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Abstract

The calculation of power flow in power systems with the presence of harmonics has been properly studied
in the scientific literature. However, power flow calculation considering interharmonic components is still
an open question. Traditional methods based on the IEEE1459 standard have proven to be valid and
accurate only for linear and sinusoidal systems, but have been criticized for non-linear and non-sinusoidal
systems because they are not able to explain correctly the current and voltage interactions beyond the active
power. This paper proposes the use of a novel mathematical framework called geometric algebra (GA) to
study the power flow considering the interaction of current and voltage harmonics and interharmonics. The
use of GA enables the precise determination of the direction and magnitude of the total and single active
power flow for each component, as well as other power elements related to the non-active power due to cross
interaction. Moreover, this paper makes a novel contribution to the definition of interharmonics in geometric
algebra space that has not been done before. To test the validity of the method, both linear and non-
linear circuits are proposed and solved by applying voltages and currents with harmonic and interharmonic
components. The results obtained show that power flow can be analyzed under the prism of the principle
of energy conservation (PoCoE) in a way that allows a better understanding of the power spectrum due to
the interaction of harmonics and interharmonics of voltage and current.

Keywords: Power flow, Harmonics, Interharmonics, Non-sinusoidal conditions, Geometric Algebra.

1. Introduction

The proliferation of electronic devices has increasingly led to poor power quality in the electricity supply
[1]. One of the most commonly used parameters for measuring power quality is the waveform distortion of

voltage and current [2]. This waveform can be affected by the presence of spectral frecuencies other than the
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50/60 Hz fundamental component. These spectral components can be integer multiples of the fundamental
(harmonics) or not (interharmonics), depending on various factors such as the type of installation, receivers
or class of supply. If they are not integer multiples, IEC 61000-2-1 defines them precisely as ”Between the
harmonics of the power frequency voltage and current, further frequencies can be observed which are not
an integer of the fundamental. They can appear as discrete frequencies or as a wide-band spectrum” [3]. A
particular case of interharmonics are the so-called subharmonics, i.e. spectral components with a frequency
lower than the fundamental and which is not an integer multiple of it. The main causes for the appearance
of interharmonics are usually two: on the one hand, the random change in the magnitude of the value of the
voltage or current or the phase angle causes the appearance of intermediate spectral effects such as picket
fence or spectral leakage that lead to the generation of fake interharmonic; on the other hand, the massive
use of non-linear loads, and especially those that interact with true interharmonic power systems, such as
ship propulsion systems, power inverters between different frequency systems, wind turbines, etc [4]. This
article will focus on the study of true interharmonics, i.e. interharmonics of known origin caused by real
devices.

Despite the clear interest in power quality [5], and the large number of studies of the influence of
harmonics on power grids, there has not been much attention paid to the study of interharmonics, so
it is necessary to look deeper into the causes that provoke them, as well as the consequences they have
[6, 7]. Currently, they are not a real or compelling problem, but it is expected that in the future they
may become so, therefore it is necessary to pay attention to this problem [8]. For example, Ravindran
and Bollen [9] investigates the existence of interharmonic emissions from an MPPT driven grid-connected
PV inverter to identify their severity and persistence. Kim et al. [10] also talk about the impact of
interharmonics on offshore electrical systems and how interaction with other harmonics can cause serious
vibration problems that cause systems to shut down. For this, it is essential to use powerful and well-
founded mathematical circuit theory analysis tools. So far, the main analysis tool has been the application
of Fourier analysis, and its FFT algorithmic implementation [4]. Other techniques such as wavelets also
make an interesting contribution [11] when studying the interaction between voltage and current so that
power flows can be clearly established. Kim et al. [10] propose the use of the cross power spectrum technique
for interharmonic power analysis to determine real and reactive power flows. On the other hand, Petrovic
[12] reviews undersampling methods for voltage and current signals with both harmonics and interharmonics
in order to obtain active power measurements.

Geometric Algebra or Clifford Algebra has successfully been used in several scientific disciplines such as
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engineering, physics or computer science achieving excellent results [13, 14]. In particular, it has proven to be
a powerful and flexible tool for representing the flow of energy and power in electrical systems [15, 16]. Some
researchers have proposed the use of Clifford’s algebra as a mathematical tool to address the multicomponent
nature of power in non-sinusoidal contexts [17, 18, 19]. The concept of non-active, reactive or distorted
power acquires a meaning that is more in line with its mathematical significance, making it possible to
better understand energy balances and to verify the principle of energy conservation. The concept of
multi-component power within the scope of geometric algebra [20] is used in this article to demonstrate its
feasibility for determining the net power flow in a non-sinusoidal electrical circuit, the direction and sense of
such power, as well as its use for calculating the geometric or net power factor defined as the ratio between
the active power and the norm of the multivector power. This paper also proposes a new extension to Castro-
Nufez’s theory [15, 16, 20], which has not been published previously, so that it takes into consideration the
coding of interharmonics in space Gar. Thereby, it is possible to conveniently study the interactions between
fundamental, harmonic and interharmonic components leading to different power components, while taking
into account their senses, i.e. whether they are powers flowing from the source to the load or vice versa.
Some specific applications in power systems have been already found, such as passive filtering [21]. In order
to validate the theory presented in this paper, three cases of study are proposed where the circuit theory
based on GA is applied to linear and non-linear loads.

The rest of the paper is structured as follows: Section 2 summarizes the theoretical basis of interhar-
monics; Section 3 introduces the analysis of electrical circuits by GA and the new formulation applied to
interharmonics; Section 4 presents the results obtained in three case studies; Section 5 presents the main

conclusions of this work.

2. Interharmonic basics

The harmonic component concept emerges from the application of Fourier analysis to periodic time
signals. Through this technique, it is possible to reconstruct any periodic signal based on the sum of sine-
type components. For example, if you have a voltage signal v(t) (see Figure 1) that is periodic with period

T, it is possible to perform the Fourier series decomposition according to

oo fe'e) 0o
v(t) = ap + Z ap cos nwt + Z b, sin nwt = Z c,einwt (1)
n=1 n=1 n—=0
where w = 2%, n is an integer and the coefficients are
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v(t) = sin(wt) + 0.2 sin(1.79wt) + 0.1 sin(7wt) + 0.05 sin(11wt) 14

Figure 1: Power signal waveform with harmonics and interharmonics
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1 T
ag = T/o v(t)dt

2 T
ap, = —/ v(t) cos(nwt)dt

T Jo

2 T
by, = —/ v(t) sin(nwt)dt

T Jo

1 1T ,

— _ 1 I —jnwt

Cn 2(an Jbn) T /0 v(t)e dt

The discrete implementation of the Fourier Transform in the digital domain is based on the Discrete
Fourier Transform (DFT):

N—-1

1 .
X(fx) = N Z S (2)

n=0
where f = ﬁ = % The above equation carries the implicit assumption that the signal is repeated
every N samples, i.e. it contains a period T. If a higher number of samples is chosen, so that there are p

periods contained in the N samples, then the spectral resolution will increase according to the expresion

Af=— (3)

Thus, it is possible to increase the precision when it comes to detecting the possible interharmonics that
may exist in a signal, whatever its origin is (real or fake). For example, for a fundamental frequency signal
of 50 Hz, you can choose a sample length equivalent to 10 periods T, so the frequency resolution would
be Af = 50/10 = 5 Hz. If there are interharmonics multiple of 5 Hz, they can be detected by the DFT.
Naturally, the greater the number of samples, the more options there are to capture interharmonics precisely,
but with the added cost of finding variations in the amplitude of the signal, which will inexcusably cause the
appearance of other interharmonics that are not due to phenomena typical of electrical equipment. In any
case, the application of the DFT allows us to obtain the coefficients of both harmonics and interharmonics
to represent a voltage or current signal in the frequency domain. Thanks to these coefficients, in the next
section it will be demonstrated the possibility of carrying out a transformation to the geometric space where
it is possible to operate and obtain the power flows that arise as a result of the interaction between the

different harmonics and interharmonics.
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Figure 2: Representation of a bivector @ A b. Note that the classical vectorial product a x b is also represented as the
perpendicular vector to plane formed by a and b.

3. Geometric algebra applied to harmonics and interharmonics

Geometric algebra has its origins in the work of Clifford and Grassman in the 19th century. Unfortu-
nately, their theory did not receive so much attention until its impulse by Hestenes and others [13, 14, 22].
Traditional concepts such as vector, spinor, complex numbers or quaternions are naturally explained as
members of subspaces in GA. It can be easily extended in any number of dimensions, being this one of its
main strengths. Because these are geometric objects, they all have direction, sense and magnitude. The
basic concepts are widely explained in [23, 21, 16] but the most important are reproduced here for the sake
of completeness. One of the core concepts in GA is the geometric product between vectors a = ey + S1ea

and b = ase; + Paes

ab=a-b+anb (4)

that is, the geometric product is a linear combination of the internal and external product. It can be

seen how the result is made up of a scalar and a bivector, resulting in the so-called multivector.

A=ab=(A))+ (A)s = (102 + S102) + (a1 f2 — fraz)erez (5)

(A)o is the scalar part and (A)s is the bivector part. A bivector is a novel concept introduced by
geometric algebra and does not exist in vector calculus. It is the result of the external product of two
vectors producing a plane with direction and sense, exactly as a vector would have it. Its value is equal to
the area enclosed by the parallelogram formed by the vectors (see Figure 2). Like vectors, a bivector can be

written as the linear combination of a base of bivectors.

6
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Based on the transformation given by Castro-Nunez [16]

0er(t) = V2coswt  +— el
0s1(t) =V2sinwt  +—  —eq
Vea(t) = V2cos 2wt +—  eges

ps2(t) = V2sin 2wt «—  ejes (6)

n+1
Yen(t) = V2cosnwt < N\ e;
=2

n+1
Osn(t) = V2sinnwt +— A\ e;
i=1

iZ2

we can transform the Fourier spectrum to GA domain, Gar. For example, consider the voltage waveform

u(t) = 230v/2sinwt + 110v/2sin 3wt

following the proposed transformation in (6), the voltage becomes

u = —23062 + 1106134 (7)
——— N —

(u) (u)s
In equation (6), every integer multiple of sine and cosine has a unique translation to a base k-vector, but
there is no correspondence for interharmonics components, i.e., there is no way to transform interharmonics
from the frequency domain to GA. One of the main contribution of this paper is to provide new rules to
complete the geometric algebra theory applied to electrical circuits. Let us suppose we have an interharmonic

Uint(t) = U V2 cos hwt, where 1 < h < 2, i.e., h is between fundamental component and 2"¢ harmonic and
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it is clear that h ¢ N. The transformation is as follows

cos(hwt) <— ea2q (8)

If other interharmonics exists in the interval [1,2], then terms like ez5, €26, etc will arise. In general, if

k interharmonics, py, exist between n and n + 1, the transformation is as follows

n+1
Cnp = ( A ez’) €(k+n+2)

=2

n+1
Xosupr = ‘/\1 €i | e(ktn+2)
i£2

where subscript ¢ means cosine and s means sine transformation, respectively.

Once voltage and current can be represented in the geometrical domain, it is possible to define a new
power concept called geometrical apparent power or net apparent power M, as it is described by Castro-
Ntnez [23]. This concept supersedes the traditional concept of apparent power S widely known in electrical
engineering. This change is both substantive and profound, but it is supported by numerous studies that
demonstrate how traditional apparent power is unable to explain with clarity and coherence the flow of energy
and power in non-linear systems, where harmonics and interharmonics appear [24]. The term reactive power
is also misinterpreted in its conceptual meaning of quadrature power with active power [25, 26]. These
terms work very well in linear and sinusoidal systems, but they founder when applied to non-sinusoidal or
non-linear systems. It is precisely M that comes to overcome this lack, guaranteeing the principle of energy
conservation and a physical correspondence between the different terms of which it is composed and the
characteristics of the problem. One of the consequences of the foregoing is that, in general, | M|| # S. The

geometric apparent power is defined as the geometric product between voltage and current:

M=ui=u-t+uAi (10)

which will result in a scalar and a bivector for the sinusoidal case

M = (M) + (M) (1)
S~ Y~
scalar bivector

It can be generalized for a non-sinusoidal voltage with the presence of interharmonics

8
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n d k
u(t) = ui(t) =Di cos(wt) + By sin(wt) + Y Dy cos(hwt) + Y Ej sin(hwt)+
=1 h=2 h=2 (12)
+ Z P, sin(pwt)
peJ

where n is the total number of frequency components of the signal, d and k are the total number of harmonics
and J is the set of interharmonics. After that, it can be obtained the voltage transferred to the geometric

domain Gnr

d h+1 k h+1
u = D161 — E162 + Z Dh /\ e;| + Z Eh /\ e;| + (13)
h=2 i=2 h=2 i=1,i#£2
n+1 n+1
+ Z /\ €; e(p+n+2) + Z [/\ €; e(p_|_n_|_2) (14)
pp€J1 Z;% pp€Je Li=2

Since Castro-Nuniez [23] establishes that the geometric admittance is Y = G}, + Bpejez, applying the
superposition principle (SP) yield each of the harmonic currents as i, = (G, + Breies)uy. Clearly, the

total current 7 is the sum of all harmonic currents

i = zn:ih (15)
h=1

This current can be decomposed into parallel and quadrature components with the voltage

i:i||+iJ_:ig+ib (16)

Finally, the apparent multivector geometric power M can be obtained as the product between uw and 2
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P CNg
— ——
n+1

M = wi= Mg+ M, = (Mg)o+ > (Mg); +
=1

M, (17)

+ CNr(ps) + CN'r(hz)

M,=CN,

where

My is the parallel geometric apparent power
M, is the cuadrature geometric apparent power
P is the active power
C Ny is the degraded power
C N, is the geometric reactive power
C N, (ps) is the geometric reactive power due to voltage and current phase shift

C Ny (ni) is the geometric reactive power due to voltage and current cross products

Based on the above definitions, the net or geometric power factor can be defined as

P (M),

PI= ] = o,

(18)

4. Empirical study

To demonstrate the validity and usefulness of the proposed method for the resolution of non-sinusoidal

and non-linear electric circuits based on geometric algebra, several examples of typical circuits will be solved.

10
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is R=1Q

L=2H

Figure 3: Linear inductive load

4.1. Ezample 1

The first case of study (Figure 3) represents a simple inductive linear load powered by a non-sinusoidal

voltage source polluted with interharmonic and harmonic

v(t) = 230v2sin wt + 20v/2sin 1.2wt + 10v/2 sin 3wt (19)

for the sake of simplicity, w = 1 will be taken.
The voltage waveform is transformed into geometric domain using (6), so that the geometric voltage is

as follows

u = —230es + 20e14 + 10e134 (20)

The geometric impedance zp, for each frequency component is defined (according to what is proposed in

[23], as:

zn = R— hwlLeqs (21)

where h is the order of the harmonic or interharmonic, in our problem, h = [1, 1.2, 3].

zZ1 = 1— 2612
zZ1.2 = 1— 2.4612

z3 = 1-— 6612

11
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Therefore, if we apply SP and Ohm’s law, it is posible to calculate the current ¢ as follows

i =z (u)r + 2y 5(u)12 + 25 (u)s
= (1—2e12) "' (~230e3) + (1 — 2.de12) ' (20e14) + (1 — 6e1z) ' (10e134) (22)

= 74662 + 2.96614 + 0.276134 79261 — 7.1624 — 1.626234

ig b

Note that the principle of superposition is embedded in equation (22) and consequently all the harmonics
(interharmonics) can be examined simultaneously. This is in contrast to the frequency domain, where it is no
possible to handle all harmonics at once. The value of the total current is found by its norm ||2|| = 103.16A.
It should be noted that the current obtained has two distinct components: %4 is the parallel current and s
is the quadrature current. It’s easy to verify that both components are in quadrature simply by performing
the scalar product 4 - 45 = 0. Once the current is determined, the geometric apparent power M can be

calculated

M = ui = 10641 + 3563 + 16006124 - 39861234 + 347364 — 21000612 — 547634 — 1036123 (23)

Mg My

so that the detailed analysis of powers appears as

P = 10,641 W
[CNg|| = 1,650 VA
(24)
ICN,| = 21,294 VA
IM]| = 23,862 VA
It is easy to demonstrate that
|M]|| = \/P? + |CNa|? + | CN,|1? (25)
The power factor is then obtained by applying (18)
10,641
= = 0.44
P =53 563 — 0446 (26)

12
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Ri1=1Q R3=1Q) |
3

AAAY ANN——

n — 03—% F
+
u(t)i Ly=1H
-3
. g Ly=2 H
Figure 4: Linear circuit for example 2.
h=1 h=17

Element Impedance Z  Admittance Y Impedance Z  Admittance Y

Ry 1 1 1 1
L2 —€e12 €12 71.7612 0.588612
Rs 1 1 1 1
L3 —0.75612 1.333612 —1.275612 0.784612
Cg 3.75612 —0.266812 2.206612 —0.453812
RLCH 1+ 3e12 0.1 —0.3e12 1+0.93e12  0.536 — 0.498e12

RLC 93 1.2 —14e12 0.353 +0.412e12 2.81 —0.30e12  0.352 4 0.037eq2

Table 1: Geometric impedance and admittance for circuit elements

4.2. Example 2

The second case of study is showed in Figure 4. In this case, a more complex linear circuit is presented
with non-sinusoidal source and serveral resistors, inductors and capacitors.

The voltage source is

v(t) = 230V/2sin wt + 23v/2sin 1.7wt (27)

which translates to geometric domain as

u = —230ez + 23e14 (28)

13
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k-vector

e €2 €14 €24 ||Z ||

ip  -148,8235  -94,7059  0,5118  -8,7798 176,6210
3 54,1176 13,5294  7,5626 7,9098 56,8465
i1 -94,7059 -81,1765 8,0743 -0,8700 125,0000

Table 2: Current summary in amperes [A]

Similar to the example 1 above, the geometric impedance can be calculated for every element in figure

4 as showed in table 1.The geometric current is derived by applying Ohm’s law for every branch m =1,2,3

Ty = Z z,;ln(u>km (29)
k

The table 2 shows a summary of the three current branches of the circuit 41, 42 and 23. It can be
observed that 41 = 43 + ¢3 as stated by Kirchhoff’s 1st law. Recovering equation (16), the current ;1 can be

decomposed as a parallel and quadrature parts

11 = igl +ip1 = —81.17eq + 8.07e14 —94.70e1 — 0.87eo4 (30)

ig1 in1

The quadrature current 437 is the part that can be compensated by passive filters using techniques such
heuristic optimization provided in [21].

The apparent geometrical power involved can be found by the geometric product between voltage and
current in each passive element. Table 3 shows the power balance detail for each element of the circuit in
figure 4. It is clear that the principle of energy conservation is fulfilled as presented in [23].

Finally, in order to compare the GA power theory applied to non-sinusoidal and non-linear systems, the
time domain power of the source p(t) has been calculated. The voltage v(t) and current 41 (¢) is multiplied

to find the instantaneous power as

14
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k-vector
) ey €12 €124 | M]]
Mg, 15,624.77 1475.67 15,694.30
My 3658.79 -30,986.15 528.73 31,205.90
Mpgs 3231.52 651.48 3296.54
Mis 659.63 -2181.13 271.04 2294.75
Mecs -1940.09 11,404.94 797.20 11,596.21
Mg 3231.52 -1280.46 9223.81 1719.74 10,005.92
M 18,856.29 2378.33 -21,762.34 3724.15 29,132.20
I ICNrill ICNrsy I [IC NG|

Table 3: Geometric apparent power summary. Active power P in watts [W] and the rest of terms in volt-amperes [VA].

p(t) = [230sin wt + 23 sin 1.7wt][ — 94.70 cos wt + 81.17 sinwt + 8.07 sin 1.7wt — 0.87 cos 1.7wt]

u(t) i1 (1)
= 18670.6 (sin wt)? + 185.7 (sin 1.7wt)? — 21782.4 sin wt coswt — 20.0 sin 1.7wt cos 1.7wt
N e — N~

Py (—e2)? Py (e14)? CNpy —e21=e12 CNyri.7 e1424=—€12

P CNr(ps)
— 200.1 sinwt cos 1.7wt —2178.2 sin 1.7wt cos wt + 3724.1 sin 1.7wt sin wt
—_——— —_— eSS
CNy €124

—ey —e4

CN,(ni CNy

In the above equation it can be clearly seen how the different terms of the instantaneous power have
an evident translation in the terms of the geometric apparent power M. For the sake of clarity, different
colors have been used to highlight each of these components. For example, the active power P is the sum
of the squared sine terms that arise when multiplying the same harmonic voltage and current order. Other
cross terms are also related by the degraded power C' N4 or the power in quadrature due to the interaction

between harmonics of different order.

4.8. Example 3

The third example is a non-linear load connected to a real voltage source according to the diagram shown

in Figure 5. The problem data are as follows:

15
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Source Load

Figure 5: Non-linear load and real voltage source

u(t) = 230v/2 sinwt + 10v/2 sin 3wt + 5v/2sin 3.5wt
je(t) = 10v/2 sin 3wt 4+ V2 sin 4.5wt
R,=R =10

Li=L;=1H

Following the steps of the previous examples, we proceed to carry out the transformation from the time

domain to the geometric domain, so that

u = —230eq + 10e134 + He1346

Je = 10€134 + e13457

zn = R— hwlLeqs

After that, the principle of superposition and Ohm’s law is applied to solve the different currents present
in the circuit, i.e. 25 and ;. To do this, some operations are performed in the geometric domain taking into

account that 45 = (iz)1 + (ix)3 + {iz)3.5 + (iz)a5,

= [zg) "N w1 + (23] (wi)s + [za.51) ()5 + [2as)]) T w)as

up = (ug)1 + (uwg)s + (w)3s + (Ur)as

16
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For a better understanding of the solving process, a step-by-step approach will be made, although all
these steps can be carried out simultaneously. First, the voltage source will be solved and then the current

source, following the superposition principle.

(i) Voltage source

When only the voltage source is applied, the equivalent circuit is

i

Zs

Z1

| I

Solving the voltage ul(a) and the current il(a) for each frequency component

) » a ta —230e
ul( V= 2 () + zl3<7'l( Na + 21345@1( Nas = (1—eiz) (1—e12)+ (12— e12)
10e134 5€1346

+ (1 —3e12) + (1 - 3.5e12)

(1 — 3612) + (1 — 3612) (1 — 3.5612) + (1 — 3.5612) -

= —115e5 + 5e134 + 2.5€1346

i(a) _ —23062 106134 + 561346 _
! (]. — 612) —+ (1 — 612) (1 — 3612) + (1 — 3612) (1 — 3.5612) + (1 — 3.5612)

= —57.5e1 — 57.5e5 + 0.5e134 — 1.5€234 + 0.19€1346 — 0.66€234¢

(ii) Current source

If we only apply the current source, the circuit to operate on is
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}zz OF

that helps us to solve the voltage ul(b)

1 . 1 .
Ul(b) = —5(1 —3e12)(Je)s — 5(1 —4.5e12)(Jc)as =
1 1
= —5(1 — 3612)108134 — 5(1 — 4.5612)613457 =

= —be134 — 15e234 — 0.5€13457 — 2.25€23457

il(b) = be134 + 0.5e13457

The total load voltage will be

u; = ul(a) + ul(b) = —115e5 — 15e234 + 2.5€1346 — 0.5€13457 — 2.25€23457 (32)

and the total current demanded by the load

i =4\ +4") = —57.5e1 — 57.5€2 + 5.5€134 — 1.5€a34 + 0.19€1346 — 0.66€2346 + 0.5€13457  (33)

Finally, the geometric apparent power is equal to the geometric product between voltage and current
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M = ut = 6635.22 4 3.85e¢
— 6695.52e12 + 1,035e34 — 0.62e57
— 6.60e126 + 219.65e346 + 0.14e567
— 230e1234 — 20.62e1257 + 158.12e3457
+ 165.60e12346 + 0.75€12567

—43.12e123457

The absolute value of the geometric power is

| M| = 9491.22VA

and the power factor

6635
©9491.22

pf (34)

As in the previous examples, geometrical power M can be decomposed into different constituents such as
Mg or My, i.e. components due to parallel current or quadrature with voltage, respectively. It is interesting
to remark that the use of geometric algebra complies with the principle of energy conservation by faithfully
reflecting the power flows involved due to the different spectral components. For example, the active power
P is worth 6635.22 W and is due to the interaction of similar components between voltage and current

harmonics,

P = (Mp1)o+ (Mp3)o+ (Mp3s.5)0 + (Mpas)o

= 6612.5 4 22.5 4 0.475 — 0.25 = 6635.22 W

So, as expected, the total active power is the sum of every harmonic interaction taking into account the
sense of the energy flow. Only the interharmonic 4.5 is flowing in the opposite direction, i.e., from load to

source.
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5. Conclusions

In this paper we present an extension of Castro-Nunez’s theory for the analysis of electric circuits by
means of geometric algebra. Through the use of GA, voltage and current harmonics and interharmonics can
be handled simultaneously, in such a way that it is possible to solve any type of electric circuit, whether
it is linear or non-linear, including harmonics and interharmonics. This technique exceeds by far the use
of complex numbers traditionally employed by electrical engineers. It is also proven how the geometrical
product of voltage and current leads to several power constituents that make it possible to verify the principle
of energy conservation, a fact that is not possible with the traditional concepts of apparent and reactive
power. The examples proposed and solved validate the use of GA for dealing with the interaction of power
terms coming from cross products of harmonics, interharmonics and fundamental component, resulting in
new components such as the degraded power C Ny and the quadrature power CN,.. This contribution opens

a fundamentally new avenue for the study of power systems with non-linear loads and non-sinusoidal sources.
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