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Abstract: General-purpose large language models (LLMs) still struggle to effectively grasp specialized
knowledge in the field of geriatric medicine, which limits their performance in complex question-
answering (QA) scenarios. Although Retrieval-Augmented Generation (RAG) strategies have been
introduced to enhance their capabilities, the lack of domain adaptation in general-purpose LLMs still
leads to hallucination issues, where models generate inaccurate or irrelevant answers. To address
these challenges, we propose a novel domain-specific fine-tuning method for geriatric medicine within
the RAG framework. This approach involves constructing a specialized medical dataset tailored for
RAG tasks and applying full-parameter fine-tuning to a large language model. Experimental results
show that, compared to general-purpose LLMs with RAG, our method improves answer accuracy by
approximately 5 to 6 percentage points in GPT-4 evaluations on a geriatric medicine test set. In human
evaluations, our model demonstrates superior professionalism, with answers more closely aligned with
human standards. Additionally, the model’s performance on Longbench general capability assessments
shows a slight decrease, further validating the specificity and effectiveness of our approach. These
findings provide an innovative solution for intelligent QA in geriatric medicine, overcoming the
limitations of existing RAG-based models and offering a more robust domain adaptation strategy.

Keywords: artificial intelligence for medicine; large language models; retrieval-augmented generation;
instruction fine-tuning; medical question-answering data

1. Introduction

In the era of information explosion, Large Language Models (LLMs) have achieved remarkable
success in a wide array of general-knowledge reasoning tasks owing to their deep training on vast,
publicly available datasets. This progress marks a pivotal milestone in the field of artificial intelli-
gence [1]. Currently, pre-training LLMs in large-scale text corpora has become an industry standard,
forming a solid foundation for deploying these models across diverse application domains [2].

Despite their extraordinary capabilities, LLMs are not without limitations. In particular, in
high-stakes fields such as medicine and law, the phenomenon of hallucination in LLM presents
significant risks, drawing increasing attention to another critical aspect of LLM performance, reading
comprehension, particularly in tasks such as evidence-based question answering (QA). In evidence-
based QA, LLMs must respond to queries using the knowledge sources provided and accurately citing
these sources [3]. This ability is crucial to ensure both the accuracy and professionalism of the model’s
output. However, standalone LLMs often face challenges related to hallucinations and knowledge
gaps, especially when dealing with ,complex domain-specific problems [4,5].

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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To address these issues, Retrieval-Augmented Generation (RAG) has emerged as a promising
strategy. By integrating the robust processing power of LLMs with the vastness of external knowledge
sources, RAG enhances the reliability and traceability of model-generated responses, offering a more
robust solution for specialized domains [6]. This approach significantly mitigates hallucinations
and knowledge limitations common in standalone LLMs, while also improving the traceability and
professionalism of the answers. However, RAG also introduces new challenges, particularly for
LLMs with smaller parameter sizes. When tasked with processing multiple non-contiguous retrieval
segments, these models exhibit a marked decline in reading comprehension, making it difficult to
accurately identify pertinent information and synthesize coherent analyses.

In the medical domain, LLMs are increasingly becoming indispensable tools for both research
and clinical practice. These models typically rely on open-source medical data for fine-tuning, aiming
to achieve a higher degree of specialization. Models such as Huatuo [7] and Bianque [8] exemplify
this trend. However, despite some advancements in their ability to respond to user queries, the
performance of these models remains less than fully satisfactory. A primary contributing factor to
this limitation is the lack of traceability in the generated answers, alongside the inconsistent quality
of the open-source medical data used for training, which presents a significant barrier to further
improvement [9]. Current data construction methodologies primarily focus on enriching LLMs with
medical data derived from either real or synthetic dialogues. While these datasets offer valuable
resources, they also introduce potential human errors, diminishing the credibility of model outputs
and presenting challenges to the professionalism of the generated answers.

Therefore, we propose a more robust data construction approach complemented by effective
filtering and verification mechanisms to enhance the quality and reliability of the training data. By
continuously refining the RAG strategy and integrating it with high-quality, curated medical data, we
introduce a novel approach: full-parameter fine-tuning of LLMs within the medical domain using the
RAG framework. This strategy not only improves the model’s ability to accurately identify relevant
retrieval segments but also empowers LLMs to play an increasingly vital role in the medical field,
offering more reliable and professional outputs. Our contributions can be summarized as follows:

*  We have developed an automated framework for generating diverse and high-quality RAG data
tailored to the geriatric medicine domain. This framework leverages publicly available disease
encyclopedia information from authoritative Chinese medical websites, resulting in the creation
of xyWwyRAGQA, the Chinese medical knowledge RAG QA dataset;

*  We have applied the RAG strategy to conduct full-parameter fine-tuning of LLMs for the geri-
atric medicine domain. By integrating external knowledge sources, our approach significantly
enhances the model’s ability to accurately identify and utilize the correct retrieved segments;

*  We have designed evaluation metrics to assess the professionalism and accuracy of the model.
Experimental results demonstrate that, compared to "general LLM+RAG" strategy and "domain-
finetuned LLM+RAG" strategy, our proposed method achieves notable improvements in geriatric
medical QA tasks while also delivering outstanding performance in general domain QA tasks.

2. Related Work
2.1. Domain Adaptation Strategies for LLM

Although large language models (LLMs) have achieved remarkable success in general domains,
their performance often falls short in fields requiring deep expertise, such as geriatric medicine.
This limitation primarily arises from the insufficient domain-specific knowledge embedded within
LLMs [13]. To address this challenge, researchers have explored various approaches to adapt LLMs
to specialized fields. One strategy involves pre-training models on medical corpora, enabling them
to acquire specialized vocabulary and achieve more precise knowledge representation [11]. Another
approach infuses medical knowledge directly into LLMs to enhance their understanding and applica-
tion of domain-specific concepts [11]. Additionally, fine-tuning using synthetic medical dialogues or
real clinical conversations further improves the adaptability of larger models to medical scenarios [12].
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These advancements demonstrate the potential of LLMs in healthcare, emphasizing that the accuracy
and professionalism of their responses depend heavily on the quality of their embedded knowledge.

However, instruction-tuned LLMs face notable limitations in the medical domain. They struggle
to address outdated or inaccurate internal knowledge, often failing to provide reliable information on
recent research or specific cases. Moreover, even after fine-tuning, these models may underperform on
rare or complex professional queries, a critical issue in high-stakes fields like medicine where incorrect
information can have severe consequences.

To overcome these challenges, the Retrieval-Augmented Generation (RAG) strategy has been
introduced. RAG combines the generative capabilities of LLMs with real-time retrieval from exter-
nal knowledge bases, dynamically incorporating relevant information to enhance the accuracy and
timeliness of responses. This integration offers a promising solution for improving the reliability and
professionalism of LLMs in specialized domains like medicine.

2.2. Enhancing Domain QA with RAG

Retrieval-Augmented Generation (RAG) combines retrieval mechanisms with generative mod-
els, dynamically incorporating external knowledge to enhance the quality of generation tasks [13].
In evidence-based QA, RAG retrieves relevant documents from large-scale knowledge bases and
generates answers based on cited evidence, ensuring both coherence and factual accuracy [14].

In the medical domain, RAG has shown promise in improving information retrieval and clinical
decision support. BioReader [15] enhances model inputs by retrieving scientific literature from a
PubMed-based database of 60 million entries, enabling efficient fine-tuning and accurate predictions
across diverse tasks. BEEP integrates patient-specific records with relevant medical literature to
improve clinical outcome predictions, such as in-hospital mortality [16]. Almanac provides real-time
access to the latest medical guidelines, supporting clinicians in making informed decisions [17].

Despite its potential, RAG models depend on high-quality evidence-based QA datasets, which
are scarce due to the labor-intensive annotation process. Existing datasets, like MedMCQA [18] and
PubMedQA [19], often suffer from noise and inconsistency, limiting their reliability and the perfor-
mance of RAG models. Addressing these challenges is essential to fully harness RAG’s capabilities in
healthcare applications.

2.3. Optimizing Fine-Tuning and Data Quality for Domain-Specific Models

Fine-tuning LLM for specific tasks often requires substantial amounts of manually labeled data,
which is typically unavailable for many downstream applications due to high annotation costs. This
data scarcity presents a significant challenge for task-specific model optimization. To mitigate this,
researchers have explored approaches such as knowledge distillation [20-22], data augmentation [23,
24], module replacement [25], semi-supervised learning [26], and data synthesis [27], aiming to reduce
the reliance on large annotated datasets.

In the medical domain, data availability faces additional challenges. Much of the medical data
is siloed within independent systems of various institutions, resulting in a pervasive “data island”
phenomenon. Furthermore, real-world medical datasets are limited, and open-source Chinese medical
Q&A datasets often suffer from uniform and simplistic question formats. Current strategies primarily
rely on providing LLMs with medical data derived from real or synthetic dialogues [28]. However,
these methods are prone to human error, and solely relying on supervised fine-tuning to train LLMs
for accurate, consistent, and non-hallucinatory responses remains a complex challenge.

RAG models, which leverage both retrieval and generation, show great potential in addressing
these challenges. However, their performance heavily depends on the availability of high-quality
training datasets. The scarcity of domain-specific RAG datasets has significantly limited the appli-
cation of these models in professional fields. Addressing this issue requires increased investment in
constructing and annotating high-quality datasets and exploring novel methods for data synthesis and
enhancement to support more robust applications.


https://doi.org/10.20944/preprints202412.2424.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 December 2024

d0i:10.20944/preprints202412.2424.v1

40f16

3. Methodology

In this paper, we begin by introducing the unsupervised medical data utilized in our study. Next,
we transform this unsupervised knowledge into training data optimized for the RAG framework.
Finally, we fine-tune a large language model (LLM) tailored for the RAG strategy, enabling it to
generate responses based on retrieved, domain-relevant medical knowledge. The overall workflow is
depicted in Figure 1.
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Figure 1. Overall flowchart of the Geriatric Medicine RAG Model, which includes data acquisition, data produc-
tion, data diversification, and model fine-tuning.

3.1. Generating Seed Instruction Data

We collected the latest geriatric medical data from authoritative medical websites to construct
a high-quality unsupervised dataset. Leveraging the advanced generative capabilities of large lan-
guage models (LLMs), we implemented a meticulously designed guidance mechanism to generate
medical instruction data closely aligned with real-world clinical scenarios. This approach not only
significantly reduces the workload associated with manual annotation but also substantially enhances
the practicality and reliability of the resulting data.

3.1.1. Unsupervised Knowledge Acquisition

Medical knowledge encompasses both structured formats, such as medical knowledge graphs
and databases, and unstructured formats, such as medical guidelines and literature. In this study, we
focus on the disease encyclopedia section related to geriatric medicine from an authoritative medical
website. This data source combines both structured and unstructured knowledge relevant to elderly
healthcare. First, the structured medical knowledge is transformed into unstructured text, converting
the structured content into a free-text format. Next, we apply tailored filtering rules to remove garbled
or incomplete data, ensuring the resulting medical text is accurate, comprehensive, and suitable for
downstream applications in geriatric medicine.

3.1.2. Geriatric Medical Seed Instruction Data Generation

Based on unsupervised data from the field of geriatric medicine, we harnessed the powerful
generative capabilities of large language models (LLMs) to create seed instruction data tailored to
geriatric healthcare. To achieve this, we designed a systematic prompting strategy that explicitly
assigns the model the role of a “physician.” By embedding professional medical contexts and well-
defined task objectives into the prompts, the model is guided to understand task requirements from a
specialized perspective and generate instruction data aligned with medical standards.

To further enhance the quality and logical depth of the generated data, we integrated the Chain-
of-Thought (COT) [29] mechanism into the prompting process. This approach encourages the model to
engage in step-by-step reasoning, significantly improving its comprehension and handling of complex
tasks. By structuring the reasoning process into a series of sequential thought steps, COT ensures the
generated instructions exhibit clear logical progression, maintaining both rigor and scientific accuracy.
Moreover, this incremental reasoning framework enhances the model’s reliability and consistency in
generating instructions for multi-step tasks, making it particularly effective for sophisticated scenarios
in geriatric medicine.
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3.2. Instruction Data Diversification Processing

The quality and realism of synthetic data are critical for model performance. Synthetic data often
diverges from real-world distributions, leading to high training accuracy but poor performance on
real-world tasks. In contrast, models trained on manually annotated data exhibit smaller discrepancies
between training and testing accuracy [? ]. To mitigate this gap, we use the seed instruction data
generated in last step and further diversify it to ensure alignment with human preferences.

In real-world patient-doctor interactions, patients typically pose detailed, specific, and complex
questions about their symptoms, rather than generalized or simplistic inquiries. Manually creating
diverse and intricate instructional data is both time-consuming and labor-intensive, particularly
when crafting highly nuanced instructions. To address this challenge, we have developed a method
that harnesses the generative capabilities of large language models (LLMs) to produce diversified
instructional data across varying levels of complexity. This approach is guided by four targeted
evolutionary strategies designed to enhance the depth, specificity, and diversity of the instructional
dataset. The four strategies are described as follows:

¢ Depth Evolution Strategy: This strategy increases the depth of questions by introducing more
intricate scenarios or requiring multi-step reasoning for responses;

¢ Reasoning Evolution Strategy: This approach emphasizes logical progression and causal relation-
ships, encouraging the generation of questions that require comprehensive inferential reasoning;

*  Specificity Evolution Strategy: This method focuses on creating highly specific questions tailored
to individual conditions or unique patient scenarios, moving away from generic templates;

e  Sample Evolution Strategy: This strategy diversifies the dataset by introducing variations in
patient demographics, symptom descriptions, or contextual settings, simulating a wide range of
real-world medical cases.

Through iterative application of these strategies, we enhance the complexity, richness, and
diversity of the instruction dataset, ensuring it better aligns with the variability and specificity found
in real-world medical scenarios. Furthermore, we have designed dynamic prompt templates capable
of switching between strategies in a randomized manner. These templates employ diverse question
diversification techniques, enabling the generation of highly varied instruction data. This approach
introduces randomness and adaptability into the instruction generation process, ensuring a broader
representation of potential patient inquiries.The prompt templates used for generating diversified
instructional data are illustrated in Figure 2.

3.3. Instruction Data Quality Filtering

Designing automated evaluation metrics for instruction data quality is a critical task to ensure data
consistency and maintain high standards. To achieve this, we established two key metrics: question
recall rate and answer attributability, which are used to filter and identify high-quality data for RAG
tasks. These metrics play a pivotal role in enhancing the overall reliability and effectiveness of the
dataset.

3.3.1. Question Recall Rate

To ensure that the questions generated in the question-answer pairs are relevant to the document
content, we follow these steps for quality control of the questions:

First, we convert all document content into vector representations by using an embedding model.
Suppose there are N documents, where each document D; is vectorized as d;. Similarly, a question is
vectorized as q. The process for calculating the question recall rate for each document is as follows:

For the set of questions Q generated from D;, we use the vector representation of the question
q to retrieve the most relevant documents from the vector library. The cosine similarity between the
question q and each document vector d; is computed using the following equation:

q-d;

cos(q,d;) = ———
(. 40) = [iTar
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The top 10 documents with the highest similarity are selected as the retrieval results, denoted as
D = {Dy,Dp,Ds, - ..
the retrieved results:

, Dig, Di10}. Next, we check the position of the correct document D¢orrect within

rank(Dcorrect) = pOSitiOIl of Dcorrect in {Dilr Di2/ Di3/ ceey Di9/ DilO}

If the correct document appears in the top 3 positions, i.e., rank(Dcorrect) < 3,, then the question
is retained. Otherwise, the question is filtered out.

Depth_Evolution_Strategy
1. **Dig deeper into the dimensions of the question**:
- Expand the depth and coverage of the question while
keeping the core meaning of the original question
unchanged. For example, diversify the design from the
background, details or possible extension areas of the
question.
- Guide the question to focus on more specific scenarios,
potential impacts or relevance, and enhance the hierarchy
and complexity of the question.
- Ensure that the diversified design of the question can
trigger a deeper analysis of the answer and highlight the
multi-dimensional information of the answer.

2. **Maintain high quality and professionalism**:

- The in-depth question statement must be clear and specific,

and have exploratory and academic value.
- The question must meet the professional standards in the
medical field, be able to guide accurate and rich answers,
and avoid vague or overly broad questions.

3. **Ensure logical consistency**:

- The evolution of the question is consistent with the core
semantics of the original question, and can be analyzed
through the original answer to ensurc the logical
correspondence between the question and the answer.

Specificity_Evolution_Strategy
1. **Diversification**:
- Rewrite the original questions to achieve diversification
by adjusting the expression of the questions or adding
colloquial information.
- Ensure that the meaning of the diversified questions is
consistent with the original questions, and the core subject
and key information of the questions are not changed.
- Ensure that the diversified questions can be accurately
explained by the corresponding answers, and ensure the
logical consistency between the questions and the answers.

2. **Maintain high quality**:

- The diversified questions should be clear, specific,
searchable, and can be directly used for understanding or
answering.

- The question expression should be rigorous and casy to
understand, and meet the professional needs of the medical
field.

DIVERSIFY_PROMPT

#Role

You are a medical expert. Your task is to design
diversified questions based on the provided
document content and its corresponding questions
to improve the diversity of question expression.

# Diversification strategy:
{Evolution_Strategy}

# Output:

## Output format:

Please return the result in the form of a JSON object
in the following format:

"thought": "Detailed description of your analysis
process, including how to analyze the document
content and the original question, and the logic and
ideas for diversified design.",

"querys": ["Question 1", "Question 2", "Question 3"]
}

## Field description:

1. **thought**:

- Describe your analysis process, including how to

di ble and ize based on the d

content and questions, and ensure that the logic of

diversified design of questions is clear and

reasonable.

- Explain how to ensure the accuracy of question
and i i with the

original question.

2. **querys**:

- Design **3** diversified questions. Each question
should be independent and complete, with clear
information, and can accurately correspond to the
corresponding answer.

Reasoning_Evolution_Strategy
1. **Guided reasoning dimension**:
- On the basis of keeping the core meaning of the original
question unchanged, guide the question design to add
reasoning o logical chain to increase the depth and level of
thinking.
- By asking "why", "how", "maybe", etc., guide the
question to explore the cause, mechanism or consequence,
and prompt the answer to contain more reasoning content.
- Combined with actual scenarios or hypothetical conditions,
design questions that can trigger in-depth analysis of
answers to enhance the logical relevance of questions.

2. **Maintain high quality and professionalism**:

- The statement of reasoning questions must be clear and
specific, and can guide structured and logical answers.

- Ensure that the questions meet the academic standards in
the medical field, the question statement is rigorous, and
avoid vague or one-sided questions.

3. **Ensure logical consistency**:

- The evolved questions must be consistent with the core
semantics of the original questions, and guide the answers
to provide reasonable logical deduction and extension.

- Ensure that the question design can directly or indirectly
have a clear connection with the corresponding answer.

Sample_Evolution_Strategy
1. **Diversification**:
- Rewrite the original questions to achieve diversification
by adjusting the expression of the questions or adding
colloguial information.
- Ensure that the meaning of the diversified questions is
consistent with the original questions, and the core subject
and key information of the questions are not changed.
- Ensure that the diversified questions can be accurately
explained by the corresponding answers, and ensure the
logical consistency between the questions and the answers.

2. **Maintain high quality**:

- The diversified questions should be clear, specific,
searchable, and can be directly used for understanding or
answering.

- The question expression should be rigorous and casy to
understand, and meet the professional needs of the medical
field.

Figure 2. Template for Constructing Diversified Instruction Data Prompts.

3.3.2. Answer Attributability

Using an NLI (Natural Language Inference) model for quality control is an effective method,
as NLI models validate the logical relationship between an answer and its corresponding document
content, thereby assessing the attributability of the answer. The scoring for answer attributability is
defined as follows:

AttI'A — ‘Aentailment| —-1— ‘Aneutral| + |Acontradiction‘
Al |A|

where:
e | Al: Total number of sentences in the answer.
*  |Acntailment|: Subset of sentences in the answer identified as entailing the document content.
* | Acontradiction|: Subset of sentences in the answer identified as contradicting the document content.
® | Ajeutral]: Subset of sentences in the answer identified as neutral to the document content.

To achieve high-precision entailment detection, we utilize the top-performing attributability
prediction models. If both models predict a sentence as “attributable,” the sentence is considered to be
fact-supported and is included in |Aeptaiiment|- We set an attributability threshold to filter out synthetic
data and retain only high-quality RAG data. This approach ensures that the generated answers are
logically consistent with the document content, improving the reliability of the dataset.
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3.4. Training RAG Models

To effectively train a high-performing RAG model, traditional reading comprehension datasets,
while improving a model’s ability to answer questions based on single documents, are insufficient
for the demands of RAG tasks. RAG typically requires retrieving the top 50 or more documents,
making it essential to construct multi-document reading comprehension datasets, or RAG-specific
datasets. These datasets train the model to first identify the correct document, then perform reading
comprehension on it, and finally generate an accurate answer.

Several key considerations must be addressed when constructing RAG datasets. First, since
retrieved documents are ranked based on their similarity to the query, correct-answer documents are
often placed in the top positions. This creates a misleading assumption that answers are always found
in the leading documents, limiting the model’s performance. LLMs naturally prioritize highly ranked
documents and may overlook answers located in middle or lower-ranked documents. However,
in real-world scenarios, answers can appear randomly within the retrieved documents. Therefore,
constructing multi-document datasets must deliberately randomize the placement of correct-answer
documents to better reflect practical situations.Second, regarding the selection of distractor documents,
a common approach is to use documents entirely unrelated to the correct-answer document to minimize
interference and improve the model’s ability to identify the correct document. However, this method
is not aligned with the requirements of RAG tasks, where retrieved documents are typically highly
relevant to the query. Instead, distractor documents should be selected to be closely related to the
correct-answer document but without containing the correct answer. This strategy enhances the
model’s ability to distinguish the correct document within highly similar contexts, while also exposing
it to domain-relevant distractors, thereby deepening the model’s understanding of the knowledge
field.

In summary, constructing multi-document reading comprehension datasets for RAG training
requires adherence to the following principles:

¢ Randomized placement of correct-answer documents to prevent the model from developing
position-based biases;

®  Selection of relevant distractor documents to simulate realistic retrieval scenarios, improve
discrimination in challenging contexts, and enhance the model’s domain knowledge.

3.4.1. Set Relevant Distractor Documents

The selection of distractor documents is based on a retrieval database of geriatric medical doc-
uments. Using an embedding model, documents are randomly selected from a preprocessed and
cleaned corpus, ensuring semantic similarity scores between 0.5 and 0.9 relative to the correct-answer
document. These distractor documents must exhibit significant content differences from the correct-
answer document to increase the difficulty of the retrieval task, thereby effectively enhancing the
model’s retrieval accuracy. Additionally, distractor documents should avoid duplication and maintain
high quality to prevent introducing noise that could disrupt model training. The primary goal of this
step is to incorporate negative samples into the dataset, creating a contrastive learning scenario. This
enables the model to accurately identify and retrieve relevant information from semantically similar
but content-wise unrelated documents, improving its robustness and precision in complex retrieval
tasks.

Ddistractor = {dk | dk eD,05< S(dcorrect/ dk) < 0.9, S(dk, dm) < 0.95 Vdm ;é dk}

Dfinal = {dcorrect/ dk]l dkzl [Ny dkm} and dki € Ddistractor

The semantic similarity between texts, denoted as S(d;, dj), is calculated for document pairs d;
and d;. Using an embedding model, the vector representations of documents, v; and v;, are computed.
For the correct-answer document dcorrect, candidate distractor documents dj. are selected from the
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document corpus D = {dj,dy,...,d,} based on the following conditions: 0.5 < S(dcorrect, dx) <
09 and dy # dcorrect- Here, di represents documents within the corpus that serve as potential
distractor documents. For the filtered distractor document set D gjstractor, cONtent redundancy is further
eliminated by removing document pairs where the similarity exceeds: S(d;, d;) > 0.95. Finally, the
correct-answer document deorrect is combined with the selected distractor documents D gjsractor tO
construct the RAG dataset, enabling effective training for retrieval-augmented generation tasks.

3.4.2. Randomly Place Correct Documents

To enhance the model’s ability to perceive the position of correct documents in RAG data,
we designed a targeted distribution strategy for correct document placement. Given that correct
documents are typically retrieved in the first position in most cases, we allocated 50% of the correct
documents to the top position. To address potential decreases in retrieval accuracy, the remaining
50% of the correct documents were distributed as follows: 40% were randomly placed within the
top 10 retrieved documents, while the remaining 10% were randomly distributed across all retrieved
documents. This strategy aims to balance the model’s adaptability to both high-accuracy and low-
accuracy retrieval scenarios, enhancing its robustness and overall performance in practical applications.

50% if dcorrect = dl
P(dCOH‘GCt) =40% if dcorrect € {dZI cee ,dlo}
10% if deorrect € {dllr ceey dn}

3.5. Evaluation Metrics
3.5.1. Domain Metric

In the medical domain, to evaluate the effectiveness of various models in responding to user
queries, we propose a comprehensive evaluation metric that incorporates both Answer Correctness
and Semantic Similarity. This metric is designed to provide a holistic assessment of the quality
of model-generated responses, ensuring that they meet the necessary standards of accuracy and
contextual relevance.

The metric integrates Answer Correctness, which evaluates the classification accuracy of the
model, and Semantic Similarity, which assesses the degree of alignment in linguistic expression and
content coverage between the generated answers and standard reference answers. Specifically, Answer
Correctness is evaluated using GPT-4, which provides a robust assessment of factual accuracy by
leveraging its advanced reasoning and comprehension capabilities. Semantic Similarity, on the other
hand, is evaluated using the pre-trained embedding model bge-large-zh-v1.5, which calculates the
degree of alignment between generated and reference answers by analyzing linguistic expression and
content representation.

The calculation of the Answer Correctness is defined as follows:

|TP|
ITP[+ 05 x (|FP| + |FN])

Answer Correctness =

where:
e |TP|: Number of true positives.
e |FP|: Number of false positives.
e |FN|: Number of false negatives.

The overall metric is calculated as a weighted sum of the Answer Correctness and semantic
similarity:

Overall Score = wy X Answer Correctness + wy X Semantic Similarity

where:
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e wj: Weight assigned to the Answer Correctness, with a default value of 0.75.
e wy: Weight assigned to Semantic Similarity, with a default value of 0.25.

This comprehensive metric ensures that the evaluation framework is both robust and practical.
It measures the ability of the model to deliver accurate responses while maintaining a high degree
of semantic alignment, thereby reflecting the model’s overall effectiveness in real-world applications.
This comprehensive framework is particularly suited for the medical domain, where the reliability
and contextual appropriateness of responses are critical. By employing this metric, we provide a
systematic and reliable tool for assessing and improving the quality of model-generated answers in
medical settings.

3.5.2. General Metric

To evaluate the general capabilities of the model in the general domain, we utilized the Chinese
tasks from the Longbench [31] benchmarking suite. Longbench offers a diverse collection of tasks
and datasets, making it an ideal framework for assessing the multifaceted competencies of language
models across various dimensions.

We primarily utilized the following tasks from Longbench for our evaluation:

e LSHT: A Chinese classification task that involves categorizing news articles into 24 distinct
categories;

e DuReader: A task requiring the answering of relevant Chinese questions based on multiple
retrieved documents;

*  MultiFieldQA_ZH: A question-answering task based on a single document, where the documents
span diverse domains;

*  VCSum: A summarization task that entails generating concise summaries of Chinese meeting
transcripts;

. Passage_Retrieval _ZH: A retrieval task where, given several Chinese passages from the C4 dataset,
the model must identify which passage corresponds to a given summary.

4. Results and Discussion
4.1. Data Diversity

To validate the effectiveness of our approach in generating diversified instructional data, we
introduced two metrics for diversity assessment:

e Verb Usage Frequency: A higher number of verbs exceeding a predefined frequency threshold
indicates greater diversity;
e  ROUGE-L: A lower average ROUGE-L score within the same dataset signifies higher diversity.

In the evaluation process, we analyzed and compared the verb usage frequency in the seed
instruction data and the diversified instruction data, using a frequency threshold of 50. As illustrated
in Figures 3 and 4, the diversified instruction data incorporates a significantly greater variety of verbs
compared to the seed instruction data. Furthermore, we examined the ROUGE-L score distributions of
the two datasets. As depicted in Figure 5, the average ROUGE-L score for the diversified instruction
data is notably lower than that of the seed instruction data, reinforcing the conclusion that our method
successfully enhances diversity.
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Figure 4. Distribution of Verbs with Frequency Exceeding 50 in Diversified Instruction Data.
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Figure 5. Comparison of Average ROUGE-L Score Distributions between Diversified Instruction Data and Seed
Instruction Data.
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In addition to the aforementioned analyses, we further compared the average ROUGE-L score
distributions among three datasets: the seed instruction data, the diversified instruction data, and
a set of 100 manually curated instruction datasets, which serve as a benchmark for real-world data.
As illustrated in Figure 7, the distribution of the ROUGE-L scores for the diversified instruction data
exhibits a closer alignment with the distribution observed in the manually curated data.

This comparison underscores the effectiveness of our method in approximating the characteristics
of real-world instructional data. By achieving a ROUGE-L score distribution that closely mirrors that
of human-generated data, the diversified instruction data demonstrates not only increased variety but
also enhanced representational fidelity to real-world scenarios. This alignment further validates the
practical utility of our approach in generating high-quality, diverse instructional datasets.

14 4 train_seed_data
train_versity_data

12 - test_data

10 4

Instruction num

0.10 0.15 0.20 0.25 0.30 0.35
Average ROUGE-L Score

Figure 6. Comparison of Average ROUGE-L Score Distributions between Seed Instruction Data, Diversified
Instruction Data, and Real Data.

4.2. Model Training

Due to computational resource constraints, we selected three models as the base models for
our experiments: Qwen2.5-7B-Instruct, DeepSeek-V2-Lite-Chat, and GLM-4-9B-Chat. Qwen2.5-7B-
Instruct represents the latest iteration of Alibaba’s large language model, incorporating 7 billion
parameters and improved instruction-following capabilities. DeepSeek-V2-Lite-Chat is a lightweight,
high-performance model optimized for conversational tasks, while GLM-4-9B-Chat is a 9-billion-
parameter model designed for advanced generative language modeling.

Leveraging our constructed diversified instruction data, we applied supervised fine-tuning (SFT)
and RAG instruction fine-tuning to these base models. This multi-model approach enables us to
evaluate the effectiveness of our methods across varying model architectures and parameter scales,
ensuring robust and comprehensive performance analysis.

The experimental results presented in Table 1 underscore significant variations in model perfor-
mance across different strategies, particularly in terms of correctness and similarity within the test set
in the medical domain. The baseline model, while establishing a foundational benchmark, exhibited
limitations in both correctness and similarity. However, when integrated with the RAG strategy, a
marked improvement was observed, reflecting the ability of RAG to enhance both the accuracy and
semantic consistency of the model’s responses. This suggests that incorporating external retrieval
mechanisms, as implemented in the RAG strategy, can substantially enrich the model’s understand-
ing and alignment with domain-specific information. Further analysis reveals that models utilizing
the SFT strategy demonstrated notable advancements in correctness, surpassing the baseline model.
Nevertheless, this gain in correctness was accompanied by a marginal decline in similarity, indicating
a potential trade-off between precision in reasoning and semantic alignment. Importantly, when
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the SFT strategy was combined with RAG, the model achieved significant gains across both metrics,
demonstrating the complementary nature of these approaches. This combination effectively balances
domain-specific fine-tuning with enhanced contextual retrieval, leading to more robust performance.
The final optimized model, which integrates our advanced SFT strategy, achieved the highest scores in
both correctness and similarity between all configurations. This result highlights the effectiveness and
superiority of our approach in addressing the complex challenges of medical test sets. By leveraging
the strengths of SFT and RAG in a unified framework, the model demonstrates its capability to achieve
exceptional performance in tasks requiring high accuracy and semantic alignment. These findings
not only emphasize the robustness of our methodology but also underscore its potential for broader
applications in domains where precision and reliability are paramount.

Table 1. Comparison of Model Performance on the Medical Test Set.

Model Method Overall Score Answer Ans wer

Correctness Similarity

Base 0.4264 0.3875 0.5432

Base+RAG 0.6935 0.6676 0.7712

Qwen2.5-7B-Instruct Domain SFT 0.4702 0.4213 0.6171

Domain SFT+RAG 0.7126 0.6864 0.7913

Domain RAG SFT 0.7296 0.7011 0.8132

Base 0.4000 0.3601 0.5198

Base+RAG 0.6638 0.6356 0.7485

DeepSeek-V2-Lite-Chat Domain SFT 0.4396 0.3852 0.6027

Domain SFT+RAG 0.6805 0.6477 0.7792

Domain RAG SFT 0.6997 0.6622 0.8123

Base 0.3831 0.3453 0.4965

Base+RAG 0.6408 0.6105 0.7315

GLM-4-9B-Chat Domain SFT 0.4232 0.3702 0.5823

Domain SFT+RAG 0.6576 0.6253 0.7546

Domain RAG SFT 0.6975 0.6626 0.8023

To further validate the effectiveness of our approach beyond automated metrics, we conducted
human evaluations with medical domain experts. Figure 7 illustrates the human evaluation results
conducted by five medical students who were tasked with assessing model-generated answers on a
predefined medical test set. Each student categorized the responses into four levels of satisfaction:
More Satisfied, Satisfied, Unsatisfied, and Very Unsatisfied. The baseline model exhibited moderate
levels of satisfaction, indicating foundational performance but leaving room for improvement. The
integration of the RAG strategy significantly improved satisfaction scores, as evidenced by a notice-
able reduction in dissatisfaction rates. Models incorporating the SFT strategy further demonstrated
enhanced correctness and contextual understanding, with higher proportions of responses in the
“More Satisfied” and “Satisfied” categories. The combination of SFT and RAG strategies yielded the
most notable results, with the final model achieving the highest satisfaction rates among all configura-
tions. These evaluations, conducted by individuals with medical domain expertise, provide robust
evidence for the effectiveness of our approach in optimizing model performance and user satisfaction
in practical, domain-specific scenarios.
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Figure 7. Human Evaluation Results.

To evaluate the impact of increasing the number of retrieved documents on model performance,
we conducted the following experiment: using the same test set, we varied the number of retrieved
documents. The results demonstrate that as the number of retrieved documents increases, the interfer-
ence from irrelevant or low-relevance documents becomes more pronounced, leading to a gradual
decline in model performance. This trend highlights the challenges of maintaining correctness in
scenarios with abundant retrieved information. The experimental results are shown in Figure 8.

Among the configurations, the Domain Fine-Tuned model (Domain SFT) exhibits a significant
decline in performance as the number of retrieved documents increases. Notably, when a large number
of documents are retrieved, its performance even falls below that of the Base+RAG model. This
indicates that while domain-specific fine-tuning enhances correctness in scenarios with fewer retrieved
documents, it struggles to effectively manage the noise introduced by larger retrieval sets. In contrast,
the Domain RAG Fine-Tuned model (Domain RAG SFT) demonstrates remarkable robustness across
varying retrieval quantities. By applying domain-specific optimization to the retrieval-augmented
generation (RAG) framework, this configuration improves the model’s ability to identify and focus
on relevant documents, mitigating the negative impact of irrelevant retrievals. As a result, its perfor-
mance remains relatively stable, showing only moderate decline even when the number of retrieved
documents increases significantly.

These findings validate the effectiveness of the Domain RAG Fine-Tuning strategy. By enhancing
the model’s sensitivity to relevant documents, this approach addresses the limitations of traditional
fine-tuning methods. It ensures superior performance in retrieval-augmented generation tasks, even
under challenging scenarios with a large number of retrieved documents.

Qwen2.5-7B-Instruct DeepSeek-V2-Lite-Chat GLM-4-9B-Chat
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Answer Correctness.
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Figure 8. Line graph showing the proportion of correct documents in the dataset and model performance.

To verify whether fine-tuning tailored for RAG would compromise the model’s original general
capabilities, we conducted experiments on five Chinese tasks from Longbench. The experiments
involved testing the Base model, the Domain SFT model, and the Domain RAG SFT model. The
results, as shown in Table 2, the Domain SFT model, which relies solely on traditional domain-specific
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fine-tuning, appears to harm the model’s original general capabilities due to its narrow focus. For
example, its performance dropped on tasks like multifieldqa_zh and passage_retrieval_zh, suggesting
that the singular nature of domain-specific fine-tuning may impair the model’s ability to generalize
effectively. In contrast, the Domain RAG SFT model, designed to enhance the model’s sensitivity to
relevant documents, not only avoided reducing the model’s general capabilities but also achieved
modest improvements in reading comprehension tasks. This demonstrates that the Domain RAG SFT
strategy effectively balances the trade-off between domain-specific enhancements and general-purpose
performance.

In summary, the results highlight that while traditional domain fine-tuning may risk diminishing
a model’s general capabilities, the Domain RAG SFT strategy successfully preserves these capabilities.
Moreover, it introduces measurable improvements in tasks such as reading comprehension, proving
its effectiveness in augmenting both specialized and general abilities.

Table 2. Comparison of Model Performance Across Tasks.

Model Method Isht dureader multifieldqa_zh vcsum passage_retrieval zh
Base 29.5 38.2 65.2 17.5 92.5
Qwen2.5-7B-Instruct Domain SFT 28.0 35.3 52.2 14.8 78.0
Domain RAG SFT 29.0 39.3 67.4 15.1 94.5
Base 26.0 36.5 63.6 18.6 86.0
DeepSeek-V2-Lite-Chat Domain SFT 23.0 34.0 51.8 14.0 78.5
Domain RAG SFT 24.5 38.7 66.0 19.3 83.0
Base 42.0 46.2 64.3 19.8 94.0
GLM-4-9B-Chat Domain SFT 32.0 335 50.5 15.5 85.5
Domain RAG SFT 36.5 48.8 66.7 17.2 92.0

5. Conclusions

This study explores the application of advanced retrieval-augmented generation (RAG) strategies
in the field of geriatric medicine, addressing the critical need for accurate and reliable responses in
medical question-answering (QA) systems. By leveraging publicly available medical knowledge, we
proposed an automated method for generating high-quality RAG datasets specific to the geriatric
domain. This approach enabled the creation of a specialized Chinese medical knowledge QA dataset
tailored for geriatric healthcare.

The integration of RAG strategies introduced external knowledge sources into large language
models, resulting in a significant improvement in answer quality, particularly in terms of authenticity
and accuracy. To evaluate model performance in the medical field, we designed two tailored met-
rics: answer similarity and answer correctness. Experimental results consistently demonstrated the
superiority of the proposed approach over baseline methods in delivering reliable and precise answers.

Furthermore, we validated the generalization capabilities of the proposed model through eval-
uations on diverse Chinese tasks, showcasing its adaptability to broader QA scenarios beyond the
medical domain. This highlights the dual advantage of RAG-based approaches in enhancing special-
ized domain performance while maintaining strong general-purpose capabilities.

In conclusion, our research provides an efficient and precise QA framework for geriatric medicine
and offers valuable insights into the broader application of RAG strategies in specialized domains. As
high-quality datasets and retrieval techniques continue to advance, we anticipate that RAG-based QA
models will become indispensable tools across various fields, delivering accurate and trustworthy
information to meet diverse user needs.
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