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Article

Finding an Unique and "Natural" Extension of the
Expected Value That Is Finite for All Functions in
Non-Shy Subset of the Set of All Measurable

Functions

Bharath Krishnan
Independent Researcher; bharathk98@gmail.com

Abstract: Suppose forn € N, set A C R” and function f : A — R. If set A is Borel; we want to find
an unique and "natural” extension of the expected value, w.r.t the Hausdorff measure, that’s a finite
value for all f in a non-shy subset of B*—the set of all Borel measurable functions in R4. The issue is
current extensions of the expected value are finite for all functions in only a shy subset of B*. Despite
attempts at generalizing the expected value, we haven’t found evidence suggesting mathematicians
thought of this problem; however, it's assumed, in general, there’s no meaningful way of averaging
functions which cover an infinite expanse of space. Regardless, we'll attempt to solve the problem
by defining a choice function—this shall choose a unique set of equivelant sequences of sets (i.e.
(F;**)ken), where the set-theoretic limit of F;*** is the graph of f; the measure H " is the h-Hausdorff
measure, where for each k € N, 0 < HMF l’:**) < 4o00; and (f ; ke is a sequence of functions, where
{6 fr(0) @ x € dom(F; ™)} = F;**. Thus, the extended expected value of f or E**[f, F;™*]
1
Hh(dom(F**))
should be unique and "natural" extension of the expected value, for all f in a non-shy subset of B*.
Note we guessed the choice function using computer programming but we don’t know if the choice
function solves the problem. (Infact, we’re unable to prove most of the concepts in the paper, where
we require assistance for proving certain statements.) Despite this, we'll visualize the paper using
examples in this paper and examples in sec. 3 & 4 of the paper "Mean of Unbounded Sets Using
Conditional Expectation” [1]. The biggest use of this research is the extension of the expected value
is unique and finite for a "non-negligible" amount of measurable functions: this is easier to use in

is: Ve >0)AN eNVkeN) |k >N=>

fdom(F;‘**)f;: dH" — E**[f,F;**]‘ < ¢ | which

application when finding the "average" of functions covering an infinite expanse of space.

Keywords: expected value; hausdorff measure; (exact) dimension function; measurable functions;
function space; prevalent and shy sets; entropy; choice function

1. Introduction

According to an article in Quanta Magazine [2] Wood writes, "No known mathematical procedure
can meaningfully average an infinite number of objects covering an infinite expanse of space in general.
The path integral is more of a physics philosophy than an exact mathematical recipe." The cited
paper [3] presents a constructive approach to Wood’s statement using filters over families of finite
set; however, the average in the approach is not unique: the method determines the average value of
functions with a range that lies in any algebraic structure for which the finite averages make sense.
In this paper, we will explore a more constructive approach where the average is unique, finite, and
"natural” (defined in §3.3 & §3.4) for a non-shy subset [4] of the set of measurable functions. (Note the
functions must be measurable for application purposes).

We begin by describing "the infinite objects" which cover "an infinite expanse of space" as
unbounded functions, since these functions are approachable from a mathematical standpoint.
Moreover, if we define n € N, where set A C R” and function f : A— R; suppose a prevalent subset of a
function-space means "almost all" functions are in that space, a shy subset of a function-space means
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"almost no" functions are in that space and B* is the set of all Borel measurable functions in R4. We
then get the set of unbounded f where the expected value is infinite or undefined, forms a non-shy
(i.e., prevalent nor shy or prevelant) subset of B*. Furthermore, the set of all f with a finite expected
value forms only a shy subset of B*, meaning only a "negligible" amount of measurable functions have
finite expected values.

Therefore, when defining prevalent and shy sets using mathematics in §2.1; we’ll define four
attempts to answer the thesis ! of the first paragraph of §2.2. Note neither attempts give complete
answers: they extend the Hausdorff measure of A to be positive and finite for "most" subsets of R" but
don’t guarantee that unbounded functions in a non-shy subset of measurable functions have finite
expected values. Infact, the expected value from all attempts might be positive and finite for only a shy
subset of B*.

Hence, we define a sequence of sets called x-sequence of sets (def. 8) whose properties allow for
finite expected values for a non-shy subset of M*. Note these *-sequences of sets converge to the
graph of fi.e. {(x, f(x)) : x € A} rather than A; otherwise, the generalized expected value of f w.r.t to
a x-sequence (def. 9) cannot, in general, be finite for unbounded functions. Moreover, since there
are functions with multiple *-sequences of sets, where generalized expected values of f w.r.t each
x-sequence are different and non-unique—we must have a choice function which chooses a unique set
of equivalent *-sequences with the same, unique expected value.

For defining the choice function, we ask a question in §3.4 where with previous sections; we
define equivalent & non-equivalent x-sequences of sets for §3.1, as well as "natural” expected values
for §3.3. We attempt to answer the question in §3.4 by redefining linear/super-linear convergence (def.
12) in terms of entropy, samples and "pathways" where the samples are derived by taking a point from
each partition of a *x-sequence of sets, such the partitions have equal Hausdorff measure. Since all
samples have finite points; we take a "pathway" of line segments between points in the sample, where
in def. 15 we exclude segments with "extra-large" proportion to a chosen measure for each partition of
*-sequence of sets). The procedure is similar to the ones used in computers to graph functions [5]. We
also take the length of each of the line segments in the "pathway", multiplying all lengths by a constant
so they add up to one (i.e. a discrete probability distribution). We take the supremum of the Entropy
of the distribution [6] w.r.t all "pathways" to redefine def. 12 as def. 16 such redefined definition is
used to create a choice function in §5.1.

2. Preliminary Definitons/Motivation

Other than integration with filters [3], there is no constructive approach to finding a meaningful
average of functions covering an infinite expanse of space; however, there are two constructive
approaches to making the average unique, finite, and "natural". Before beginning, consider the
following mathematical definitions:

2.1. Preliminary Definitions

Let X be a completely metrizable topological vector space.

Definition 1 (Prevalent Subset of X). A Borel set E C X is said to be prevalent if there exists a Borel
measure u on X such that:

1. 0 < u(C) < oo for some compact subset C of X, and
2. the set E + x has full u-measure (that is, the complement of E + x has measure zero) for all x € X.

More generally, a subset F of X is prevalent if F contains a prevalent Borel Set. Also note:

1 We want to find an unique and "natural" extension of the expected value, w.r.t the Hausdorff measure, that takes finite

values for all f in a non-shy subset of all Borel measurable functions in R4
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Definition 2 (Shy Subset of X). The complement of a prevalent set is called a shy set.

such that we define:

Definition 3 (Non-Shy Subset of X). A subset of X that is prevalent or neither prevalent nor shy.
Furthermore, suppose we define:

Definition 4 (Hausdorff Measure). Let (V,d) be a metric space, « € [0, ). For every C € V, define the
diameter of C as:
diam(C) :=sup{d(x,y) : x,y € C}, diam(@) :=0

We define:

HE(E) = inf 3" (diam(C;))" : diam(C;) < 8,E € | J Cif.- 2.1.1)
i=1 i=1

The Hausdorff Outer Measure is defined by

HY%(E) = sup HX(E) = lim H*(E
(E) sup 5 (B) = lim Hy(E)

Ifi e Nand 6 € R such that § > 0, where the Euler’s Gamma function is T and constant Ny, is:

71.0{/2
Ny =—— (2.1.2)
2T (5 + 1)
when a € N and E is a Borel set we have that
L(E) = %NaH“(E) (2.13)
such that H*(E) is related to the a-dimensional Lebesgue Measure.
Definition 5 (Hausdorff Dimension). The Hausdorff Dimension of E is defined by dimy(E) where:
if0 < a < dimy(E
gepy= | © FOsa <dimy(E) (2.1.4)

0 ifdimy(E)<a <o

Therefore, we can use definitions 1, 2, 4 to prove or disprove:
Theorem 1. The set of unbounded functions forms a prevalent subset of the set of all measurable functions.

[Notes on Theorem 1]

By measurable function, we mean the pre-image of any subset of R (under a measurable function)
is in the sigma-algebra of the Hausdorff measure. (Note function f on set A is unbounded when there
isno I > 0 such that for all x € A):

[fO)] <1

however, we're unsure if theorem 1 is correct. Despite this, we could prove or disprove theorem 1
using the paper on prevalence in [4].
We, therefore, define the expected value w.r.t the Hausdorff measure to be the following:

Definition 6 (Expected Value of f). Ifn € N, where set A C R", the expected value of function f : A - R
(using def. 4 and 5) is
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_ 1 dimp(A)
Elf1= Hdimu(A)(A) [4de !

where we can see there are cases where E[f] is undefined or infinite (e.g. HY™1(4)(A) is zero, +co or f
is unbounded). In this case, if topological vector space X is R? (see §2.1) where we define B* such that:

Definition 7 (The set of all measurable functions). B* is the set of all Borel measurable functions in RA.
Then, we must prove:
Theorem 2. The expected value E[ f] is finite for all f in only a shy subset of B*.

[Note on Theorem 2]

We're not sure how to prove theorem 2; however, we refer to an answer from @Mathe at the last
page of this citation [7],

"We can follow the argument presented in example 3.6 of [4]:

Because a function can always be represented as f = f* — f~ we only consider whether positive
functions have a mean value. We consider the case of a set A with finite positive measure. In this
context having a mean means having a finite integral, and not being integrable means having an
infinite integral.

Take X := L°(A) (measurable functions over A) let P denote the one-dimensional subspace
of L%(A) consisting of constant functions (assuming the Hausdorff measure on A) and let F :=
LO%A) \ L'(A) (measurable functions over A with no finite integral)

If Ap denotes the Lebesgue measure over P, for any fixed f € F

AP(EBGR:/(f+5)y<ooE)=O
A

Meaning P is a 1-dimensional probe of F, so F is a 1-prevalent set. (In other terms, the set of measurable
functions over A with no finite integral or mean, forms a prevalent subset of the set of all measurable
functions in R4. Therefore, using def. 2, the set of measurable functions with a finite integral or mean
forms a shy subset of all Borel measurable functions in R%.)

2.2. Extended Expected Values

Four solutions to getting a finite expected value for "larger" subset of R4 is:

1. Defining a dimension function; i.e., i : [0,+00) — [0, +0c0], that’s monotonically increasing,
strictly positive and right continuous, such that when R denotes the radius of a ball in a covering
for the definition of the Hausdorff Measure, we replace RIMu(A) with h(R) so H"(A): the
h-Hausdorff measure, is positive and finite. This leads to the extended expected value E*[f],
where:

E*[f]=Hh+mfAdeh

Note, however, not all A has dimension function & which leads to:

2. If A is fractal but has no gauge function, we could use this paper [8] which is an extension of the
Lebesgue density theorem and this paper [9] which is an extension of the Hausdorff measure
using Hyperbolic Cantor sets. Note, however, when A is non-fractal (e.g. countably infinite) or f
is unbounded, there is a possibility that the expected value is infinite or undefined. Hence,

3. In the case f is unbounded and fractal, we could use [10, p.19-47], which applies a
Henstock-Kurzweil type integral (i.e., u-HK integral) on a measure Metric Space. This coincides
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with unbounded functions with finite improper Riemman integrals, including bounded functions
with finite Lebesgue integrals, bounded function with finite integrals w.r.t the Hausdorff measure,
or function with finite Henstock-Kurzweil integrals.

2.3. Examples

Ifn e N, set A € R" and function f : A — R, we want to apply the definitions of the next section
for the following examples:

(a) A =R\ {0} and f(x) = 1/x. This function is unbounded and has an undefined expected
value since the average of 1/x, using the improper Riemann integral on R \ {0}:

1 29 |
lim f —dx+ / —dx | = (2.3.1)
(31,%2,%3,%4)~(—00,07,0+ +00) (X4 — X3) + (X3 — X71) e X . X

3
. 1 X4
lim ) = (23.2)
(x1,%2,%3,%4)—>(=00,07,0% ,+00) (X4 — X3) + (X3 — X7) X3

. 1
lim
(X1,%2,%3,%4)—>(—00,07,0+ ,+00) (X4 — X3) + (X3 — X71)

X
<ln(|x|) +c|” +m(x+C
X1

(In(]x2]) = In(|x1|) + In(|x4 ) — In(]x3]))
(2.3.3)

is +o00 (When x, = 1/x1, x3 = 1/x4, and x; = exp (x7)) or —oo (when x, = 1/x;, X3 = 1/x,,

and x; = —exp (x?)), making the average undefined.
(b) A =Q, gcd is the greatest common divisor, and f7, f, : R — R where:

£ = filx) x€A, :={r/q:re€oddZ,q eevenZ,q #0,gcd(r,q) = 1} (23.4)
f20) x €4y :={n/(@) : 11 €Z,qy € 0dd Z,ged(r, q1) = 1} -

For instance, point (1/4,1) is a point in the graph of f (since 1/4 € Q and
1/4 € A;, making f(1/4) = f1(1/4)). Also, point (1/3,0) is a point in the
graph of f (since 1/3 € Q and 1/3 € A,, making f(1/3) = f,(1/3)); however,
point (+/2,1) is not in the graph of f (since \/5 ¢ Q).

Note the function in eq. 2.3.4 is bounded; however, the expected value & extensions are
undefined. (Using def. 6, we know dimy(A) = 0 but H dimg(4)(4) = +00, which makes
E[f]:

1 .
E[f]= Hdimu(4)(A) /Af dHAmID

undefined by division of +00.) Further, we assume using §2.2, crit. 1, there is no (exact)
dimension function of A nor could A be "fractal" enough for extensions of the Lebesgue
Density Theorem [8], extensions of the Hausdorff measure using Hyperbolic Cantor Sets
[9], or extension of the Henstock-Kurzweil integral on the Metric Space [10, p.19-47]. Lastly,
as stated in §2.2, crit. ??, the conditional expected value of the function in eq. 2.3.4 varies
with the "condition" chosen (see §??, ex. ??).

3. Attempt to Answer Thesis

Suppose h is the dimension function, H h is the h-Hausdorff measure (§2.2, crit. 1) and M* is the
set of all measurable functions in R4,

Definition 8 (x-Sequence of Sets). If we define a sequence of sets (F}),en, where h is the dimension
function, then when:
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(a) The set theoretic limit of (F}),en is the graph of f (i.e., (F¥),en converges to the graph of f) where

limsup F} = ﬂ UF;

r—oo r>1q>r
liminf F* = U ﬂF;‘
r—0o0
r>1q2r

with the graph of f as:
{(x, f(x)) : x € A}

the set-theoretic limit should be:

limsup Ff = liminf F} = {(x, f(x)) : x € A}
r—00

r—o00

(b) Forallr € N, where H" is the h-Hausdorff measure (§2.2, crit. 1),

0 < HMF}) < +o0

(c) we define sequence of functions (f where f} 1 dom(F}) — range(F}) such that

{(x, fX(x) : x € dom(F})} = Ff

)reN

we have (F}) is a x-sequence of sets or starred-sequence of sets.

Example 1. One x-sequence of sets of f(x) = 1/x on R\ {0} (§2.3, crit. 3a) is:

(Fren = (e, 1/x) = x € [=r,=1/r]U[1/r,r]}), oy

Example 2. Another example of a %-sequence of sets of f : Q — R where:

1 x€A, :={r/q:re€odd’Z,q €even N,q # 0,gcd(r,q) = 1}
f) = (3.0.1)
0 x€A;:={r/(q):r €Zq €oddN,ged(ry,q) =1}

using (§2.3, crit. 3b) is the following:

(FF), oy = (6, fGO) t x €4/t =r-rt < e <7-11]), oy (3.0.2)

another example is:

(F,*)reN =(x,f(x):x€fc/d:d<r,—d-r<c<d-r} (3.0.3)

reN
Note this leads to a new extension of the expected value where when there’s at least one

starred-sequence of sets where the extension is finite, the extension could be finite for all f in a
prevalent subset of R4.

Definition 9 (Generalized Expected Value). If (F}),cy is a *-sequence of sets (def. 8), the
generalized expected value of f w.r.t (F}),en is E**[f, F}¥] where:

1

— [ frdut-me
Hh (dom (F})) Jaomrry” '

V(e > 0)3I(N € N)V(r e N) (r >N=> < e) (3.0.4)

Example 3. Using  example 1, we  find  that  when  (F});en
({(xs l/x) X E [_r7 _l/r] U [1/r7 r]})reN:
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(a) dom(F}) = ([-r,—1/r]u[1/r,r])
(b) fr(x)=1/xforx €[-r,-1/r]U ff?r, r]
and the generalized expected value is:
, 1 2 1o\
(xl,xz,X3,X4)—l>1(I£100,0_,0+,+oo) (X4 - X3) + (X2 - xl) (/;l ; dx + L; ; dx) B (305)
_ 1 U "1
}Ll’glo (}”— 1/}”)+ (—1/}"—(—}")) (/_; ; dx + ./1. ] ; dX) = (306)
. 1 -1/r r _
lim YTy <ln(|x|) + c|_r +1n(|x]) + C'l/r) = (307
. 1 _
i o (=D = G/ + In(ir) I/ ) =
(3.0.8)
0 (3.0.10)

We can see from example 1, the average was once undefined but now weve “"chosen” a *-sequence which
gives a finite expected value.

3.1. Equivalent and Non-Equivalent %-sequences of Sets

Next, we define set VV/, where we want the generalized expected value to exist for all f € V' w.rt
at least one sequence (in a set of *x-sequences of sets) where

Definition 10 (Non-Equivalent Starred-Sequences of Sets). All starred-sequences of sets are
non-equivalent (in a set of x-sequences of sets), if there exists an f € V', where the generalized expected
values of f w.r.t each starred-sequence of sets has two or more different values; e.g., defined vs undefined
values.

Therelexistsian fiwh E=[fE]ZES [AFK™]

Setiof/allivalues of EX*[fiFZ7]

°
There exists an f'where E**[f,Er*|#EZ

ele EFINFRIESIRFK J#ET1.F 2]

Figure 1. Below F}, F ,’: *, F}** are non-equivalent starred sequences of sets, where V' is all circles and

E** is the generalized expected value of f w.r.t either x-sequence of sets (def. 8)

Definition 11 (Equivalent Starred-Sequences of Sets). All starred-sequences of sets are equivalent
(in the set of x-sequences of sets), if we get for all f € V'; the generalized expected value of f (def. 9) w.r.t
each starred-sequence of sets has the same value.
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Set of All values of E**[f,Fr]

Set of All values of E**[f,Fr*] and E**[f,Fk**]

et of All values of E**[f,Fr*], E**[f,Fk**], and $E“[f‘FZ*“_]’$

oy °®
®%0eaacaaan e’

Figure 2. Below F), F I: *, F}** are equivalent starred sequences of sets, where V" is the entire circle
and E** is the generalized expected value of f w.r.t either x-sequence of sets (def. 8)

However, proving that two or more starred-sequences of sets are non-equivalent or equivalent
(using def. 11 or 10) is tedious. Therefore, we ask the following:

3.1.1. Question 1

Is there are a simpler definition of equivalent and non-equivalent x-sequences of sets.

3.2. Motivation for Question

For all f in a prevalent subset of R* (def. 1), we may choose a x-sequence of sets (F}),ey where
the generalized expected value of f w.r.t least one starred-sequence is finite. However, consider

the following problem:

Theorem 3. The set of all f, where the generalized expected values of f w.r.t two or more non-equivalent
*-sequences of sets has different values, form a prevalent subset of all measurable functions in R4,

This means "almost all" measurable functions have several generalized expected values depending
on the starred-sequence chosen. Therefore, we need to choose a unique *-sequence of sets where
the new extended expected value is also "natural” and unique:

3.3. Essential Definitions for a "Natural” Expected Value

Suppose (F)),en and (F ;f*) jen are non-equivelant starred-sequences of sets (def. 8 & 10): we
have the following is essential for a "natural” expected value.

Definition 12 (Linear & Super-linear Convergence of a %-Sequence of Sets To That Of
Another x-Sequence of Sets). If we define function S : R — R, wherer, j € N such that:

HM(FY) = O(S(H"(F7™))

where we have O as the Big-O notation and 0 < lim S(x)/x, then (F}),en converges to the graph of f:
X—>00

{(x, f(x)) : x € A} at a linear or super-linear rate compared to that of (F;.‘*) jeN-
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Now we may combine the previous definitions into a main question with an answer that solves
the thesis 2.

3.4. Main Question

Does there exist a choice function that chooses a unique set (of equivalent x-sequences of sets)
such that:

(a) The chosen starred-sequences of sets converge to {(x, f(x)) : x € A} at a rate linear
or super-linear (def. 12) to the rate non-equivalent x-sequences of sets converge to

{(x, f(x)) : x € A}

(b) The generalized expected value (def. 9) of f w.r.t the chosen (and equivalent) starred-sequences

of sets is finite.
(c) The choice function chooses a unique set of equivalent *-sequences of sets which satisfy

(1) and (2), for all f € Q such that Q is a non-shy subset (def. 5) of M* (i.e., the set of all

measurable functions).
(d) Out of all the choice functions which satisfy (1), (2) and (3), we choose the one with the

simplest form, meaning for each choice function fully expanded, we take the one with the
fewest variables/numbers (excluding those with quantifiers)?

[Notes On Question]

Note, the unique set of equivalent and chosen starred-sequences of sets is defined using notation
~ (F;*®)ken, where (F;**)ien is a starred-sequence in ~ (F;**)ien. Therefore, after we define
the choice function, the answer should be:

V(e > 03N e NV(k e N)|k > N = ! / frdHP B[ <
dom(F;**)

H* (dom (F;**))

(3.4.1)

Also, consider the following: if the solution to the main question is extraneous, what other criteria
can be included to get a unique choice function? (Note if the solution is always extraneous, we want
to replace “equivelant starred-sequences of sets” with the following: “the set of all x-sequences
of sets, where the generalized expected values of f w.r.t each starred-sequence is the same”.)

4. Solution To The Main Question Of Section 2.4

Suppose h is the dimension function, H" is the h-Hausdorff measure (§2.2, crit. 1), and (F}),en
is the starred-sequence of sets (def. 8). We will use an alternative approach to definition 12 or
def. 16 so we can define a choice function which solves the main question. Read from the second
sentence of the last paragraph of the intro of §1 for a summary. Also, refer to sec. 3 and 4 of [1]
for examples: (the cited paper uses sets instead of functions).

4.1. Preliminary Definitions

Definition 13 (Uniform ¢ coverings of each term of a x-sequence of sets). We define uniform ¢
coverings of each term of (F)),en as a group of pair-wise disjoint sets which cover F} (for somer € N),
such when taking dimension function h of F¥, we want H" of each pair-wise disjoint set to have the same
value ¢ € range(H™), where ¢ > 0 and the total sum of H" of the coverings is minimized. In shorter
notation, if

2 We want to find unique and "natural" extension of the expected value, w.r.t the Hausdorff measure, that takes finite values

for all f in a non-shy subset of all Borel measurable functions in R4
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e The element t € N
e The set T O N is arbitrary and uncountable.

and set Q is defined as:

{1,---,t} if there are t ways of writing uniform e coverings of F
Q=N if there are countably infinite ways of writing uniform € coverings of F}  (4.1.1)

T if there are uncountable ways of writing uniform € coverings of FX

then for every w € Q, the set of uniform e coverings is defined using U (e, F}, ) where w “enumerates”
all possible uniform € coverings of F}* for every r € N.

Definition 14 (Sample of the uniform ¢ coverings of each term of a x-sequence of sets). The
sample of uniform ¢ coverings of each term of (F}"),en is the set of points where for every ¢ € range(H™")
and r € N, we take a point from each pair-wise disjoint set in the uniform e coverings of F}* (def. 13). In
shorter notation, if

® Theelementk € N
o The set X D N is arbitrary and uncountable.

and set W, is defined as:

{1,-- -k} if there are k ways of writing the sample of uniform e coverings of
¥y, =1N if there are countably infinite ways of writing the sample of uniform € coverings of F} (4.1.2)
x if there are uncountable ways of writing the sample of uniform € coverings of F}¥

then for every ¢ € W, , the set of all samples of the set of uniform € coverings is defined using
S(U(e, F¥,w), ), such that 1 “enumerates” all possible samples of U (e, F}, ).

Definition 15 (Entropy on the sample of uniform coverings of each term of x-sequence of
sets). Since there are finitely many points in the sample of the uniform ¢ coverings of each term of
(F)ren (def. 14), we:

(a) Take a "pathway” of line segments between all points in each sample (def. 14), such that if we define
the following:
i. [-]is the ceiling function
ii. d(Q,R) is the Euclidean-distance between points Q € R" and R € R"
iii. The sequence:
HMEX) [e]-1
{xi—l}l[zl (FF)/el
contains all points in the "original” sample S(U(g F}, w), ) where we define a "pathway” for
which we:
A. Choose a point xy € S(U(e FF,w),)
B. Take a point from S(U(g F, w), ) (excluding x,) with smallest euclidean distance from
point
X € S(U(s F},w),y). We denote this point x, where we take d(xy, x,). (If more than one

point has the smallest Euclidean distance from x,, we take either point).
C. Take a point in S(U(g F¥, w), ) (excluding xo and x,) with smallest euclidean distance

from x,. We denote this point x,, where we take d(xy, x,). (If more than one point has the
smallest Euclidean distance from x1, we take either point).
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D. Take a point in S(U(g F}, w), P) (excluding x,, x1, and x,) with smallest euclidean distance
from x,. We denote this point x3 then take d(x,, x3). (If more than one point has the smallest

Euclidean distance from x,, we take either point).
E. Repeat the process excluding points xg, X1, X,, X3, etc. until all points in the sample are

“denoted”. (This should occur [HM(F})/e] — 1 times.)
iv. Visasubset of{i € N : 1 <i < [HMF})/e| — 1} with the largest cardinality, where that we

take the subset of i-values where x; has the r;-th smallest Euclidean distance from x;_, (compared
to every point in S(U(g F}, ), ) \ {x;_1}) such that r; is not an anomaly [? ] of

fro i teN, 1<t <[HWF)) /el -1}

In other words:

A. Forall w € V, we want V to be the largest subset of {i € N : 1 < i < [H"F})/e] — 1} for

which w-values are all i-values satisfying criteria 3(a)iv.
v. Combining everything in (3a), we ultimately want all lengths between every point in the

"pathway” (def. 14) satisfying crit. 3(a)iv. We call this:

D (XO’{xw—l}weV’ S(%(E’F;9w)9 '(,b)) = {d(xw:xw—l) Lwe V}
(b) Using def. 15, crit. 3(a)v, normalize D into a discrete probability distribution. This is defined as:

P (D (x07 {Xw_1}wev, S(U(e, F;t’ w), ¢))) = (4.1.3)

y/[ A BNVAS D(xo’{xw—l}wGV’ S(%(&F;(,CU), 4’))
2€D(x0,{Xw-1hwev-S(U(EF] w).p))

(c) Take the entropy of (2), (for further reading, see [6, p.61-95]). This is defined as:
E (D (xo, {Xu—1}wev, S(U(E, Ff,w),9))) = — > xlog,x (4.1.4)
x€P(D(xo.{xw-1}twev-S(UEF] 0).4)))

(d) Take xy € S(U(e, F,w),)) where E (D (xo, {Xy_1}wevs S(U(E, FF,),¥))) is maximized. Call
this,
E(D(S(U(e, F),w),)))) where:

E(D(S(U(e, F}, ), ) = (4.1.5)

sup  E (D (xo, {Xp1}lwevs SU(e, FF, w),9)))
X ES(U(e,FFw))

with eq. 4.1.5 the entropy of the sample of uniform € coverings of F}¥.

Definition 16 (Starred-Sequence of sets converging Sublinearly, Linearly, or Superlinearly to A
compared to that of another x-Sequence). Suppose we define starred-sequences of sets (F}),en and
(F;‘*) ien, where for a constant & € range(H") greater than zero and variable r € N, we say:

(a) Using def. 14 and 15, suppose we have:
|8(U(e, Ff, ), )| = (4.1.6)
sup{lS(%(s,Ff*,cu’), P jeEN, o €Q, ¢ eV, E(D(S(%(E,F;f*,ca’), P))) < E(D(S(“Zé(s,Ff,co),zp)))}

then (using |S(U(e, FF, w), p)|) we get

ale,r,w) = |S(%(E,F;*,co),z/)))| / sup sup |S(Cll(a, Fr*,co),zp)' 4.1.7)
weQ pey, — 1
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(b) From def. 14 and 15, suppose we have:
|S(U (e, FF, ), )| = (4.1.8)
inf {|S(Ue, FF*,0),90)] : jEN, o €0, ¥ €W, B(D(S(UE,F1*,0"),$) 2 E(D(SUCE, Ff, ), )}

then (using |S(U(e, FY, @), ¥)|) we have:

a(e,r,w,p) = |S(%(E,F , @), zp)i / sup sup |S(Clé(£ F¥,m), zp)| 4.1.9)
weQ peyv,

1. Ifusing a(e,r,w,) and a (e, r, w, ) we have that:

sup sup limsuplimsupa (e, 7, w,y) = 1nf inf liminf hm 1nfa(£ r,w, ) =0
weQPeY, -0 r—o0 QyYpe¥, -0

we say (F}),  converges to A at a rate superlinear to that of (F™) jen.
2. Ifusing equations a (g, j, w,Y) and a (¢, j, w,P) (where we swap (F¥)reny ina(e,r,w,p)and a(e,r,w,P)
with (F;(*)jeN) we have that:

sup sup limsuplimsupa (e, j,w,p) = 1nf inf liminf hm 1nfoc(£ Jj,w,p)=0
weQYPEY, -0 Jjooo Qype¥, -0

we then say (F}),en converges to A at a rate sublinear to that of (F;‘*) jeN-

3. If using equations a (g, r,w, ), a (e, r,w,P), & (€, j, @, ¥), and a (g, j,w,P) (such for the two latter, we
swap
(F¥)ren in o (,r,,9) and a (e, 7, w,P) with (F;f*)jeN) we have both:

(a) sup sup limsuplimsup« (e, 7, w, ) or 1nf inf liminfliminf a (e, 7, w, ) does not equal zero

weQPpe¥, -0 r—o00 QyYey, -0 r—oo
(b) sup sup limsuplimsup« (g, j,w, ) or 1nf inf liminf hm 1nf a (g, j,w, ) does not equal zero
weQYPeY, -0 jooo Qye¥, -0

and say (F}),en converges to A at a rate linear to that of (FJ’.‘*) jeN-

5. Attempt to Answer Main Question Of Section 2.4

5.1. Choice Function
Suppose we define the following:

1. (F;**)ken is a starred-sequence of sets (def. 8) which satisfies (1), (2), and (3) of the main question in
§3.4

2. S'(A) is the set of the starred-sequences of sets that have finite generalized mean (def. 9).

3. (F;*) jen is an element S'(A) but not an element in the set of equivalent starred-sequences of sets (def.
11) of (F;** )ren where using note 3.4, we can represent this criteria as:

(F7)jen € S"(AN\ ~ (Fy ™ en (G.1.1)

Further note, from def. 16, if we take:
18U Ff* @), )l = (5:12)
inf{ls(%(s,Fj**,w’), Pl jeN, o €Q, P €Yy, E(DS(UEFT*,0'),9") > E(D(S(UE, F*, w), IP)))}

and from def. 16, we take:
[8(Ue, FF**, w), )| = (5.1.3)

Sup{IS(UGE,F1*, ), 9] 1 JEN, & €Q, ¢/ €Wy, BIDSUEF}*, ), 9) < B(DSUEFL**, @), p)]
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Then, when we write def. 14, eq. 5.1.2 and eq. 5.1.3 as:

sup sup |S(U(e, F;**, w), )| = |8 (e, F;* )| = |§] (5.14)
weQPeY,
sup sup [S(U(e, F;**, w), )| = |8'(e, F; )| = 18 (5.1.5)
WweEQPEY,,
sup sup [S(U(e, F;**, @), P)| = |8'(e, F; )| = |8 (5.1.6)
weQYPeEY,, -

the choice function (which we’ll later define on pg. 24, thm. 4) should immediately choose F;** when

1. Forall m € {1,- - -,n — 1} when defining the set of all values of the m-th coordinate of (c1,¢;,- - -, ¢,) €
Fy** (ie., Fyx*—where, unlike cit.[1, §4], we focus on the domain of F;** to get "n — 1" instead of

n ”

n”), then when z > 0, we either want:

(a) SuP(Fg** - SUP(F,;**) = zand 1nf(F£** )— mf(FI;**) =-z
(6) sup(Fh4) = sup(Fye) = 0 and inf(Fy R ) - mf(F,;*"*) =z
(c) sup(FI;** ) —sup(F *) =zand 1nf(Fl$‘** ) — inf(F *) =

(d) sup(Fk:;m)—sup(F’* *) = 0 and inf(F fl*m)—mf(F'* )_

2. If the center of the universe is a chosen point Z € R", where:

Z = (21,22, " " Zn) (5.1.7)
then forallm € {1, - - -,n — 1}, there exists q € N, s.t. for all k > g, when set F*** is a collection of all the
values of the m-th co- ordmate of (c1,¢2, - -, ¢y) € F;** (again, unlike cit. [1, §4] we focus on the domain of

F}™* to get "n—1" instead of "n”), we must get:

1

_— xdH" = 5.1.8
Hh(F;::(n*) F}’:** Zm ( )

where, using absolute value function ||-|| and m € {1,2,- - -, n}, when set F*** is a collection of all the values
of the m-th co-ordinate of (cy, ¢y, - -, ¢,) € F;:**, for z > 0, when we deﬁne
S(z,k,m) = ||z — (sup (F::l*m) —sup (F;:‘n*)) (inf (F;fn*) —inf (F;:l*m)) (5.1.9)

[ (i (i) - (i, ) ) (som (e5,) = s () =) |
and
Tz, k,m) = [(sup (F;::l*m) - zm) (inf (F***) - zm) (sup (F***) - zm) (inf (F;::l*m) zm)] (5.1.10)
[ (inf (F257) = 2m) = (1nf (F5) = 2m) + (s0 (P2, ) = 2m) = (sup (P2 ) = 20) -1
(nt (257) ) = G 155,) =20 (50 (235, ~20) - (s0p (257) - 2)]

criteria (1) is achieved, using eq. 5.1.9, when:

n—1
S'(z,k) = ﬁ > S(z.k,m) (5.1.11)
m=1

such that, for all k € N:
S'(z,k)=1 (5.1.12)

and criteria (2) is achieved, using eq. 5.1.7 and 5.1.10, when:

T'(Z,k) = —— Z T (2, k, m) (5.1.13)
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such that, for all k € N:
T'(Z,k)=0 (5.1.14)

where we consider the following:

5.2. Question:

How do we create a choice function which solves the question in sec. 3.4 using 8, |8'], |8'|, §'(z, k),
and T'(Z, k) or equations 5.1.4, 5.1.5, 5.1.6, 5.1.11 and 5.1.13 resp.?

5.3. "Attempt” to answer the Question

(Note the attempt might be wrong but could offer hints to how the solution would appear).
Suppose z = 1 and the chosen coordinate for the center of the universe (i.e., eq. 5.1.7) is the origin, where
Zy =0forallme{l,- -, nk

Z = (Zly Zpy ey, Zn) = (531)
0 =(0,0,---,0)
————
n times

Using equations 8, @, |8'|, S'(z,k), and T'(Z,k) (i.e., eq. 5.1.4,51.5,5.1.6,5.1.11 and 5.1.13) with the
nearest integer function [-], we define:

K, F*™) =

18| (1 + [( 18'1(18'1+218'1)

1S1+18'1)(18/1+181+187])

)+ i)

(1+[1s171T]) (1+ [181/157])

s'q, k)(|| — 18| + |3'|) —T'(0,k) (5.3.2)

where using K(e, F;**), the choice function should be the following:
Theorem 4. If we define:
M(e, F}**) = |8 (e, F;*)|(K(e, F**) — |8/ (e, FF*)))
M(e, 1) = |8'(e, F} (K (e, F}*) = |8'(e, F[)])

where for M(e, Fi**), we define M(e, Fi'**) to be the same as M(e,F ™) when swapping "j € N” with
"k € N” (for eq. 5.1.5 & 5.1.6) and sets F;** with F;(* (for eq. 5.1.4-5.3.2), then for constant v > 0 and
variable v* > 0, if:

S(e, k, v*, F**) = inf ({|s/(e,Fj**)| L ENM(EFT*) 2 M(e, Fp*™) > u*} U {u*}) + (5.3.3)
and:

S(e, k, v*,F;f*) = sup ({IS'(E, F}"*)I 1 j €N, v* < M(e, F;*) < M(e, FI’:**)} U {—v*}) +v (5.3.4)
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then for all (F;*)jeN € S"(A\ ~ (F}* ™ )en (§5.1, crit. 3), if:
|8'(e, F;* )| + v
liminf lim Im ——M— = (5.3.5)
e—>0 v¥—> o0 k—o00 S(E, k, U*,F;*)
I8'(e, F;* )| + v
limsup lim lim —— =0
g0 Ut—ook—ooo §(g,k, v*,F;‘*)
we choose (F;**)ien satisfying eq. 5.3.5. (Note, we want supff = —oo, inf @ = +oo, and (F;** e to

answer the main question of §3.4) where the answer to the focus® is E**[f, F ***] in eq. 22 (when it exists):

o ()

V(e >0)3I(NeNVkeN)|k>N=> f frdH" —E*[f,F**]| <e
dom(Fl‘:**)

(5.3.6)

[Explanation of Theorem 4]
The theorem 4 is similar to the methods used in def. 16 crit. Oa and Ob or & (g, r, w, ) and a (e, ¥, w, P) and

def. 16 crit. 1, where:

sup sup limsuplimsupa (e,7,@,9) = inf inf liminfliminf « (¢,7,w,9) =0
weQPe¥, -0 r—o0o weQPeY, -0 r—oo —

such that we replace:

E(D(8(U(e, F, @), ))) = M(e, F;*)
E(Z)(S(%(E,Fj’.‘*, w),1))) = M(e, Fj’.**)
|S(U(e, FF, ), )| = |8 (e, FF )

sup sup ’8(%(3, Ff,cu),z,b)‘ — 8(e, k,v*, F**)
wEQPEY,, - J

sup sup |S(%(E,Ff,w), zp)‘  S(e, k,v*, F**)
weQPey, J

note the changes to def. 16, crit. 1 were made, so M(e, F;**) is "large enough” compared to
M(E,F;f*), with (Fj’f*)jeN non-equivalent to (Fy** ey (e.g. when A = Q, (Fy**)en should be
({c/k! : c € N,1 < ¢ < k)yen and never give M(e, F}**) smaller than "small” M(e, F]’.**), eg.:

Fjen={u/w:ueZweNw<j,-w-j<uw-jby

or larger than "large” M(E,Fj’."*); eg. (F;*)jeN ={u /(6(j1) : uy € Z,—6j - j! <uy <6j - j})jen)
Moreover, in 8(g, k, v*, F;*) and S(e, k, v*,F}‘*) of thm. 4, we add constant v > 0 and variable v* > 0 so
if either
1. 8(e, k, v*,F}’.‘*) —v =0 (i.e., using a related limit to eq. 5.3.5, division by zero is undefined).
2. g(s, k,v*, F;‘*) —v = 0 (i.e., using a related limit to eq. 5.3.5, division by zero is undefined).
3. inf ({lS’(s,F;*)l = N,M(E,F;*) > M(E,F,’:**)}) = +oo (ie., similar to S(e, k, U*,F;*) of eq.
5.3.3, with no variable v* such that M(e, F;**) = 0 and 3(J > 0)V(j; > 0)3(j > jl)(M(e,F}.‘*) <),
where we apply a related limit to eq. 5.3.5 that’s undefined due to division by infinity.)

3 We want to find an unique and "natural" extension of the expected value, w.r.t the Hausdorff measure, that takes finite
values for all f in a non-shy subset of all Borel measurable functions in R4
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4. inf ({|3'(s, F*)| - j € N, M(e, F}*) > M, F;;**)}) = @ (i.e., similar to 8(e,k, v*, F**) of eq. 5.3.3,
with no variable v* and M(E,F;*) = 0, where we apply a related limit to eq. 5.3.5 that's undefined since
inf ({|S’(s, F;.**)l 1 j e N,M(e, F;*) > M, Fl’:**)}) is an undefined empty set.)

5. sup <{|S’(s, F;*)l 1 j €N, M(e, F;‘*) < M, F,’:**)}) = +oo (ie., similar to S(e, k, v*,FJ’.‘*) of eq.
5.3.4, with no variable v* and M(E,FJ’.‘*) = 0, where we apply a related limit to eq. 5.3.5 that’s undefined
due to division by infinity.)

6. sup ({|S’(s, F}’.**)| 1 j € N, M(e, F;‘*) < M, F;**)}) = @ (i.e., similar to S(e, k, v*,Fj’.**) of eq. 5.3.3,
with no variable v* and M(e, F;*) = 0, where we apply a related limit to eq. 5.3.5 that's undefined since
inf ({IS’(E,F**)| 1 J € N,M(e, F7*) > Mg, F;**)i) is an undefined empty set.)

7. {z tj,z € NNM(e,Fjyz) < M(e, Fj}| = +oo (ie., infinite number succeeding F are smaller than
original F j, where such Fj should be eliminated).

the limit in eq. 5.3.5 still exists.

5.4. Question:

How do we use mathematica code to illustrate §4 and 5?
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