo-Labeling 0.8501{0.8569|0.8138(0.1001
Tri-Training 0.8518(0.8576|0.8210|0.1058
Label Spreading 0.7037|0.7198|0.6676|0.2281

Uncertainty Sampling|0.9036(0.8299|0.8068|0.1336
Query-by-Committee [0.8995|0.8194|0.7868|0.1326
Sparkify Diversity Sampling  [0.8946|0.8018|0.7458|0.1136
Core Set Selection 0.902210.8160|0.775410.1243

BAAL 0.9106/0.8399(0.8068|0.1136
Self-Training 0.844710.7470(0.7127{0.1941
MixMatch 0.8403|0.7330(0.6633|0.1453
Mean Teacher 0.8427(0.7470|0.6984|0.1701
CoMatch 0.8174|0.7219|0.6915|0.2226

Proposed Model 0.8902|0.8282|0.8389|0.1899
Pseudo-Labeling 0.8413|0.8294|0.8945|0.2356
Tri-Training 0.8434|0.8314|0.8984|0.2356
Label Spreading 0.7909|0.7588|0.9012|0.3836
Uncertainty Sampling|0.9333(0.8532|0.8495|0.1937
Query-by-Committee [0.9262|0.8516|0.8696|0.1823
IBM Telco  |Diversity Sampling  [0.9272|0.8543|0.8571|0.1748
Core Set Selection 0.9355|0.8632|0.8830|0.1864

BAAL 0.9275(0.8595|0.8504|0.1791
Self-Training 0.8664|0.8068|0.7948|0.1876
MixMatch 0.8249|0.7276|0.6836|0.2013
Mean Teacher 0.68990.6469(0.6472|0.3621
CoMatch 0.8893|0.7896|0.7287|0.2188
Proposed Model 0.8417{0.7630|0.7907|0.2682
Pseudo-Labeling 0.7143(0.7211|0.7147{0.2715
Tri-Training 0.7150{0.7220|0.7147(0.2707
Label Spreading 0.69810.7025|0.70570.3007

Query-by-Committee [0.8600(0.7725(0.8036|0.2671
Diversity Sampling |0.8564|0.7873|0.8281|0.2686

Banking |~ et Selection  |0.8557|0.7883(0.8152/0.2928
BAAL 0.8572/0.7794|0.8088(0.2696
Self-Training 0.84910.7756|0.8100(0.2819
MixMatch 0.84160.7629(0.7906[0.2731
Mean Teacher 0.84150.7628|0.7905(0.2793
CoMatch 0.74310.6867|0.7366|0.3889

Proposed Model 0.7065|0.6701|0.9781|0.9547
Pseudo-Labeling 0.6119|0.6912|0.4859(0.1035
Tri-Training 0.6927|0.7254|0.6163|0.1655
Label Spreading 0.5443|0.5627|0.5191|0.3937
Uncertainty Sampling|0.7214|0.6447|0.5975|0.2597
Query-by-Committee [0.7142|0.6378|0.5927|0.2695
CrowdAnalytix|Diversity Sampling |0.7137|0.6355|0.5881 |0.2664
Core Set Selection 0.7160|0.6373|0.5945|0.2749

BAAL 0.7214|0.6447|0.5975|0.2597
Self-Training 0.6853(0.6111{0.5699|0.2995
MixMatch 0.5763|0.5704|0.5848|0.4724
Mean Teacher 0.5722{0.5382{0.5156|0.4063
CoMatch 0.5769(0.5615|0.5707|0.4688

5% Labeled Data:

For the Sparkify dataset, the proposed model achieved the highest AUC (0.9107) and TPR (0.8643),
indicating robust discriminatory capability despite the limited availability of labeled data. Although
baselines such as Pseudo-Labeling and Tri-Training attained competitive F1 scores, they lagged behind
in terms of AUC and TPR. On the IBM Telco dataset, the highest AUC was obtained by Core Set
Selection (0.9355); however, the proposed model demonstrated a balanced performance with an
AUC of 0.8902 and one of the lower FPRs (0.1899), which is critical for minimizing false alarms in
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sensitive applications. For the Banking dataset, the proposed model delivered an AUC of 0.8417, with
performance metrics closely comparable to other methods, and it achieved the lowest FPR among the
evaluated approaches. In contrast, for the CrowdAnalytix dataset, the proposed model attained a very
high TPR (0.9781) but at the expense of a considerably high FPR (0.9547), suggesting that while it is
highly sensitive, it tends to over-detect in scenarios with very limited labeled data.

Table 8. Performance Comparison of Semi-Supervised Models (10% Labeled Data).

Dataset Model AUC| F1 | TPR | FPR

Proposed Model 0.9326/0.8650|0.847210.1107
Pseudo-Labeling 0.8633|0.8697|0.8245|0.0851
Tri-Training 0.8634|0.8676|0.8393|0.1041
Label Spreading 0.7371]0.7456|0.7156|0.2243
Uncertainty Sampling|0.9236(0.8487|0.8178|0.1087
Query-by-Committee [0.9180|0.8372|0.8065|0.1194
Sparkify Diversity Sampling  [0.9179|0.8349|0.7960|0.1101
Core Set Selection 0.9188(0.8390(0.8094|0.1191

BAAL 0.9236|0.8487(0.8178|0.1087
Self-Training 0.88330.7825(0.7467|0.1606
MixMatch 0.8526|0.7631|0.7382(0.1952
Mean Teacher 0.8514|0.7687(0.7801(0.2477
CoMatch 0.8071|0.72840.7281(0.2690

Proposed Model 0.9232(0.8445|0.8667(0.1889
Pseudo-Labeling 0.8445|0.8349|0.8366(0.2181
Tri-Training 0.8441|0.8359(0.8210{0.2084
Label Spreading 0.8046(0.7843|0.8600{0.3096
Uncertainty Sampling|0.9384|0.8401|0.8582(0.1890
Query-by-Committee |0.9381|0.83440.8155|0.1801
IBM Telco  |Diversity Sampling  [0.9335|0.8378|0.8541|0.1990
Core Set Selection 0.9364(0.8320(0.8619|0.1894

BAAL 0.9396(0.8299(0.8793|0.2098
Self-Training 0.9266(0.8629(0.8593|0.2195
MixMatch 0.9255(0.8427(0.8217|0.1996
Mean Teacher 0.9328|0.8444|0.8266(0.2217
CoMatch 0.8946(0.8054|0.7661|0.1383
Proposed Model 0.8998/0.8185|0.8332(0.1929
Pseudo-Labeling 0.7793(0.7846|0.7798|0.2107
Tri-Training 0.7790(0.7845|0.7785|0.2094
Label Spreading 0.7626(0.7674|0.7663|0.2315

Uncertainty Sampling|0.8572(0.7794|0.8088(0.2535
Query-by-Committee [0.8600|0.7725|0.8036|0.2633
Diversity Sampling |0.8564|0.7873|0.8281|0.2621
Core Set Selection 0.8557|0.7883|0.8152|0.2407

Banking

BAAL 0.8572|0.779410.8088|0.2535
Self-Training 0.84910.7756(0.8100|0.2652
MixMatch 0.8925|0.8072(0.8545|0.2498
Mean Teacher 0.8864|0.8010|0.848710.2572
CoMatch 0.7361|0.6823(0.7592|0.4434

Proposed Model 0.7948|0.7137|0.5801|0.0463
Pseudo-Labeling 0.5283|0.6570{0.3835|0.0690
Tri-Training 0.6811|0.7324|0.5700{0.1052
Label Spreading 0.5637(0.5773|0.5426|0.3880
Uncertainty Sampling|0.7348|0.6591(0.6117|0.2481
Query-by-Committee |0.7307|0.6546|0.6099|0.2571
CrowdAnalytix|Diversity Sampling |0.7261|0.6488|0.6019|0.2569
Core Set Selection 0.732210.6578|0.61800.2646

BAAL 0.7348(0.6591|0.6117|0.2481
Self-Training 0.7117|0.6170|0.5437|0.2216
MixMatch 0.595510.55090.5215|0.3771
Mean Teacher 0.6022{0.5720{0.5621|0.4090
CoMatch 0.5772|0.5409|0.52580.4241
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10% Labeled Data:

Increasing the proportion of labeled data generally enhanced model performance. For the
Sparkify dataset, the proposed model maintained its superiority by achieving the highest AUC
(0.9326) along with strong F1 and TPR scores. In the IBM Telco dataset, although certain baselines
(e.g., BAAL and Uncertainty Sampling) achieved marginally higher AUC values, the proposed model
remained competitive with an AUC of 0.9232 and a well-balanced trade-off between TPR and FPR. On
the Banking dataset, the proposed model notably improved its performance, achieving the highest
AUC (0.8998) and F1 score (0.8185), while also maintaining a low FPR (0.1929). For the Crowd Analytix
dataset, the proposed model exhibited a marked improvement over the 5% scenario, with an AUC
of 0.7948, a more moderate TPR (0.5801), and a significantly reduced FPR (0.0463), reflecting a more
balanced classification performance when a larger proportion of labeled data is available.

4.3. Computational Efficiency

Complementing the performance evaluation, we next examine the computational efficiency of
the proposed model to highlight its practical applicability. Table 9 reports the execution times of
the proposed model on the four datasets. The results indicate that the computational cost varies
considerably with the dataset and the proportion of labeled data. For instance, the Sparkify dataset
required 89.39 seconds with 5% labeled data and 82.67 seconds with 10% labeled data, while the IBM
Telco dataset showed a substantial reduction in processing time from 78.24 seconds to 19.73 seconds as
the labeled data increased. These variations underscore the impact of dataset size and complexity on
execution time and highlight the efficiency of the proposed model in practical applications.

Table 9. Proposed Model Execution Time (in seconds).

Dataset 5% Labeled Data | 10% Labeled Data
Sparkify Churn Dataset 89.39 82.67
IBM Telecom Churn Dataset 78.24 19.73
Bank Churn Dataset 11.84 27.17
CrowdAnalytix Telecom Churn Dataset 220.41 79.30

4.4. Summary of Findings

Synthesizing the outcomes from the performance evaluation and computational efficiency analy-
ses, the experimental results demonstrate that the proposed semi-supervised model is competitive
with—and in several cases superior to—established baseline methods. Its performance in terms of
AUC, TPR, and F1 score is particularly notable on the Sparkify and Banking datasets, especially under
the 10% labeled data scenario. Although the model shows an inclination toward over-detection in the
CrowdAnalytix dataset when labeled data is extremely scarce, this tendency is mitigated with addi-
tional labeled examples. Moreover, the favorable computational efficiency of the model confirms its
viability for real-time or resource-constrained environments. Overall, our proposed model effectively
leverages limited labeled data to achieve robust and balanced classification performance.

5. Ablation Study

To further understand the contribution of each component in our semi-supervised framework,
we conducted an ablation study by modifying three critical modules. In one variant (No WCE), we
replaced the Wasserstein-based conditional entropy calculation with a standard entropy measure.
In another (No LTO), we substituted the Adaptive Lagrangian Threshold Optimizer with a fixed
threshold of 0.5. Finally, in the third variant (No Diversity), the diversity-based sampling was replaced
by random sampling. These experiments were carried out under both 5% and 10% labeled data
settings.

Table 10 summarizes the results for the 5% labeled data scenario. The proposed model, which
integrates all components, achieves a significantly higher AUC of 0.9107 and an F1 score of 0.8296,
demonstrating the effectiveness of combining the key mechanisms. In contrast, the No WCE variant
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results in a sharp drop in AUC to 0.5322, while No LTO exhibits the lowest F1 score (0.5517) and recall
(0.5997). The No Diversity variant performs slightly better than the other ablated versions but remains

significantly weaker than the full model.

Table 10. Ablation Study Results (5% Labeled Data)

Variant Final AUC | Final F1 | Final TPR | Final FPR | Execution Time (s)
Proposed Model 0.9107 0.8296 0.8643 0.2177 89.39
No WCE 0.5322 0.6650 1.0000 0.4981 128.41
No LTO 0.5339 0.5517 0.5997 0.5108 101.97
No Diversity 0.5522 0.6649 0.9997 0.4981 123.43

Similarly, Table 11 presents the corresponding results for the 10% labeled data scenario. The

proposed model outperforms all other configurations, achieving an AUC of 0.9326 and an F1 score of
0.8650. The No WCE and No LTO variants exhibit significant performance drops, with the No LTO
model showing the lowest recall (0.4372) and F1 score (0.4719). The No Diversity variant performs
better than the other ablated models but remains far from the full model’s results.

Table 11. Ablation Study Results (10% Labeled Data)

Variant Final AUC | Final F1 | Final TPR | Final FPR | Execution Time (s)
Proposed Model 0.9326 0.8650 0.8472 0.1107 82.67
No WCE 0.4632 0.6646 0.9988 0.4980 82.45
No LTO 0.5007 0.4719 0.4372 0.5124 70.34
No Diversity 0.4711 0.6643 0.9983 0.4978 80.24

These results confirm that each component plays a crucial role in the model’s success. The
removal of any key mechanism leads to a significant performance degradation, with the most notable
decline occurring in the No LTO variant due to its inability to adaptively adjust selection thresholds.
This highlights the necessity of combining Wasserstein-based entropy, adaptive thresholding, and
diversity-aware sampling to achieve superior semi-supervised learning performance.

6. Statistical Comparison & Performmance Analysis
6.1. Statistical Comparison of the Proposed Model and Baselines

To rigorously evaluate the performance differences between our proposed model and several
baselines, we conducted statistical tests on their AUC values under 5% and 10% labeled data conditions.
We employed the Wilcoxon signed-rank test, a non-parametric test that assesses whether the median
difference between paired samples is zero. Additionally, we used bootstrap resampling to estimate the
distribution of AUC differences and Cohen’s d to quantify effect sizes.

For the comparisons, the AUC values were as follows:

e  Proposed vs. Pseudo-Labeling: Proposed model [0.9107, 0.9326] vs. Pseudo-Labeling [0.8501,
0.8633].

e  Proposed vs. BAAL: Proposed model [0.9107, 0.9326] vs. BAAL [0.9106, 0.9236].

*  Proposed vs. Core Set Selection: Proposed model [0.9107, 0.9326] vs. Core Set Selection [0.9022,
0.9188].

e  Proposed vs. CoMatch: Proposed model [0.9107, 0.9326] vs. CoMatch [0.8174, 0.8071].

Table 12 summarizes the outcomes of these statistical tests.
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Table 12. Summary of Statistical Test Results. The Wilcoxon signed-rank test statistic and p-values are provided
along with the bootstrapped mean AUC difference and Cohen’s d effect size.

Comparison Wilcoxon Signed-Rank | Bootstrapped AUC Difference | Cohen’s d
Proposed vs. Pseudo-Labeling (0.0000, 0.0000) 0.0604 [0.0599, 0.0608] 12.2104
Proposed vs. BAAL (245398.0000, 0.5953) 0.0002 [-0.0002, 0.0006] 0.0341
Proposed vs. Core Set (20555.0000, 0.0000) 0.0087 [0.0083, 0.0091] 1.7321
Proposed vs. CoMatch (0.0000, 0.0000) 0.0937 [0.0932, 0.0941] 18.9980

From these results, we observe that:

¢  The proposed model significantly outperforms Pseudo-Labeling and CoMatch, as indicated by the
Wilcoxon test (p = 0.0000) and large effect sizes (Cohen’s d = 12.2104 and 18.9980, respectively).

*  Compared to Core Set Selection, the proposed model also demonstrates a significant improvement
(p = 0.0000), though with a smaller effect size (Cohen’s d = 1.7321).

¢ Against BAAL, the differences are negligible (Wilcoxon p = 0.5953, Cohen’s d = 0.0341), suggest-
ing similar performance.

To further illustrate these findings, Figures 5 and 6 present the bootstrapped distributions of AUC
scores for the proposed model against Core Set Selection and Pseudo-Labeling. The distinct separation
in distributions confirms the statistical significance of these differences.

Bootstrap Distribution: Proposed vs. Core Set Selection
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Figure 5. Bootstrap distribution of AUC scores: Proposed Model vs. Core Set Selection.
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Bootstrap Distribution: Proposed vs. Pseudo-Labeling
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Figure 6. Bootstrap distribution of AUC scores: Proposed Model vs. Pseudo-Labeling.

These findings suggest that our proposed model achieves statistically significant improvements
over Pseudo-Labeling, CoMatch, and Core Set Selection, reinforcing its robustness. However, its per-
formance is comparable to BAAL, indicating potential similarities in their decision-making processes.
Future work will explore additional evaluation metrics and larger datasets to further substantiate these
observations.

6.2. Performance Analysis via Conditional Entropy and ROC Curves

To further assess the performance of our proposed model and provide visualization, we analyze
the conditional entropy distribution and Receiver Operating Characteristic (ROC) curves for different
datasets.

Figure 7 presents the conditional entropy distribution for the Sparkify dataset under a 5% labeling
scenario. The sharp peak at lower entropy values suggests that most pseudo-labels are assigned with
high confidence, supporting the model’s robustness in low-label regimes.

Distribution of Conditional Entropy for 5% Labeled Sparkify dataset
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Figure 7. Distribution of Conditional Entropy for 5% labeled Sparkify dataset. The majority of samples exhibit
low entropy, indicating confident pseudo-labeling.

Figure 8 shows the conditional entropy distribution for the IBM dataset under a 5% labeling
scenario. Similar to the Sparkify dataset, a significant portion of samples demonstrates low entropy,
confirming the model’s ability to generate reliable pseudo-labels.
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Distribution of Conditional Entropy for 5% Labeled IBM dataset

300

2504

Frequency
5 & B3
s & 3
! ! !

50 4

T T
0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43
Conditional Entropy

Figure 8. Distribution of Conditional Entropy for 5% labeled IBM dataset. The majority of samples exhibit low
entropy, indicating confident pseudo-labeling.

Figures 9 and 10 illustrate the ROC curves for the Sparkify and IBM datasets, respectively. The
proposed model achieves an AUC of 0.91 on Sparkify and 0.89 on IBM, reinforcing its generalizability
across diverse datasets with minimal labeled data.

ROC Curve for 5% Labeled Sparkify dataset
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Figure 9. ROC curve for the Sparkify dataset with 5% labeled data. The proposed model achieves an AUC of 0.91,
demonstrating strong predictive performance.

ROC Curve for 5% Labeled IBM dataset
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Figure 10. ROC curve for the IBM dataset with 5% labeled data. The AUC of 0.89 highlights the model’s
adaptability across datasets.

These analyses collectively affirm that the model maintains high confidence in its pseudo-labels
and achieves competitive classification performance across multiple domains.

7. Conclusion, Limitations, and Future Work

This paper presents a scalable semi-supervised learning framework that transforms scarce labeled
data into actionable insights, integrating Wasserstein-based uncertainty calibration, multi-resolution
hashing for diverse sampling and Lagrangian-driven threshold optimization. Tested on four real-world
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churn prediction datasets, it delivers standout performance—AUCs up to 0.9326, beating baselines like
CoMatch model. This balance of accuracy and efficiency makes it a compelling tool for expert systems
in industries like telecom and banking, where retaining customers hinges on precise, data-efficient
predictions. The iterative learning loop, fueled by adaptive calibration and thresholding, ensures
robustness even with minimal labeled data, offering a practical alternative to resource-heavy methods.

In spite of these promising results, we should mention a few limitations. First, our method
depends on quite a few heuristic parameters like the scaling constants employed in the calculation
of conditional entropy, the adaptivity parameters in the threshold optimization protocol, and the
target sample size employed in the diversity sampling protocol. Although our conditional entropy
computation is described as Wasserstein-based, it only approximates the Wasserstein distance via a
simplified procedure and does not fully implement the rigorous framework of a proper Wasserstein
method. In addition, the calibration step uses a two-fold cross-validation with a sigmoid method,
which may not be robust enough for all datasets. The diversity sampling component relies on random
hyperplanes and multi-resolution hashing to generate partition codes, with a fallback to random
sampling if too few unique hashes are found; this heuristic approach might not adequately capture
true data diversity, particularly in high-dimensional spaces. Furthermore, our Adaptive Lagrangian
Threshold Optimizer employs a ternary search over a fixed interval and uses hard-coded adaptivity
factors, potentially rendering it sensitive to noise and suboptimal in other settings. The learning loop
itself depends on fixed thresholds—such as when a dataset falls below a predefined size, which may
not generalize across different domains.

Furthermore, our study has been restricted to four binary classification based churn prediction
data sets, which reduces the generality of our findings. Future work should extend the evaluation of
our system to a variety of domains, including multiclass prediction problems as well as data types
other than churn analysis (such as images, text, or sensor readings). In addition, we plan to add
automated hyperparameter tuning strategies, such as Bayesian optimization, to reduce the level of
parameter selection by hand and ensure maximum flexibility of the model. Enhanced calibration and
uncertainty estimation routines, more rigid scalability experiments, and extensive evaluation measures
will also enhance the method. These are issues that will enable transcending current constraints and
expanding the focus of our semi-supervised learning method.
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