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Abstract: Tunnel fires are generally detected using various sensors, including measuring 
temperature, CO concentration, and smoke concentration. To address the ambiguity and 
inconsistency in multi-sensor data, this paper proposes a tunnel fire detection method based on an 
improved Dempster-Shafer (DS) evidence theory for multi-sensor data fusion. To solve the problem 
of evidence conflict in DS theory, a two-level multi-sensor data fusion framework is adopted. The 
first level of fusion involves feature fusion of the same type of sensor data, removing ambiguous 
data to obtain characteristic data, and calculating the basic probability assignment (BPA) function 
through the feature interval. The second level fusion derives basic probability numbers from the 
BPA, calculates the degree of evidence conflict, normalizes to obtain the relative conflict degree, and 
optimizes the BPA using the trust coefficient. The classical DS evidence theory is then used to 
integrate and obtain the probability of tunnel fire occurrence. Different heat release rates, tunnel 
wind speeds, and fire locations are set, forming four fire scenarios. Sensor monitoring data under 
each simulation condition are extracted and fused using the improved DS evidence theory. The 
results show that the proposed improved DS evidence theory method detects the probability of fire 
occurrence in the four scenarios as 67.5%, 71.0%, 82.8%, and 83.5%, respectively, and identifies fire 
occurrence in approximately 2.4 seconds, an improvement of 64.7% to 70% over traditional methods. 
This demonstrates the feasibility and superiority of the proposed method, highlighting its 
significant importance in ensuring personnel safety. 

Keywords: tunnel; fire detection; multi-sensor data fusion; DS evidence theory; PyroSim 
 

1. Introduction 

Multi-sensors play a crucial role in the detection of tunnel fires. Due to the unique environment 
of tunnels, the data collected by these sensors may contain ambiguous and conflicting information, 
leading to issues such as false alarms and missed detections of fires 1. Therefore, studying how to 
improve the accuracy of tunnel fire detection and the timeliness of fire discovery is of significant 
practical importance for tunnel safety. 

Currently, common data fusion algorithms include artificial neural networks 2, Bayesian 
methods 3, Kalman filtering 4, and Dempster-Shafer (DS) evidence theory 5. Bayesian methods and 
DS evidence theory are often used to address multi-sensor data fusion issues 6. However, the 
Bayesian method's reliance on prior estimates can hinder its ability to accurately reflect changes in 
tunnel conditions, making it unsuitable for multi-sensor data fusion in tunnel fire scenarios 7. On the 
other hand, DS evidence theory is well-suited for situations where prior probabilities are unknown, 
allowing various sensor monitoring data to be integrated as evidence sources 8. Despite its 
advantages in handling uncertainty, DS evidence theory can produce paradoxical results when there 
is a high degree of evidence conflict. Solutions to the evidence conflict problem in DS evidence theory 
can be categorized into two types: altering fusion rules 9 and optimizing the BPA 10. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
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In terms of altering fusion rules, Xiao et al. 11 proposed a weighted combination method for 
conflict evidence in multi-sensor data fusion. This method adjusts the evidence weights by modifying 
the cosine similarity and confidence entropy to address the issue of highly conflicting evidence 
fusion. However, it essentially preprocesses the evidence without considering the characteristics of 
the evidence itself. Wang et al. 12 introduced an adaptive evidence fusion method based on power 
probability distance, but it uses a single evidence relation to represent and manage conflicts and 
uncertainties in the Internet of Things environment, failing to effectively address the impact of 
unreliable evidence sources on the fusion results. Hamda et al. 13 proposed an improved evidence 
combination method for representing conflict and uncertainty in data fusion to improve the accuracy 
of decision-making, mainly relying on the Hellinger distance. Murphy 14 simply averaged the mass 
functions and then applied the classical DS combination rule, without considering the correlation 
between pieces of evidence, and assigned the same weight to all evidence sources. Tang et al. 15 
proposed a new method for uncertain information fusion based on a new evidence confidence 
coefficient, using the evidence distance in DS evidence theory to handle conflict and uncertain 
information fusion, but it introduces a single confidence function to determine the weights between 
evidence. Hu et al. 26 proposed a new confidence entropy method based on internal cross-
information of evidence, which adjusts the comprehensive credibility of evidence and optimizes the 
evidence fusion process of the DS combination rule. 

In terms of optimizing the BPA, Shahpari et al. 16 proposed a pixel-based transformation 
uncertainty measure based on BPA, but it has been proven in 17 that this measure does not satisfy 
certain properties and leads to paradoxes. Deng et al. 18 below introduced an improved DS evidence 
theory framework based on the Hellinger distance within uncertain intervals, which is more sensitive 
to changes in evidence. Xiao et al. 19 suggested a multi-sensor data fusion method based on evidence 
and information entropy confidence measure, using information entropy to assess the characteristics 
of the evidence itself. Qiao et al. 20 proposed a multi-sensor data fusion method based on evidence 
theory that assigns weights according to the degree of data deviation, demonstrating high fusion 
accuracy. Xiao 21 introduced the concept of evidence credibility measure and designed a hybrid 
multi-sensor data fusion method. Song et al. 22 presented a time evidence adaptive fusion method 
based on a negotiation strategy, constructing evidence set through cumulative time fusion, using 
probability distance to evaluate conflicts, and adapting the fusion of time evidence according to the 
degree of conflict. Zhao et al. 23 proposed a new distribution distance measure method to gauge the 
degree of conflict between pieces of evidence, introducing a modified information amount calculation 
method to evaluate the role of evidence and adjust evidence credibility. Zhou et al. 24 combined 
indirect conflict measurement indicators with evidence information measurement indicators for data 
fusion, addressing issues of high conflict and poor robustness. Wang et al. 25 developed a multi-
attribute fusion algorithm based on fuzzy clustering and improved evidence theory, which uses 
fuzzy clustering for group measurement and then applies improved evidence theory for advanced 
fusion. Although these methods incorporate relationships between pieces of evidence and the 
characteristics of the evidence itself, they fuse the probabilities of target attributes collected by sensors 
for target recognition and fault diagnosis, failing to integrate the measurement results of the sensors. 
Moreover, using information entropy alone cannot comprehensively evaluate the characteristics of 
the evidence itself. 

To more accurately measure the relationship between evidence and its intrinsic characteristics 
and to enhance the accuracy of data fusion, this paper proposes a tunnel fire detection method based 
on improved DS evidence theory for multi-sensor data fusion. To address the issue of DS evidence 
conflict, a two-level multi-sensor data fusion framework is employed. In the first level of fusion, 
feature fusion of the same type of sensor data is performed to eliminate ambiguous data and calculate 
the BPA. The second level of fusion addresses conflict issues by optimizing the BPA and then 
applying classical DS evidence theory for data fusion to obtain the probability of fire occurrence. This 
method aims to quickly and accurately detect tunnel fires under various fire conditions. 
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2. The Proposed Method 

This section describes the relevant knowledge of DS evidence theory and explains the conflict 
issues in multi-sensor data fusion for tunnel fires. Finally, it proposes methods and steps for 
improving DS evidence theory. 

2.1. Dempster-Shafer Evidence Theory 

In DS evidence theory, the frame of discernment { }1= , , , ,i Nθ θ θ θΘ  2，  consists of a finite 

set of mutually exclusive elements. 2Θ  denoted as the power set of the discursive framework, which 
is composed of 2N  elements, is represented as follows: 

( )
( )

( )

0
1

0
A

m
m A

m A
⊆Θ


∅ =

 =

 ≥



 

(1)

m is referred to as the Basic Probability Assignment (BPA) function, if ( ) 0m A > , {A} is 

referred to as a proposition, and m(A) denotes the degree of belief assigned to the proposition {A}. 

In the frame of discernment Θ , A∀ ⊆ Θ , If the function [ ]: 2 0,1Bel Θ →
 satisfies: 

( ) ( )
B A

Bel A m B
⊆

=  (2)

is said to Bel(A) as the belief function of proposition {A}, which represents the likelihood that 
proposition {A} is true. 

In the frame of discernment Θ , A∀ ⊆ Θ , If the function [ ]: 2 0,1Bel Θ →
 satisfies: 

( ) ( )
B A

Pl A m B
∩ ≠∅

=  (3)

is said to Pl(A) as the plausibility function of proposition {A}, which represents the likelihood that 
proposition {A} is not false. 

Defined Pl(A) and Bel(A) as the upper and lower bounds of the confidence in proposition {A}. 
The interval [Bel(A), Pl(A)] represents the degree of uncertainty of the proposition, with the 
relationship between Bel(A) and Pl(A) illustrated in Figure 1. 

0 1

Support Interval Skeptical Interval Rejection Interval

Plausible Interval

Bel(X) Pl(X)

 
Figure 1. DS evidence theory confidence interval. 

The combination rule of DS evidence theory involves merging multiple sources of evidence. 
Given two pieces of evidence with basic BPA m1 and m2 in the frame of discernment, the DS evidence 
theory fusion formula 27 for proposition {A} is: 
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where, 

( ) ( ), , 1 2X Y X Y Uk m X m Y∩ =Φ ∀ ⊆= ⋅
 

(5)

when k=1, DS evidence theory is unable to fuse the evidence. 

( ) ( ) ( )21 3
( ) Φ,

1
X Y Z A

m X m Y m Z
m A A U

k
∩ ∩ =


= ≠
−




 
(6)

when there are three or more pieces of evidence, the combination rule of DS evidence theory is as 
follows: 

( ) ( ) ( )1 3
Φ

2
X Y Z

k m X m Y m Z
∩ ∩ =

= 



 

(7)

In the frame of discernment Θ , let A, B, and C represent the data from temperature sensors, 
CO sensors, and smoke sensors monitoring tunnel fires, respectively: 

1 1 1 1

2 2 2 2

3 3 3 3

: ( ) 0.75, ( ) 0.15, ( ) 0.1
: ( ) 0, ( ) 0.3, ( ) 0.7
: ( ) 0.8, ( ) 0.15, ( ) 0.05

m m A m B m C
m m A m B m C
m m A m B m C

= = =
= = =
= = =

 

Using the DS evidence theory combination rule, k was calculated to be 0.98975. The data fusion 
results m(A), m(B), and m(C) are shown in Table 1. 

Table 1. DS theory of evidence data fusion results.

 
Actual tunnel 

conditions 

Multi-sensor fire BPA 
Data fusion fire probability 

decision 
Temperature 

m1 CO m2 
Soot concentration 

m3 Data fusion results 

Fire conditions A 0.75 0 0.8 0 
Fire warning 
conditions B 0.15 0.3 0.15 0.6585 

Normal operating 
conditions C 

0.1 0.7 0.05 0.3415 

Relying solely on individual sensor data may result in temperature and smoke sensors 
indicating a higher likelihood of fire, while the CO sensor may indicate a normal state, leading to a 
paradox in data fusion based on Dempster-Shafer (DS) evidence theory. According to the data in 
Table 1, under fire conditions, the value of m2(CO) is 0, which results in a post-fusion judgment of 0 
for fire conditions. This causes a conflict in the DS evidence theory's judgment. 

2.2. The Method for Improving D-S Evidence Theory 

In the processing of data from similar sensors, the feature-level data fusion method can 
effectively eliminate ambiguous data and enhance the monitoring accuracy of environmental 
characteristics by similar sensors. For data from multiple types of sensors, decision-level fusion 
enables the complementary integration of multi-source data obtained from multiple sensors, thereby 
improving the accuracy of the monitoring results. 
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In tunnel fire detection, the raw data from temperature, CO concentration, and smoke 
concentration sensors are first subjected to feature extraction and correlation analysis of similar data. 
These features are then fused to form a comprehensive decision based on multi-source monitoring 
data, including temperature, CO concentration, and smoke concentration. On this basis, a decision-
level fusion of multi-source data (temperature, CO concentration, smoke concentration) is performed 
to obtain the BPA of the evidence theory. The data fusion algorithm is then used to integrate these 
decision results, yielding the final fire probability. The proposed tunnel multi-sensor data fusion 
algorithm based on the improved DS evidence theory is illustrated in Figure 2. 

Temperature 
sensor 1

...

Temperature 
sensor N

European 
distance 

data 
screening

Feature 
extraction 1

...

Feature 
extraction N

CO sensor 1

CO sensor N

Feature 
extraction 1

Feature 
extraction N

Primary Fusion of Sensor Data of the Same Type

Soot concentration 
sensor 1

Soot concentration 
sensor N

Feature 
extraction 1

Feature 
extraction N

European 
distance 

data 
screening
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distance 

data 
screening

Weighted 
average 

data 
fusion

Weighted 
average 

data 
fusion

Weighted 
average 

data 
fusion

Secondary Fusion of Multi-Type Sensor Data

Improved DS Theory of Evidence

Probability of fire in tunnels

Calculate the number of basic probabilities

... ...

... ...

Basic 
probability
assignment 

function 
acquisition 
based on 
feature 

intervals

Constructing the evidence distance Matrix

Calculating the degree of conflict of evidence

Normalisation of conflicts of evidence

Calculation of the confidence factor

Optimising the basic probability assignment 

DS theory of evidence data fusion

 

Figure 2. Multi-sensor data fusion algorithm based on improved DS evidence theory. 

Step 1: Primary fusion of data from sensors of the same type to obtain BPA. 
The key aspect of data fusion using Dempster-Shafer (DS) evidence theory is obtaining the BPA. 

Following the primary fusion process for similar sensor data, multi-sensor monitoring data are first 
collected, and invalid data are removed to obtain feature data. Then, a primary fusion of similar 
sensor data is performed. Finally, the BPA is preliminarily calculated based on the feature intervals. 

Step 2: Secondary fusion of data from multiple types of sensors to obtain tunnel condition 
information. 

The improved DS evidence theory addresses evidence conflict issues and yields the final fusion 
results of multi-sensor data. According to the secondary fusion process for multi-sensor data, the 
basic probability numbers are first derived from the BPA. Then, an evidence distance matrix is 
constructed to calculate the degree of conflict between pieces of evidence, and normalization is 
performed to obtain the relative conflict degree. Subsequently, the trust coefficients between pieces 
of evidence are calculated to further optimize the BPA. Finally, classical DS evidence theory is used 
to fuse the evidence and determine the tunnel conditions. 

2.2.1. Primary Fusion of Data from Sensors of the Same Type 

The process for obtaining the improved DS evidence theory BPA function for the fusion of data 
from sensors of the same type involves the following steps: 

(1) Similar data screening based on Euclidean distance 
To exclude anomalous data when calculating the BPA, this paper proposes a similar data 

screening algorithm based on Euclidean distance. The primary method involves measuring the 
similarity between data points by calculating the Euclidean distance between similar data. A smaller 
distance indicates a higher degree of similarity and greater data authenticity, while a larger distance 
indicates a lower degree of similarity and lesser data authenticity. Therefore, by calculating the 
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pairwise distances between all similar data points and setting an appropriate threshold, anomalies 
can be identified and excluded 29. 

Let the number of sensors be n, and the distance between the collected like data
{ }| 1, 2,...,i is s i n= = , The distance ( )id s  28 between is  and other similar data excluding is  

can be expressed as: 

( )( ) i md i d s dΔ = −  (8)

( ) ( )
1
22

1

1 , , 1,2, ,
n

i i j
j

d s s s i j i n
n =

 =  − ≠ =  


 

(9)

The distance yd  of anomalous data is greater than the distance zd  of normal data. Therefore, 

the difference ( )d iΔ  between the distances of anomalous and normal data can be used to identify 

anomalous data. In the equation, md  represents the median of ( )id s . 

Eliminating the magnitude of ( )d iΔ  by the following equation. 

( ) ( )
i

m

d idw s
s

Δ=
 

(10)

where ms  represents the median of the set of sensor data of the same type is . 

when 
( ) 0.02idw s ≥

, the sensor is considered to have a large error and should be rejected. 
(2) Primary fusion of homogeneous sensor data using a weighted averaging method 
If the weights are the same between sensors of the same type, then it is known that 

1

1 n
ii

x x
n =

= 
 

(11)

We defined x  as the fused value of data from the same type of sensors and ( )L x  as the 

distance from x  to other sensors. When ( )L x  reached its minimum value, x  was closest to the 
local multi-sensor monitoring result. 

2

1
( ) ( )n

ii
L x x x

=
−=  

(12)

derived that. 

2 2
1 1

( ) 2n n
i ii i

L x xxnx x
= =

= + −   
(13)

derivation on the left and right sides yields that 

1

( ) 2 2 n
ii

xdL n x
d
x
x =

= − 
 

(14)

when 
1

1 n
ii

x x
n =

= 
 , The minimum value of ( )L x  is obtained, which corresponds to the average 

of the data from all sensors. 
(3) Acquisition of BPA functions based on feature intervals 
To monitor tunnel fire conditions in real-time, it is essential to collect three key types of data: 

carbon monoxide (CO) concentration, smoke concentration, and temperature. The identification 
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framework is 1 2 1{ , , ..., }n nA A A A−Θ = , categorizes the tunnel fire status into three levels: {Normal 
Conditions, Warning Conditions, and Fire Conditions}. 

Interval T represents the range within which the identification framework Θ  is situated. This 

interval divides the n objects within the identification framework into n characteristic intervals iT , 
1,2, ,i n=  , which describe the range [ , ]iL i RT T  where the identification object iA  is located. The 

midpoint iMT  of each interval is set as the characteristic value for that feature interval. 

2
iL iR

iM
T TT −= 1,2, ,i n=   

(15)

where i LT  represents the left boundary of the characteristic interval iT , while i RT  represents the 

right boundary of the characteristic interval iT . 
Let ( )il j  represent the distance between the sensor's measured value ( )a j  and each 

characteristic value: 

( ) ( )i iMl j a j T= − 1,2, ,i n=   
(16)

Dividing ( )il j  by the length of each characteristic interval yields the dimensionless distance 

( ) ilw j  between the sensor's measured value and each interval's characteristic value: 

1( ) ( )i i
iL iR

lw j l j
T T

=
− 1,2, ,i n=   

(17)

Taking the reciprocal of ( ) ilw j  and normalizing it yields the probability assignment function 
( )mass j  and the basic probability number ( ) imass j  for the measured value ( )a j . 

0

0
1

1 / ( ( ) )( )
[1 / ( ( ) )]

i
i n

k
k

lw j Cmass j
lw j C

=

+=
+ 1,2, ,i n=   

(18)

where 0C  is a constant. 
According to equation (18), the closer the sensor's measured value is to the characteristic value 

iMT  of the interval, the larger ( ) imass j  becomes, indicating that ( )a j  is closer to the 

identification object iA . However, during a tunnel fire, some sensor measurements may exceed the 

right boundary nRT  of the characteristic interval nT , causing ( ) ilw j  to become too large and, 

consequently, ( ) imass j  to decrease, which moves ( )a j  further away from the identification 

object iA . Therefore, when calculating ( ) imass j , if ( )a j  is too large, it should be replaced with 
'( )a j . Based on the characteristic interval iT , this adjustment ensures that ( )a j  remains close to 

the corresponding characteristic value iMT . 

'
1( ) i Ma j T C= +  (19)

where 1C  is a constant. 

2.2.2. Secondary Fusion of Multi-Type Sensor Data 
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The improved DS evidence theory for multi-type sensor data fusion is applied to a secondary 
fusion process. 

First, let the identification framework be 1 2 3{ , , , ..., }nA A A AΘ = , where nA  represents the 

n-Th condition of tunnel fire, and 1 2 3{ , , , ..., }mE E E E E=  denotes the evidence set, with mE  

being the m-Th piece of evidence related to the tunnel fire. The definition of the distance ijd  between 

evidence jmass
 and imass  is given by: 

1 <E ,E >e , 1,2, ,i j
ijd i j m−= = 

 
(20)

where 

( ) ( )

( ) ( )
1

2 2

1 1

<E ,E >

m

i s j s
s

m m

i s j s
s

i j

s

mass A mass A

mass A mass A

=

= =


=

 
 

(21)

As ijd  approaches 1, it indicates a higher degree of mutual support between the pieces of 

evidence. Conversely, as ijd  approaches e, it signifies a higher level of conflict between the pieces 

of evidence. Based on this, an evidence distance matrix D can be constructed: 

12 1

21 2

1 2

1
1

m

m

m m mm

d d
d d

D

d d d

 
 
 =
 
 
 




   


 

(22)

Defined ( )icon E  as the level of conflict between evidence. 

( )
1,

m

i ij
i i j

con E d
= ≠

= 
 

(23)

Normalize the evidence conflict degree to obtain the relative conflict degree of the evidence 
( )iin E  30. 

( ) ( )
( )

1

i
m

j
j

i

con E
in E

con E
=

=


 

(24)

Let ( )iEλ  be the trust coefficient of the evidence, representing the importance of evidence iE  

and its influence on the fusion result. The definition of ( )iEλ  is: 

 
(25)

Let im  be the original probability assignment function. The optimized probability assignment 

function *
imass  is: 

( )* ( ) ( )i i jij Emass A mass Aλ ⋅=  (26)

( )* ( ) 1 iim ss Ea X λ= −  (27)

where 
* ( )imass X  denotes uncertainty. 

( ) ( ) ( )1 iin E
i iE in E eλ − = − 
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In summary, the specific steps for improving the DS evidence theory for the secondary fusion of 
multi-sensor data in tunnels are as follows: 

Firstly, an evidence distance matrix D is constructed to calculate the degree of conflict between 
the evidence and normalized to obtain the relative degree of conflict. 

Secondly, calculates the trust coefficients between the evidence to optimize the BPA. 
Finally, the evidence is fused using the classical DS theory of evidence. 

3. Numerical Examples and Simulation Verification 

This section evaluates and simulates the proposed method based on the improved DS evidence 
theory to verify its feasibility and effectiveness.3.1Improvement of DS theory of Evidence. 

3.1. Improved DS Evidence Theory 

To validate the effectiveness of the proposed improvement, sensor monitoring data from Section 
2.1 are used to compare the proposed improved algorithm with the methods developed by Dempster-
Shafer 31, Yanger 32, Sun 33, and Murphy 14. The fusion results are shown in Table 2. and the 
comparison of the fusion results is illustrated in Figure 3. 

Table 2. Data fusion results of five algorithms. 

 Fire conditions 
m(A) 

Fire warning 
conditions m(B) 

Normal operating 
conditions m(C) 

Uncertainty m(X) 

DS 0 0.65850 0.34150  
Yager 0 0.00675 0.01050 0.98275 
Sun 0.24746 0.10254 0.13921 0.51079 

Murphy 0.34536 0.04751 0.25606 0.35107 
This paper 0.50247 0.13253 0.16821 0.19679 

 

Figure 3. Comparison of data fusion results for five algorithms. 

From Table 3. it can be observed that under fire condition A, when m1 = 0.8, m2 = 0, and m3 = 0.7, 
the BPA m(A) for Yanger's method is 0, which results in a paradox. In contrast, the BPA for fire 
conditions in this paper is 0.50247, indicating the detection of a fire. When dealing with different 
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types of conflicting evidence, classical DS and Yager's fusion methods lead to contradictions with the 
actual facts. Although the method proposed by Sun et al. points to the correct result, it exhibits a 
higher degree of uncertainty. Therefore, traditional DS fusion rules may fail or mismatch the actual 
tunnel fire conditions when confronted with conflicting evidence. This paper addresses the problem 
of evidence conflict by reducing the proportion of conflicting evidence, gradually decreasing the 
number of conflicting evidence, and increasing the amount of valid evidence, thus minimizing the 
uncertainty interval and enhancing reliability. The improved DS evidence theory fusion algorithm 
proposed in this paper provides more accurate results in handling evidence and conflicting evidence, 
demonstrating the rationality and effectiveness of the proposed method. 

3.2. The Proposed Holistic Approach 

To further demonstrate the feasibility and effectiveness of the data fusion method, this 
subsection applies the proposed improved DS evidence theory data fusion method to tunnel fire 
detection. 

In tunnel fire detection, temperature sensors, CO sensors, and smoke sensors are commonly 
used to monitor fires [34]. The PyroSim software, based on Fire Dynamics Simulator (FDS) and 
Computational Fluid Dynamics [35], can simulate large-scale slow-moving vortices and accurately 
obtain critical parameters such as fire heat release, fire smoke, CO concentration, and temperature. 

The fire simulation process using PyroSim is illustrated in Figure 4. First, a comprehensive 
tunnel geometric model is created, including elements such as lining, vehicles, and ventilation 
systems, to accurately describe the internal structure of the tunnel. Next, multiple sensors, including 
temperature, CO, and smoke sensors, are installed to enable real-time monitoring of the fire scene. 
The heat release rate is determined based on the actual fire conditions. Subsequently, a tunnel fire 
simulation model is established, and simulation parameters such as temperature and velocity are set 
to realistically simulate the fire situation. Finally, FDS is run to perform the fire simulation and obtain 
multi-sensor monitoring data. 

Simulation Modelling of 
Tunnel Fires

Setting the tunnel 
model parameters

Installation of fire 
sensors

Modelling fire

Setting up fire 
conditions

Simulation of tunnel 
fire under four fire 

conditions

Obtaining multi-sensor 
tunnel fire monitoring 

data

Fire Simulation

Data fusion based on 
improved DS theory of 

evidence

Probability of fire in 
tunnels

Data Fusion

 
Figure 4. Tunnel fire simulation process. 

3.2.1. Simulation Model 

(1) Establishing the tunnel geometric model 
The tunnel geometric model is constructed with the following specifications: a height of 8.5 

meters, a width of 14.5 meters, and a length of 600 meters. The tunnel is lined with 31 concrete walls 
forming the lining and surrounding rock structure. The wall material has a density of 2280.0 kg/m3, 
a specific heat capacity of 1.04 kJ/(kg·K), and a thermal conductivity of 1.8 W/(m·K). In consideration 
of practical scenarios, the dimensions of the vehicles are set as follows: width 2.4 meters, height 2.5 
meters, and length 7 meters. The fire materials carried by large trucks are wood and plastic. In the 
tunnel model, a blue square on the top represents the jet fan, which has an outlet area of 1.21 m² and 
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a wind speed of 27.9 m/s. These parameters are used to establish the tunnel geometric model, with 
the specific structure illustrated in Figure 5. 

2.4m

2.5m

1.1m

14.5m

8.5m

 
Figure 5. Tunnel geometric model. 

(2) Installation of fire monitoring equipment 
A 3x3 sensor matrix is arranged on the tunnel ceiling, with each matrix containing 3 temperature 

sensors, 3 CO sensors, and 3 smoke sensors. The distance between adjacent sensor matrices is 10 
meters. Additionally, pairs of smoke sensors are installed on the right side of the tunnel at heights of 
2 meters and 3 meters from the ground, with a distance of 100 meters between adjacent pairs. The 
specific arrangement of the sensors is illustrated in Figure 6. 

S1

Tunnel fans
Vehicle flow sensor

Wind speed sensor
Fire monitoring node

Flue gas sensor

Routing node

v Convergence node

S3 S5S4 S8S6 S7S2

S1 S3 S5S4 S8S6 S7S2

 
Figure 6. Tunnel fire monitoring sensor layout. 

(3) Establishing the fire model 
The tunnel accommodates various vehicle types, including large trucks and small cars, so the 

corresponding heat release rates are set to 20 MW for large trucks and 5 MW for small cars. During a 
fire, higher wind speeds result in faster smoke spread and greater disruption to the smoke layer, 
increasing danger. Based on traffic volume survey data, the simulation wind speed is set to 2.5 m/s, 
with 3 m/s and zero wind speed used as control conditions. The tunnel is set with a pressure of 94.5 
kPa, an initial temperature of 20°C, an initial CO concentration of 42 cm3/m3, and an initial smoke 
concentration K of 0.004 m-1. 

When a fire occurs at the midpoint of the tunnel, the distance for personnel evacuation to the 
exits is maximized, which is unfavorable for evacuation; simultaneously, the tunnel fan is located 
farthest from the fire source, making smoke control less effective. In Figure 7. ignition point 1 is 
located at the midpoint of the tunnel, representing the main fire condition, while ignition point 2 is 
near the entrance fan, serving as the control condition. The farther the sensor is from the ignition 
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point, the more challenging it is to monitor the tunnel fire. Therefore, the distance between the 
ignition point and the downstream sensor matrix is set to 7.5 meters. 

Jet fan

Tunnel entrance

Tunnel exit

direction of travel

Tunnel midpoint Z fire point 1Tunnel entrance 200m-EN fire point 2

 

Figure 7. Tunnel ignition point locations. 

Based on the established fire conditions, with other fire conditions remaining consistent, four 
types of tunnel fire conditions are set as shown in Table 3. 

Table 3. Tunnel fire conditions. 

Condition Number Ignition Point L Heat Release Rate (MW) Wind Speed (m/s) 
LZ-R5-S2.5 Tunnel Midpoint-Z 5 2.5 
LZ-R20-S0 Tunnel Midpoint-Z 20 0 

LZ-R20-S2.5 Tunnel Midpoint-Z 20 2.5 
LEN-R20-S3 Tunnel Entrance 200m-EN 20 3 

3.2.2. Tunnel Fire Simulation 

Based on the tunnel fire conditions set in Section 3.2.1, simulations are conducted in PyroSim. 
Using the condition LZ-R5-S2.5 as an example, the multi-sensor monitoring data for tunnel fires are 
obtained. The monitoring data for temperature sensors, smoke sensors, and CO sensors in the fire 
monitoring nodes are shown in Table 4. 

Table 4. Multi-sensor monitoring data for tunnel fire condition LM-R5-S2.5. 

Time(s） 
Temperature（℃） Soot concentration（m-1） CO concentration（cm3/m3）

1 2 3 Gas 1 Gas 2 Gas 3 CO_1 CO_2 CO_3 
0.6 20 20 20 0.0040 0.0040 0.0040 42 42 42 
1.2 20.01 20.01 20.01 0.0040 0.0040 0.0040 42 42 42 
1.8 20.04 20.04 20.04 0.0040 0.0040 0.0040 42 42 42 
2.4 20.23 20.23 20.23 0.0040 0.0040 0.0040 42 42 42 
3 50 20.55 20.55 0.0040 0.0040 0.0040 42 42 42 

3.6 28.95 28.99 28.9 0.0070 0.0070 0.0070 51 51 51 
4.2 46.22 46.7 46.22 0.0707 0.0706 0.0708 48 48 48 
4.8 54.75 55.73 54.75 0.0597 0.0595 0.0599 43 43 43 
5.4 62.03 63.39 62.03 0.0588 0.0587 0.0589 44 44 44 
6 67.59 68.72 67.59 0.0591 0.0591 0.0591 44 44 44 

6.6 66.65 67.46 66.65 0.0624 0.0624 0.0625 43 43 43 
7.2 72.59 73.28 72.59 0.0394 0.0396 0.0392 44 44 44 
7.8 78.1 78.77 78.1 0.0569  0.0587  0.0551  43  43  43  
8.4 82.01 82.82 75 0.0604  0.0598  0.0610  42  42  42  
9 82.05 82.7 82.05 0.0662  0.0655  0.0669  42  42  42  

9.6 79.91 80.46 79.91 0.0719  0.0724  0.0715  42  42  42  
10.2 79.08 79.77 79.08 0.0525  0.0539  0.0512  43  42  44  
10.8 75.8 77.15 75.8 0.0536  0.0518  0.0554  43  42  43  
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3.2.3. Tunnel Fire Simulation Data Fusion 

Based on the "Highway Tunnel Ventilation Design Specifications" and relevant design standards 
for tunnel engineering, the characteristic intervals for temperature, smoke concentration, and CO 
concentration are categorized as shown in Table 5. 

Table 5. Feature interval classification. 

State Space Normal conditions Fire warning Conditions Fire conditions 
Temperature range（℃） 0~40 40~55 55~100 

Soot concentration range（m-1） 0.0000~0.0075 0.0075~0.0120 0.0120~0.0750 
CO concentration 

interval（cm3/m3） 0.00~107.50 107.50~150.00 150.00~350.00 

The primary fusion data of sensor readings under four different operating conditions, combined 
with Table 5, were used to calculate the probability assignment functions as shown in Table 6, 
according to Equations (18) and (19). 

Table 6. Probability assignment functions for operating condition LM-R5-S2.5. 

Time（s） 
Temperature mass1 Soot concentration mass2 CO concentration mass3 
A B C A B C A B C 

0.6 0.60 0.17 0.24 0.91 0.03 0.06 0.85 0.05 0.10 
1.2 0.60 0.17 0.24 0.91 0.03 0.06 0.85 0.05 0.10 
1.8 0.60 0.17 0.24 0.91 0.03 0.06 0.85 0.05 0.10 
2.4 0.60 0.16 0.23 0.91 0.03 0.06 0.85 0.05 0.10 
3 0.61 0.16 0.23 0.91 0.03 0.06 0.85 0.05 0.10 

3.6 0.90 0.05 0.05 0.42 0.29 0.29 0.95 0.02 0.03 
4.2 0.08 0.82 0.10 0.05 0.03 0.92 0.91 0.03 0.06 
4.8 0.17 0.41 0.42 0.04 0.02 0.94 0.87 0.05 0.09 
5.4 0.14 0.22 0.64 0.04 0.02 0.94 0.87 0.04 0.08 
6 0.09 0.13 0.78 0.04 0.02 0.94 0.87 0.04 0.09 

6.6 0.10 0.14 0.76 0.04 0.03 0.93 0.86 0.05 0.09 
7.2 0.05 0.06 0.89 0.02 0.01 0.97 0.87 0.04 0.08 
7.8 0.01 0.01 0.98 0.03 0.02 0.95 0.86 0.05 0.09 
8.4 0.04 0.05 0.91 0.04 0.03 0.94 0.85 0.05 0.10 
9 0.04 0.05 0.91 0.04 0.03 0.93 0.85 0.05 0.10 

9.6 0.03 0.03 0.95 0.05 0.03 0.92 0.85 0.05 0.10 
10.2 0.02 0.02 0.96 0.02 0.02 0.96 0.87 0.05 0.09 
10.8 0.02 0.02 0.97 0.03 0.02 0.96 0.86 0.05 0.09 

The probability assignment function is optimized using Equations (26) and (27), and the 
probability assignment function for unknown conditions is calculated. Combining the optimized 
probability assignment function with Equation (6), the probabilities of normal operation, fire 
warning, fire state, and unknown state under various tunnel conditions are determined, as shown in 
Table 7. 

Table 7. Tunnel states computed using improved DS evidence theory for fire condition LM-R5-S2.5. 

Time（s） Normal conditions Fire warning conditions Fire conditions Uncertainty 
0.6 71.30% 4.20% 7.00% 17.50% 
1.2 71.30% 4.20% 7.00% 17.50% 
1.8 71.30% 4.20% 7.00% 17.50% 
2.4 71.50% 4.00% 6.90% 17.60% 
3 71.60% 4.00% 6.80% 17.60% 
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3.6 69.90% 5.80% 6.10% 18.20% 
4.2 25.90% 21.30% 27.90% 24.90% 
4.8 22.80% 12.20% 42.90% 22.10% 
5.4 19.00% 6.60% 53.70% 20.70% 
6 16.00% 4.10% 60.00% 19.90% 

6.6 16.30% 4.80% 58.80% 20.10% 
7.2 13.20% 2.10% 65.30% 19.40% 
7.8 11.70% 1.30% 67.90% 19.10% 
8.4 13.20% 2.40% 65.00% 19.40% 
9 13.30% 2.40% 64.80% 19.50% 

9.6 13.20% 2.00% 65.60% 19.20% 
10.2 11.90% 1.50% 67.50% 19.10% 
10.8 12.00% 1.50% 67.50% 19.00% 

For the different conditions mentioned above, the simulation results using the same method are 
shown in Figure 8. 

  
(a) (b) 

  
(c) (d) 

Figure 8. Probability curves of tunnel fire occurrence under different conditions. （a）LZ-R5-S2.5.（
b）LZ-R20-S0. （c）LZ-R20-S2.5. （d）LEN-R20-S3. 

The fire occurrence probabilities under various conditions are analyzed, and the resulting curves 
for the four types of fire conditions are shown in Figure 9. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 August 2024                   doi:10.20944/preprints202408.0573.v1

https://doi.org/10.20944/preprints202408.0573.v1


 15 

 

 
Figure 9. Comparison of tunnel fire occurrence probability curves under four conditions. 

Based on the multi-sensor monitoring data and fusion results for tunnel fires under different 
conditions, the following conclusions can be drawn: 

A higher heat release rate and wind speed make it easier to detect tunnel fires. The fire condition 
LZ-R5-S2.5, with a lower heat release rate, presents the greatest challenge for fire detection. The 
improved DS evidence theory multi-sensor data fusion algorithm reached a conclusion of fire 
occurrence at 7.2 seconds based on changes in tunnel temperature and smoke concentration. Thus, 
the improved DS evidence theory multi-sensor data fusion algorithm demonstrates good fusion 
performance under zero wind speed and low heat release rate conditions. 

The probabilities of tunnel fire occurrence under the four conditions are 67.5%, 82.8%, 83.5%, 
and 71%, respectively. This indicates that the proposed method has a high monitoring accuracy. 

The comparison results of the improved DS evidence theory multi-sensor fusion algorithm with 
those of Sun and the original methods are shown in Figure 10. 

 
Figure 10. Comparison of fire state prediction curves. 

Figure 10. presents the fire occurrence probabilities for various methods. Compared to other 
methods, the approach proposed in this paper improves fire detection accuracy by 5% to 10.2%, 
reduces the time required to identify a fire to approximately 2.4 seconds (64.7% to 70% improvement 
over other methods), and simultaneously enhances both the timeliness and accuracy of monitoring. 
This demonstrates its feasibility and effectiveness in multi-sensor data fusion. 

4. Conclusion 

This paper proposes a multi-sensor data fusion algorithm based on improved DS evidence 
theory, which effectively monitors the environment and fire conditions within a tunnel, significantly 
enhancing the accuracy and efficiency of monitoring. 
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Propose a multi-sensor data fusion algorithm based on an improved DS evidence theory, 
employing a two-level fusion architecture. Initially, the data collected by different sensors is screened 
to eliminate inaccurate data. Subsequently, primary fusion is performed on data from sensors of the 
same type. Next, BPA functions for fire, fire warning, and normal operating conditions are extracted 
from the results of the primary fusion. Evidence conflicts are treated as a manifestation of uncertainty, 
and BPA functions are optimized. Finally, the optimized evidence is fused using DS evidence theory 
to achieve an accurate assessment of the tunnel's operational status. 

To address the conflict issue in DS evidence theory, an improved DS evidence theory fusion 
algorithm is proposed. Comparisons with other data fusion algorithms show that the proposed 
method achieves a smaller uncertainty interval (0.19679). By making full use of tunnel fire data 
information, the fusion results exhibit higher credibility. 

The proposed multi-sensor data fusion algorithm was validated using multi-sensor monitoring 
data. The results indicate that the method consistently achieves a fire detection probability of no less 
than 65% across four different operational conditions. Compared to other research methods, the 
proposed algorithm offers faster analysis speeds and makes more comprehensive use of tunnel 
environment information. This demonstrates its potential for practical application in tunnel safety 
monitoring systems and suggests that it could enhance the early warning capabilities for tunnel fires. 
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