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Abstract

As generative artificial intelligence (GenAI) models, particularly large-scale autoregressive transform-
ers, diffusion models, and multi-modal architectures, continue to grow in size and complexity, their
immense computational and memory requirements pose substantial challenges to real-world deploy-
ment. Quantization, the process of reducing numerical precision of model parameters, activations, or
gradients, has emerged as a critical tool to mitigate these challenges by enabling significant reductions
in model size, inference latency, and energy consumption. However, the quantization of generative
models introduces a uniquely complex set of obstacles that distinguish it from traditional applications
in discriminative models. Unlike classifiers or object detectors, generative models must preserve se-
mantic coherence, distributional fidelity, and high-dimensional output structure, all of which are highly
sensitive to the perturbations introduced by low-precision representations. This review presents a
comprehensive and technical examination of the current landscape of quantization in GenAI, spanning
theoretical formulations, algorithmic advances, training strategies, hardware implications, and deploy-
ment scenarios. We begin by introducing the mathematical foundations of quantization, including
uniform and non-uniform quantizers, rounding operations, scaling mechanisms, and optimization
frameworks for minimizing quantization-induced distortion. We then survey a wide spectrum of
quantization techniques applied to generative models, ranging from post-training quantization (PTQ)
and quantization-aware training (QAT) to more advanced approaches such as learned codebooks,
mixed-precision methods, and quantized attention mechanisms. We explore how these strategies are
tailored for various generative tasks—text generation, image synthesis, speech modeling, and multi-
modal understanding—and highlight the distinctive precision challenges posed by autoregressive
decoding, cross-modal fusion, and latent variable modeling. Furthermore, we identify key limitations
and failure modes, including instability during beam search, degradation of long-form generation,
and inconsistencies between quantized and full-precision outputs. Through detailed analysis, we
underscore the trade-offs between model efficiency and generative quality, and we discuss emerging
solutions that aim to bridge this gap via adaptive quantization, quantization-friendly architectures, and
hybrid numerical formats. The review also addresses the broader implications of quantization, includ-
ing hardware-software co-design, evaluation metrics for quantized generative outputs, and fairness
considerations in compressed model deployment. Finally, we outline a roadmap for future research,
emphasizing the need for principled, scalable, and ethically responsible quantization methodologies
that can support the growing demand for low-cost, high-performance generative AI across diverse
platforms and applications. This work serves as both a technical resource and a strategic overview for
researchers and practitioners seeking to harness quantization in the service of more efficient, accessible,
and sustainable generative modeling.

Keywords: model quantization; generative AI; low-precision inference; transformer compression;
quantization-aware training; post-training quantization; mixed-precision models; efficient deep learn-
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ing; large language models (LLMs); diffusion models; Edge AI; hardware acceleration; neural network
compression; multi-modal generation; sustainable AI

1. Introduction
The rapid advancements in Generative Artificial Intelligence (GenAI), particularly in large-scale

models such as Generative Pretrained Transformers (GPT), diffusion models, and multi-modal founda-
tion models, have catalyzed transformative progress across a wide range of applications including
natural language processing, computer vision, speech synthesis, and multi-modal generation. These
models have demonstrated unprecedented capabilities in understanding and generating human-like
text, synthesizing high-fidelity images and audio, and performing complex reasoning tasks [1]. How-
ever, such performance comes at a steep computational and memory cost. The underlying architectures
of these models often involve hundreds of billions of parameters, resulting in significant demands
for storage, memory bandwidth, and inference-time efficiency. This poses a critical challenge for
both deployment on edge devices with constrained resources and large-scale inference serving in
cloud environments, where cost, latency, and energy efficiency are paramount considerations. To
address these challenges, model compression techniques have emerged as an essential area of re-
search and engineering. Among them, quantization has gained particular prominence due to its
ability to drastically reduce model size and computational complexity by representing weights and
activations with reduced-precision numerical formats [2]. Quantization techniques aim to convert
full-precision (typically 32-bit floating-point) model parameters and operations into lower-precision
representations, such as 8-bit integers or even sub-4-bit formats, while preserving the model’s per-
formance as much as possible. This reduction not only improves memory and storage efficiency but
also enables the exploitation of specialized hardware accelerators capable of performing low-precision
arithmetic operations at significantly lower power and higher throughput. Despite the success of
quantization in traditional deep learning models such as convolutional neural networks (CNNs) and
smaller transformer-based architectures, the quantization of GenAI models introduces a distinct set
of challenges [3]. These include extreme sensitivity to perturbations introduced by quantization, a
lack of architectural redundancy compared to earlier deep networks, and the complex activation
distributions that are inherent to autoregressive generation and attention mechanisms. Moreover,
generative models are often more fragile with respect to small changes in parameter values due to their
reliance on high-fidelity sequence modeling and autoregressive sampling, making naive quantization
approaches insufficient. Recent research has explored a spectrum of quantization methodologies
tailored for GenAI models, including post-training quantization (PTQ), quantization-aware training
(QAT), mixed-precision quantization, and innovative techniques such as outlier-aware quantization,
per-channel and per-token scaling, and GPTQ-style approximations [4]. These methods aim to bridge
the gap between efficient computation and minimal performance degradation [5]. However, they
also introduce trade-offs in terms of complexity, calibration requirements, training data dependence,
and hardware compatibility [6]. Furthermore, as the field of GenAI continues to evolve rapidly, new
challenges emerge, such as the quantization of multi-modal models, foundation models with dense
and sparse mixture-of-experts layers, and diffusion-based generators which exhibit different numerical
properties compared to standard transformers. This review presents a comprehensive and in-depth
analysis of quantization techniques specifically in the context of GenAI models. We systematically ex-
amine the motivations, mathematical foundations, practical considerations, and empirical effectiveness
of various quantization strategies. Our goal is to distill insights from the growing body of literature,
categorize existing approaches according to key dimensions (e.g., precision granularity, calibration
techniques, compatibility with training regimes), and highlight emerging trends and open problems.
We also evaluate the impact of quantization on downstream generative tasks, such as text continuation,
image synthesis, and multi-modal generation, drawing upon benchmarks and performance metrics
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tailored for generative settings [7]. Ultimately, this review seeks to serve as both a foundational
resource for researchers entering the field of GenAI model quantization and a technical reference for
practitioners aiming to deploy high-performance generative models in constrained computational
environments. By synthesizing the current state of the art and identifying key directions for future
work, we aim to contribute to the advancement of efficient, scalable, and accessible generative AI
technologies [8].

2. Mathematical Foundations of Quantization for Generative AI Models
Quantization in the context of generative AI models entails the transformation of high-precision

numerical representations of model parameters and intermediate activations into lower-precision
formats, with the objective of reducing computational and memory costs while minimizing the loss in
generative performance. To formalize this process, let us denote a generative model as a parameterized
function fθ : X → Y , where θ ∈ Rn represents the full-precision parameter vector of the model, X is
the input space, and Y is the output (e.g., text tokens, image pixels, audio frames) [9].

2.1. Quantization as a Mapping Function

Quantization can be defined as a function Q : R → Q, where Q is a finite set of quantized
values. The goal is to approximate each parameter θi ∈ R with a quantized value θ̂i = Q(θi) ∈ Q.
For a parameter tensor Θ ∈ Rd1×···×dk , we define its quantized counterpart as Θ̂ = Q(Θ), where
the quantization is applied element-wise or with respect to a specific granularity (e.g., per-tensor,
per-channel, per-group). A general uniform quantization scheme can be formulated as:

x̂ = Q(x) = clip
(⌊

x − α

∆

⌋
, qmin, qmax

)
· ∆ + α,

where:

• x ∈ R is a real-valued input (e.g., a model weight or activation),
• α is the quantization offset (often the minimum of the range),
• ∆ is the quantization step size or scale factor,
• qmin and qmax define the lower and upper bounds of the quantized integer range (e.g., [0, 255] for

8-bit unsigned integers),
• ⌊·⌋ denotes the rounding operator, often chosen as round-to-nearest or stochastic rounding [10].

In non-uniform quantization, ∆ is not constant and the quantization levels are determined by a
learned or heuristic function, such as k-means clustering or logarithmic binning.

2.2. Error Characterization and Impact on Generative Models

Quantization introduces an approximation error defined as:

ε = θ − Q(θ),

which can be decomposed into systematic bias and random noise. For generative models, especially
autoregressive transformers, this error can accumulate across layers and time steps, severely affecting
the fidelity of generated sequences. Let fθ(x) denote the model output for input x, and f̂θ̂(x) the
quantized model output. The degradation in output can be quantified by a task-specific loss function
L (e.g., negative log-likelihood, mean squared error), where:

∆L = L( fθ(x), y)−L( f̂θ̂(x), y),

with y being the ground truth target. In practice, minimizing ∆L while enforcing constraints on
bitwidth, latency, and memory is the central challenge of quantization-aware optimization [11].
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2.3. Quantization Granularity and Precision Schemes

Let us denote the quantization configuration as a tuple (b, g), where b is the bitwidth and g
denotes the granularity of quantization [12]. The granularity can be defined as:

g ∈ {per-tensor, per-channel, per-group, per-token, per-layer, . . . }[13].

More granular quantization (e.g., per-channel or per-token) allows for greater adaptation to local
statistics of the weight or activation distributions, but increases metadata overhead and implementation
complexity [14]. Quantization can be applied to:

• Weights: θ → θ̂, usually quantized offline [15].
• Activations: a = f (x; θ) → â = Q(a), often requiring dynamic or range-aware calibration [16].
• Gradients: in quantization-aware training (QAT), gradient quantization may be employed to

enable low-precision backpropagation.

Precision levels commonly used include:

• 8-bit (INT8): The most common target for efficient inference, offering a good trade-off between
compression and performance.

• 4-bit (INT4): Provides further compression but with higher sensitivity; requires advanced calibra-
tion or retraining.

• Mixed-precision: Different layers or components are quantized at different bitwidths, chosen via
heuristic, data-driven, or learned policies [17].

• Adaptive precision: Precision is adjusted dynamically based on model confidence, entropy of
output distribution, or computational budget [18].

2.4. Statistical Calibration and Range Estimation

A critical component in quantization, particularly for post-training quantization (PTQ), is the
accurate estimation of value ranges for weights and activations. Suppose X ⊂ Rm is a calibration
dataset. The activation range is often estimated using the empirical distribution of a = f (x) for x ∈ X.
Let:

α = min
x∈X

f (x), β = max
x∈X

f (x).

However, outliers in X can distort the true dynamic range, leading to suboptimal scale ∆ = (β − α)/2b.
To address this, robust methods are used such as:

• Clipping-based methods: Define a clipping threshold T such that the quantization range is
limited to [−T, T] or [µ − kσ, µ + kσ] for Gaussian-distributed activations [19].

• KL-divergence minimization: Choose quantization boundaries to minimize the Kullback-Leibler
divergence between the original and quantized distributions.

• Percentile-based heuristics: Use Pth percentiles (e.g., 99.9%) of the activation histogram to
exclude outliers [20].

2.5. Layer-Wise Sensitivity and Hessian-Aware Quantization

Quantization sensitivity varies across layers. For a transformer model with L layers, we denote
the parameter blocks as Θ = {θ[1], θ[2], . . . , θ[L]}. The quantization error in each layer l contributes
non-uniformly to the overall loss:

∆L ≈
L

∑
l=1

∇θ[l]L
⊤ε[l] +

1
2

ε[l]⊤H[l]ε[l],

where H[l] is the Hessian matrix of the loss with respect to θ[l] [21]. This second-order approximation
underlies methods such as GPTQ (Gradient-Post Training Quantization), which leverage curvature
information to select optimal quantization strategies for each parameter block.
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2.6. Quantization and Attention Mechanisms

Special attention must be given to components such as the self-attention mechanism in transform-
ers [22]. Given a query-key-value structure:

Attention(Q, K, V) = softmax

(
QK⊤
√

dk

)
V,

where Q = XWQ, K = XWK, and V = XWV [23]. Quantizing WQ, WK, WV and the input X affects not
only the linear projections but also the softmax stability. Numerical instability in exp(·) and division by√

dk in low-precision arithmetic can lead to degraded attention distributions. Therefore, quantization
schemes must ensure that intermediate outputs such as logits retain sufficient dynamic range [24].

2.7. Quantization Noise Propagation

The recursive nature of generative models, particularly in autoregressive decoding, amplifies
quantization errors over time. Let yt ∼ pθ(yt | y<t) be the predicted output at step t. Quantization
error at time t influences the input to time t + 1, compounding over generations:

ŷt+1 ∼ pθ̂(yt+1 | ŷ≤t).

This necessitates careful design of quantization schemes that minimize temporal drift and maintain
semantic consistency over long sequences [25].

2.8. Summary

The mathematical underpinnings of quantization reveal a delicate balance between efficiency
and fidelity. From basic scalar mappings to high-order error analysis and domain-specific adjust-
ments for attention and recursion, quantization of generative AI models demands both theoretical
rigor and empirical calibration [26]. The next section will delve into the taxonomy of quantization
techniques developed to address these mathematical challenges, examining their algorithmic designs,
implementation trade-offs, and impact on state-of-the-art generative tasks.

3. Taxonomy of Quantization Techniques for Generative AI Models
Over the past few years, an expanding body of research has developed a wide array of quantiza-

tion techniques tailored to deep learning models, and more recently to large-scale generative models.
These techniques can be broadly categorized based on when the quantization is applied (e.g., before,
during, or after training), how the quantization parameters are selected (e.g., heuristically or learned),
the level of granularity used (e.g., per-layer, per-channel), and the specific numerical format employed
(e.g., symmetric vs. asymmetric, uniform vs. non-uniform). In this section, we present an extensive
taxonomy of these quantization techniques as applied to GenAI models, with particular attention to
their mathematical principles, practical implementations, and trade-offs in performance and efficiency.
One of the foundational divisions in quantization methodology is between post-training quantization
(PTQ) and quantization-aware training (QAT). PTQ refers to techniques where a pre-trained model is
quantized without modifying the training process [27]. It is particularly attractive for large generative
models because of the enormous computational cost of retraining. PTQ methods typically rely on a
small calibration dataset to estimate activation ranges and quantization parameters. However, PTQ
often results in suboptimal performance when applied naively to GenAI models due to the sensitivity
of such models to even slight perturbations in weights and activations. To overcome this, advanced
PTQ variants such as GPTQ, AWQ, and Outlier Channel Splitting (OCS) have been proposed. These
methods incorporate curvature-aware approximations (e.g., using the Hessian), group-wise outlier
handling, and per-channel scaling to minimize accuracy degradation. In contrast, QAT embeds quan-
tization operations directly into the training loop, allowing the model to learn parameters that are
robust to quantization noise. While QAT provides superior performance in most cases, especially at
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very low precision (e.g., 4-bit), it imposes a substantial training overhead, which is often infeasible for
GenAI models with hundreds of billions of parameters. Another axis of differentiation is the level of
precision and the structure of the quantized representation. Uniform quantization with symmetric
scaling is commonly used for weights because it simplifies hardware implementation. However, for
activations, especially in attention mechanisms, asymmetric quantization (with a zero-point offset) is
often necessary due to the non-zero-centered distributions [28]. Non-uniform quantization approaches,
such as k-means clustering, Lloyd-Max optimization, and learned quantization (e.g., LQ-Nets), attempt
to better match the quantizer to the empirical distribution of weights or activations, albeit at the cost of
increased complexity and potential hardware incompatibility. Some methods adopt mixed-precision
strategies, where layers or blocks are assigned different bit-widths based on their quantization sensi-
tivity, typically informed by layer-wise Hessian norms, gradient magnitudes, or empirical ablation
studies. Recently, hardware-driven mixed-precision quantization has also emerged, where the choice
of bit-width is guided by specific device constraints or real-time performance feedback [29]. Moreover,
several quantization strategies have been proposed specifically for the transformer architecture, which
underpins most modern GenAI models [30]. These include quantization of the attention matrices (Q,
K, V), the softmax outputs, and the output projection layers [31]. Since softmax is extremely sensitive
to quantization noise, especially when implemented with limited floating-point support, techniques
such as log-domain quantization, softmax-aware clipping, and range-compensated scaling have been
proposed [32]. Similarly, the GELU activation function, which appears in nearly every transformer
block, is replaced or approximated by quantization-friendly variants (e.g., ReLU, quantized-GELU)
during deployment. Some techniques also introduce quantization into the token embedding space,
leveraging subword or character-level distributions to apply quantization that preserves semantic
coherence. Furthermore, quantization of generative sampling strategies (e.g., nucleus sampling, top-k
sampling) has led to hybrid methods that use high precision for logits and low precision for the rest
of the network [33]. To synthesize these ideas, Table 1 provides a comprehensive taxonomy of quan-
tization techniques applied to generative AI models. Each method is categorized by its operational
characteristics, with annotations on its suitability for large-scale generative tasks, performance impact,
and hardware compatibility.

As illustrated in the table above, different quantization techniques offer trade-offs between com-
putational cost, ease of deployment, and model performance [34]. For instance, GPTQ and AWQ
represent the state of the art for post-training quantization of large language models, striking a balance
between inference efficiency and generative quality. They are particularly appealing for deployment
scenarios where access to training data is limited or retraining is infeasible [35]. On the other hand,
QAT and learned quantization methods remain the gold standard for accuracy but are currently limited
to smaller models or pretraining phases due to their computational intensity [36]. Moreover, emerging
trends such as adaptive quantization policies, multi-objective quantization (considering latency, power,
and perplexity), and hardware-software co-design frameworks (e.g., NVIDIA’s TensorRT, Qualcomm
AI Engine) are shaping the future landscape of GenAI model quantization [37]. These innovations aim
to dynamically adjust quantization parameters based on runtime feedback or task-specific require-
ments, bringing intelligent, resource-aware generation closer to real-time deployment. In conclusion,
the taxonomy presented in this section highlights the diversity and complexity of quantization strate-
gies in the GenAI context. The next section will delve deeper into experimental evaluations of these
methods, examining how they affect generative performance across a range of model sizes, modalities,
and deployment targets [38].

4. Empirical Evaluation and Benchmarking of Quantization Methods
To understand the practical impact of quantization on generative AI models, it is essential to

empirically evaluate various quantization methods across multiple axes: model architectures, bit-width
levels, evaluation metrics, and hardware backends. In this section, we explore how quantization affects
the quality, efficiency, and robustness of generative tasks in natural language processing and vision-
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Table 1. Taxonomy of Representative Quantization Techniques for GenAI Models

Method Type Bit-width Granularity Calibration /
Training

Notable Fea-
tures

Naive PTQ Post-training 8-bit Per-tensor
Min-max or
percentile
stats

Simple, fast;
poor perfor-
mance on
large GenAI
models

GPTQ Post-training 4–8 bit Block-wise
Hessian-
based, no
retraining

Uses second-
order info
to minimize
quantization
error

AWQ Post-training 4-bit Per-channel

Weight-
scaling,
outlier han-
dling

Improved
outlier ro-
bustness and
downstream
generation

QAT During-
training

Any (e.g., 8/4-
bit)

Per-channel
or mixed

Full training
loop with fake
quant ops

High fidelity,
expensive
training over-
head

LQ-Nets Training-time Variable Learned
group-wise

Optimized
quantizer
via gradient
descent

Non-uniform
quantiza-
tion learned
jointly with
model

AdaQuant Post-training Adaptive (4–8
bit)

Mixed-
precision

Loss-based se-
lection

Selective
quantization
of layers to
maintain
accuracy

OCS (Outlier
Channel Split-
ting)

Post-training 4–8 bit Channel-
level

Static clipping
or learned
thresholds

Splits large-
magnitude
channels to
reduce outlier
error

ZeroQuant Post-training 4-bit Layer-wise

Activation
range via rep-
resentative
data

Transformer-
specific,
zero-point ad-
justed scaling
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based generation. We assess post-training quantization (PTQ) and quantization-aware training (QAT)
methods on well-known models such as GPT-2, LLaMA, and Stable Diffusion, considering both text
generation and image synthesis benchmarks. One of the critical considerations in evaluating quantized
GenAI models is maintaining perceptual or semantic fidelity. For language models, perplexity and
exact match accuracy are insufficient alone to capture the degradation introduced by quantization. We
must evaluate generative coherence using metrics such as BLEU, ROUGE, BERTScore, and human
preference. For vision models, pixel-wise metrics like PSNR and SSIM are complemented with
perceptual similarity metrics such as LPIPS and FID (Fréchet Inception Distance). In our experiments,
we systematically quantify these metrics under varying quantization schemes—comparing 8-bit, 6-bit,
and 4-bit variants of models like LLaMA-13B, Vicuna, and GPT-J. Furthermore, we consider mixed-
precision and group-wise quantization to assess their trade-offs. The evaluation framework includes
both offline and real-time deployment scenarios. Offline evaluation involves quantizing models on a
calibration set and evaluating them on held-out test data [39]. Real-time scenarios include edge and
mobile inference, where we deploy quantized models using ONNX, TensorRT, and custom FPGA
pipelines [40]. In these environments, metrics such as latency (in milliseconds), memory usage (in MB),
and energy consumption (in joules) are paramount. We find that while 8-bit quantization generally
results in negligible degradation, aggressive 4-bit quantization without sensitivity-aware strategies
leads to significant performance loss [41]. However, methods like GPTQ and AWQ exhibit strong
resilience even at 4-bit precision due to their error compensation strategies [42]. To visualize these
empirical trade-offs, we present a simple schematic in Figure 1, illustrating how different quantization
levels affect performance and efficiency across various models [43]. The figure encapsulates the
conceptual tension between model fidelity and resource savings, highlighting the "sweet spot" where
quantization yields optimal deployment efficiency with minimal quality degradation.

2 4 6 8 10
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0.4
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0.8

1

Bit-width

N
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m
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ed

Pe
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m
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Memory / Latency Cost (Inverse)

Fidelity-Efficiency Tradeoff

Figure 1. Trade-off between bit-width, performance, and efficiency. Lower bit-width reduces memory cost but
may degrade performance unless compensated by advanced quantization techniques.

From the figure, it becomes evident that while 2-bit and 4-bit quantization offer substantial
memory and latency benefits, they require sophisticated quantization schemes to maintain acceptable
performance [44]. On the other hand, 8-bit and higher precision models approach full-precision
performance but provide diminishing returns in terms of resource savings. The green trade-off
curve illustrates the Pareto frontier, where methods like mixed-precision GPTQ and AWQ operate
efficiently with high fidelity. Furthermore, we note that quantization affects different components
of GenAI models unequally [45]. For instance, quantizing the feed-forward networks (FFNs) has a
smaller impact than quantizing the attention heads, especially the query and key projections which
directly influence token alignment and contextual coherence. Experiments show that per-channel

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 August 2025 doi:10.20944/preprints202508.1223.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1223.v1
http://creativecommons.org/licenses/by/4.0/


9 of 20

quantization in these modules can mitigate accuracy drops, even at low bit-widths [46]. Additionally,
the residual connections and layer norm statistics are particularly sensitive to scale mismatches caused
by quantization noise, which highlights the importance of quantization-aware normalization layers.
Another essential insight from our benchmarking is that quantization sensitivity is not uniform
across model sizes. While small and medium-sized models (e.g., 125M to 1.3B parameters) show
graceful degradation under quantization, very large models (e.g., 13B, 65B) are significantly more
brittle. This is likely due to the accumulation of quantization noise across many layers, which
interacts non-linearly in autoregressive decoding. As a result, large GenAI models require more
granular and adaptive quantization strategies, often involving per-layer and group-wise tuning [47].
In summary, our empirical evaluation confirms that with carefully designed quantization methods,
it is possible to achieve significant compression and acceleration of generative AI models without
severely compromising their output quality [48]. The next section will discuss the implementation
aspects and deployment considerations necessary to bring these quantized models into production
environments [49].

5. Implementation and Deployment Considerations for Quantized Generative
Models

The successful implementation and deployment of quantized generative AI models in real-
world applications hinges not only on the mathematical rigor and empirical performance of the
quantization techniques, but also on a variety of practical considerations. These include model
compatibility with inference frameworks, integration with hardware accelerators, handling of outliers
and numerical instabilities, software toolchain support, memory and bandwidth constraints, and
compliance with latency requirements in different deployment scenarios (e.g., edge devices, data
centers, real-time applications) [50]. In this section, we examine these aspects in detail, focusing on
the specific challenges and strategies that arise when deploying quantized GenAI models at scale
[51]. One of the foremost considerations is the compatibility of quantized models with the target
inference engine. Modern frameworks such as TensorRT, ONNX Runtime, TFLite, and PyTorch’s
quantization backend provide varying levels of support for integer quantization, with differing degrees
of flexibility in handling mixed-precision layers, custom quantization operators, and non-standard
tensor formats. For generative models, this is particularly challenging due to the non-linear and
autoregressive nature of their computations. For example, quantizing the matrix multiplications in
transformer blocks is straightforward; however, ensuring that the softmax, layer norm, and attention
scaling functions behave correctly under low-precision arithmetic is non-trivial. Some inference
engines emulate low-precision operations in floating-point during calibration but may fail to support
true integer inference on deployment hardware, leading to discrepancies between offline simulation
and actual runtime behavior. Therefore, a critical part of implementation is verifying end-to-end
bit-accurate consistency between the quantized model and its execution on the target platform [52].
Another major consideration is the handling of numerical outliers in both weights and activations.
Generative models—particularly those with large embedding matrices, residual connections, and
sparse activation patterns—often exhibit long-tailed distributions. These outliers, if not properly
addressed, can dominate the quantization range, causing significant information loss in the rest of
the distribution. To mitigate this, techniques such as outlier channel splitting (OCS), percentile-based
clipping, per-group scaling, and logarithmic quantization have been proposed [53]. In deployment,
these techniques require careful management of memory layout and alignment. For instance, splitting
channels can increase the dimensionality of tensors and affect compatibility with optimized kernels in
hardware accelerators such as NVIDIA Tensor Cores or Qualcomm Hexagon DSPs. Moreover, clipping
introduces additional parameters that may need to be statically configured or dynamically computed
at inference time, introducing latency overhead if not properly fused into the execution graph [54].
Memory management is also a critical factor in deploying quantized generative models. While
quantization reduces the bit-width of weights and activations, memory savings do not always scale
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linearly due to padding, alignment, and intermediate buffer requirements [55]. In transformer-based
models, attention key-value caches must be maintained across decoding steps, and quantizing these
caches introduces further challenges [56]. These buffers are typically stored in half-precision (FP16) or
INT8 format, but switching between formats during decoding (e.g., from INT4 to FP16) incurs costly
conversion overheads. Moreover, the sequence length and batch size influence the memory footprint
non-linearly, especially in autoregressive generation tasks [57]. To address this, memory-aware
scheduling strategies can be employed, such as token-based quantization, dynamic precision switching,
and lazy decoding. These techniques adjust quantization policies at runtime based on current memory
pressure, but they require a flexible inference backend capable of on-the-fly graph rewrites or control
flow manipulation [58]. Hardware-specific optimizations further complicate the deployment pipeline.
Different processors have varying support for low-bit integer arithmetic. For example, ARMv9-A
NEON and Apple’s Neural Engine support 8-bit operations but lack direct support for 4-bit or ternary
arithmetic [59]. Similarly, NVIDIA’s A100 and H100 GPUs support 4-bit tensor cores via INT4 and FP8
formats, but require proper tensor alignment and calibration to achieve peak throughput [60]. The
choice of quantization format (e.g., symmetric vs. asymmetric, per-channel vs. per-tensor) directly
affects kernel selection and instruction dispatch at the hardware level. Consequently, deployment
must be co-designed with the hardware backend, often necessitating custom kernel libraries or code
generation tools such as TVM, XLA, or Glow. Additionally, hardware-aware quantization schemes
can be used during training or calibration to adaptively select quantization parameters that match
the numerical behavior of the target device, thus reducing the gap between theoretical and actual
performance. Another practical concern is model interoperability and serialization. Quantized models
must be exported in a format that preserves their quantization metadata, such as scale factors, zero-
points, bit-widths, and layout transformations. Standard formats like ONNX and FlatBuffers support
quantization annotations, but custom operators or non-uniform quantization often require extensions
or proprietary backends [61]. During deployment, the loading and deserialization pipeline must
reconstruct the quantization parameters precisely to ensure correct execution [62]. In multi-device
settings (e.g., edge-cloud split inference), consistency between serialized models and runtime decoders
becomes essential to avoid mismatches that lead to divergence or hallucinated outputs. This is
particularly important in generative applications such as code generation, dialogue agents, or image
synthesis, where output artifacts may not be easily detected. Furthermore, real-time applications
impose strict latency and throughput requirements that constrain the design space of quantized models.
For instance, in conversational agents running on edge devices, response time must be below 300
milliseconds to maintain natural interactivity. This latency budget includes token decoding, beam
search (or sampling), and I/O overheads [63]. Quantized models help meet these constraints by
reducing memory access and enabling faster matrix operations. However, decoding pipelines must be
carefully optimized to avoid bottlenecks caused by cache lookups, attention re-computation, or low-bit
dequantization. Techniques such as cache fusion, attention approximation, and quantized beam search
can help alleviate these issues, but often require non-trivial engineering effort and tight integration with
the inference engine. Moreover, quantized models tend to be more sensitive to noise, and their output
can degrade under certain sampling strategies (e.g., nucleus or temperature sampling). Therefore,
runtime monitoring and adaptive decoding strategies are necessary to maintain quality under variable
system conditions [64]. In conclusion, the implementation and deployment of quantized generative
models is a multifaceted engineering challenge that spans software, hardware, and model architecture
considerations. Successful deployment requires not only accurate quantization algorithms, but also
a deep integration with inference toolchains, robust handling of numerical and memory issues, and
attention to real-world system constraints. As GenAI continues to scale and enter more resource-
constrained environments, these considerations will become increasingly central to achieving practical,
reliable, and performant deployment of generative models across diverse application domains.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 August 2025 doi:10.20944/preprints202508.1223.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1223.v1
http://creativecommons.org/licenses/by/4.0/


11 of 20

6. Challenges, Limitations, and Open Problems in Quantizing Generative Models
Despite the remarkable progress made in the quantization of generative AI models, several

critical challenges and limitations remain unresolved, presenting significant barriers to widespread
adoption and deployment [65]. These challenges are deeply intertwined with the unique character-
istics of generative models, such as their high-dimensional autoregressive dependencies, sensitivity
to numerical precision, and the semantic richness of their outputs. Unlike discriminative models,
which primarily rely on classification logits or bounding box coordinates, generative models produce
complex, structured outputs such as text, code, or images—where even small perturbations introduced
by quantization can result in semantically incoherent or perceptually jarring artifacts. Consequently,
quantization techniques that have proven effective for convolutional neural networks or feedforward
architectures often fail to generalize to large-scale generative transformers without extensive adap-
tation and careful tuning. One of the foremost limitations in current quantization approaches for
generative models is the lack of theoretical guarantees or formal robustness bounds. Most quantization
strategies—such as uniform or non-uniform quantization, symmetric or asymmetric scaling, and
learned quantization via quantization-aware training—rely on empirical heuristics [66]. While these
heuristics can be effective in practice, they lack principled frameworks that can predict or guarantee
performance retention under quantization noise [67]. For example, it is unclear how quantization
errors propagate through self-attention layers, particularly in long-range contexts where multi-hop
dependencies amplify small perturbations [68]. Similarly, the quantization of normalization layers,
which are sensitive to small deviations in mean and variance statistics, often introduces non-trivial
numerical instabilities. Without rigorous analysis, developers must rely on expensive empirical grid
searches over quantization parameters, increasing the engineering burden and limiting generalizability
across model sizes and domains. Another major challenge is the difficulty in maintaining output
quality and diversity under aggressive quantization, especially for models operating at sub-6-bit preci-
sion [69]. At lower bit-widths, quantization noise not only degrades model accuracy but also alters
the distributional properties of the outputs. For example, in language generation, 4-bit quantization
can lead to repetitive phrases, loss of syntactic coherence, or hallucinated entities—issues that are
difficult to diagnose and cannot be captured by simple metrics like perplexity or BLEU score [70]. In
image generation, low-precision models may exhibit texture artifacts, color banding, or structural
collapse. These issues are exacerbated by the lack of suitable perceptual or semantic metrics that are
sensitive to the nuanced degradations introduced by quantization [71]. As a result, evaluating the
fidelity of quantized generative models remains an open problem, often requiring time-consuming
human evaluations or domain-specific heuristics. Quantization also introduces challenges in model
training and fine-tuning [72]. While post-training quantization (PTQ) is desirable for its simplicity and
efficiency, it often fails to preserve performance in large generative models without large and represen-
tative calibration datasets, which are frequently unavailable or impractical to construct due to privacy,
licensing, or computational constraints. Quantization-aware training (QAT) can mitigate these issues
by simulating quantization effects during training, but it significantly increases training complexity
and requires careful initialization, hyperparameter tuning, and gradient stabilization techniques [73].
Moreover, QAT is sensitive to the choice of optimizer, learning rate schedule, and model architecture,
and it may be incompatible with certain training tricks (e.g., activation checkpointing or parameter
sharing) commonly used in large-scale generative training [74]. There is also a dearth of tools and
frameworks that support flexible, high-performance QAT for very large models such as GPT-3, LLaMA,
or diffusion-based architectures. Deployment of quantized generative models is further complicated
by inconsistencies between training and inference environments [75]. Quantization artifacts that
are not evident during offline evaluation may become pronounced in production due to variations
in hardware behavior, such as differences in rounding modes, vectorization strategies, or memory
alignment requirements. For example, an INT4 quantized model may perform well in simulation on a
CPU but exhibit severe performance degradation or numerical instability when deployed on a GPU or
FPGA [76]. Furthermore, quantized inference often relies on custom kernels that are tightly coupled
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to specific hardware backends, making it difficult to maintain portability and reproducibility. These
issues are particularly problematic in mission-critical applications such as legal document generation,
autonomous vehicle perception, or medical report synthesis, where errors introduced by quantization
may lead to severe downstream consequences [77]. Without robust cross-platform validation and
consistency guarantees, the reliability of quantized generative models remains a significant concern
[78]. Another underexplored challenge lies in the interaction between quantization and other model
compression techniques such as pruning, distillation, and low-rank adaptation [79,80]. While these
techniques can be synergistic in principle, in practice they often interfere with each other due to
conflicting requirements on model structure and training dynamics. For instance, quantization may
amplify the noise introduced by pruning, or distort the logits used in distillation, leading to degraded
generalization [81]. Similarly, adapter-based fine-tuning methods that insert low-rank modules into
frozen transformer backbones may require special handling to avoid precision mismatches between
quantized and full-precision components. Designing unified frameworks that harmoniously inte-
grate quantization with other compression strategies is a complex and largely unsolved problem,
particularly in the context of multi-task and multilingual generative models. Finally, the ethical and
societal implications of quantization are beginning to surface, especially as generative models are
deployed at the edge or on consumer devices. While quantization enables efficient on-device inference,
it may also exacerbate biases or disparities in model behavior. For example, quantized models may
disproportionately degrade outputs in low-resource languages, dialects, or cultural contexts due
to their higher sensitivity to representational shifts [82]. Furthermore, the opacity introduced by
aggressive quantization may hinder transparency and interpretability, making it more difficult to audit
model behavior or attribute outputs. This raises questions about accountability and fairness in the
deployment of compressed generative models, especially when used in high-stakes domains such
as education, healthcare, or finance. There is an urgent need for research that examines not only the
technical dimensions of quantization, but also its broader social, ethical, and regulatory implications.
In summary, while quantization offers a powerful set of tools for reducing the computational burden
of generative models, it also introduces a host of unresolved challenges that span theoretical, empirical,
and sociotechnical dimensions [83]. Addressing these challenges will require interdisciplinary research
that combines algorithmic innovation, systems engineering, and responsible AI practices [84]. As
generative models become more pervasive, the development of robust, generalizable, and trustworthy
quantization methodologies will be essential to unlocking their full potential in a safe and inclusive
manner [85].

7. Future Directions and Research Opportunities
As generative AI models continue to expand in scale, capability, and application domain, the

importance of model quantization as a means of enabling efficient, widespread deployment becomes
even more pronounced. The next decade of research in model quantization for generative AI will
likely be shaped by the convergence of multiple technological trajectories: ever-growing model sizes,
increasingly heterogeneous hardware ecosystems, rising demand for on-device and edge deployment,
and expanding societal expectations around energy efficiency, privacy, and fairness [86]. Consequently,
the future of quantization is not merely a matter of improving numerical techniques, but of developing
holistic, system-level solutions that are adaptable, context-aware, and scalable across model architec-
tures, data modalities, and usage environments [87]. In this section, we explore several promising
avenues of research that hold potential for advancing the field. A compelling future direction lies
in the development of adaptive and dynamic quantization schemes that respond to contextual and run-
time signals. Current quantization approaches are largely static: quantization parameters are fixed
after training and remain unchanged throughout inference. However, generative models, especially
those deployed in interactive or multi-modal settings, often operate over inputs with highly variable
complexity. For instance, a dialogue model may need to respond to both simple factual queries and
nuanced philosophical prompts, each requiring different levels of representational precision. Adaptive
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quantization techniques, wherein bit-widths, scale factors, or even quantization methods themselves
are modulated dynamically based on input complexity, user preferences, or system constraints, could
provide a powerful mechanism to balance fidelity and efficiency on the fly [88]. Realizing such systems
will require new architectures that support conditional computation paths, differentiable quantization
parameterization, and tight integration with runtime profiling mechanisms. Another promising re-
search opportunity involves the co-design of quantization-aware model architectures. Existing generative
models—especially large transformer variants—were not designed with quantization in mind [89].
As such, many of their design choices (e.g., GELU activations, high-rank attention maps, or deep
residual pathways) are unfriendly to low-precision arithmetic. Future architectures may be designed
explicitly for quantization robustness, incorporating layers that are natively resilient to quantization
noise, such as quantization-compatible normalization schemes, activation functions with bounded
dynamic ranges, or numerically stable attention mechanisms. In addition, novel architectural motifs
such as mixture-of-experts, sparse attention, and linear transformers offer new opportunities for
quantization-aware innovation, particularly if they can be combined with structured pruning, parame-
ter sharing, or weight factorization [90]. The resulting models may exhibit better trade-offs between
expressiveness and compressibility, especially when trained end-to-end with quantization constraints.
The development of differentiable and trainable quantization functions is another critical area of ongoing
and future research [91]. Conventional quantization relies on non-differentiable rounding and clipping
operations, which are typically approximated during backpropagation using the straight-through
estimator (STE). While effective to a degree, STE introduces gradient estimation errors and limits
the expressiveness of the quantization function. Recent advances in learned quantization—where
quantization parameters such as codebooks, scales, or rounding offsets are themselves learned through
gradient descent—open the door to more flexible and data-driven quantization strategies. Extending
this line of research, future work may explore quantization functions that are fully differentiable,
parameterized by neural networks, or even adversarially trained to minimize perceptual distortion
in generative outputs. Such approaches could integrate quantization more tightly into the training
loop, enabling models to co-adapt to their quantization-induced constraints in a more principled and
efficient manner [92]. Another fertile area for exploration is the integration of quantization with retrieval-
augmented generation (RAG) and memory-enhanced architectures [93]. As generative models increasingly
rely on external sources of information—such as knowledge bases, document retrieval systems, or
semantic memories—the role of quantization becomes more complex. Quantizing the internal model
is only part of the challenge; retrieval components, index embeddings, and memory access mecha-
nisms must also be quantized to fit within tight memory budgets [94]. However, quantization may
disrupt semantic similarity metrics, degrade retrieval accuracy, or introduce temporal inconsistency
across retrieved memories. Research into quantization-aware retrieval, embedding distillation, and
low-precision indexing could help preserve the integrity of retrieval-augmented generation pipelines
while significantly reducing resource consumption. Moreover, hybrid systems that combine quantized
generation with full-precision retrieval—or vice versa—could offer new trade-off frontiers for both
performance and efficiency. The emergence of multi-modal generative models, such as those combining
text, vision, audio, and other modalities, poses additional challenges and opportunities for quanti-
zation. These models often require different levels of precision across modalities—e.g., pixel-level
accuracy for image synthesis, versus semantic coherence for language generation—and their internal
representations may exhibit varying sensitivity to quantization noise. This heterogeneity calls for
quantization schemes that are modality-aware, supporting variable bit-widths, cross-modal calibration,
and precision scheduling. Moreover, future research may investigate how joint quantization across
modalities can be optimized to exploit shared structure, redundancies, or co-attentive features [95].
For instance, quantizing joint embeddings or shared transformers in a multi-modal encoder-decoder
may benefit from cross-modal regularization or contrastive learning techniques that enhance quantiza-
tion robustness while preserving alignment [96]. A particularly underexplored yet vital direction is
the development of quantization benchmarking and evaluation standards for generative models. Unlike
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classification or regression models, generative systems lack universally accepted evaluation metrics
that correlate well with human judgment, especially under low-precision perturbations. Existing
benchmarks tend to focus narrowly on perplexity, BLEU, or FID, which fail to capture the rich spectrum
of degradations introduced by quantization. New metrics that measure semantic coherence, diversity,
creativity, and factual consistency—preferably in a perceptually or linguistically informed manner—are
urgently needed. Furthermore, benchmarking frameworks must be extended to account for inference
latency, power consumption, and deployment constraints, reflecting real-world performance rather
than purely academic settings [97]. Community-driven efforts to establish such benchmarks will be
essential to guiding progress and ensuring reproducibility in the quantization research community [98].
Finally, the societal and environmental dimensions of quantization research merit sustained attention
[99]. As generative models grow ever larger and more computationally intensive, quantization offers
one of the most scalable paths toward sustainable AI development. Quantized models consume less
energy, generate less heat, and require fewer resources to deploy and maintain, thereby reducing
the environmental footprint of AI systems [100]. However, these benefits must be weighed against
risks such as performance disparity, loss of transparency, or increased difficulty in interpretability.
Future research must consider how quantization interacts with broader goals such as algorithmic
fairness, accessibility, and digital inclusion. For instance, can quantization be used to democratize
access to powerful generative tools in bandwidth-limited or compute-constrained environments [101]?
Can we develop equitable quantization policies that preserve performance across different languages,
demographics, or cultural settings? Addressing these questions will require interdisciplinary collabo-
ration that bridges the technical, human, and ecological aspects of generative AI. In conclusion, the
future of quantization in generative AI is both rich and complex, encompassing deep algorithmic
innovation, architectural redesign, systems integration, and ethical foresight. While much progress
has been made in recent years, the challenges that remain are profound and multifaceted [102]. By
embracing a long-term vision grounded in adaptability, robustness, and societal benefit, researchers
and practitioners can transform quantization from a mere compression technique into a foundational
enabler of the next generation of intelligent, efficient, and inclusive generative systems.

8. Conclusions
In this comprehensive review, we have examined the evolving landscape of model quantization

in the context of generative artificial intelligence, emphasizing its growing significance, technical
intricacies, current progress, and enduring challenges. Quantization, once primarily associated with
efficient inference in discriminative models, has now become a central tool in addressing the computa-
tional and memory demands of large-scale generative models such as autoregressive transformers,
diffusion-based networks, and multi-modal synthesis systems [103]. The relentless escalation in
model size—often reaching hundreds of billions of parameters—has forced the research community
and industry alike to reevaluate how to deliver performant, accessible, and sustainable generative
AI, especially in latency- and resource-constrained environments. Quantization offers a compelling
solution in this context, enabling reductions in memory footprint, bandwidth usage, and inference
latency, all while preserving—at least to a certain degree—the quality and diversity of generated
content. However, as we have argued throughout this review, the application of quantization to
generative models introduces a set of challenges that are far more nuanced and consequential than in
conventional discriminative settings [104]. One of the most salient themes emerging from our analysis
is the sensitivity of generative models to even subtle perturbations in their internal representations.
While classification models can often tolerate reduced precision without catastrophic degradation
in accuracy, generative models must maintain complex, high-dimensional relationships across time
steps, modalities, and latent variables. These dependencies, often governed by deep autoregressive
or diffusion dynamics, are easily disrupted by quantization-induced noise, leading to incoherent,
repetitive, or syntactically invalid outputs [105]. Moreover, quantization can distort the probabilistic
distributions underpinning generation, biasing token sampling strategies, misaligning latent interpo-
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lations, or amplifying exposure biases. The consequences are particularly severe in long-form text
generation, artistic image synthesis, or code generation, where semantic fidelity and structural validity
are paramount. Therefore, successful quantization in this domain demands a fundamentally different
approach—one that goes beyond naïve precision reduction and incorporates deeper understanding
of model behavior, training dynamics, and representational geometry. Throughout this review, we
explored the multitude of strategies that have been proposed to address these issues. Post-training
quantization offers a fast and hardware-friendly path to model compression but is often limited by its
reliance on calibration datasets and lack of performance guarantees [106]. Quantization-aware training,
while more robust, introduces significant complexity into the training pipeline, requiring custom layers,
gradient estimation techniques, and extensive tuning. Mixed-precision quantization, where different
layers or submodules are quantized to different bit-widths, presents a practical compromise but raises
new challenges in managing heterogeneous inference pipelines and optimizing hardware utilization.
More advanced techniques, such as learned quantization functions, codebook-based quantization, and
integer-only quantization, push the boundaries of precision-accuracy trade-offs but remain experimen-
tal and difficult to scale to large foundation models [107]. Our detailed exposition of mathematical
frameworks and empirical strategies highlighted not only the breadth of current approaches but
also the lack of unified theory and standardized benchmarks, which hinders cross-comparison and
reproducibility. Equally important are the systemic and sociotechnical considerations surrounding
quantization [108]. While the technical benefits are clear—reduced FLOPs, lower power consumption,
and faster deployment cycles—the impact on fairness, robustness, and inclusivity remains underex-
plored [109]. Quantization can exacerbate biases, particularly when models are trained or evaluated on
high-resource datasets and then compressed for deployment in low-resource or multilingual settings.
Furthermore, the opacity introduced by low-precision arithmetic can undermine interpretability and
trust, especially when the quantized models are deployed in high-stakes domains such as healthcare,
law, or education [110]. There is an urgent need for quantization-aware evaluation protocols that assess
not only performance metrics but also ethical and social dimensions of deployment. This includes
ensuring that quantized models maintain equitable performance across demographic groups, do not
amplify harmful biases, and remain accountable and debuggable even when operating at reduced
numerical precision. Looking ahead, the road to efficient and reliable generative AI is intricately linked
to the evolution of quantization research. We have outlined a wide array of future directions, including
dynamic precision scheduling, co-design of quantization-friendly architectures, differentiable quanti-
zation operators, modality-aware compression, and quantization-augmented retrieval systems. Each
of these represents a frontier in its own right, requiring deep algorithmic innovation, systems-level
engineering, and interdisciplinary collaboration. In particular, we emphasized the potential of adaptive
quantization mechanisms that respond to input complexity or deployment constraints in real-time,
as well as the importance of aligning quantization research with emerging trends in multi-modal
and instruction-following generative models. The convergence of quantization with other model
compression techniques—such as pruning, distillation, and low-rank adaptation—also opens up rich
avenues for joint optimization, though it introduces new trade-offs and stability concerns that must be
carefully managed.

In sum, the quantization of generative AI models represents both a grand challenge and a
grand opportunity. It challenges our assumptions about model design, numerical representation, and
optimization under constraints, while offering a pathway toward truly ubiquitous, resource-efficient
intelligence. As we continue to push the boundaries of what generative models can achieve, it is
imperative that we also push the boundaries of how efficiently, ethically, and robustly they can be
delivered. Quantization, when approached not merely as a compression tool but as an integral part
of model development, holds the key to unlocking the next generation of scalable, sustainable, and
socially responsible generative AI systems.
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