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Abstract: The Temperate Highland Peat Swamps on Sandstone (TPHSS), unique to the Sydney Basin of
Australia, were burnt during the 2019-2020 wildfire season. This study assessed the post fire recovery of swamps
and the ability of remote sensing technique to determine the post-fire recovery patterns. Specifically, the study
investigated differences in fire recovery between swamps where groundwater level and soil moisture content
have been impacted by underground mining and unimpacted by mining. Two mined and one non-mined under
swamps were investigated. Soil moisture measurements were taken at five sites and previously conducted
vegetation field surveys (from 2016 to 2022) were used. Using remote sensing information, Normalised
Differenced Vegetation Index (NDVI) and Soil Moisture Index (SMI) time-series were calculated and compared
with ground data to map responses over the swamps following the fire impact. This study revealed that
hydrological conditions of swamps have a direct effect on post-fire recovery of swamps, with slower recovery
in mined under swamps compared with non-mined under swamps. This study indicated that NDVI and SMI
indices can exhibit the recovery pattern of swamps in terms of vegetation and hydrology. However, the
evaluation of recovery pattern of a specific vegetation species requires a frequent field survey.

Keywords: Normalised Differenced Vegetation Index (NDVI); Soil moisture index (SMI); Sydney
Basin; Upland swamps; Wildfire

1. Introduction

The Temperate Highland Peat Swamps on Sandstone (THPSS) are unique ecosystems within the
Sydney Basin Bioregion of Australia that are characterized by the development of peat overlying
Triassic Sandstone formations at elevations ranging between 600 and 1200m above sea level [1]. These
swamps are a distinctive feature of the region, habitat to unique vegetation that thrives on high
groundwater levels, high soil moisture content, and organic-rich sediments [2,3]. Some of the THPSS
are situated over underground mining areas, and subsidence due to the mining and associated
fracturing of the sandstone can be a reason for changes in the THPSS hydrology [4-6]. A concern
often raised is that mining-induced drainage of THPSS reduces their resilience to wildfires [1].

Wildfires are not uncommon in areas containing THPSS. The swamps typically exhibit high
resilience to fire, primarily due to their elevated soil moisture levels and the capacity to support swift
vegetation regrowth [1,7]. However, there is a lack of understanding on the resilience of THPSS
affected by underground mining and subsequently subjected to wildfires. Some studies [1,8,9] have
suggested that drier soil moisture conditions may reduce swamp resilience to fire, leading to an
increased risk of permanent damage and the loss of vegetation and ecological function. However,
there is little evidence to support this. Therefore, understanding the post-fire recovery of mined
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under swamps and non-mined under swamps is critical. It has been hypothesised that post fire
recovery of mined-under swamps is different from the post fire recovery of non-mined-under
swamps.

Remote sensing provides an innovative methodology for quantifying fire severity and
vegetation changes both temporally and spatially [10]. Historically, fire severity mapping utilized
moderate to coarse spatial resolution Landsat imagery (i.e. 30 m pixel) [11-13]. Satellite imagery can
now reach pixel resolutions of three meters [14]. Therefore, the utilization of remote sensing to
characterize fire impacts is gaining prevalence [15]. Beyond traditional fire severity mapping with
multispectral imagery, satellite thermal bands offer the capacity to generate spatially comprehensive
measurements of surface environmental conditions, including land surface temperature (LST) and
soil moisture index (SMI). This may offer opportunity to improve understanding of post fire recovery
of THPSS swamps. Studies have used thermal imagery to evaluate wildfire events in landscape scale
[16-19]. However, there remains a significant knowledge gap concerning the value of multispectral
and thermal imagery for this purpose, particularly at the plot scale (<500m?) and the local scale (1km?).

This study addresses the above research gaps by investigating fire severity and post fire soil
moisture and vegetation changes of three THPSS swamps. This study aims (i) to determine the post
fire recovery patterns of mined under and non-mined under THPSS swamps, and (ii) to explore the
potential of remote sensing data to assess post fire recovery of THPSS swamps.

2. Materials and Methods
2.1. Site Description

The three swamps, which were selected for this study, included two swamps in the Newnes
Plateau (Swamps A and B) and one swamp in Upper Nepean (Swamp C) regions of the Sydney Basin
Bioregion (Figure 1). These swamps have been chosen due to their accessibility, underground mining
activities, and historical fire events. Swamps A and B (with monitoring locations A1, B1 and B2) were
mined under (Figure 1a). Conversely, swamp C (with one monitoring location: C1) was not mined
under (Figure 1b). A large wildfire which was unprecedented in scale and severity moved through
Newnes Plateau in December 2019 and burnt Swamps A and B as well as other swamps. A wildfire
also burnt Swamp C in May 2020. The combination of mining history and the occurrence of these
extensive wildfires provides a unique context for studying the post-fire recovery dynamics of the
selected swamps, offering valuable insights into the interplay of mining and wildfire on this
ecosystem.

The study swamps have warm summers and cool winters [2]. The long-term average annual
rainfall was 793 mm and 1124 mm for the Newnes Plateau and Upper Nepean areas, respectively
[20]. The average annual minimum and maximum temperatures at Newnes Plateau and Upper
Nepean were -1.1 °C and 23.5 °C and 1.7 °C and 29.3 °C [20]. Daily rainfall and air temperature data
of the study locations before and after the fire events are presented in Figure A1.
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Figure 1. Aerial photo indicating the study locations in (a) Newnes Plateau (mined-under swamps):
Swamp A (8.9 ha) and Swamp B (5.09 ha), (b) Upper Nepean (non-mined-under swamp): Swamp C
(9.02 ha). The green points on Swamp B represent the vegetation monitoring transects. Al, B1, B2 and
C1 represent the soil moisture monitoring points.

2.2. In Situ Soil Moisture Monitoring

The topsoil moisture fluctuations at sites A1, B1 and B2 were measured using soil water potential
meters (tensiomark [21]) installed at 10 cm below the surface. For site C1, the topsoil moisture
fluctuations were measured using a Sentek soil moisture sensor also at 10 cm below the surface. The
water potential data were converted to volumetric water content values using soil water retention
curve parameters from the same swamps mentioned in Shaygan, Baumgartl and McIntyre [2]. The
Sentek sensor provided volumetric water content based on the calibration curves in Sentek Pty Ltd
[22].

2.3. Vegetation Monitoring

Field vegetation surveys were conducted yearly for Swamp B from 2016 to 2022 using the five
transects (10 survey points) indicated in Figure 1. Surveys for swamps A and C could not be
conducted due to access restrictions as a result of COVID-19. However, the vegetation communities
within the study swamps were similar as mentioned in Young [1]. Thus, the validation from Swamp
B is deemed to be applicable to all the study swamps (Swamp A, B and C).

2.4. Remote Sensing Metrics

Spectral indices for remote sensing, such as NDVI (the Normalized Difference Vegetation Index),
and SMI (the Soil Moisture Index), were computed to investigate key indicators of vegetation
damage, vegetation cover and soil moisture changes.

The NDVI value, which has been widely employed for assessing vegetation cover, health, and
vigor [23-25], correlates with greenness and biomass, and utilizes RED and NIR (the Red and Near-
Infrared) bands of the electromagnetic spectrum (Equation 1).
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Fire severity maps were generated using high spatial resolution surface reflectance Planet
imagery (3 m) [14], with the Swamp A and B pre-fire and post-fire images acquired on December 3,
2019 and February 27, 2020, respectively, and the Swamp C pre-fire and post-fire images acquired on
May 8 and 10, 2020, respectively (Table A1). Differenced NDVI rasters were computed through image
differencing in ArcGIS Pro, utilizing pre- and post-fire images of the sites to create fire severity
rasters, as per Equation 2:

dNDVI = prefireNDVI — postfireNDVI 2)

The resulting rasters were subsequently classified into five categories: unburnt, low, moderate,
high, and extreme severity (Table A2). Using preliminary dNDVI fire severity maps, 50 points were
randomly assigned to each class and ranked according to the fire severity class descriptions, as
outlined by Gibson, et al. [26] (Table A2), and through API (aerial photo interpretation) of high-
resolution aerial imagery captured both before the fire and after the fire. Class thresholds were re-
evaluated based on API, and an error matrix was generated to calculate the accuracy of the fire
severity maps. The error matrix was not able to be produced for Swamp C. However, as the
vegetation communities are similar in the study swamps [1], the error matrix from Swamp A and B
is applicable to Swamp C.

The SMl is defined as the proportion of the difference between the current soil moisture and the
permanent wilting point to the field capacity and the residual soil moisture [27]. The index values
range from 0 to 1 with 0 indicating very dry conditions and 1 indicating soil moisture at field capacity
[27].  The SMI value of each study site is the value of single pixel representing the relevant site. The
soil moisture index is primarily derived from the land surface temperature (LST) and vegetation
indices (NDVI) of the region under study. The SMI was calculated on empirical parameterization of
the relationship between LST and NDVI using Equation 3.

LSTpgy — LST

SMI =
LSTax — LSTin ®)

Where LSTmax and LSTmin are the maximum and minimum surface temperatures for a given
NDVI and LST is land surface temperature derived from Landsat 8 bands 10 and 11.

Land Surface Temperature (LST) is defined as radiative skin temperature of any land derived
from solar radiation [28]. Landsat 8 OLI (Operational Land Imager) satellite imagery was used to
calculate the LST and Bands 10 and 11 were used to capture reflectance in the thermal infrared (10.6-
11.19 um and 11.5-12.51 um respectively). The Landsat series of satellites derived from GEE (Google
Earth Engine) provided LST estimates at a resolution of 30 m using algorithm following Ermida, et
al. [29] and was suitable for local/ regional scale study sites. The LST retrieval algorithm used here
requires prescribed values of surface emissivity [30]. Surface emissivity over time can vary due to
annual and inter-annual variations in vegetation density. Therefore, a vegetation adjustment was
applied using NDVI and fraction of vegetation cover was derived to calculate LST [31]. The
methodology for deriving LST was described in Ermida, et al. [29].

The workflow diagram indicating the steps of calculating NDVI, dANDVI and SMI is shown in
Figure A2. Time series of NDVI and LST were extracted from Google Earth Engine (GEE) using
Landsat 8 surface reflectance values.

2.5. Validation of Remote Sensing Indices

The SMI values were extracted from the corresponding pixels measured soil moisture values
collected in situ to derive the correlation between measured volumetric soil moisture contents and
SMI values. This provides validation and indicates the accuracy of the calculated SMI values by
reflecting how well the SMI index represents soil moisture content.

Validation of NDVI data was performed through the surveyed vegetation data for Swamp B.
The GPS coordinates of the vegetation monitoring locations were used and, their NDVI data (relevant
pixel) were extracted. A correlation was established between the total plant cover and NDVI data of
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the monitoring points to validate the NDVI data and maps. This correlation reflects how well the
NDVI values represents the vegetation cover in the swamps.

2.6. Analysis

NDVI and SMI values were extracted from individual pixels corresponding with monitoring
locations within each swamp and plotted against time to understand the vegetation and moisture
changes pre and post fire events. Pixels were chosen from homogeneous areas where the swamp
width exceeded 30 m to minimize interference from non-swamp vegetation along the swamp edges.
A cloud filter of less than 5% was applied in GEE to reduce cloud interference in the plots.

3. Results

In this paper, we firstly present the ANDVI maps of the study swamps to understand the impact
of fires within each swamp. Then, we present the NDVI and SMI maps followed by the NDVI and
SMI time series of selected sites. This provides an opportunity to compare the vegetation cover and
soil moisture changes between mined under and non-mined under swamps. This also provides an
opportunity to assess the effect of fire severity on vegetation cover and soil moisture fluctuations.
Finally, the assessment of remote sensing accuracy against ground data is reported.

3.1. Fire Severity of the Swamps

The imagery revealed the impact of wildfires on the swamps (Figure 2). At Newnes Plateau,
Swamp B and the vegetation communities to the north experienced more severe impacts than Swamp
A (Figure 2c). Meanwhile, at Upper Nepean, the central part of Swamp C was notably affected by the
wildfire and burnt severely during the fire event in comparison to the surrounding areas (Figure 2f).
Based on the fire severity maps, site A1 was classified as low burn severity, B1 as high burn severity,
B2 as moderate burn severity and C1 as extreme burn severity (Figures 2c and f).

The error matrix for the fire severity indicated an overall map accuracy of 77% (Table A3). Within
this, the high and extreme severity classes exhibited 77% and 100% user accuracy, while producer
accuracy was 88% for high severity and 65% for extreme severity (Table A3). The kappa index
recorded 71% (Table A3), suggesting a good agreement between the reference samples and the final
severity model.

a) 3rd Dec 2019 o)) 27th Feb 2020, C . 3 S 8 dere :lSwamps

Low

0 wa 250 500 Meta

/ 8thiMay#2020 ‘

W

Figure 2. Planet satellite imagery showing a) CIR pre-fire, b) CIR post-fire and c) classified fire severity
map using dNDVI on the Swamp A and Swamp B from Newnes Plateau and d) CIR pre-fire, e) CIR
post-fire and f) classified fire severity map using dNDVI on the Swamp C from Upper Nepean. Fire
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severity maps were classified to unburnt (green colour), low burn (yellow colour), moderate burn
(orange colour), high burn (red colour) and extreme burn (maroon colour).

3.2. Vegetation Cover Changes

A higher NDVI value represents a higher greenness and biomass of vegetation, while a lower
value represents a lower greenness and biomass [23,32,33]. Swamp A vegetation communities were
not severely affected by the 2019 wildfire, and the communities commenced to recover in March 2020
(Figure 3). Although swamp B and its vegetation communities to the north were affected severely,
the communities to the north of swamp B commenced to recover in March 2021, in which the
greenness/biomass returned approximately to the pre-fire condition in May 2022, 884 days after the
fire (Figure 3). The NDVI time series of the sites in swamps A and B indicated that the changes in
vegetation cover of swamps were similar before the wildfire (Figure 4). Both swamps reached a peak
NDVI of 0.8 in July 2019. Then, in both, a significant reduction in NDVI values was observed from
September 2019 possibly due to the drought condition (Figure 4). The NDVI values of the A1, B1 and
B2 sites approached 0.38, 0.34 and 0.31 in December 2019 following the wildfire (Figure 4) and
returned to pre-fire values (>0.66) in July 2022 (Figure 4). The NDVI time series for C1 in the non-
mined-under swamp indicates a drop in NDVI to 0.46 after the wildfire (Figure 4). For this site, the
vegetation returned to pre-fire condition after one year when the NDVI value increased to 0.81
(Figure 4 and Figure 5).

|| Newnes swamps
O Monitoring Locations

5 BZ || Newnes swamps
O Menitoring Locations

Severely burnt or bare Severely burnt or bare

Burnt Burnt
N N
Low cover A Low caver A

Moderate caver Mederate cover

High cover High cover


https://doi.org/10.20944/preprints202410.2016.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 October 2024

d0i:10.20944/preprints202410.2016.v1

|| Newnes swamps

QO Monitoring Locations

NDVI Dec 2019 (3 m

alue
Severely burnt or bare
Burnt

N
Low cover A
Moderate cover

High cover

&

T
o B
5 i

[ 1 Newnes Swamps
O Monitoring Locations

Severely burnt or bare

AP
1l Newnes swamps

=
é& QO Monitoring Locations

Severely burnt or bare
Burnt

N
Low cover A
Moderate cover
High cover

Severely burnt or bare

Burnt Burnt

Low cover N Low cover N
Moderate cover A Moderate cover A
High cover High cover



https://doi.org/10.20944/preprints202410.2016.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 October

‘ (o Bt LT
BZJ‘( || Newnes swamps
QO Monitoring Locations

Severely burnt or bare
Burnt

Low cover

Moderate cover

>z

High cover

Severely burnt or bare
Burnt
Low cover

Moderate cover

Good cover

d0i:10.20944/preprints202410.2016.v1

|1 Newnes swamps
O  Monitoring Locations

Burnt
Low cover

High cover

swamps

alue

Burnt

Low cover
Moderate cover
Good cover

Moderate cover A

QO Monitoring Locations

NDVI Feb 2022 (3m)

Severely burnt or bare

Severely burnt or bare

z

z



https://doi.org/10.20944/preprints202410.2016.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 October 2024

d0i:10.20944/preprints202410.2016.v1

Newnes swamps |1 Newnes swamps

O Menitoring Locations
NDVI May 2022 (3m NDVI April 2023 (3m)
alue

Severely burnt or bare

| O Monitoring Locations

Severely burnt or bare

Burnt Burnt
g X Low caver N Low cover N
i ’ Meter§ : Moderate cover A Moderate cover A
0 200 400 800 High cover High cover

Figure 3. Planet NDVI maps for Swamps A and B from September 2019 to April 2023 (Wildfire
occurred in December 2019).

Al - location B1 # B2 * location C1
1.00 1
ret - ~ 3
‘) wf » S oA s At ]
07 " v P Nd ¥ “\"1 e
1 1 A N4 | }‘"*‘ AN £ : 4
\i b Y L § |1 b4 3 &
} gt \ ;s L STy ¥ ¥ J i !
. AR T AN BV,
1/}

'
'
025 1l

T
Apr 0T Apr0& Apr 09 Apr 10 Apr 11 Apr 12 Apri13 Apr 14 Apr 15 Apr 16 Apri7 Apr 18 Apria Apr 20 Apr 21 Apr 22 Aprz3

Date

g location A1 = g location B1 * Monitoring location B2 * Monitoring location C1

Figure 4. The NDVI time series from January 2007 to January 2023 for monitoring locations A1, B1,

B2, C1. The dotted red lines represent the December 2019 fire event affected sites A1, B1, B2 and May
2020 fire event affected site C1.
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Figure 5. Landsat NDVI maps for Swamp C from April 2020 to February 2023 (Wildfire occurred in
May 2020).

3.3. Soil Moisture Index Fluctuations

Soil moisture in swamps A and B was notably lower in December 2019 (when wildfire occurred)
compared to previous and following months, with SMI values as low as 0.1 in some areas (Figure 6).
The SMI value for site A1 (low severity burnt site) dropped to 0.2 at the time of the fire event in
December 2019 then returned to its pre-fire condition in November 2020 with a SMI value of 0.60
(Figure 6b). The SMI value then fluctuated before remaining constant between 0.6 and 0.55 (Figure
6b). For site B1 (high severity burnt site), the SMI dropped to 0.43 at the time of the fire in December
2019. Then, it increased to 0.67 in March 2020 before fluctuating a lot (Figure 6b). For site B2 (moderate
severity burnt site), the SMI dropped to 0.32 during the fire before returning to pre-fire conditions
with small fluctuations in March 2020 with SMI value of 0.61 (Figure 6b). The SMI value then
remained stable until March 2023 for this site (Figure 6b). For site C1, the SMI value was 0.4 in August
2019, and it dropped to 0.002 as the swamp was burnt in May 2020 (Figure 7). The SMI returned to
pre-fire condition in April 2021, almost a year after the bushfire, with SMI value of 0.34 and then it
remained in steady condition (Figure 7).
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Figure 6. Soil Moisture Index (SMI) fluctuations in Newnes Plateau study swamps (a) SMI maps of
Swamp A and Swamp B topsoil from July 2019 to February 2021 and (b) SMI time series for topsoil of
studied sites in Newnes Plateau (monitoring locations A1, B1, B2) (the wildfire occurred in December
2019).
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Figure 7. Soil moisture index (SMI) fluctuations in Upper Nepean study swamp (a) SMI maps of
Swamp C topsoil from August 2019 to April 2021 and (b) SMI time series for topsoil of studied site in
Upper Nepean (monitoring location C1). The dotted red line represents the fire event for the location
(the wildfire occurred in May 2020).

3.4. Validation of Remote Sensing Metrics

Figure 8 shows the comparison of NDVI values with field-surveyed vegetation cover data from
the five monitoring transects which was indicated in Figure 1. The correlation co-efficient (R2) was
0.86 indicating that the NDVI data time series and NDVI maps reasonably represent variations in
vegetation cover.
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Figure 8. Correlation between observed field vegetation cover and NDVI values.

Strong correlation was observed between the measured soil volumetric moisture contents in 10
cm soil depth and SMI values, in which the correlation coefficient values were 0.7, 0.75, 0.8 and 0.97
for sites A1, B1, B2 and C1 (Figure 9).
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Figure 9. Correlation between the calculated Soil Moisture Index (SMI) values and measured
volumetric moisture contents of the topsoil of the studied sites.

4. Discussion
4.1. Post Fire Recovery of Mined Under and Non-Mined Under THPSS

Temperate Highland Peat Swamps on Sandstone are characterized by the plant species that
exhibit rapid regrowth following fires, primarily due to the high soil moisture content of these
swamps [1,34,35]. However, the post fire recovery of mined under swamps and non-mined under
swamps may differ. In this study, the vegetation recovery was defined as the point in time when the
variation in NDVI reaches pre-fire levels. Therefore, the NDVI time series revealed that vegetation
cover recovery of mined under swamps were slower compared to non-mined under swamps. The
vegetation cover recovery of the swamp, which have not been mined under (i.e. Swamp C), achieved
almost after one year from the fire, while a slower post-fire vegetation recovery (2.5 years) was
observed for mined under swamps (i.e. Swamp A and B) (Figure 3-5). Swamp hydrology affected by
underground mining appears to have the potential to influence the post fire recovery of swamps and
burned sites. In this context, soil moisture, which is directly related to the rainfall, groundwater level,
evaporation and evapo-transpiration, can be an indicator of swamp hydrology when similar soil
types are compared [2]. Therefore, understanding soil moisture recovery of swamps can assist with
comprehending the process of post fire recovery of mined under and non-mined swamps. This study
indicated that the vegetation recovery of study swamps was related to their soil moisture
fluctuations. The soil moisture contents of non-mined under swamp returned to the pre-fire
conditions almost a year after the fire, and the mined under swamps had greater soil moisture
fluctuations compared to the non-mined under swamp (Figure 6 and Figure 7). This affected post fire
vegetation recovery timeline in which a quicker post fire recovery was observed for non-mined under
swamps. This was in agreement with other studies [35-37], which concluded that the enhanced
drainage of a peatland resulted in a drier condition and more fluctuations in soil moisture condition
influencing post fire conditions of the peatlands. This study implies that the post fire vegetation
recovery of swamps depends on post fire hydrology of swamps, and a higher soil moisture content
can result in more rapid vegetation recovery for swamps while low soil moisture content may delay
the recovery process.

The fire severity may affect the post fire vegetation recovery pattern [38—40]. Interestingly, no
observable differences presented in the vegetation cover recovery of sites with different fire severities
in mined under swamps (Al: low burnt; B1: high burnt and B2: moderate burnt), and the NDVI time
series of these sites followed a same pattern and obtained recovery in July 2022 (Figure 4). This was
possibly related to comparable soil hydrological properties among the study sites (Table A4) which
induced similar hydrological changes among the sites with different fire severities. This is in contrast
with Moody, et al. [41] who reported that soil hydraulic properties of high burnt areas differ
significantly from those of low burnt sites, in which a greater hydraulic conductivity and porosity
can be found in sites with greater fire severity.
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4.2. Remote Sensing as a Tool to Assesss the Post Fire Recovery of THPSS

Remote sensing technique can indicate vegetation cover and biomass changes both temporally
and spatially using Normalized Difference Vegetation Index (NDVI) [23,32,33,42]. Therefore, this
index may demonstrate and help with understanding the post fire recovery of swamps. A good
correlation between monitored vegetation cover and the remote sensed value such as NDVI can
validate the suitability of remote sensing technique for assessing vegetation changes over time
[39,43,44]. In this study, the strong agreement between monitored vegetation cover and NDVI values
(Figure 8) indicated that the NDVI values can be used to gain ecological information on THPSS
swamps where a high spatial resolution is needed to accurately detect recovery in the vegetation
communities after fires. Although the NDVI values cannot differentiate the recovery of each
individual plant species, they can unravel broad patterns for post fire recovery of THPSS swamp
communities. Understanding the recovery pattern of each individual plant species requires an
intensive vegetation monitoring program (e.g. quarterly vegetation survey) including drone and field
surveys. This is similar to identifying ecological changes (e.g. growth) in each individual plant species
which have not experienced fire [45,46].

The Soil Moisture Index (SMI) has been shown to be an indicator of topsoil moisture content in
agricultural land [27,47]. However, SMI suitability for evaluating the soil moisture content in other
ecosystems (i.e. swamps) has not been studied. The strong agreement between measured soil
moisture contents and SMI values of the selected THPSS (Figure 9) revealed that Soil Moisture Index
can reflect soil moisture contents of THPSS topsoil. This study highlighted that remote sensing
technique can be used as a tool for assessing soil moisture fluctuations of THPSS topsoil for both
swamps which have been mined under and non-mined under. Although SMI values cannot represent
the moisture contents of soils deeper into the profile, there is a functional relationship characterized
by the water retention curve between soil moisture in some (shallow) depth and the water content at
the soil surface. The SMI values, therefore, can present the soil moisture status and broad recovery
patterns of THPSS swamps’ hydrology.

This study revealed that remote sensing can be used as a tool for assessing post fire recovery of
THPSS swamps, both mined under and non-mined under swamps. In this study, we aimed to assess
the broad pattern of post fire recovery for the swamps’ vegetation communities, and so the
aforementioned limitations of remote sensing technique did not affect this understanding. However,
frequent vegetation surveys as a further study is recommended to determine the ecological changes
in each individual plant species. This study suggests the potential application of remote sensing
technique to understand the fire impact on vegetation and soil moisture changes in both national and
global THPSS swamps and peatlands, particularly where the physical access to the site is not possible.

5. Conclusions

The post fire recovery of mined under THPSS is unknown as the mining-induced drainage may
create a drier soil moisture condition and leave the swamps at a greater risk of vegetation loss due to
fire. New insights from this research included the evaluation of post fire recovery (in terms of
vegetation and hydrology) for mined under THPSS and non-mined under THPSS and assessment of
remote sensing technique as a tool assisting with understanding post fire recovery. This study
highlighted the importance of remote sensing technique, and it concluded that remote sensing indices
and imagery can be used as a tool to evaluate the post fire recovery of THPSS, both mined under and
non-mined under swamps. The NDVI and SMI values derived from satellite imagery of THPSS can
present broad recovery patterns of swamp vegetation and hydrology. This study indicated that the
vegetation recovery of mined under swamps are slower compared to the vegetation recovery of non-
mined under swamps, and the post fire vegetation recovery also depends on the post fire hydrology
of swamps.
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Figure A1l. Air temperature and daily rainfall data for (a) Newnes Plateau before and after the fire in
2019 and (b) Upper Nepean before and after the fire in 2020 [48].

Table Al. Details for imagery used in calculation of remote sensing indices.

Source Purpose Spatial resolution Temporal
Fire severity mapping using NDVI, .
Planet dANDVI 3m Daily
Aerial imagery Validation of fire severity maps 0.05m On request
Landsats/7/gorr  NPVL NBRtime series comparison, 5 ¢ g0 (thermal) 16 days
SMI, LST
ASTER Emissivity for LST 30m On request

Table A2. Fire severity rankings used in the API ground-truthing based on Gibson, et al. [26].

Interpretation cues (false

Severit .. . .
Y Description colour infra-red aerial

Ranking

% foliage fire

. affected
photos) severity
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High (+partial canopy an even brown colour in .
. . canopy biomass
consumption) tree canopies
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A mixture of green,
Moderate Partial canopy scorch orange and brown 20-90% canopy scorch
colours in tree canopies
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Burnt surface with grey ( ’ o
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unburnt canopy
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Figure A2. The Diagram indicating the process of calculating NDVI, dNDVI and SMI.

Table A3. Confusion Matrix of Swamp A and B classified fire severity map.

User

Class Unburnt  Low Moderate  High Extreme Total Kappa
Accuracy

Unburnt 67 39 1 0 0 107 0.63

Low 0 50 15 0 0 65 0.77

Moderate 0 1 74 8 0 83 0.89

High 0 0 3 56 14 73 0.77

Extreme 0 0 0 0 26 26 1

Total 67 90 93 64 40 354

Producer

1 0.56 0.80 0.88 0.65 0.77
Accuracy
Kappa 0.71

Table A4. Soil hydrological properties of Newnes Plateau study site.
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Soil properties
Location  Fire Severity =~ Hydraulic . Macro-pore  Plant available
o Total porosity
conductivity Volume water
(cm3/cm3)
(cm/s) (cm3/cm?3) (cm3/cm3)
=
8 High 0.002a 0.56a 0.18ars 0.17a
(]
~ Moderate 0.002a 0.56a 0.17a 0.18a
[}
=]
;’ Low 0.003a"s 0.57ar 0.18a 0.18ans
ns: non-significant at p <0.05 (One way ANOVA test followed by a post-hoc test).
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