

1 **Anaemia and incidence of post stroke dementia**

2 **Running Head:** Anaemia and post-stroke dementia

3 Phyo Kyaw Myint¹, Mary Joan Macleod², Allan B Clark³, Toby O Smith⁴, Joao H.
4 Bettencourt-Silva⁵, Anthony Kneale Metcalf^{3,5}, John F. Potter^{3,5}

5 ¹Institute of Applied Health Sciences, University of Aberdeen, UK

6 ²Institute of Medical Sciences, University of Aberdeen, UK

7 ³Norwich Medical School, University of East Anglia, UK

8 ⁴Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences,
9 University of Oxford, UK

10 ⁵Norfolk and Norwich University Hospital, Norwich, UK

11 Phyo K. Myint, Professor of Medicine of Old Age

12 Mary Joan Macleod, Senior Lecturer, Medicine & Therapeutics

13 Allan B. Clark, Senior Lecturer in Medical Statistics

14 Toby O. Smith, Senior Researcher in Rehabilitation

15 Joao H. Bettencourt-Silva, Research Associate

16 Anthony Kneale Metcalf, Consultant Stroke Physician

17 John F. Potter, Professor of Ageing & Stroke Medicine

18 **Correspondence to:**

19 Professor Phyo Kyaw Myint,
20 Room 4:013 Polwarth Building,
21 School of Medicine, Medical Sciences & Nutrition
22 University of Aberdeen, Foresterhill,
23 Aberdeen, AB25 2ZD, UK.
24 Tel: +44 (0) 1224 437841,
25 Fax: +44 (0) 1224 437911,
26 Email: phyo.myint@abdn.ac.uk

40 **Abstract**

41 **Background:** Whilst lack of concentration is a known symptom of anaemia, its association
42 with post-stroke dementia is unclear.

43 **Methods:** We used data from a UK regional stroke register. To be eligible, patient must have
44 survived to discharge and had anaemia by WHO criteria. Dementia status and other
45 prevalent co-morbidities were assessed using ICD-10 codes. Patients were followed till May
46 2015 (mean follow-up 3.7 years, total person years = 27,769). Hazard Ratio for incident
47 dementia was calculated using Cox-proportional hazards model controlling for potential
48 confounders. Fine and Gray model was additionally constructed using mortality as the
49 competing risk.

50 **Results:** A total of 7,454 stroke patients were included with mean age (SD) of 75.9(12.3)
51 years (50.2% men). Those with anaemia were older, has higher disability and co-morbidity
52 burden prior to stroke. We observed a large amount of variation in the dementia incidence
53 rates over time and that the hazard ratio increased every year. The significant association
54 between anaemia and dementia incidence was lost after controlling for pre-stroke Modified
55 Rankin score (HR1.17(0.97,1.40)). With every 20g/dL increase in Hb was associated with a
56 significant reduction in the risk of dementia after adjustment for age, sex, stroke factors and
57 disability but lost significance after adjustment for vascular risk factors. Competing risk
58 analyses showed similar results.

59 **Conclusion:** Whilst we found no evidence of anaemia as a risk factor for post-stroke
60 dementia, the findings may be limited by potential under recognition of post stroke dementia.

61

62 **Introduction**

63

64 Anaemia is common in patients with acute stroke. The prevalence figure of up to 30% has
65 been reported in hospital-based studies [1][2]. Our recent work demonstrated that 25% of
66 stroke patients were anaemic at the time of hospital admission [3]. The link between anaemia
67 and cognition has grown considerable interest over the last few decades [4][5][6]. Systematic
68 reviews and meta-analyses published in this area suggest potential link between anaemia and
69 cognitive decline or dementia in older aged cohorts [7][8][9].

70

71 An estimated 47 million people had dementia in 2015, and this is expected to triple by 2050
72 [10]. Dementia after stroke (or post-stroke dementia) poses a significant problem considering
73 up to 30% of patients developing significant cognitive impairment early post-stroke [11].
74 Furthermore, a significant proportion of these patients may already have mild cognitive
75 impairment [12]. Post-stroke dementia is associated with dependency and it can also predict
76 recurrence of ischaemic stroke up to 12 year follow-up [13]. Indeed, the World Alzheimer
77 Report thus emphasized the benefit of early diagnosis with future savings from delayed
78 institutionalization, and care cost across the disease course [14]. An effective strategy in
79 preventing vascular dementia could have major resource implications, with at least one in
80 five people with dementia having a vascular dementia and dementia costing the UK economy
81 alone £23 billion per year [15].

82 It is estimated that about 10% of stroke patients have dementia [16]; recent work by
83 Pendlebury and Rothwell demonstrated pre-event dementia prevalence ranged from 4·9%
84 (95% CI 3·4–6·9) in patients with a transient ischaemic attack to 20·6% (15·8–26·5) in those
85 with severe stroke [17]. In addition, the aetiology of dementia after a stroke or transient
86 ischaemic attack (TIA) has been highlighted in research [18]. Vascular Dementia (VaD),

87 Alzheimer's Dementia (AD) and Mixed Dementia (mixture of VaD & AD) are the three most
88 common forms of dementia [19]. VaD includes multi-infarct dementia, stroke with dementia
89 and sub-cortical VaD. Both VaD and mixed types are related to cerebrovascular disease and
90 impose a significant problem in those who suffer from these conditions. With an ageing
91 population, the cerebrovascular disease burden is set to rise in the UK; with significant
92 concerns regarding rising incidence of VaD for which there is no established treatment. Most
93 importantly, "how best to improve cognition after stroke" was reported to be the highest
94 priority research topic in a survey of patients with stroke [20].

95

96 There is now a pressing need for greater understanding of risk factors for dementia in this
97 patient group. One potential risk factor may be anaemia as suggested in general populations
98 [8][9]. The proposed pathophysiology mechanisms include direct effect of chronic cerebral
99 hypoxia., as a marker of diseases and processes such as ischemic and lower erythropoietin
100 levels increasing the risk of neuronal degeneration. Others include iron dysregulation
101 associated with increased brain oxidative stress, and chronic cerebral hypoperfusion in the
102 prefrontal cortex or inflammatory neurodegenerative processes. It was also suggested that
103 anaemia may cause the progression of white matter disease and through its negative effect
104 physical function [8]. Despite different pathological mechanisms, post stroke dementia occurs
105 as the result of vascular dementia or mixed (Alzheimer's and vascular dementia) and thus
106 regarded as a single clinical entity.

107 However, few studies have examined this link in stroke patients. Given that stroke has high
108 mortality in the first year and the fact that anaemia contribute this mortality risk [3], it is
109 unclear whether stroke survivors who were anaemic would have either increased or decreased
110 risk of post-stroke dementia.

111

112 **Methods**

113

114 The study population consisted of 7,454 stroke patients consecutively admitted between
115 January 2003 – May 2015 to Norfolk and Norwich University Hospital, a regional tertiary
116 centre in East Anglia, UK, with a catchment population of approximately 750,000. Ethical
117 approval was obtained from the Newcastle and Tyneside National Health Service (NHS)
118 Research Ethics Committee (12/NE/0170) and the study protocol was approved by the
119 Steering Committee of the Register. Of 11,727 entries, 991 repeated entries (with second or
120 third stroke recorded in the register were excluded. After further exclusion of 2,404 who died
121 as in-patient, there were a total of 8,332 who were discharged from hospital for the first
122 recorded stroke in the register, 379 had previous history of dementia prior to stroke and
123 therefore excluded. 499 participants did not have haemoglobin values and had missing data
124 for other co-variates and thus further excluded.

125

126 The data collection methods for this prospective hospital-based register have been previously
127 reported [21]. Briefly, the data were obtained from paper and electronic records, reviewed
128 and then entered onto the register database by the hospital stroke data team and vetted by
129 clinical team members for accuracy. For each patient admitted, the pre-stroke modified
130 Rankin score (mRS), as modified by UK-TIA investigators [22], was ascertained from
131 nursing and medical records by stroke specialist nurses. At discharge, the dead or alive status
132 was recorded to capture in-hospital mortality. Follow-up for mortality was obtained by
133 electronic record linkage with Office of National Statistics data through hospital episodes in
134 May 2015.

135

136 To be eligible in the current study, patients could not have history of dementia (any type)
137 prior to stroke and they must have survived to hospital discharge. Haemoglobin level
138 obtained closed to discharge was used to determine the Hb or anaemia status. Only confirmed
139 cases of stroke were included. Stroke was diagnosed using evidence from clinical features
140 and neuroimaging (typically CT and in some cases MRI). Anaemia was defined according to
141 the WHO criteria of Hb <12.0 g/dL in females and <13.0 g/dL in males and elevated
142 haemoglobin was defined as >15.5g/dL in females and >17.0g/dL in males [23].

143

144 The variables included were age, sex, stroke sub-type (ischaemic/haemorrhagic), pre-stroke
145 disability depicted by modified Rankin score (mRS), Oxfordshire Community Stroke Project
146 (OCSP) classification (Total Anterior Circulation Stroke, Partial Anterior Circulation Stroke,
147 Posterior Circulation Stroke, Lacunar Stroke), haemoglobin levels at discharge, co-
148 morbidities (coronary heart disease including myocardial infarction, congestive heart failure
149 (CHF), atrial fibrillation, hypertension, hyperlipidaemia, previous Stroke, diabetes mellitus,
150 peripheral vascular disease, chronic obstructive pulmonary disease (COPD), chronic kidney
151 disease (CKD), and malignancy).

152

153 Dementia incidence was captured through UK NHS record linkage system via the patient
154 administrative system (PAS) which records both secondary care and primary care based
155 diagnosis of dementia in the NHS setting. International Classification of Disease (ICD) 10
156 codes F00, F01, F02 and F051 were used to capture both prevalent and incident dementia.

157 *Statistical analysis*

158 Characteristics of the individuals with and without anaemia were summarized using
159 descriptive statistics and compared using a chi-squared test for categorical variables and a t-
160 test for continuous variables. Annual incidence rates of stroke were calculated for each

161 calendar year of follow-up stratified by year of study entry, excluding individuals who died in
162 the year from the denominator.

163

164 The association between anaemia and dementia incidence was described using Kaplan-Meier
165 plots and estimated using a cox proportional hazards model. This was done for six separate
166 models A-F using hierarchical adjustments. The association was adjusted for age and sex in
167 model A; model B adjusted additionally for stroke characteristics, model C additionally
168 adjusted for pre-stroke modified Rankin score, model D additionally adjusted for key risk
169 factors for dementia namely atrial fibrillation, coronary heart disease, previous stroke or TIA,
170 peripheral vascular disease and history of hypertension. Model E additionally adjusted for
171 other major co-morbidities which included COPD, CKD, CHF, hyperlipidaemia, diabetes,
172 and malignancy. Model F additionally adjusted for year of stroke to account for the
173 possibility that dementia diagnoses changed of the course of the follow-up period. The
174 association between haemoglobin (Hb) and stroke incidence was assessed in a similar fashion
175 using the same models. No major departures from the model assumptions were observed. As
176 anaemia is also associated with death a competing risk model (Fine and Gray) was fitted
177 using the same modelling strategies as above.

178

179

180

181 **Results**

182

183 A total of 7,454 stroke patients were included in the current report; their mean age (SD) was
184 75.9 (12.3) years and there were 3,742 (50.2%) men. (mean follow up = 3.7 years, median
185 follow up = 2.9 years, total person years = 27,769 years). Table 1 shows the sample
186 characteristic comparison between those with and without anaemia at the time of discharge
187 by sex specific analysis. It demonstrates that most factors considered are significantly
188 different between individuals with anaemia and those without; those with anaemia tended to
189 be older and significantly more likely to be more disabled prior to stroke with higher burden
190 of co-morbidities.

191

192 **Figure 1** shows the Kaplan Meier Curve showing linear trends in development of dementia in
193 patients without (top line) and with (bottom line) anaemia. **Supplementary Table 1** shows
194 that there is a large amount of variation in the incidence rates over time. Kaplan-Meier plot
195 with each year being a separate line demonstrate clearly demonstrating the hazard ratio has
196 generally increased every year (apart from 2015 which does not have full year of follow-up)
197 (see **Figure 2**).

198

199 **Table 2** shows the estimated hazards ratios and corresponding 95% confidence intervals.
200 This shows a significant association between anaemia and dementia incidence, but this loses
201 significance on adjusted for pre-stroke mRS. A similar pattern is observed when Hb was
202 entered into model as a linear variable (with every 20g/dL increase) with a significant
203 reduction in the risk of dementia until adjustment for key risk factors of dementia. Once
204 competing risks are accounted for, this association loses significant in all but model A. This
205 is suggestive that the association observed before adjustment is due to the imbalance in the

206 characteristics at baseline between the two groups and that once the competing risk of death
207 is taken into account the association is not significant.

208

209

210 **Discussion**

211

212 To the best of our knowledge, we are the first group to report the association between
213 presence or absence of anaemia or haemoglobin levels and incidence of dementia over long-
214 term follow-up in a large cohort of unselected stroke survivors. Our study results highlight
215 the importance of death as the competing risk in development of post-stroke dementia, which
216 carries substantial mortality risk after hospital discharge. Whilst we did not demonstrate the
217 clear dose-response relationship between anaemia and dementia risk, Kaplan-Meier curves
218 demonstrate the potential effect of whether diagnosis of dementia was made after stroke.

219 Given that dementia diagnosis is based on progressive nature of clinical assessment criteria,
220 this complex nature should be taken into account in risk prediction studies of post-stroke
221 dementia.

222

223 The key strengths of the study include relatively large sample of unselected consecutive
224 stroke admissions. We were also able to control for acute stroke factors and comprehensive
225 list of co-morbidities as well as functional disability. We were able to follow up for long-
226 term with minimal loss to follow-up due to record linkage nature of the study in UK NHS
227 setting. In UK, almost everyone has NHS number and Office of National Statistics data are
228 linked to local NHS databases regularly and vital status ascertained, which included
229 mortality. Local NHS record linkage allows us to determine the date of dementia diagnosis

230 appearing in health records hence able to estimate hazards ratios rather than odds ratio. We
231 were able to robustly considered death as competing risk by Fine & Gray methods [24].

232

233 Indeed, numerous risk factors for cognitive decline and dementia have been previously
234 reported in stroke survivors. These included age, history of cardio-metabolic disease, atrial
235 fibrillation, lower educational attainment, stroke severity, aphasia, recurrent stroke, pre-stroke
236 cognitive impairment, and neuroimaging makers such as medial temporal lobe atrophy and
237 hippocampal changes [25]. Currently developed are complex [26][27][28] and it is unlikely
238 to be of clinical utility. For prediction tools to be of clinical utility, criteria should include
239 readily available parameters that can be reliably measured with minimal resources. Discharge
240 haemoglobin offers potential role given that there are several plausible pathophysiological
241 mechanisms. Anaemia could lead to chronic reduction of cerebral oxygenation secondary to
242 decreased oxygen-carrying capacity of the blood. Alternatively, it serves as a marker of
243 diseases and processes such as ischemic and lower erythropoietin levels, thereby increasing
244 the risk of neuronal degeneration, iron dysregulation and associated with increased brain
245 oxidative stress [29]. Anaemia could also be associated with the progression of white matter
246 disease [30]. Another potential causal pathway could operate through the negative effect of
247 anaemia on reduced physical function. It was proposed that cardiorespiratory fitness is linked
248 to executive functions through an increase in brain derived neurotrophin factor or a
249 parasympathetic related increase in efficiency of prefrontal neural function [31]. Therefore,
250 presence of functional impairment as the results of stroke damage may increase the risk of
251 dementia in anaemic older people.

252

253 We observe that the significant relationship between anaemia and dementia risk was
254 attenuated after controlling for pre-stroke disability assessed using modified Rankin scale and

255 other risk factors. This is in agreement with results from an early systematic review on this
256 topic [32]. We observe the higher risk of dementia associated with the latter years of the
257 study suggesting there may be bias towards under diagnosis of dementia in earlier years of
258 this study. Of note, dementia diagnosis has changed over the study period; changing trends in
259 diagnosis of dementia in the UK has been reported between 2005 and 2015. The proportion
260 of people diagnosed with dementia in the UK doubled from 0·42% (19,635 of 4,640,290
261 participants) in 2005 to 0·82% (25,925 of 3,159,754 participants) in 2015 (χ^2 test for trend,
262 $p<0\cdot0001$) [33].

263

264 There are some limitations. As a registry based observational study we were not able to fully
265 adjust for treatment effects (e.g. blood transfusion, use of iron supplements and
266 erythropoietin stimulating agents) after hospital discharge which might have attenuated the
267 actual effect size of the relationship between anaemia of low Hb levels and subsequent risk of
268 dementia. We were unable to take into account the duration of anaemia or assess the impact
269 of abnormal haemoglobin levels after hospital discharge. We did not stratify analysis by
270 anaemia subtype as this will reduce the number of outcomes (dementia) further unlikely to
271 produce any meaningful results due to loss of power. We also did not control for some
272 haematological parameters and biological parameters such as B12, folate levels and kidney
273 function which may have confounded the association. As an observational study there may be
274 residual confounding as well as effect of known or unknown confounders which were not
275 taken into account. As a record linkage study, we were not able to confidently differentiate
276 between different types of common dementias, although majority of cases are most likely to
277 be either vascular dementia or dementia of mixed pathology. We also relied on dementia
278 diagnosis made by clinicians in various setting evident by variation in annual diagnosis rates
279 but perhaps this reflects the real world nature of the study. This variation may vary with time

280 due to increasing awareness and better diagnosis. Due to relatively small sample size coupled
281 with potential under-estimation of dementia diagnosis we were not able to examine the
282 specific cause of anaemia and risk of dementia.

283

284 In summary, while we did not find strong association between anaemia and incident dementia
285 in stroke survivors, the study should be replicated in the future with follow-up data
286 specifically collected to diagnose dementia in stroke survivors. Future studies should also
287 examine the link between specific type of anaemia and dementia risk in patients with stroke.

288 With improvement in awareness of dementia after stroke and improvement in diagnosis of
289 dementia, it presents an opportunity to revisit the actual risk estimates of previously identified
290 risk factors as well as potential new risk factors with the view of developing simple
291 prediction rule that is pragmatic and applicable in low resource setting thus useful for daily
292 clinical practice.

293

294 **Acknowledgements**

295 We gratefully acknowledge the stroke data team at the NNUH Foundation NHS Trust. We
296 gratefully acknowledge Professor Bowles who is one of the steering committee members of
297 the NNUH Stroke and TIA register.

298

299 **Contributors**

300 PKM and TOS conceived the idea. JHBS performed record linkage. ABC analysed the data.
301 Draft manuscript was prepared by PKM and TOS and all authors made contribution to data
302 interpretation and writing of the paper. PKM is the guarantor.

303

304 **Source of Funding Declarations**

305 Dr Toby Smith is supported by funding from the National Institute for Health Research
306 (NIHR) Oxford Health Biomedical Research Centre. The views expressed are those of the
307 author(s) and not necessarily those of the NIHR.

308

309 **Conflict of Interest**

310 All authors declare no conflict of interest.

311

312

313 **References**

314

315

316 [1] Sico JJ, Concato J, Wells CK, Lo AC, Nadeau SE, Williams LS, Peixoto AJ, Gorman M,
317 Boice JL, Bravata DM. Anaemia is associated with poor outcomes in patients with less severe
318 ischaemic stroke. *J Stroke Cerebrovasc Dis* 2013; 22:271–278.

319

320 [2] Hao Z, Wu B, Wang D, Lin S, Tao W, Liu M. A cohort study of patients with anaemia on
321 admission and fatality after acute ischaemic stroke. *J Clin Neuroscience* 2013; 20:37–42.

322

323 [3] Barlas RS, Honney K, Loke YK, McCall SJ, Bettencourt-Silva JH, Clark AB, Bowles
324 KM, Metcalf AK, Mamas MA, Potter JF, Myint PK. Impact of Haemoglobin Levels and
325 Anaemia on Mortality in Acute Stroke: Analysis of UK Regional Registry Data, Systematic
326 Review, and Meta-Analysis. *J Am Heart Assoc.* 2016 Aug 17;5(8).

327

328 [4] Taraghi Z, Akbari Kamrani AA, Foroughan M, Yazdani J, Mahdavi A, Baghernejad SK.
329 Cognitive impairment among elderly patients with chronic heart failure and related factors.
330 *Iran J Psychiatry Behav Sci.* 2016;10(2):e4500.

331

332 [5] Dlugaj M, Winkler A, Weimar C, Dürig J, Broecker-Preuss M, Dragano N, Moebus S,
333 Jöckel KH, Erbel R, Eisele L; Heinz Nixdorf Recall Study Investigative Group. Anaemia and
334 mild cognitive impairment in the German general population. *J Alzheimers Dis.*
335 2016;49(4):1031-42.

336

337 [6] Jonassaint CR, Varma VR, Chuang YF, Harris GC, Yasar S, Polinder-Bos H, Carlson
338 MC. Lower haemoglobin is associated with poorer cognitive performance and smaller brain
339 volume in older adults. *J Am Geriatr Soc.* 2014;62(5):972-3.

340

341 [7] Stewart MW, Traylor AC, Bratzke LC. Nutrition and cognition in older adults with heart
342 failure: a systematic review. *J Gerontol Nurs.* 2015;41(11):50-9.

343

344 [8] Andro M, Le Squere P, Estivin S, Gentric A. Anaemia and cognitive performances in the
345 elderly: a systematic review. *Eur J Neurol.* 2013;20(9):1234-40.

346

347 [9] Peters R, Burch L, Warner J, Beckett N, Poulter R, Bulpitt C. Haemoglobin, anaemia,
348 dementia and cognitive decline in the elderly, a systematic review. *BMC Geriatr.* 2008;8:18.
349 doi: 10.1186/1471-2318-8-18.

350

351 [10] Prince M, Guerchet M, Prina M. The epidemiology and impact of dementia: current state
352 and future trends. Geneva: World Health Organization, 2015.

353

354 [11] Kwok CS, Loke YK, Hale R, Potter JF, Myint PK. Atrial fibrillation and incidence of
355 dementia: a systematic review and meta-analysis. *Neurology.* 2011;76:914-22.

356

357 [12] Guyomard V, Metcalf AK, Naguib MF, Fulcher RA, Potter JF, Myint PK. Transient
358 ischaemic attack, vascular risk factors and cognitive impairment: a case-controlled study.
359 *Age Ageing.* 2011;40:641-4.

360

361 [13] Sibolt G, Curtze S, Melkas S, et al. Poststroke dementia is associated with recurrent
362 ischaemic stroke. *J Neurol Neurosurg Psychiatry* 2013;84:722–6

363
364 [14] World Alzheimer's Report 2010 <http://www.alz.co.uk/research/world-report>.
365
366 [15] Dementia 2010- the prevalence, economic cost, research funding of dementia compared
367 with other major diseases. <http://www.dementia2010.org/>
368
369 [16] Subic A, Cermakova P, Norrving B, Winblad B, von Euler M, Kramberger MG,
370 Eriksdotter M, Garcia-Ptacek S. Management of acute ischaemic stroke in patients with
371 dementia. *J Intern Med.* 2017 Apr;281(4):348-364.
372
373 [17] Pendlebury ST, Rothwell PM. Incidence and prevalence of dementia associated with
374 transient ischaemic attack and stroke: analysis of the population-based Oxford Vascular
375 Study. *Lancet Neurol.* 2019; 18: 248-258
376
377 [18] Hénon H, Pasquier F, Leys D. Poststroke dementia. *Cerebrovasc Dis.* 2006;22(1):61-70.
378
379 [19] Cermakova P, Fereshtehnejad SM, Johnell K, Winblad B, Eriksdotter M, Religa
380 D. Cardiovascular medication burden in dementia disorders: a nationwide study of 19,743
381 dementia patients in the Swedish Dementia Registry. *Alzheimers Res Ther.* 2014;6(3):34.
382
383 [20] Pollock A, St George B, Fenton M, Firkins L. Top ten research priorities relating to life
384 after stroke. *Lancet Neurol.* 2012;11:209.
385
386 [21] White JR, Bettencourt-Silva JH, Potter JF, Loke YK, Myint PK. Changes in antiplatelet
387 use prior to incident ischaemic stroke over 7 years in a UK centre and the association with
388 stroke subtype. *Age Ageing.* 2013 Sep;42(5):594-8.
389
390 [22] Farrell B, Godwin J, Richards S, Warlow C. The United Kingdom transient ischaemic
391 attack (UK-TIA) aspirin trial: final results. *J Neurol, Neurosurg and Psychiatry.* 1991;
392 54:1044–1054.
393
394 [23] Blanc B, Finch CA, Hallberg L, Lawkowicz W, Layrisse M, Mollin DL, Rachmilewitz
395 M, Ramalingaswami V, Sanchez-Medal L, Wintrobe MM. Nutritional Anaemias. Report of
396 WHO Scientific Group. *World Health Organ Tech Rep Ser.* 1968; 405:1–40.
397
398 [24] Fine, J. and R. Gray. 1999. A proportional hazards model for the subdistribution of a
399 competing risk. *Journal of the American Statistical Association.* 94: 496–509.
400
401 [25] Tang EYH, Robinson L, Stephen BCM. Risk Prediction Models for Post-Stroke
402 Dementia. *Geriatrics.* 2017; 2: 19.
403
404 [26] Stephan, B.C.; Minett, T.; Muniz Terrera, G.; Matthews, F.E.; Brayne, C. Dementia
405 prediction for people with stroke in populations: Is mild cognitive impairment a useful
406 concept? *Age Ageing* 2014.
407
408 [27] Kandiah, N.; Chander, R.J.; Lin, X.; Ng, A.; Poh, Y.Y.; Cheong, C.Y.; Cenina, A.R.;
409 Assam, P.N. Cognitive impairment after mild stroke: Development and validation of the
410 SIGNAL2 risk score. *J. Alzheimer's Dis.* 2016, 49, 1169–1177.
411

412 [28] Lin, J.H.; Lin, R.T.; Tai, C.T.; Hsieh, C.L.; Hsiao, S.F.; Liu, C.K. Prediction of
413 poststroke dementia. *Neurology* 2003, 61, 343–348.

414

415 [29] Droke W, Schipper HM. Oxidative stress and aberrant signalling in aging and cognitive
416 decline. *Aging Cell* 2007; 6: 367–370.

417

418 [30] Inzitari M, Zakai NA, Longstreth WT, Cushman M, Newman AB. Anaemia is associated
419 with the progression of white matter disease in older adults with high blood pressure. *J Am*
420 *Geriatr Soc* 2008; 56: 1867–1872.

421

422 [31] Hansen AL, Johansen BH, Sollers JJ, Stenvik K, Thayer JF. Heart rate variability and its
423 relation to prefrontal cognitive function. The effects of training and detraining. *Eur J Appl*
424 *Physiol* 2004; 93: 263–272.

425

426 [32] Pendlebury, S.T.; Rothwell, P.M. Prevalence, incidence, and factors associated with pre-
427 stroke and post-stroke dementia: A systematic review and meta-analysis. *Lancet Neurol.*
428 2009, 8, 1006–1018.

429

430 [33] Donegan K, Fox N, Black N, Livingston G, Banerjee S, Burns A. Trends in diagnosis
431 and treatment for people with dementia in the UK from 2005 to 2015: a longitudinal
432 retrospective cohort study. *Lancet Public Health* 2017; 2: e149–56.

433

434 **Figure Legends**435 **Figure 1:** Kaplan Meier Curves showing the incidence of dementia in patients without
436 anaemia (top line) and with anaemia (bottom line)437 **Figure 2:** Kaplan-Meier Curve for dementia incidence for individual year

438

439

440

441 **Table 1:** Sex-specific sample characteristics comparison between stroke patients who were
 442 anaemic at discharge and those without anaemia

	No Anaemia	Anaemia	p-value
Men	2863	879	
Age (mean/SD)	71.5 (12.2)	78.9 (10.5)	<0.001
Stroke Type			
Haemorrhagic	340 (11.9%)	66 (7.6%)	<0.001
Ischaemic	2506 (88.1%)	807 (92.4%)	
OCSP			
LACS	726 (27.4%)	212 (25.9%)	0.004
PACS	937 (35.4%)	331 (40.4%)	
POCS	556 (21.0%)	136 (16.6%)	
TACS	325 (12.3%)	94 (11.5%)	
Undefined	105 (4.0%)	46 (5.6%)	
Pre-stroke mRS			
0	2201 (79.8%)	493 (60.4%)	<0.001
1	275 (10.0%)	124 (15.2%)	
2	126 (4.6%)	78 (9.6%)	
3	97 (3.5%)	85 (10.4%)	
4	46 (1.7%)	26 (3.2%)	
5	13 (0.5%)	10 (1.2%)	
Comorbidities			
Previous stroke/TIA	587 (20.9%)	237 (27.9%)	
CHD including MI	401 (14.0%)	231 (26.3%)	<0.001
PVD	40 (1.4%)	45 (5.1%)	<0.001
COPD (incl. Emphysema/bronchitis)	102 (3.6%)	65 (7.4%)	<0.001
CKD	39 (1.4%)	72 (8.2%)	<0.001
Congestive Cardiac Failure	125 (4.4%)	100 (11.4%)	<0.001
Atrial Fibrillation	263 (9.2%)	144 (16.4%)	<0.001
Hypertension	615 (21.5%)	345 (39.2%)	<0.001
Hyperlipidemia	104 (3.6%)	69 (7.9%)	<0.001
Diabetes Mellitus	209 (7.3%)	166 (18.9%)	<0.001
Cancers	259 (9.0%)	191 (21.7%)	<0.001
Women	2156	1556	
Age (mean/SD)	77.3 (12.1)	80.5 (10.8)	<0.001
Stroke Type			
Haemorrhagic	262 (12.2%)	127 (8.2%)	<0.001
Ischaemic	1887 (87.8%)	1424 (91.8%)	
OCSP			
LACS	581 (28.8%)	379 (26.0%)	0.026
PACS	762 (37.7%)	581 (39.9%)	
POCS	346 (17.1%)	216 (14.8%)	
TACS	267 (13.2%)	218 (15.0%)	
Undefined	64 (3.2%)	63 (4.3%)	

Pre-stroke mRS			
0	1469 (70.8%)	795 (54.6%)	<0.001
1	219 (10.6%)	231 (15.9%)	
2	158 (7.6%)	149 (10.2%)	
3	153 (7.4%)	184 (12.6%)	
4	61 (2.9%)	77 (5.3%)	
5	14 (0.7%)	19 (1.3%)	
Comorbidities			
Previous stroke/TIA	465 (21.9%)	408 (26.9%)	<0.001
CHD including MI	236 (10.9%)	267 (17.2%)	<0.001
PVD	28 (1.3%)	30 (1.9%)	0.13
COPD (incl. Emphysema/bronchitis)	60 (2.8%)	61 (3.9%)	0.054
CKD	34 (1.6%)	58 (3.7%)	<0.001
Congestive Cardiac Failure	113 (5.2%)	143 (9.2%)	<0.001
Atrial Fibrillation	243 (11.3%)	212 (13.6%)	0.031
Hypertension	603 (28.0%)	538 (34.6%)	<0.001
Hyperlipidemia	71 (3.3%)	72 (4.6%)	0.037
Diabetes Mellitus	106 (4.9%)	173 (11.1%)	<0.001
Cancers	174 (8.1%)	172 (11.1%)	0.002

443 SD – standard deviation

444

445

446

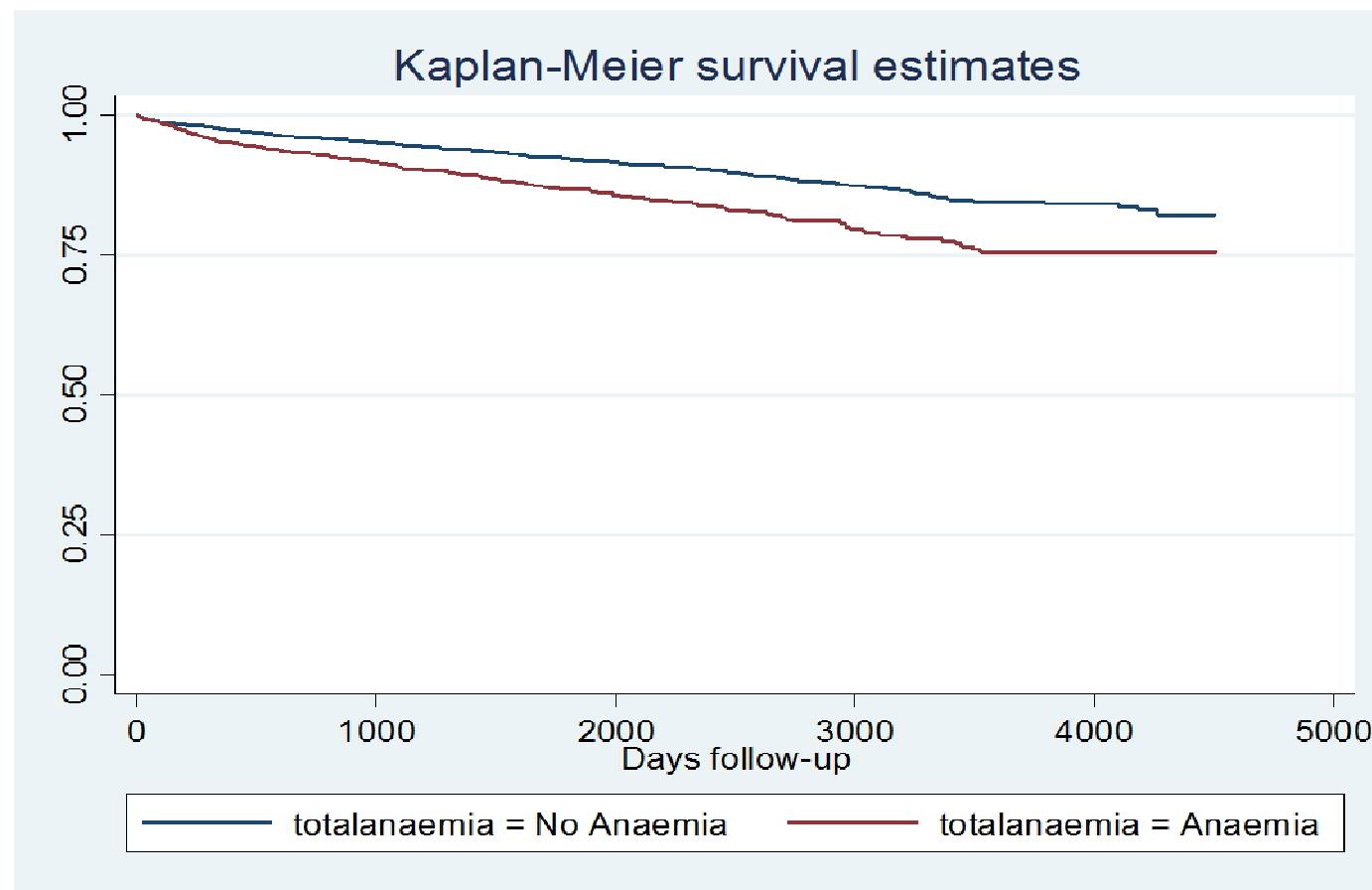
Table 2: Hazard Ratios (95% CI) for dementia incidence post stroke after hospital discharge –anaemia

Model	HR (95% CI) for anaemia	HR (95% CI) for 20 g/dL unit increase in HB	HR (95% CI) for anaemia*	HR (95% CI) for 20 g/dL unit increase in HB*
	N=578 failures / 7454	N=578 failures / 7454	N=578 failures / 7454	N=578 failures / 7454
A	1.21 (1.01,1.43)	0.70 (0.64,0.77)	1.34 (1.13,1.58)	1.00 (0.91,1.10)
B	1.21 (1.01,1.44)	0.88 (0.80,0.97)	1.03 (0.86,1.22)	1.01 (0.92,1.11)
C	1.17 (0.97,1.40)	0.89 (0.80,0.98)	1.02 (0.85,1.26)	1.02 (0.93,1.13)
D	1.13 (0.94,1.36)	0.91 (0.82,1.01)	1.00 (0.89,1.22)	1.04 (0.94,1.15)
E	1.10 (0.91,1.33)	0.93 (0.83,1.03)	0.97 (0.80,1.17)	1.05 (0.95,1.16)
F	1.10 (0.92,1.33)	0.95 (0.85,1.06)	0.97 (0.80,1.17)	1.05(0.95,1.16)

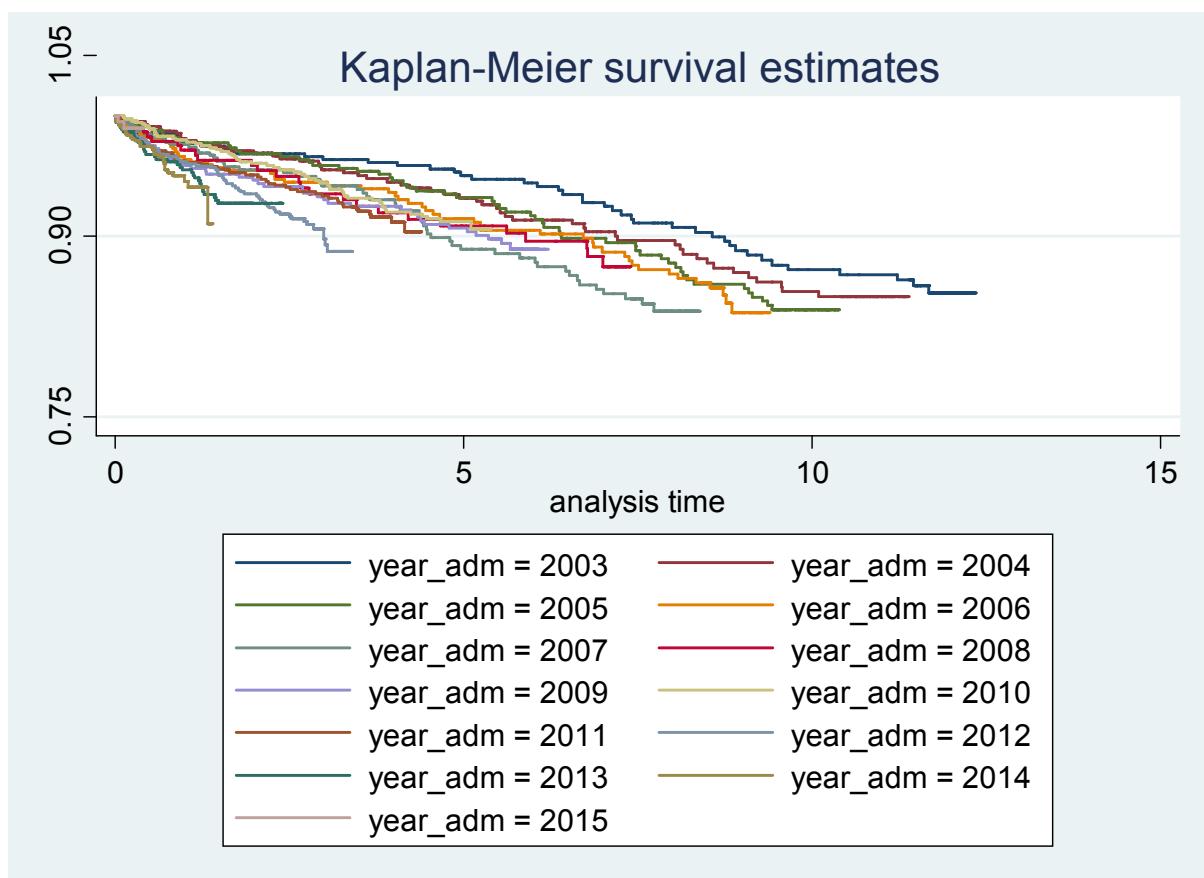
*Competing risk model with death as competing risk

A: age, sex adjusted

B: age, sex, stroke characteristics adjusted (subtype, OCSP)


C: age, sex, stroke type, OCSP and pre-stroke mRS adjusted

D: C + additional adjustments for key risk factors for vascular dementia AF, CHD, previous stroke/TIA, PVD, hypertension


E: D+ other co-morbidities

F: E + year of admission

Figure 1: Kaplan Meier Curves showing the incidence of dementia in patients without anaemia (top line) and with anaemia (bottom line)

	N at risk					
No anaemia	5019	2848	1413	755	216	0
Anaemia	2435	1035	457	240	68	0

Figure 2: Kaplan-Meier Curve for dementia incidence for individual year

Year (vs. 2003)	Hazard Ratios (95% CI)
2004	1.16 (0.78,1.71)
2005	1.27 (0.86,1.86)
2006	1.46 (0.99,2.17)
2007	1.75 (1.18,2.59)
2008	1.56 (0.96,2.54)
2009	1.76 (1.15,2.69)
2010	1.56 (1.04,2.34)
2011	1.99 (1.32,2.99)
2012	2.82 (1.89,4.22)
2013	2.99 (1.88,4.76)
2014	3.24 (2.01,5.2)

Note 2015 data is not shown as it doesn't have full annual follow up.

Supplementary Table 1: Annual incidence of dementia overtime in patients who survived to hospital discharge over 10 years follow up

		2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
2003	N at risk	469	418	391	353	316	291	263	242	220	207	206	201
	Incidence/1,000	14.93	4.78	5.12	5.67	12.66	10.31	30.42	12.4	22.73	9.66	19.42	0
2004	N at risk	538	469	424	385	350	307	281	252	232	218	214	211
	Incidence/1,000	9.29	19.19	9.43	20.78	2.86	19.54	24.91	7.94	21.55	22.94	9.35	0
2005	N at risk		528	452	408	377	343	311	288	263	250	245	237
	Incidence/1,000		9.47	15.49	12.25	13.26	17.49	12.86	27.78	15.21	28	28.57	0
2006	N at risk			493	427	361	328	304	275	254	239	240	232
	Incidence/1,000			16.23	30.44	8.31	9.15	23.03	10.91	23.62	4.18	33.33	12.93
2007	N at risk				490	414	362	326	297	254	232	228	221
	Incidence/1,000				14.29	31.4	2.76	15.34	40.4	19.69	21.55	30.7	4.52
2008	N at risk					265	227	194	174	160	146	145	142
	Incidence/1,000					18.87	22.03	25.77	22.99	6.25	6.85	20.69	14.08
2009	N at risk						460	398	361	324	309	308	301
	Incidence/1,000						17.39	30.15	16.62	18.52	9.71	22.73	3.32
2010	N at risk							692	611	543	508	497	482
	Incidence/1,000							11.56	18.00	18.42	21.65	20.12	6.22
2011	N at risk								651	575	540	531	521
	Incidence/1,000								24.58	20.87	18.52	16.95	11.52
2012	N at risk									671	587	565	547
	Incidence/1,000									23.85	34.07	28.32	16.45
2013	N at risk										487	426	395
	Incidence/1,000										26.69	44.6	5.06
2014	N at risk											671	612
	Incidence/1,000											37.26	13.07
2015	N at risk												191
	Incidence/1,000												10.47

N at risk = total number of patients – Number of deaths occurring within the year