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Abstract: The Temperate Highland Peat Swamps on Sandstone (TPHSS), unique to the Sydney Basin of 

Australia, were burnt during the 2019-2020 wildfire season. This study assessed the post fire recovery of swamps 

and the ability of remote sensing technique to determine the post-fire recovery patterns. Specifically, the study 

investigated differences in fire recovery between swamps where groundwater level and soil moisture content 

have been impacted by underground mining and unimpacted by mining. Two mined and one non-mined under 

swamps were investigated. Soil moisture measurements were taken at five sites and previously conducted 

vegetation field surveys (from 2016 to 2022) were used. Using remote sensing information, Normalised 

Differenced Vegetation Index (NDVI) and Soil Moisture Index (SMI) time-series were calculated and compared 

with ground data to map responses over the swamps following the fire impact. This study revealed that 

hydrological conditions of swamps have a direct effect on post-fire recovery of swamps, with slower recovery 

in mined under swamps compared with non-mined under swamps. This study indicated that NDVI and SMI 

indices can exhibit the recovery pattern of swamps in terms of vegetation and hydrology. However, the 

evaluation of recovery pattern of a specific vegetation species requires a frequent field survey. 

Keywords: Normalised Differenced Vegetation Index (NDVI); Soil moisture index (SMI); Sydney 

Basin; Upland swamps; Wildfire 

 

1. Introduction 

The Temperate Highland Peat Swamps on Sandstone (THPSS) are unique ecosystems within the 

Sydney Basin Bioregion of Australia that are characterized by the development of peat overlying 

Triassic Sandstone formations at elevations ranging between 600 and 1200m above sea level [1]. These 

swamps are a distinctive feature of the region, habitat to unique vegetation that thrives on high 

groundwater levels, high soil moisture content, and organic-rich sediments [2,3]. Some of the THPSS 

are situated over underground mining areas, and subsidence due to the mining and associated 

fracturing of the sandstone can be a reason for changes in the THPSS hydrology [4–6]. A concern 

often raised is that mining-induced drainage of THPSS reduces their resilience to wildfires [1]. 

Wildfires are not uncommon in areas containing THPSS. The swamps typically exhibit high 

resilience to fire, primarily due to their elevated soil moisture levels and the capacity to support swift 

vegetation regrowth [1,7]. However, there is a lack of understanding on the resilience of THPSS 

affected by underground mining and subsequently subjected to wildfires. Some studies [1,8,9] have 

suggested that drier soil moisture conditions may reduce swamp resilience to fire, leading to an 

increased risk of permanent damage and the loss of vegetation and ecological function. However, 

there is little evidence to support this. Therefore, understanding the post-fire recovery of mined 
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under swamps and non-mined under swamps is critical. It has been hypothesised that post fire 

recovery of mined-under swamps is different from the post fire recovery of non-mined-under 

swamps. 

Remote sensing provides an innovative methodology for quantifying fire severity and 

vegetation changes both temporally and spatially [10]. Historically, fire severity mapping utilized 

moderate to coarse spatial resolution Landsat imagery (i.e. 30 m pixel) [11–13]. Satellite imagery can 

now reach pixel resolutions of three meters [14]. Therefore, the utilization of remote sensing to 

characterize fire impacts is gaining prevalence [15]. Beyond traditional fire severity mapping with 

multispectral imagery, satellite thermal bands offer the capacity to generate spatially comprehensive 

measurements of surface environmental conditions, including land surface temperature (LST) and 

soil moisture index (SMI). This may offer opportunity to improve understanding of post fire recovery 

of THPSS swamps. Studies have used thermal imagery to evaluate wildfire events in landscape scale 

[16–19]. However, there remains a significant knowledge gap concerning the value of multispectral 

and thermal imagery for this purpose, particularly at the plot scale (<500m2) and the local scale (1km2).  

This study addresses the above research gaps by investigating fire severity and post fire soil 

moisture and vegetation changes of three THPSS swamps. This study aims (i) to determine the post 

fire recovery patterns of mined under and non-mined under THPSS swamps, and (ii) to explore the 

potential of remote sensing data to assess post fire recovery of THPSS swamps.  

2. Materials and Methods 

2.1. Site Description 

The three swamps, which were selected for this study, included two swamps in the Newnes 

Plateau (Swamps A and B) and one swamp in Upper Nepean (Swamp C) regions of the Sydney Basin 

Bioregion (Figure 1). These swamps have been chosen due to their accessibility, underground mining 

activities, and historical fire events. Swamps A and B (with monitoring locations A1, B1 and B2) were 

mined under (Figure 1a). Conversely, swamp C (with one monitoring location: C1) was not mined 

under (Figure 1b). A large wildfire which was unprecedented in scale and severity moved through 

Newnes Plateau in December 2019 and burnt Swamps A and B as well as other swamps. A wildfire 

also burnt Swamp C in May 2020. The combination of mining history and the occurrence of these 

extensive wildfires provides a unique context for studying the post-fire recovery dynamics of the 

selected swamps, offering valuable insights into the interplay of mining and wildfire on this 

ecosystem.  

The study swamps have warm summers and cool winters [2]. The long-term average annual 

rainfall was 793 mm and 1124 mm for the Newnes Plateau and Upper Nepean areas, respectively 

[20]. The average annual minimum and maximum temperatures at Newnes Plateau and Upper 

Nepean were -1.1 °C and 23.5 °C and 1.7 °C and 29.3 °C [20]. Daily rainfall and air temperature data 

of the study locations before and after the fire events are presented in Figure A1.  
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Figure 1. Aerial photo indicating the study locations in (a) Newnes Plateau (mined-under swamps): 

Swamp A (8.9 ha) and Swamp B (5.09 ha), (b) Upper Nepean (non-mined-under swamp): Swamp C 

(9.02 ha). The green points on Swamp B represent the vegetation monitoring transects. A1, B1, B2 and 

C1 represent the soil moisture monitoring points. 

2.2. In Situ Soil Moisture Monitoring 

The topsoil moisture fluctuations at sites A1, B1 and B2 were measured using soil water potential 

meters (tensiomark [21]) installed at 10 cm below the surface. For site C1, the topsoil moisture 

fluctuations were measured using a Sentek soil moisture sensor also at 10 cm below the surface. The 

water potential data were converted to volumetric water content values using soil water retention 

curve parameters from the same swamps mentioned in Shaygan, Baumgartl and McIntyre [2]. The 

Sentek sensor provided volumetric water content based on the calibration curves in Sentek Pty Ltd 

[22]. 

2.3. Vegetation Monitoring 

Field vegetation surveys were conducted yearly for Swamp B from 2016 to 2022 using the five 

transects (10 survey points) indicated in Figure 1. Surveys for swamps A and C could not be 

conducted due to access restrictions as a result of COVID-19. However, the vegetation communities 

within the study swamps were similar as mentioned in Young [1]. Thus, the validation from Swamp 

B is deemed to be applicable to all the study swamps (Swamp A, B and C).  

2.4. Remote Sensing Metrics 

Spectral indices for remote sensing, such as NDVI (the Normalized Difference Vegetation Index), 

and SMI (the Soil Moisture Index), were computed to investigate key indicators of vegetation 

damage, vegetation cover and soil moisture changes.  

The NDVI value, which has been widely employed for assessing vegetation cover, health, and 

vigor [23–25], correlates with greenness and biomass, and utilizes RED and NIR (the Red and Near-

Infrared) bands of the electromagnetic spectrum (Equation 1). 
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NDVI =
NIR − RED

NIR + RED
 (1) 

Fire severity maps were generated using high spatial resolution surface reflectance Planet 

imagery (3 m) [14], with the Swamp A and B pre-fire and post-fire images acquired on December 3, 

2019 and February 27, 2020, respectively, and the Swamp C pre-fire and post-fire images acquired on 

May 8 and 10, 2020, respectively (Table A1). Differenced NDVI rasters were computed through image 

differencing in ArcGIS Pro, utilizing pre- and post-fire images of the sites to create fire severity 

rasters, as per Equation 2: 

𝑑𝑁𝐷𝑉𝐼 = 𝑝𝑟𝑒𝑓𝑖𝑟𝑒𝑁𝐷𝑉𝐼 − 𝑝𝑜𝑠𝑡𝑓𝑖𝑟𝑒𝑁𝐷𝑉𝐼 (2) 

The resulting rasters were subsequently classified into five categories: unburnt, low, moderate, 

high, and extreme severity (Table A2). Using preliminary dNDVI fire severity maps, 50 points were 

randomly assigned to each class and ranked according to the fire severity class descriptions, as 

outlined by Gibson, et al. [26] (Table A2), and through API (aerial photo interpretation) of high-

resolution aerial imagery captured both before the fire and after the fire. Class thresholds were re-

evaluated based on API, and an error matrix was generated to calculate the accuracy of the fire 

severity maps. The error matrix was not able to be produced for Swamp C. However, as the 

vegetation communities are similar in the study swamps [1], the error matrix from Swamp A and B 

is applicable to Swamp C.  

The SMI is defined as the proportion of the difference between the current soil moisture and the 

permanent wilting point to the field capacity and the residual soil moisture [27]. The index values 

range from 0 to 1 with 0 indicating very dry conditions and 1 indicating soil moisture at field capacity 

[27].  The SMI value of each study site is the value of single pixel representing the relevant site. The 

soil moisture index is primarily derived from the land surface temperature (LST) and vegetation 

indices (NDVI) of the region under study. The SMI was calculated on empirical parameterization of 

the relationship between LST and NDVI using Equation 3.  

𝑆𝑀𝐼 =
𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇

𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑚𝑖𝑛

 (3) 

Where LSTmax and LSTmin are the maximum and minimum surface temperatures for a given 

NDVI and LST is land surface temperature derived from Landsat 8 bands 10 and 11. 

Land Surface Temperature (LST) is defined as radiative skin temperature of any land derived 

from solar radiation [28]. Landsat 8 OLI (Operational Land Imager) satellite imagery was used to 

calculate the LST and Bands 10 and 11 were used to capture reflectance in the thermal infrared (10.6-

11.19 µm and 11.5-12.51 µm respectively). The Landsat series of satellites derived from GEE (Google 

Earth Engine) provided LST estimates at a resolution of 30 m using algorithm following Ermida, et 

al. [29] and was suitable for local/ regional scale study sites. The LST retrieval algorithm used here 

requires prescribed values of surface emissivity [30].  Surface emissivity over time can vary due to 

annual and inter-annual variations in vegetation density. Therefore, a vegetation adjustment was 

applied using NDVI and fraction of vegetation cover was derived to calculate LST [31]. The 

methodology for deriving LST was described in Ermida, et al. [29].  

The workflow diagram indicating the steps of calculating NDVI, dNDVI and SMI is shown in 

Figure A2. Time series of NDVI and LST were extracted from Google Earth Engine (GEE) using 

Landsat 8 surface reflectance values. 

2.5. Validation of Remote Sensing Indices 

The SMI values were extracted from the corresponding pixels measured soil moisture values 

collected in situ to derive the correlation between measured volumetric soil moisture contents and 

SMI values. This provides validation and indicates the accuracy of the calculated SMI values by 

reflecting how well the SMI index represents soil moisture content.  

Validation of NDVI data was performed through the surveyed vegetation data for Swamp B. 

The GPS coordinates of the vegetation monitoring locations were used and, their NDVI data (relevant 

pixel) were extracted. A correlation was established between the total plant cover and NDVI data of 
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the monitoring points to validate the NDVI data and maps. This correlation reflects how well the 

NDVI values represents the vegetation cover in the swamps.  

2.6. Analysis  

NDVI and SMI values were extracted from individual pixels corresponding with monitoring 

locations within each swamp and plotted against time to understand the vegetation and moisture 

changes pre and post fire events. Pixels were chosen from homogeneous areas where the swamp 

width exceeded 30 m to minimize interference from non-swamp vegetation along the swamp edges. 

A cloud filter of less than 5% was applied in GEE to reduce cloud interference in the plots. 

3. Results 

In this paper, we firstly present the dNDVI maps of the study swamps to understand the impact 

of fires within each swamp. Then, we present the NDVI and SMI maps followed by the NDVI and 

SMI time series of selected sites. This provides an opportunity to compare the vegetation cover and 

soil moisture changes between mined under and non-mined under swamps. This also provides an 

opportunity to assess the effect of fire severity on vegetation cover and soil moisture fluctuations. 

Finally, the assessment of remote sensing accuracy against ground data is reported. 

3.1. Fire Severity of the Swamps  

The imagery revealed the impact of wildfires on the swamps (Figure 2). At Newnes Plateau, 

Swamp B and the vegetation communities to the north experienced more severe impacts than Swamp 

A (Figure 2c). Meanwhile, at Upper Nepean, the central part of Swamp C was notably affected by the 

wildfire and burnt severely during the fire event in comparison to the surrounding areas (Figure 2f). 

Based on the fire severity maps, site A1 was classified as low burn severity, B1 as high burn severity, 

B2 as moderate burn severity and C1 as extreme burn severity (Figures 2c and f).  

The error matrix for the fire severity indicated an overall map accuracy of 77% (Table A3). Within 

this, the high and extreme severity classes exhibited 77% and 100% user accuracy, while producer 

accuracy was 88% for high severity and 65% for extreme severity (Table A3). The kappa index 

recorded 71% (Table A3), suggesting a good agreement between the reference samples and the final 

severity model. 

 

Figure 2. Planet satellite imagery showing a) CIR pre-fire, b) CIR post-fire and c) classified fire severity 

map using dNDVI on the Swamp A and Swamp B from Newnes Plateau and d) CIR pre-fire, e) CIR 

post-fire and f) classified fire severity map using dNDVI on the Swamp C from Upper Nepean. Fire 
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severity maps were classified to unburnt (green colour), low burn (yellow colour), moderate burn 

(orange colour), high burn (red colour) and extreme burn (maroon colour). 

3.2. Vegetation Cover Changes 

A higher NDVI value represents a higher greenness and biomass of vegetation, while a lower 

value represents a lower greenness and biomass [23,32,33]. Swamp A vegetation communities were 

not severely affected by the 2019 wildfire, and the communities commenced to recover in March 2020 

(Figure 3). Although swamp B and its vegetation communities to the north were affected severely, 

the communities to the north of swamp B commenced to recover in March 2021, in which the 

greenness/biomass returned approximately to the pre-fire condition in May 2022, 884 days after the 

fire (Figure 3). The NDVI time series of the sites in swamps A and B indicated that the changes in 

vegetation cover of swamps were similar before the wildfire (Figure 4). Both swamps reached a peak 

NDVI of 0.8 in July 2019. Then, in both, a significant reduction in NDVI values was observed from 

September 2019 possibly due to the drought condition (Figure 4). The NDVI values of the A1, B1 and 

B2 sites approached 0.38, 0.34 and 0.31 in December 2019 following the wildfire (Figure 4) and 

returned to pre-fire values (>0.66) in July 2022 (Figure 4). The NDVI time series for C1 in the non-

mined-under swamp indicates a drop in NDVI to 0.46 after the wildfire (Figure 4). For this site, the 

vegetation returned to pre-fire condition after one year when the NDVI value increased to 0.81 

(Figure 4 and Figure 5).  

  

(a) (b) 
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(c) (d) 

(e) (f) 
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(g) (h) 

(i) (j) 
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Figure 3. Planet NDVI maps for Swamps A and B from September 2019 to April 2023 (Wildfire 

occurred in December 2019). 

 

Figure 4. The NDVI time series from January 2007 to January 2023 for monitoring locations A1, B1, 

B2, C1. The dotted red lines represent the December 2019 fire event affected sites A1, B1, B2 and May 

2020 fire event affected site C1. 

(k) (l) 
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(a) (b) 

(c) (d) 

(e) (f) 
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Figure 5. Landsat NDVI maps for Swamp C from April 2020 to February 2023 (Wildfire occurred in 

May 2020). 

3.3. Soil Moisture Index Fluctuations 

Soil moisture in swamps A and B was notably lower in December 2019 (when wildfire occurred) 

compared to previous and following months, with SMI values as low as 0.1 in some areas (Figure 6). 

The SMI value for site A1 (low severity burnt site) dropped to 0.2 at the time of the fire event in 

December 2019 then returned to its pre-fire condition in November 2020 with a SMI value of 0.60 

(Figure 6b). The SMI value then fluctuated before remaining constant between 0.6 and 0.55 (Figure 

6b). For site B1 (high severity burnt site), the SMI dropped to 0.43 at the time of the fire in December 

2019. Then, it increased to 0.67 in March 2020 before fluctuating a lot (Figure 6b). For site B2 (moderate 

severity burnt site), the SMI dropped to 0.32 during the fire before returning to pre-fire conditions 

with small fluctuations in March 2020 with SMI value of 0.61 (Figure 6b). The SMI value then 

remained stable until March 2023 for this site (Figure 6b). For site C1, the SMI value was 0.4 in August 

2019, and it dropped to 0.002 as the swamp was burnt in May 2020 (Figure 7). The SMI returned to 

pre-fire condition in April 2021, almost a year after the bushfire, with SMI value of 0.34 and then it 

remained in steady condition (Figure 7).  
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Figure 6. Soil Moisture Index (SMI) fluctuations in Newnes Plateau study swamps (a) SMI maps of 

Swamp A and Swamp B topsoil from July 2019 to February 2021 and (b) SMI time series for topsoil of 

studied sites in Newnes Plateau (monitoring locations A1, B1, B2) (the wildfire occurred in December 

2019). 

 

(a) 
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Figure 7. Soil moisture index (SMI) fluctuations in Upper Nepean study swamp (a) SMI maps of 

Swamp C topsoil from August 2019 to April 2021 and (b) SMI time series for topsoil of studied site in 

Upper Nepean (monitoring location C1). The dotted red line represents the fire event for the location 

(the wildfire occurred in May 2020). 

3.4. Validation of Remote Sensing Metrics 

Figure 8 shows the comparison of NDVI values with field-surveyed vegetation cover data from 

the five monitoring transects which was indicated in Figure 1. The correlation co-efficient (R2) was 

0.86 indicating that the NDVI data time series and NDVI maps reasonably represent variations in 

vegetation cover.  

 

Figure 8. Correlation between observed field vegetation cover and NDVI values. 

Strong correlation was observed between the measured soil volumetric moisture contents in 10 

cm soil depth and SMI values, in which the correlation coefficient values were 0.7, 0.75, 0.8 and 0.97 

for sites A1, B1, B2 and C1 (Figure 9). 
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Figure 9. Correlation between the calculated Soil Moisture Index (SMI) values and measured 

volumetric moisture contents of the topsoil of the studied sites. 

4. Discussion 

4.1. Post Fire Recovery of Mined Under and Non-Mined Under THPSS 

Temperate Highland Peat Swamps on Sandstone are characterized by the plant species that 

exhibit rapid regrowth following fires, primarily due to the high soil moisture content of these 

swamps [1,34,35]. However, the post fire recovery of mined under swamps and non-mined under 

swamps may differ. In this study, the vegetation recovery was defined as the point in time when the 

variation in NDVI reaches pre-fire levels. Therefore, the NDVI time series revealed that vegetation 

cover recovery of mined under swamps were slower compared to non-mined under swamps. The 

vegetation cover recovery of the swamp, which have not been mined under (i.e. Swamp C), achieved 

almost after one year from the fire, while a slower post-fire vegetation recovery (2.5 years) was 

observed for mined under swamps (i.e. Swamp A and B) (Figure 3-5). Swamp hydrology affected by 

underground mining appears to have the potential to influence the post fire recovery of swamps and 

burned sites. In this context, soil moisture, which is directly related to the rainfall, groundwater level, 

evaporation and evapo-transpiration, can be an indicator of swamp hydrology when similar soil 

types are compared [2]. Therefore, understanding soil moisture recovery of swamps can assist with 

comprehending the process of post fire recovery of mined under and non-mined swamps. This study 

indicated that the vegetation recovery of study swamps was related to their soil moisture 

fluctuations. The soil moisture contents of non-mined under swamp returned to the pre-fire 

conditions almost a year after the fire, and the mined under swamps had greater soil moisture 

fluctuations compared to the non-mined under swamp (Figure 6 and Figure 7). This affected post fire 

vegetation recovery timeline in which a quicker post fire recovery was observed for non-mined under 

swamps. This was in agreement with other studies [35–37], which concluded that the enhanced 

drainage of a peatland resulted in a drier condition and more fluctuations in soil moisture condition 

influencing post fire conditions of the peatlands. This study implies that the post fire vegetation 

recovery of swamps depends on post fire hydrology of swamps, and a higher soil moisture content 

can result in more rapid vegetation recovery for swamps while low soil moisture content may delay 

the recovery process.  

The fire severity may affect the post fire vegetation recovery pattern [38–40]. Interestingly, no 

observable differences presented in the vegetation cover recovery of sites with different fire severities 

in mined under swamps (A1: low burnt; B1: high burnt and B2: moderate burnt), and the NDVI time 

series of these sites followed a same pattern and obtained recovery in July 2022 (Figure 4). This was 

possibly related to comparable soil hydrological properties among the study sites (Table A4) which 

induced similar hydrological changes among the sites with different fire severities. This is in contrast 

with Moody, et al. [41] who reported that soil hydraulic properties of high burnt areas differ 

significantly from those of low burnt sites, in which a greater hydraulic conductivity and porosity 

can be found in sites with greater fire severity. 

𝑦 = 0.85𝑥 + 0.05 

R2 = 0.70 

𝑦 = 0.73𝑥 + 0.03 

𝑅2 = 0.81 

𝑦 = 0.43𝑥 + 0.30 

R2 = 0.75 
(c

m
3
/c

m
3
) 
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4.2. Remote Sensing as a Tool to Assesss the Post Fire Recovery of THPSS  

Remote sensing technique can indicate vegetation cover and biomass changes both temporally 

and spatially using Normalized Difference Vegetation Index (NDVI) [23,32,33,42]. Therefore, this 

index may demonstrate and help with understanding the post fire recovery of swamps. A good 

correlation between monitored vegetation cover and the remote sensed value such as NDVI can 

validate the suitability of remote sensing technique for assessing vegetation changes over time 

[39,43,44]. In this study, the strong agreement between monitored vegetation cover and NDVI values 

(Figure 8) indicated that the NDVI values can be used to gain ecological information on THPSS 

swamps where a high spatial resolution is needed to accurately detect recovery in the vegetation 

communities after fires. Although the NDVI values cannot differentiate the recovery of each 

individual plant species, they can unravel broad patterns for post fire recovery of THPSS swamp 

communities. Understanding the recovery pattern of each individual plant species requires an 

intensive vegetation monitoring program (e.g. quarterly vegetation survey) including drone and field 

surveys. This is similar to identifying ecological changes (e.g. growth) in each individual plant species 

which have not experienced fire [45,46].  

The Soil Moisture Index (SMI) has been shown to be an indicator of topsoil moisture content in 

agricultural land [27,47]. However, SMI suitability for evaluating the soil moisture content in other 

ecosystems (i.e. swamps) has not been studied. The strong agreement between measured soil 

moisture contents and SMI values of the selected THPSS (Figure 9) revealed that Soil Moisture Index 

can reflect soil moisture contents of THPSS topsoil. This study highlighted that remote sensing 

technique can be used as a tool for assessing soil moisture fluctuations of THPSS topsoil for both 

swamps which have been mined under and non-mined under. Although SMI values cannot represent 

the moisture contents of soils deeper into the profile, there is a functional relationship characterized 

by the water retention curve between soil moisture in some (shallow) depth and the water content at 

the soil surface. The SMI values, therefore, can present the soil moisture status and broad recovery 

patterns of THPSS swamps’ hydrology.  

This study revealed that remote sensing can be used as a tool for assessing post fire recovery of 

THPSS swamps, both mined under and non-mined under swamps. In this study, we aimed to assess 

the broad pattern of post fire recovery for the swamps’ vegetation communities, and so the 

aforementioned limitations of remote sensing technique did not affect this understanding. However, 

frequent vegetation surveys as a further study is recommended to determine the ecological changes 

in each individual plant species. This study suggests the potential application of remote sensing 

technique to understand the fire impact on vegetation and soil moisture changes in both national and 

global THPSS swamps and peatlands, particularly where the physical access to the site is not possible. 

5. Conclusions  

The post fire recovery of mined under THPSS is unknown as the mining-induced drainage may 

create a drier soil moisture condition and leave the swamps at a greater risk of vegetation loss due to 

fire. New insights from this research included the evaluation of post fire recovery (in terms of 

vegetation and hydrology) for mined under THPSS and non-mined under THPSS and assessment of 

remote sensing technique as a tool assisting with understanding post fire recovery. This study 

highlighted the importance of remote sensing technique, and it concluded that remote sensing indices 

and imagery can be used as a tool to evaluate the post fire recovery of THPSS, both mined under and 

non-mined under swamps. The NDVI and SMI values derived from satellite imagery of THPSS can 

present broad recovery patterns of swamp vegetation and hydrology. This study indicated that the 

vegetation recovery of mined under swamps are slower compared to the vegetation recovery of non-

mined under swamps, and the post fire vegetation recovery also depends on the post fire hydrology 

of swamps.   
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Appendix A 

 

 

Figure A1. Air temperature and daily rainfall data for (a) Newnes Plateau before and after the fire in 

2019 and (b) Upper Nepean before and after the fire in 2020 [48]. 

Table A1. Details for imagery used in calculation of remote sensing indices. 

Table A2. Fire severity rankings used in the API ground-truthing based on Gibson, et al. [26]. 

Severity 

Ranking 
Description 

Interpretation cues (false 

colour infra-red aerial 

photos) severity 

% foliage fire 

affected 

Source Purpose Spatial resolution Temporal 

Planet 
Fire severity mapping using NDVI, 

dNDVI 
3m Daily 

Aerial imagery Validation of fire severity maps 0.05m On request 

Landsat5/7/8 OLI 
NDVI, NBR time series comparison, 

SMI, LST 
30m & 90m (thermal) 16 days 

ASTER Emissivity for LST 30m On request 
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Extreme 
Full canopy 

consumption 

Mostly black and dark 

grey, largely no canopy 

cover 

>50% canopy biomass 

consumed 

High 

Full canopy scorch 

(±partial canopy 

consumption) 

No green or orange, but 

an even brown colour in 

tree canopies 

>90% canopy 

scorched < 50% 

canopy biomass 

consumed 

Moderate Partial canopy scorch 

A mixture of green, 

orange and brown 

colours in tree canopies 

20–90% canopy scorch 

Low 
Burnt surface with 

unburnt canopy 

Dark grey (burnt 

understorey) between the 

dark red tree crowns 

>10% burnt 

understory >90% 

green canopy 

Unburnt 
Unburnt surface with 

green canopy 

Dark red (live 

understorey) between the 

dark red tree crowns 

0% canopy and 

understory burnt 

 

Figure A2. The Diagram indicating the process of calculating NDVI, dNDVI and SMI. 

Table A3. Confusion Matrix of Swamp A and B classified fire severity map. 

Class Unburnt Low Moderate High Extreme Total 
User 

Accuracy 
Kappa 

Unburnt 67 39 1 0 0 107 0.63   

Low 0 50 15 0 0 65 0.77   

Moderate 0 1 74 8 0 83 0.89   

High 0 0 3 56 14 73 0.77   

Extreme 0 0 0 0 26 26 1   

Total 67 90 93 64 40 354     

Producer 

Accuracy 
1 0.56 0.80 0.88 0.65   0.77   

Kappa               0.71 

Table A4. Soil hydrological properties of Newnes Plateau study site. 
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Location Fire Severity 

 Soil properties    

Hydraulic 

conductivity 

(cm/s) 

Total porosity 

(cm3/cm3) 

Macro-pore 

Volume 

(cm3/cm3) 

Plant available 

water 

(cm3/cm3) 

N
ew

n
es

 P
la

te
au

 

High 0.002a 0.56a 0.18ans 0.17a 

Moderate 0.002a 0.56a 0.17a 0.18a 

Low 0.003ans 0.57ans 0.18a 0.18ans 

ns: non-significant at p <0.05 (One way ANOVA test followed by a post-hoc test). 
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