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Abstract: Tunnel fires are generally detected using various sensors, including measuring
temperature, CO concentration, and smoke concentration. To address the ambiguity and
inconsistency in multi-sensor data, this paper proposes a tunnel fire detection method based on an
improved Dempster-Shafer (DS) evidence theory for multi-sensor data fusion. To solve the problem
of evidence conflict in DS theory, a two-level multi-sensor data fusion framework is adopted. The
first level of fusion involves feature fusion of the same type of sensor data, removing ambiguous
data to obtain characteristic data, and calculating the basic probability assignment (BPA) function
through the feature interval. The second level fusion derives basic probability numbers from the
BPA, calculates the degree of evidence conflict, normalizes to obtain the relative conflict degree, and
optimizes the BPA using the trust coefficient. The classical DS evidence theory is then used to
integrate and obtain the probability of tunnel fire occurrence. Different heat release rates, tunnel
wind speeds, and fire locations are set, forming four fire scenarios. Sensor monitoring data under
each simulation condition are extracted and fused using the improved DS evidence theory. The
results show that the proposed improved DS evidence theory method detects the probability of fire
occurrence in the four scenarios as 67.5%, 71.0%, 82.8%, and 83.5%, respectively, and identifies fire
occurrence in approximately 2.4 seconds, an improvement of 64.7% to 70% over traditional methods.
This demonstrates the feasibility and superiority of the proposed method, highlighting its
significant importance in ensuring personnel safety.

Keywords: tunnel; fire detection; multi-sensor data fusion; DS evidence theory; PyroSim

1. Introduction

Multi-sensors play a crucial role in the detection of tunnel fires. Due to the unique environment
of tunnels, the data collected by these sensors may contain ambiguous and conflicting information,
leading to issues such as false alarms and missed detections of fires 1. Therefore, studying how to
improve the accuracy of tunnel fire detection and the timeliness of fire discovery is of significant
practical importance for tunnel safety.

Currently, common data fusion algorithms include artificial neural networks 2, Bayesian
methods 3, Kalman filtering 4, and Dempster-Shafer (DS) evidence theory 5. Bayesian methods and
DS evidence theory are often used to address multi-sensor data fusion issues 6. However, the
Bayesian method's reliance on prior estimates can hinder its ability to accurately reflect changes in
tunnel conditions, making it unsuitable for multi-sensor data fusion in tunnel fire scenarios 7. On the
other hand, DS evidence theory is well-suited for situations where prior probabilities are unknown,
allowing various sensor monitoring data to be integrated as evidence sources 8. Despite its
advantages in handling uncertainty, DS evidence theory can produce paradoxical results when there
is a high degree of evidence conflict. Solutions to the evidence conflict problem in DS evidence theory
can be categorized into two types: altering fusion rules 9 and optimizing the BPA 10.
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In terms of altering fusion rules, Xiao et al. 11 proposed a weighted combination method for
conflict evidence in multi-sensor data fusion. This method adjusts the evidence weights by modifying
the cosine similarity and confidence entropy to address the issue of highly conflicting evidence
fusion. However, it essentially preprocesses the evidence without considering the characteristics of
the evidence itself. Wang et al. 12 introduced an adaptive evidence fusion method based on power
probability distance, but it uses a single evidence relation to represent and manage conflicts and
uncertainties in the Internet of Things environment, failing to effectively address the impact of
unreliable evidence sources on the fusion results. Hamda et al. 13 proposed an improved evidence
combination method for representing conflict and uncertainty in data fusion to improve the accuracy
of decision-making, mainly relying on the Hellinger distance. Murphy 14 simply averaged the mass
functions and then applied the classical DS combination rule, without considering the correlation
between pieces of evidence, and assigned the same weight to all evidence sources. Tang et al. 15
proposed a new method for uncertain information fusion based on a new evidence confidence
coefficient, using the evidence distance in DS evidence theory to handle conflict and uncertain
information fusion, but it introduces a single confidence function to determine the weights between
evidence. Hu et al. 26 proposed a new confidence entropy method based on internal cross-
information of evidence, which adjusts the comprehensive credibility of evidence and optimizes the
evidence fusion process of the DS combination rule.

In terms of optimizing the BPA, Shahpari et al. 16 proposed a pixel-based transformation
uncertainty measure based on BPA, but it has been proven in 17 that this measure does not satisfy
certain properties and leads to paradoxes. Deng et al. 18 below introduced an improved DS evidence
theory framework based on the Hellinger distance within uncertain intervals, which is more sensitive
to changes in evidence. Xiao et al. 19 suggested a multi-sensor data fusion method based on evidence
and information entropy confidence measure, using information entropy to assess the characteristics
of the evidence itself. Qiao et al. 20 proposed a multi-sensor data fusion method based on evidence
theory that assigns weights according to the degree of data deviation, demonstrating high fusion
accuracy. Xiao 21 introduced the concept of evidence credibility measure and designed a hybrid
multi-sensor data fusion method. Song et al. 22 presented a time evidence adaptive fusion method
based on a negotiation strategy, constructing evidence set through cumulative time fusion, using
probability distance to evaluate conflicts, and adapting the fusion of time evidence according to the
degree of conflict. Zhao et al. 23 proposed a new distribution distance measure method to gauge the
degree of conflict between pieces of evidence, introducing a modified information amount calculation
method to evaluate the role of evidence and adjust evidence credibility. Zhou et al. 24 combined
indirect conflict measurement indicators with evidence information measurement indicators for data
fusion, addressing issues of high conflict and poor robustness. Wang et al. 25 developed a multi-
attribute fusion algorithm based on fuzzy clustering and improved evidence theory, which uses
fuzzy clustering for group measurement and then applies improved evidence theory for advanced
fusion. Although these methods incorporate relationships between pieces of evidence and the
characteristics of the evidence itself, they fuse the probabilities of target attributes collected by sensors
for target recognition and fault diagnosis, failing to integrate the measurement results of the sensors.
Moreover, using information entropy alone cannot comprehensively evaluate the characteristics of
the evidence itself.

To more accurately measure the relationship between evidence and its intrinsic characteristics
and to enhance the accuracy of data fusion, this paper proposes a tunnel fire detection method based
on improved DS evidence theory for multi-sensor data fusion. To address the issue of DS evidence
conflict, a two-level multi-sensor data fusion framework is employed. In the first level of fusion,
feature fusion of the same type of sensor data is performed to eliminate ambiguous data and calculate
the BPA. The second level of fusion addresses conflict issues by optimizing the BPA and then
applying classical DS evidence theory for data fusion to obtain the probability of fire occurrence. This
method aims to quickly and accurately detect tunnel fires under various fire conditions.
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2. The Proposed Method

This section describes the relevant knowledge of DS evidence theory and explains the conflict
issues in multi-sensor data fusion for tunnel fires. Finally, it proposes methods and steps for
improving DS evidence theory.

2.1. Dempster-Shafer Evidence Theory

In DS evidence theory, the frame of discernment ©={6,,6,,---,6,,---,6, } consists of a finite

set of mutually exclusive elements. 2° denoted as the power set of the discursive framework, which

is composed of 2V elements, is represented as follows:

m(@)zO
;@m( )=1 (1)

m(A)=0

m is referred to as the Basic Probability Assignment (BPA) function, if m (A) >0, {A} is
referred to as a proposition, and m(A) denotes the degree of belief assigned to the proposition {A}.

. )
In the frame of discernment © , VACO If the function Bel :2° — [0, 1] satisfies:

Bel(A):;m(B) 2
is said to Bel(A) as the belief function of proposition {A}, which represents the likelihood that
proposition {A} is true.

. )
In the frame of discernment © , VACO If the function Bel :2° — [0, 1] satisfies:

PI(4) B;@m(B) ©)
is said to PI(A) as the plausibility function of proposition {A}, which represents the likelihood that
proposition {A} is not false.

Defined PI(A) and Bel(A) as the upper and lower bounds of the confidence in proposition {A}.
The interval [Bel(A), PI(A)] represents the degree of uncertainty of the proposition, with the
relationship between Bel(A) and P1(A) illustrated in Figure 1.

Support Interval Skeptical Interval Rejection Interval
| ] |
0 Bel(X) PI(X) 1

Plausible Interval

»
»

A

Figure 1. DS evidence theory confidence interval.

The combination rule of DS evidence theory involves merging multiple sources of evidence.
Given two pieces of evidence with basic BPA m1 and mz in the frame of discernment, the DS evidence
theory fusion formula 27 for proposition {A} is:
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where,

k=2 yy-owxyc™ (X ) ", (Y ) ®)

when k=1, DS evidence theory is unable to fuse the evidence.

> m(X)m, (Y)m, (Z)---

m(4) = Xornz-=4 l( ) 2( ) 3( ) A+D0,U (6)

1-k

when there are three or more pieces of evidence, the combination rule of DS evidence theory is as
follows:

k= S m(X)m, (V)m(2) o

XnYNZ---=0

In the frame of discernment © , let A, B, and C represent the data from temperature sensors,
CO sensors, and smoke sensors monitoring tunnel fires, respectively:

m, :m,(A)=0.75,m,(B)=0.15,m,(C)=0.1
m, :m,(A)=0,m,(B)=0.3,m,(C)=0.7
my :m,(A)=0.8,m;(B)=0.15,m,(C)=0.05
Using the DS evidence theory combination rule, k was calculated to be 0.98975. The data fusion

results m(A), m(B), and m(C) are shown in Table 1.

Table 1. DS theory of evidence data fusion results.

Multi-sensor fire BPA Data fusion fire probability

Actual tunnel decision
conditions Temperature CO m2 Soot concentration Data fusion results
ml m3
Fire conditions A 0.75 0 0.8 0
Fi .
e warning 0.15 0.3 0.15 0.6585
conditions B
Normal operating ) | 0.7 0.05 0.3415

conditions C

Relying solely on individual sensor data may result in temperature and smoke sensors
indicating a higher likelihood of fire, while the CO sensor may indicate a normal state, leading to a
paradox in data fusion based on Dempster-Shafer (DS) evidence theory. According to the data in
Table 1, under fire conditions, the value of mz2(CO) is 0, which results in a post-fusion judgment of 0
for fire conditions. This causes a conflict in the DS evidence theory's judgment.

2.2. The Method for Improving D-S Evidence Theory

In the processing of data from similar sensors, the feature-level data fusion method can
effectively eliminate ambiguous data and enhance the monitoring accuracy of environmental
characteristics by similar sensors. For data from multiple types of sensors, decision-level fusion
enables the complementary integration of multi-source data obtained from multiple sensors, thereby
improving the accuracy of the monitoring results.
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In tunnel fire detection, the raw data from temperature, CO concentration, and smoke
concentration sensors are first subjected to feature extraction and correlation analysis of similar data.
These features are then fused to form a comprehensive decision based on multi-source monitoring
data, including temperature, CO concentration, and smoke concentration. On this basis, a decision-
level fusion of multi-source data (temperature, CO concentration, smoke concentration) is performed
to obtain the BPA of the evidence theory. The data fusion algorithm is then used to integrate these
decision results, yielding the final fire probability. The proposed tunnel multi-sensor data fusion
algorithm based on the improved DS evidence theory is illustrated in Figure 2.

Primary Fusion of Sensor Data of the Same Type

| |
| |
| |
o F | !
| emperamre —p eatL_u'e ] ‘—|—'< Calculate the number of basic probabilities ‘ |
| sensor 1 extraction 1 European Weighted : | |
I X | l_ I
| distance || average | | b Y ___ |
| data data o , [
| Temperature Feature screening fusion | 1l Improved DS Theory of Evidence | |
| N traction N [ o a o q ! |
| SSUsoy GURion o ‘ Constructing the evidence distance Matrix ‘ [
! b by
I ; [ v b
| Tt Basic b ‘ Calculating the degree of conflict of evidence ‘ !
| CO sensor 1 > traction 1 "] probability | I | 1 !
: extraction European Weighted assignment : [ !
| distance | | average | | function | J| : : ‘ Normalisation of conflicts of evidence ‘ | :
| data data acquisition | | L i : |
| Feature screening fusion based on [ |
| COEERTN extraction N feature : [ ‘ Calculation of the confidence factor ‘ : |
! intervals P! | !
: | (I * | |
| | : : ‘ Optimising the basic probability assignment ‘ | :
| | Soot concentration .| Feature N | | : |
| sensor | extraction 1 i [ |
| Edl.lrfp can stl‘(f:ted [ ‘ DS theory of evidence data fusion ‘ : |
| istance erage [ b
| data data | | e e e |
: Soot concentration Feature N sereening finciom : ____________ I ____________
| sensor N extraction N q |

|

! ‘ Probability of fire in tunnels ‘

Figure 2. Multi-sensor data fusion algorithm based on improved DS evidence theory.

Step 1: Primary fusion of data from sensors of the same type to obtain BPA.

The key aspect of data fusion using Dempster-Shafer (DS) evidence theory is obtaining the BPA.
Following the primary fusion process for similar sensor data, multi-sensor monitoring data are first
collected, and invalid data are removed to obtain feature data. Then, a primary fusion of similar
sensor data is performed. Finally, the BPA is preliminarily calculated based on the feature intervals.

Step 2: Secondary fusion of data from multiple types of sensors to obtain tunnel condition
information.

The improved DS evidence theory addresses evidence conflict issues and yields the final fusion
results of multi-sensor data. According to the secondary fusion process for multi-sensor data, the
basic probability numbers are first derived from the BPA. Then, an evidence distance matrix is
constructed to calculate the degree of conflict between pieces of evidence, and normalization is
performed to obtain the relative conflict degree. Subsequently, the trust coefficients between pieces
of evidence are calculated to further optimize the BPA. Finally, classical DS evidence theory is used
to fuse the evidence and determine the tunnel conditions.

2.2.1. Primary Fusion of Data from Sensors of the Same Type

The process for obtaining the improved DS evidence theory BPA function for the fusion of data
from sensors of the same type involves the following steps:

(1) Similar data screening based on Euclidean distance

To exclude anomalous data when calculating the BPA, this paper proposes a similar data
screening algorithm based on Euclidean distance. The primary method involves measuring the
similarity between data points by calculating the Euclidean distance between similar data. A smaller
distance indicates a higher degree of similarity and greater data authenticity, while a larger distance
indicates a lower degree of similarity and lesser data authenticity. Therefore, by calculating the


https://doi.org/10.20944/preprints202408.0573.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 August 2024 d0i:10.20944/preprints202408.0573.v1

pairwise distances between all similar data points and setting an appropriate threshold, anomalies
can be identified and excluded 29.
Let the number of sensors be n, and the distance between the collected like data

s, ={s,17=1.2,...n} , The distance d(s;) 28 between *7 and other similar data excluding Si

can be expressed as:

A(i)=d(s)—d, (8)

(SR

n =l /

d(si):{li(si—s_.)z} Jd#ji=12,-,n ©)

The distance ¢, of anomalous data is greater than the distance d. of normal data. Therefore,

the difference Ad(i) between the distances of anomalous and normal data can be used to identify

anomalous data. In the equation, d, represents the median of d (Si) .
o . Ad(i) . .
Eliminating the magnitude of by the following equation.

dw(s,) =20
S

m

(10)

where °n represents the median of the set of sensor data of the same type 5
dw(s,)=0.02

(2) Primary fusion of homogeneous sensor data using a weighted averaging method
If the weights are the same between sensors of the same type, then it is known that

_ 1w
ey )

We defined ¥ as the fused value of data from the same type of sensors and L(x) as the

when , the sensor is considered to have a large error and should be rejected.

distance from X to other sensors. When L(x) reached its minimum value, ¥ was closest to the
local multi-sensor monitoring result.

LE=YL (G-x) (12)
derived that.
Lx)=n>+) ) x1-2X) " x, (13)
derivation on the left and right sides yields that
% =2ix-2) " x, (14)

1
xX=— z};l X, _
when n=" , The minimum value of L(x) is obtained, which corresponds to the average
of the data from all sensors.
(3) Acquisition of BPA functions based on feature intervals
To monitor tunnel fire conditions in real-time, it is essential to collect three key types of data:
carbon monoxide (CO) concentration, smoke concentration, and temperature. The identification
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O@={4,4,,.,4, A}

framework is n=17"n) categorizes the tunnel fire status into three levels: {Normal
Conditions, Warning Conditions, and Fire Conditions}.

Interval T represents the range within which the identification framework © s situated. This
interval divides the n objects within the identification framework into n characteristic intervals ];,

i=12,--,n [T, Tx]

, which describe the range where the identification object 4; is located. The

midpoint T of each interval is set as the characteristic value for that feature interval.

_T‘L_];R

1

= =12, 19

where ur represents the left boundary of the characteristic interval 7;, while T represents the

right boundary of the characteristic interval ]:
Let /(j), represent the distance between the sensor's measured value a(j) and each

characteristic value:

1), =|a() =T | i=1,2,---.n (16)

Dividing /(j), by the length of each characteristic interval yields the dimensionless distance

Iw(j), between the sensor's measured value and each interval's characteristic value:

e

(17)
iL iR 1’2""9’7

T
(/)
and the basic probability number mass(j); for the measured value a(j) .

1/ (w(j); +Cy)

Taking the reciprocal of bw
mass(j)

 and normalizing it yields the probability assignment function

mass(j); =—

. (18)
20O+

1,2,---,n

where C; is a constant.

According to equation (18), the closer the sensor's measured value is to the characteristic value

T of the interval, the larger mass(Jj); becomes, indicating that a(j) is closer to the

identification object 4, . However, during a tunnel fire, some sensor measurements may exceed the
right boundary Tx of the characteristic interval T, , causing w(J)
mass(j)

 to become too large and,
consequently, ! to decrease, which moves a(j) further away from the identification
object 4; . Therefore, when calculating mass(j); , if a(j) is too large, it should be replaced with
a(j )y. Based on the characteristic interval T , this adjustment ensures that a(j ) remains close to

the corresponding characteristic value T .
a(j) =Ty +C, (19)

where C| is a constant.

2.2.2. Secondary Fusion of Multi-Type Sensor Data
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The improved DS evidence theory for multi-type sensor data fusion is applied to a secondary
fusion process.

©={4,4,,4,,..,4,}

. . e A
First, let the identification framework be , where ~" represents the

E={E E,E,,..

n-Th condition of tunnel fire, and SEL denotes the evidence set, with ~ 7

being the m-Th piece of evidence related to the tunnel fire. The definition of the distance a; between

evidence |07 and "Si s given by:
dy=e i j=12m (20)
where
Y.mass, (A, )mass; (A4,)
— s=1
<E,E;>=— - 21)
Y mass;” (A,)y| Zmass;? (4,)
s=1 s=l1

As d, approaches 1, it indicates a higher degree of mutual support between the pieces of
evidence. Conversely, as d; approaches e, it signifies a higher level of conflict between the pieces

of evidence. Based on this, an evidence distance matrix D can be constructed:

1 d1z e dlm
d 1 o d
e 22)
dml dmZ o dmm

Defined con(E,) as the level of conflict between evidence.

con(E))= X d, (23)

Normalize the evidence conflict degree to obtain the relative conflict degree of the evidence
in(E,) 30.
con(E,)

in(E,)= ) 24)

m

2.con (E }
j=l

Let A(E,) be the trust coefficient of the evidence, representing the importance of evidence E,

and its influence on the fusion result. The definition of A(E,) is:
A(E)=[1-in(E,)]e"" (25)

Let m, be the original probability assignment function. The optimized probability assignment

. * .
function mass; is:

mass; (A;) = A(E,)-mass,(4,) (26)
mass, (X)=1-A(E,) (27)
where %55 (X) denotes uncertainty.
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In summary, the specific steps for improving the DS evidence theory for the secondary fusion of
multi-sensor data in tunnels are as follows:

Firstly, an evidence distance matrix D is constructed to calculate the degree of conflict between
the evidence and normalized to obtain the relative degree of conflict.

Secondly, calculates the trust coefficients between the evidence to optimize the BPA.

Finally, the evidence is fused using the classical DS theory of evidence.

3. Numerical Examples and Simulation Verification
This section evaluates and simulates the proposed method based on the improved DS evidence
theory to verify its feasibility and effectiveness.3.1Improvement of DS theory of Evidence.

3.1. Improved DS Evidence Theory

To validate the effectiveness of the proposed improvement, sensor monitoring data from Section
2.1 are used to compare the proposed improved algorithm with the methods developed by Dempster-
Shafer 31, Yanger 32, Sun 33, and Murphy 14. The fusion results are shown in Table 2. and the
comparison of the fusion results is illustrated in Figure 3.

Table 2. Data fusion results of five algorithms.

Fire conditions Fire warning = Normal operating

U taint X
m(A) conditions m(B) conditions m(C) ncertainty m(X)
DS 0 0.65850 0.34150
Yager 0 0.00675 0.01050 0.98275
Sun 0.24746 0.10254 0.13921 0.51079
Murphy 0.34536 0.04751 0.25606 0.35107
This paper 0.50247 0.13253 0.16821 0.19679
1.2
[ ]Fire conditions m(A)
[ |Fire warning conditions m(B)
[ ]Normal operating conditions m(C)
1.0 | 0.98275 I Uncertainty m(X)
E
g
To8 -
2
<
s —
Z 06 -
& 0.51079
=3 _—
2
£
£04r 035107
3
=2
o2 L 0.19679
0.0
DS Yager Sun Murphy This paper

Amount of evidence

Figure 3. Comparison of data fusion results for five algorithms.

From Table 3. it can be observed that under fire condition A, when m1=0.8, m2=0, and ms=0.7,
the BPA m(A) for Yanger's method is 0, which results in a paradox. In contrast, the BPA for fire
conditions in this paper is 0.50247, indicating the detection of a fire. When dealing with different
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types of conflicting evidence, classical DS and Yager's fusion methods lead to contradictions with the
actual facts. Although the method proposed by Sun et al. points to the correct result, it exhibits a
higher degree of uncertainty. Therefore, traditional DS fusion rules may fail or mismatch the actual
tunnel fire conditions when confronted with conflicting evidence. This paper addresses the problem
of evidence conflict by reducing the proportion of conflicting evidence, gradually decreasing the
number of conflicting evidence, and increasing the amount of valid evidence, thus minimizing the
uncertainty interval and enhancing reliability. The improved DS evidence theory fusion algorithm
proposed in this paper provides more accurate results in handling evidence and conflicting evidence,
demonstrating the rationality and effectiveness of the proposed method.

3.2. The Proposed Holistic Approach

To further demonstrate the feasibility and effectiveness of the data fusion method, this
subsection applies the proposed improved DS evidence theory data fusion method to tunnel fire
detection.

In tunnel fire detection, temperature sensors, CO sensors, and smoke sensors are commonly
used to monitor fires [34]. The PyroSim software, based on Fire Dynamics Simulator (FDS) and
Computational Fluid Dynamics [35], can simulate large-scale slow-moving vortices and accurately
obtain critical parameters such as fire heat release, fire smoke, CO concentration, and temperature.

The fire simulation process using PyroSim is illustrated in Figure 4. First, a comprehensive
tunnel geometric model is created, including elements such as lining, vehicles, and ventilation
systems, to accurately describe the internal structure of the tunnel. Next, multiple sensors, including
temperature, CO, and smoke sensors, are installed to enable real-time monitoring of the fire scene.
The heat release rate is determined based on the actual fire conditions. Subsequently, a tunnel fire
simulation model is established, and simulation parameters such as temperature and velocity are set
to realistically simulate the fire situation. Finally, FDS is run to perform the fire simulation and obtain
multi-sensor monitoring data.

—_—_———— e e — —

Simulation Modelling of
Tunnel Fires

—_—_———— e e — —

Data Fusion

[ Pt ro [
: | : | : |
| | |
: Setting the tunnel | : | : I
| model parameters I | | Simulation of tunnel I | | Data fusion based on I
| : | fire under four fire : | | improved DS theory of :
| ; I | conditions I | evidence |
| Installation of fire I | I | I
| Sensors — — |
[ oot P I
[ oot [ |
| . ot [ |
| oLl i | I' | Obtaining multi-sensor | | | - . |
| | o | | Probability of fire in
| | | tunnel fire monitoring | | | iy |
| data | |
: Setting up fire | : | : |
I conditions : | I I :
e — |____________! e —

Figure 4. Tunnel fire simulation process.

3.2.1. Simulation Model

(1) Establishing the tunnel geometric model

The tunnel geometric model is constructed with the following specifications: a height of 8.5
meters, a width of 14.5 meters, and a length of 600 meters. The tunnel is lined with 31 concrete walls
forming the lining and surrounding rock structure. The wall material has a density of 2280.0 kg/m?,
a specific heat capacity of 1.04 kJ/(kg-K), and a thermal conductivity of 1.8 W/(m'K). In consideration
of practical scenarios, the dimensions of the vehicles are set as follows: width 2.4 meters, height 2.5
meters, and length 7 meters. The fire materials carried by large trucks are wood and plastic. In the
tunnel model, a blue square on the top represents the jet fan, which has an outlet area of 1.21 m? and
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a wind speed of 27.9 m/s. These parameters are used to establish the tunnel geometric model, with
the specific structure illustrated in Figure 5.

o
O

Figure 5. Tunnel geometric model.

(2) Installation of fire monitoring equipment

A 3x3 sensor matrix is arranged on the tunnel ceiling, with each matrix containing 3 temperature
sensors, 3 CO sensors, and 3 smoke sensors. The distance between adjacent sensor matrices is 10
meters. Additionally, pairs of smoke sensors are installed on the right side of the tunnel at heights of
2 meters and 3 meters from the ground, with a distance of 100 meters between adjacent pairs. The
specific arrangement of the sensors is illustrated in Figure 6.

N [

s 3

PP EAFIEAFIEAFI AP A I (A F A P P P PB4 F A FA P EA P B P EAFITAFI AR (AR A F A
o o

20880008080 00805006068 30
) |
T ] | | |

S1 S2 S3 S4 S5 S6 S7 S8
[ Tunnel fans A Wind speed sensor < Flue gas sensor <> Convergence node

S1 S2 S3 S4 S5 Sé S7 S8
I
A

® Vehicle flow sensor FA  Fire monitoring node A Routing node

Figure 6. Tunnel fire monitoring sensor layout.

(3) Establishing the fire model

The tunnel accommodates various vehicle types, including large trucks and small cars, so the
corresponding heat release rates are set to 20 MW for large trucks and 5 MW for small cars. During a
fire, higher wind speeds result in faster smoke spread and greater disruption to the smoke layer,
increasing danger. Based on traffic volume survey data, the simulation wind speed is set to 2.5 m/s,
with 3 m/s and zero wind speed used as control conditions. The tunnel is set with a pressure of 94.5
kPa, an initial temperature of 20°C, an initial CO concentration of 42 cm3/m? and an initial smoke
concentration K of 0.004 m-.

When a fire occurs at the midpoint of the tunnel, the distance for personnel evacuation to the
exits is maximized, which is unfavorable for evacuation; simultaneously, the tunnel fan is located
farthest from the fire source, making smoke control less effective. In Figure 7. ignition point 1 is
located at the midpoint of the tunnel, representing the main fire condition, while ignition point 2 is
near the entrance fan, serving as the control condition. The farther the sensor is from the ignition
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point, the more challenging it is to monitor the tunnel fire. Therefore, the distance between the

ignition point and the downstream sensor matrix is set to 7.5 meters.

QduenuUd [duunj,

direction of travel
—_——»

(O=— Tunnel entrance 200m-EN fire point 2 O=— Tunnel midpoint Z fire point 1

Jet fan

—X]—%l—&—

— = =] —

Figure 7. Tunnel ignition point locations.

JIX0 [oUUn],

Based on the established fire conditions, with other fire conditions remaining consistent, four
types of tunnel fire conditions are set as shown in Table 3.

Table 3. Tunnel fire conditions.

Condition Number Ignition Point L Heat Release Rate (MW)  Wind Speed (m/s)
LZ-R5-52.5 Tunnel Midpoint-Z 5 25
LZ-R20-S0 Tunnel Midpoint-Z 20 0

LZ-R20-52.5 Tunnel Midpoint-Z 20 25
LEN-R20-53 Tunnel Entrance 200m-EN 20 3

3.2.2. Tunnel Fire Simulation

Based on the tunnel fire conditions set in Section 3.2.1, simulations are conducted in PyroSim.

Using the condition LZ-R5-52.5 as an example, the multi-sensor monitoring data for tunnel fires are
obtained. The monitoring data for temperature sensors, smoke sensors, and CO sensors in the fire

monitoring nodes are shown in Table 4.

Table 4. Multi-sensor monitoring data for tunnel fire condition LM-R5-52.5.

Temperature ('C)

Soot concentration (m1) CO concentration (cm3/m3)

Time(s) 1 2 3 Gas1 Gas2 Gas3 CO1 CO2 CO3
0.6 20 20 20 00040 00040 0.0040 42 42 42
12 2001 2001 2001 00040 00040 0.0040 42 42 4
1.8 2004 2004 2004 00040 00040 00040 42 4 4
2.4 2023 2023 2023 0.0040 00040 00040 42 4 4

3 50 2055 2055 00040 0.0040 0.0040 42 4 42
3.6 2895 2899 289 00070 00070 00070 51 51 51
42 4622 467 4622 00707 00706 00708 48 48 48
48 5475 5573 5475 00597 00595 00599 43 43 43
5.4 6203 6339 6203 00588 00587 00589 44 44 44

6 6759 6872 6759 00591 00591 00591 44 44 44
6.6 66.65 6746 6665 00624 00624 00625 43 43 43
7.2 7259 7328 7259  0.0394 00396 00392 44 44 44
7.8 781 7877 781 00569 00587 00551 43 43 43
8.4 8201 8282 75 00604 00598 00610 42 4 4

9 8205 827 8205 00662 00655 0.0669 42 42 4
9.6 7991 8046 7991 00719 00724 00715 42 4 4
102 79.08 7977 7908 00525 00539 00512 43 4 44
10.8 758 7715 758 00536 00518 00554 43 4 43
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3.2.3. Tunnel Fire Simulation Data Fusion

Based on the "Highway Tunnel Ventilation Design Specifications" and relevant design standards
for tunnel engineering, the characteristic intervals for temperature, smoke concentration, and CO
concentration are categorized as shown in Table 5.

Table 5. Feature interval classification.

State Space Normal conditions Fire warning Conditions Fire conditions
Temperature range (C) 0~40 40~55 55~100
Soot concentration range (m1) 0.0000~0.0075 0.0075~0.0120 0.0120~0.0750

CO concentration

. 0.00~107.50 107.50~150.00 150.00~350.00
interval (cm3/m?3)

The primary fusion data of sensor readings under four different operating conditions, combined
with Table 5, were used to calculate the probability assignment functions as shown in Table 6,
according to Equations (18) and (19).

Table 6. Probability assignment functions for operating condition LM-R5-52.5.

Time (s) Temperature mass: Soot concentration mass: CO concentration masss
A B C A B C A B C

0.6 0.60 0.17 0.24 0.91 0.03 0.06 0.85 0.05 0.10
1.2 0.60 0.17 0.24 0.91 0.03 0.06 0.85 0.05 0.10
1.8 0.60 0.17 0.24 0.91 0.03 0.06 0.85 0.05 0.10
24 0.60 0.16 0.23 0.91 0.03 0.06 0.85 0.05 0.10

3 0.61 0.16 0.23 0.91 0.03 0.06 0.85 0.05 0.10
3.6 0.90 0.05 0.05 0.42 0.29 0.29 0.95 0.02 0.03
42 0.08 0.82 0.10 0.05 0.03 0.92 0.91 0.03 0.06
4.8 0.17 0.41 0.42 0.04 0.02 0.94 0.87 0.05 0.09
5.4 0.14 0.22 0.64 0.04 0.02 0.94 0.87 0.04 0.08

6 0.09 0.13 0.78 0.04 0.02 0.94 0.87 0.04 0.09
6.6 0.10 0.14 0.76 0.04 0.03 0.93 0.86 0.05 0.09
7.2 0.05 0.06 0.89 0.02 0.01 0.97 0.87 0.04 0.08
7.8 0.01 0.01 0.98 0.03 0.02 0.95 0.86 0.05 0.09
8.4 0.04 0.05 0.91 0.04 0.03 0.94 0.85 0.05 0.10

9 0.04 0.05 0.91 0.04 0.03 0.93 0.85 0.05 0.10
9.6 0.03 0.03 0.95 0.05 0.03 0.92 0.85 0.05 0.10
10.2 0.02 0.02 0.96 0.02 0.02 0.96 0.87 0.05 0.09
10.8 0.02 0.02 0.97 0.03 0.02 0.96 0.86 0.05 0.09

The probability assignment function is optimized using Equations (26) and (27), and the
probability assignment function for unknown conditions is calculated. Combining the optimized
probability assignment function with Equation (6), the probabilities of normal operation, fire
warning, fire state, and unknown state under various tunnel conditions are determined, as shown in
Table 7.

Table 7. Tunnel states computed using improved DS evidence theory for fire condition LM-R5-52.5.

Time (s) Normal conditions Fire warning conditions Fire conditions Uncertainty
0.6 71.30% 4.20% 7.00% 17.50%
1.2 71.30% 4.20% 7.00% 17.50%
1.8 71.30% 4.20% 7.00% 17.50%
2.4 71.50% 4.00% 6.90% 17.60%

3 71.60% 4.00% 6.80% 17.60%
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3.6 69.90% 5.80% 6.10% 18.20%
42 25.90% 21.30% 27.90% 24.90%
4.8 22.80% 12.20% 42.90% 22.10%
54 19.00% 6.60% 53.70% 20.70%

6 16.00% 4.10% 60.00% 19.90%
6.6 16.30% 4.80% 58.80% 20.10%
7.2 13.20% 2.10% 65.30% 19.40%
7.8 11.70% 1.30% 67.90% 19.10%
8.4 13.20% 2.40% 65.00% 19.40%

9 13.30% 2.40% 64.80% 19.50%
9.6 13.20% 2.00% 65.60% 19.20%
10.2 11.90% 1.50% 67.50% 19.10%
10.8 12.00% 1.50% 67.50% 19.00%

For the different conditions mentioned above, the simulation results using the same method are
shown in Figure 8.
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Figure 8. Probability curves of tunnel fire occurrence under different conditions. (a) LZ-R5-52.5. (

b) LZ-R20-S0. (c) LZ-R20-S2.5. (d) LEN-R20-S3.

The fire occurrence probabilities under various conditions are analyzed, and the resulting curves
for the four types of fire conditions are shown in Figure 9.
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Figure 9. Comparison of tunnel fire occurrence probability curves under four conditions.

Based on the multi-sensor monitoring data and fusion results for tunnel fires under different
conditions, the following conclusions can be drawn:

A higher heat release rate and wind speed make it easier to detect tunnel fires. The fire condition
LZ-R5-52.5, with a lower heat release rate, presents the greatest challenge for fire detection. The
improved DS evidence theory multi-sensor data fusion algorithm reached a conclusion of fire
occurrence at 7.2 seconds based on changes in tunnel temperature and smoke concentration. Thus,
the improved DS evidence theory multi-sensor data fusion algorithm demonstrates good fusion
performance under zero wind speed and low heat release rate conditions.

The probabilities of tunnel fire occurrence under the four conditions are 67.5%, 82.8%, 83.5%,
and 71%, respectively. This indicates that the proposed method has a high monitoring accuracy.

The comparison results of the improved DS evidence theory multi-sensor fusion algorithm with
those of Sun and the original methods are shown in Figure 10.
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Figure 10. Comparison of fire state prediction curves.

Figure 10. presents the fire occurrence probabilities for various methods. Compared to other
methods, the approach proposed in this paper improves fire detection accuracy by 5% to 10.2%,
reduces the time required to identify a fire to approximately 2.4 seconds (64.7% to 70% improvement
over other methods), and simultaneously enhances both the timeliness and accuracy of monitoring.
This demonstrates its feasibility and effectiveness in multi-sensor data fusion.

4. Conclusion

This paper proposes a multi-sensor data fusion algorithm based on improved DS evidence
theory, which effectively monitors the environment and fire conditions within a tunnel, significantly
enhancing the accuracy and efficiency of monitoring.
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Propose a multi-sensor data fusion algorithm based on an improved DS evidence theory,
employing a two-level fusion architecture. Initially, the data collected by different sensors is screened
to eliminate inaccurate data. Subsequently, primary fusion is performed on data from sensors of the
same type. Next, BPA functions for fire, fire warning, and normal operating conditions are extracted
from the results of the primary fusion. Evidence conflicts are treated as a manifestation of uncertainty,
and BPA functions are optimized. Finally, the optimized evidence is fused using DS evidence theory
to achieve an accurate assessment of the tunnel's operational status.

To address the conflict issue in DS evidence theory, an improved DS evidence theory fusion
algorithm is proposed. Comparisons with other data fusion algorithms show that the proposed
method achieves a smaller uncertainty interval (0.19679). By making full use of tunnel fire data
information, the fusion results exhibit higher credibility.

The proposed multi-sensor data fusion algorithm was validated using multi-sensor monitoring
data. The results indicate that the method consistently achieves a fire detection probability of no less
than 65% across four different operational conditions. Compared to other research methods, the
proposed algorithm offers faster analysis speeds and makes more comprehensive use of tunnel
environment information. This demonstrates its potential for practical application in tunnel safety
monitoring systems and suggests that it could enhance the early warning capabilities for tunnel fires.
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