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Abstract: Driven by the latest advancements in wireless technology location-based services have 

attracted the interest of computing and telecommunication industries, as well as academia, to launch 

fast and accurate localization systems. The aim of this work is to propose a closed-loop localization 

framework for large-scale deployments facilitating both the modeling and continuous monitoring of 

Activities of Daily Living (ADLs). The design of these localization systems is very challenging, time 

consuming and their adaptation in environmental changes is hard. The proposed methodology takes 

advantage of limited RSSI measurements at different distances, enriches the data and accurately 

models the attenuation of the propagated signal. These measurements are then used as input in the 

data-enrichment process, where the proposed framework generates datasets at different distances. 

Therefore, all created datasets (gathered and generated) are exploited to train the proposed ML-based 

chain. The primary purpose of the ML-chain is to determine the distance between the mobile nodes 

and each installed beacon. The position is then calculated using trilateration methods. Finally, the 

collected RSSI along with the estimated position will be stored and used for increasing position 

accuracy, allowing our proposed framework to continuously and automatically optimize its 

processes and accuracy. Furthermore, to be useful and practical, once reliable position estimation is 

achieved, the proposed framework can detect predefined Activities of Daily Living (ADLs) based on 

location patterns and movement behaviors. This capability opens new opportunities for context-

aware services and smart environment applications. Each module of the framework was individually 

tested and evaluated, demonstrating strong performance both in isolation and as part of the 

integrated system.  

Keywords: Bluetooth Low Energy (BLE); RSSI; Indoor Localization; Indoor Positioning System (IPS); 

signal filtering; machine learning; location-based Services; ADLs 

 

1. Introduction 

Indoor positioning and Activities of Daily Living (ADLs) identification are essential components 

in Ambient Assisted Living (AAL) environments, designed to enhance the safety, independence, and 

well-being of elderly or individuals with disabilities [1]. Indoor location-based services (LBSs) allow 

for real-time tracking of residents within their living spaces, enable emergency response in case of 

falls or health incidents, monitor mobility patterns to detect potential health concerns, and facilitate 

context-aware automations, such as adjusting lighting or environmental controls. LBSs can express 

the importance of location awareness, making things more intelligent and offering more efficient 

context-aware services, that can provide a plethora of solutions in multiple domains such as public 

safety and healthcare [2].  

There are several widely used techniques that are used in localization systems. The variety of 

these techniques leverage modalities such as, Received Signal Strength Indicator (RSSI) signal 

measurements, and Time of Flight (TOF) measurements. Each technique has its 
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advantages/disadvantages and limitations [3]. TOF techniques offer better localization results but 

require specialized hardware that increases the deployment cost. On the contrary, RSSI-based 

techniques’ main advantage is the low-cost deployment (no specialized hardware) making a suitable 

choice for large scale deployments.  RSSI-based techniques can be divided into two categories, 

distance-based, and fingerprinting-based (FP-based) [1]. Fingerprinting-based techniques exploit a 

vector of RSSI measurements in known fingerprint positions to create a so-called reference 

fingerprint map (RFM). Then, a machine-learning regressor is fed with the RFM data to build an 

association rule between RSSI measurements and their corresponding position estimates. Although 

FP-based techniques can predict effectively the position of mobile nodes, they are inefficient when 

deployed in large-scale areas.  

In contrast, distance-based techniques directly translate RSSI values into position coordinates 

for mobile nodes using mathematical models that estimate the distance between transmitter and 

receiver based on signal attenuation [4]. Although distance-based methods are generally less 

resource-intensive and easier to apply to larger scale areas compared to the technique mentioned 

above, they tend to suffer from reduced accuracy due to the inherent variability and from the 

unpredictable evolution of RSSI values caused by multipath effects, interference from various 

obstacles and environmental changes. As a result, the estimated distances may lead to significant 

errors in position estimation, especially in indoor environments. 

Meanwhile, ADL identification involves monitoring tasks like eating, dressing, and bathing to 

assess the individual’s health status and detect early signs of cognitive or physical decline [5]. This 

information supports tailored interventions, such as reminders for essential activities, personalized 

health plans, and actionable insights for caregivers. Together, these technologies enable proactive 

care, improved safety, and greater autonomy, fostering smarter and more responsive living 

environments that support aging-in-place and reduce healthcare costs. Machine learning plays a key 

role in this process by analyzing complex behavioral data patterns, enhancing activity recognition 

accuracy, and enabling adaptive systems that respond intelligently to individual needs. 

By tracking a person's real-time location within their living environment using communication 

technologies like Wi-Fi, BLE beacons, or sensors, and combining it with sensor data (motion 

detectors, wearable devices, or smart home appliances), it effectively enables the accurate detection 

can categorization of the type and quality of activities being performed [6]. For instance, detecting 

prolonged presence in the kitchen along with interactions with smart appliances may indicate meal 

preparation, while extended time in the bathroom combined with water usage can suggest bathing. 

Similarly, lack of movement or abnormal positioning (e.g., remaining in bed for an unusually long 

period) may signal potential health concerns such as falls or mobility issues.  

The fusion of location-based data and activity recognition provides a richer context for 

accurately modeling and identifying ADLs, enabling smart systems to deliver personalized 

assistance, trigger reminders, or alert caregivers to unusual behavior patterns, ultimately enhancing 

safety and proactive care management [7]. ADL modeling plays a critical role in translating raw 

sensor and location data into meaningful insights about an individual's functional abilities and daily 

routines. By formalizing how activities are identified, categorized, and interpreted, ADL modeling 

ensures consistency, enhances accuracy, and enables intelligent systems to make reliable, context-

aware decisions that support health monitoring and intervention. 

This paper introduces a comprehensive framework that leverages IoT signal processing and ML 

algorithms to achieve precise indoor localization and effective environmental monitoring. 

Furthermore, it exploits the person’s position and determines whether he performs one of the ADLs 

defined. The proposed framework incorporates a feedback process that dynamically adjusts system 

parameters based on real-time conditions, ensuring adaptability and resilience. By integrating 

feedback mechanisms, the framework enhances its ability to cope with environmental variability, 

signal noise, and unforeseen disruptions. 

The remainder of this paper is structured as follows: Section 2 reviews related work in IoT-based 

indoor localization and monitoring systems. Section 3 outlines the proposed framework, detailing its 
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architecture, key components, and feedback-driven methodology. Section 4 presents the 

experimental setup, dataset description, and evaluation metrics used to validate the framework. 

Section 5 presents the machine learning training process. Section 6 discusses the results and 

implications of the findings. In Section 7, the use of positioning information to detect an Activity of 

Daily Living (ADL) is examined, and a proof-of-concept experiment is presented. Finally, Section 8 

concludes the paper with insights into future research directions. 

2. Related Work 

Location-based services have gained significant attention due to their promising development 

potential with the advent of IoT and CPS services. However, accurate and efficient localization of 

objects remains a challenging task due to the dynamic and complex nature of indoor environments. 

In recent years, literature has proposed various solutions for localization and tracking, introducing 

different approaches and algorithms [8,9]. In [10] an Obstruction-Aware Signal-Loss-Tolerant Indoor 

Positioning (OASLTIP) system is proposed towards a cost-effective BLE-based indoor positioning 

algorithm. Their approach integrates running average filtering, multilateration, and particle filtering 

to enhance performance. The system is evaluated in both simulated and real-world environments, 

achieving an average positioning error of 2.29 meters.  In [11], an Adaptive Range-Based 

Localization (ARBL) algorithm is introduced, which combines trilateration with an optimized 

reference node selection approach. The algorithm leverages combinations of three reference nodes, 

selecting the most optimal set at any given time based on a criterion that considers both ranging error 

and localization geometry. Simulation and experimental results demonstrate that the proposed 

algorithm significantly reduces localization error. The work in [12], proposes a collaborative indoor 

positioning approach that utilizes a multilayer perception (MLP) neural network to estimate relative 

distances. Subsequently, they apply trilateration methods to determine the final device position. 

Experimental results show that the proposed collaborative approach surpasses the standalone 

trilateration method in terms of positioning accuracy. In [13], authors present a Bluetooth Low Energy 

(BLE)-based indoor positioning system that combines both trilateration and fingerprinting methods, 

with a primary focus on monitoring the daily living patterns of individuals, particularly those with 

disabilities. Their experiments, conducted in various home environments, demonstrate that the 

system can achieve a location accuracy of approximately 90%. In [14], a scalable and cost-effective 

Indoor Positioning System (IPS) based on Bluetooth Low Energy (BLE), incorporating frequency 

diversity techniques, Kalman filtering, and weighted trilateration. Their results show an average 

error of 1.82 meters for moving devices, 90% of the time, and 0.7 meters for static devices.  Authors 

in [15], investigate user movement in indoor environments by developing a positioning model based 

on Convolutional Neural Networks (CNN). For their evaluations, they employ machine learning and 

deep learning techniques to predict their proposed system results and show that their systems can 

achieve a high accuracy of approximately 97%, with an error rate of about 3%. Authors in [16], present 

a method for compensating RSSI values by applying Artificial Neural Network (ANN) algorithms to 

RSSI measurements from three different BLE advertising channels, along with a wearable camera as 

an additional source to detect the presence or absence of human obstacles. The improved RSSI values 

are then converted into ranges using path loss models, and trilateration is applied to estimate the 

device’s location. Their results demonstrate that this approach significantly outperforms other 

methods, such as fingerprinting or trilateration using uncorrected RSSI values.  

Significant efforts have been made in identifying Activities of Daily Living (ADLs). Earlier 

studies have mainly focused on wearable devices, particularly those equipped with accelerometers 

and gyroscopes and capture movement patterns. A survey [17] examines the application of machine 

learning models—including decision trees, support vector machines, and neural networks—for 

effective ADL classification. Several studies also point to the critical role of signal processing and the 

extraction of meaningful features in enhancing recognition performance [18]. Foundational works 

have compared classifiers such as decision tables, SVMs, and k-nearest neighbors when applied to 

activities like walking, running, and lying down [19]. Additional research has investigated how 
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accelerometers and gyroscopes within wearable devices recognize movement, classifying a broader 

set of activities. Finally, another work evaluates wrist-worn systems equipped with motion sensors 

and highlights how sensor fusion can contribute to more accurate recognition, particularly in fall 

detection [20]. 

By integrating data from both wearable and environmental sources, sensor fusion techniques 

have improved accuracy of activity recognition systems. A widely cited study by Roggen et al. [21] 

illustrated how combining inputs from wearable accelerometers with ambient environmental sensors 

enhanced the classification of more complex behaviors such as cooking or cleaning. This method 

leveraged machine learning and sensor data to outperform methods with individual data sources. 

Based on this approach, Gjoreski et al. [22] investigated similar fusion strategies that combine smart 

home technologies with wearable devices for fall detection and daily routines monitoring. Their 

findings showed that applying both feature-level and decision-level fusion methods minimized false 

alarms and improved the system’s overall reliability. 

In research work by Rashidi and Cook [23], ambient sensors like motion detectors were 

combined with wearable accelerometers and monitored activity in smart home environments. The 

system used Bayesian networks to integrate data from different sensors, and it performed especially 

well in recognizing activities that depend on context—like when someone enters or leaves a room. 

In the same context, more recent studies such as Zhao et al. [24] have used deep learning techniques. 

By using data from wearable devices and smart home sensors, they showed that deep neural 

networks can effectively capture complex time-based activities. Overall, combining data from 

different sensors—known as sensor fusion—has significantly improved the recognition of Activities 

of Daily Living (ADLs). Moreover, context-aware approaches that take into account both time and 

space have improved ADL recognition. Rashidi and Cook [23] found that incorporating time-based 

dependencies using Bayesian networks improved the system’s ability to predict sequences of 

activities. Similarly, Krishnan and Cook [25] used time-series models with sliding windows to detect 

overlapping tasks. Researchers have also explored deep learning methods like Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs) to automatically detect spatial and 

temporal patterns from raw sensor data. Zhao et al [25], for instance, developed a hybrid system 

using CNNs and Long Short-Term Memory (LSTM) networks to recognize complex ADLs with high 

accuracy. These efforts demonstrate the importance of modeling both time and space in activity 

recognition systems, especially for creating intelligent and responsive smart home environments. 

Context-aware systems that include indoor location data have proven especially useful for accurate 

ADL detection. However, challenges remain—particularly in making these systems generalize across 

different users and homes, protecting privacy, and dealing with unbalanced datasets. To address 

these issues, researchers are increasingly looking at techniques like federated learning and transfer 

learning, which aim to create more flexible, secure, and personalized ADL recognition systems 

without compromising user data. 

3. Reference Architecture 

Nowadays, the cloud-edge continuum has become the standard approach for intelligent systems 

that aim to deliver scalable, flexible, and efficient solutions to end-users. These systems must 

implement various services and applications across different layers, working in collaboration to offer 

seamless end-to-end solutions. In this context, a multi-layer indoor localization framework was 

designed and implemented, able to provide Activities of Daily Living on top of the localization 

services. The architecture of the proposed localization framework, shown in Figure 1 below. 

Our framework is divided into three collaborative layers, namely Edge, Cloud and Public layer. 

Starting from the Edge layer, which comprises from the devices that the system is monitoring to 

estimate their position, the interfaces (gateways) that are responsible for forwarding the collected 

data to the upper layers and finally the fixed-position devices (beacons) that are installed in different 

places around the indoor environment. 
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Figure 1. End-to-End Architecture. 

The communication at the edge layer is based-on BLE (Bluetooth Low Energy) protocol, where 

the fixed devices are broadcasting message on a millisecond basis. On the other hand, the non-fixed 

devices are receiving these messages, extract any localization-based valuable information (e.g. RSSI) 

and forwarding the data collected to the upper layer, the Cloud layer, through the gateways for 

further processing. 

The Cloud layer is responsible for aggregating data, processing, storing and finally extracting 

relevant information to the end-users, which, in the specific case, is the estimated positions of the 

devices. The main aggregation point for the edge data is the Data Aggregation services, where the 

received data are filtered, enriched with information gathered by Auxiliary Services and finally are 

stored to the Storage infrastructure. Auxiliary services provide software components for managing 

device and user profiles, which are closely aligned with the goals of the proposed localization 

framework. Device management services expose APIs utilized by the localization process, including 

device information and their relationships with the end-users (e.g. device attached to the hand of a 

user), and applicable indoor environments. Meanwhile, user management services are storing 

information related to user profiles, such as health habits and historical records, which are related 

with ADL monitoring applications. 

The aggregated data is forwarded to the localization services, which analyze the collected 

information and estimate the positions of devices within indoor environments. The proposed 

localization flow, shown in Figure 2, is divided into three different processes namely, Edge Runtime 

Environment (EDE), RSSI Measurements Processing and Location Estimation. 
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Figure 2. Localization Process. 

EDE is the primary process of the proposed flow, involving the collection of RSSI measurements 

and the enrichment of the collected data (more details in Section 4.3). The next step, Measurements 

Processing, focuses on RSSI processing and the extraction of valuable insights that will guide the final 

stage of the flow—the Location Estimation process. The RSSI processing task ensures signal 

smoothness by filtering out noisy measurements using a custom filtering mechanism (details in 

Section 4.2). The processed RSSI data serves as input for the next two parallel processes: the LoS/NLoS 

classification and Distance Estimation processes (details in Sections 5.1 and 5.3, respectively). The 

LoS/NLoS classification aims to detect the presence of obstacles between the communicating entities 

(beacons and moving devices), while the Distance Estimation process is trying to estimate the actual 

distance of the communication parties.  

The final part of the localization flow is the Location estimation process, where the spatial 

coordinates of the devices are estimated. This process is divided into two separate sub-processes. The 

Beacon Selection Optimization sub-process is responsible for identifying a group of beacons (details 

in Section 5.3), that will be used by the trilateration procedures during the Position Estimation sub-

process (details in Section 5.4). 

Once accurate position estimation is established, the framework can identify predefined 

Activities of Daily Living (ADLs) by analyzing spatial patterns and movement trajectories. This 

enables context-aware insights and supports intelligent behavior recognition within the living 

environment. 

4. Design Phase 

This section provides an overview of the three building blocks of our data handling pipeline 

within our proposed system: data collection, preprocessing, and enrichment. The intention is to 

provide the localization and classification models with both context-friendly and clean data. 

4.1. Data Collection 

To collect the necessary data, a TI CC2650 sensor (Rx Sensitivity BLE 1 Mbps) is used as a 

transmitter, sending signals via Bluetooth Low Energy (BLE). The receiver is an ESP32 Thing device 

(Tx Power: 0 dBm, Rx Sensitivity (BLE): ~ -97 dBm), which was responsible for receiving the signals 

and sending the RSSI (Received Signal Strength Indicator) measurements to our cloud infrastructure. 

To evaluate how the signal behaves under different conditions, measurements were taken across 

various environmental scenarios and distances: 

• Open space: Measurements were performed in an environment without significant obstacles, to 

record the performance of the BLE signal under ideal conditions. 

• Indoor space with obstacles: Static and dynamic obstacles were placed between the transmitter 

and the receiver to measure the signal attenuation. The scenarios included: a static obstacle (chair 

and person) at half the distance between the transmitter and the receiver, a dynamic obstacle 

(one/two person/s) moving freely within the space and finally one/two person/s moving 

between the transmitter and the receiver. 
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• Variable distance: All measurements were performed at distances from 0.5 meters to the 

maximum of 4 meters in increments of 0.5 meters. 

4.2. Data Preprocessing 

One of the primary techniques used by localization systems to determine object positions in 

indoor environments involves the analysis of the Received Signal Strength Indicator (RSSI) of 

incoming communication messages. Respective approaches effectively try to directly relate the 

distance between the transmitter and receiver to physical modalities’ measurements. A major 

challenge with received signal intensity is the significant, abrupt and unpredictable fluctuations 

caused by multipath effects, where signals undergo reflection due to obstacles such as walls, metal 

surfaces, and moving around human bodies. These fluctuations greatly impact the accuracy of indoor 

localization systems, necessitating the use of signal processing techniques to mitigate these effects. 

The goal of RSSI preprocessing in the context of the proposed framework is to filter out RSSI 

samples that significantly deviate from the overall sample. This is achieved by promoting a subset of 

the collected RSSI samples that consist of strong signals with minimal deviations. We prioritize strong 

signals, relying on signal attenuation models, which essentially show that a signal strength decreases 

consistently with respect to distance between communication nodes increase. Our assumption relies 

on the idea that strong signals are the result of direct communication, while the weak signals are 

results caused by obstacles. Therefore, relying on this principle, if strong signals are present within 

our RSSI samples, are the ones that will provide a more accurate estimation of the distance. This 

process is targeting subset (enclosed in red dotted lines) of the signal as shown in Figure 3. 

 

Figure 3. RSSI Subset selection. 

To extract the best subset from the RSSI sample, a weighted rating approach was implemented 

(the weights are described in Table 1). According to this approach, very weak RSSI samples (outliers 

-red arrows in Figure 3) are initially removed, and then the RSSI sample is divided into chunks and 

finally every RSSI chunk is rated. The RSSI sample chunk with the best rating score, is selected and 

forwarded to the next process of the localization flow, as described in Section 3. The minimum RSSI 

chunk length that our algorithm uses is 5 sec. 

Table 1. Rating Algorithm Weights. 

Criterion Weight 

Standard Deviation 60% 

RSSI Chunk Length 20% 

Loss Rate 10% 

Filtered Data Length 10% 
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To evaluate the RSSI pre-processing algorithm three different scenarios were performed, at eight 

different distances. The results are shown in Figure 4. The first scenario performed is the simplest 

one where the transmitter and the receiver communicate without any obstacle between them. In the 

other two scenarios communication is performed while an obstacle is placed between them. In the 

first case, the experiments were performed using a stationary chair and in the second case the same 

experiment was performed with a human between the transmitter and the receiver. 

 

Figure 4. RSSI Pre-processing results per scenario. 

Each graph in Figure 4 illustrates the Cumulative Distribution Function (CDF) of the RSSI 

samples. As indicated, our signal pre-processing algorithm selectively removes RSSI samples that 

deviate significantly from the overall RSSI sample. The objective of these visualizations is to 

demonstrate how the distribution of raw RSSI samples (left column) becomes more concentrated after 

the processing task (right column), emphasizing to the retention of ‘clean’ RSSI samples. An 

expanded CDF curve reflects a more consistent and outlier-free dataset, which is critical for 

accurately associating RSSI measurements to specific distances. 

As illustrated, the distribution of raw RSSI samples (left column) across all scenarios exhibits 

substantial variability. In the simplest scenario (Empty Space), our pre-processing algorithm results 

in a marked reduction in RSSI samples density—even at the greatest distances—where the decrease 

reaches approximately 90%. This reduction becomes even more pronounced at closer ranges, with 

density shrinking by up to 300% at distances between 0.5 and 2 meters. In scenarios involving 

obstacles (Steady Human and Steady Chair), the reduction in RSSI samples density is less severe, 

averaging around 100% across most distances, and exhibiting marginally improved results at shorter 

ranges. The results clearly indicate a strong correlation between signal behavior and the uniformity 

of the surrounding environment. These findings facilitate the extraction of meaningful insights 

regarding both the environmental context (e.g., open space vs. obstructed conditions) and the relative 

distances. 
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4.3. Data Enrichment 

The data enrichment process is crucial as it provides flexibility and bandwidth requirements 

reduction in indoor localization systems. It also involves the integration of dynamic data into the 

overall localization process. Instead of embedding all the necessary information directly into network 

devices (in edge-layer), the data are retained to the cloud-layer, making it accessible to all system 

components, through well-defined APIs. The key concept of the proposed localization system is that 

devices in edge-layer collect only the RSSI samples from installed beacons and forward this 

information to cloud-layer by utilizing MQTT (Message Queuing Telemetry Transport) protocol. The 

data is forwarded using the following topic template, 

gateways/{gatewayId}/events/devices/deviceId}/position 

To identify the indoor environment where the localization process will try to estimate the 

position of an obstacle or human, we examine the gatewayId of the received message (at cloud layer). 

As indicated in the reference architecture (Section 3) each indoor environment contains at least one 

gateway. Using the gateway identifier the data-enrichment process is loading the corresponding 

indoor environment information which includes the following information, 

• General information about the indoor environment, e.g. relevant objects (bed, chairs, etc..). 

• The rooms, including their spatial coordinates, are used by the system to identify the room that 

the obstacles or users are inside. 

• Areas of interest with the corresponding annotations (e.g. kitchen) that will be used later by the 

ADL-related processes, e.g. a polygon that indicates the surrounding area of the kitchen. 

• Fixed or moving obstacles that are present in the area. This information will be added to the 

system either statically or through the localization process.  

• Information related to the house tenants, e.g. their current location in the indoor environment. 

Next, the process is loading information for the deviceId identifier and devices included in the 

message payload (localization beacons). For the devices the enrichment process is loading the 

following information, 

• General information about the devices. 

• Details related to the device’s hardware components, which are relevant to localization (e.g. 

transmission frequency, transmission power) 

• The spatial coordinates of the beacon, mandatory for position estimation process. 

• Details identifying the user or obstacle to which the corresponding device(s) is attached. 

The overall data enrichment process is shown in Figure 5. 
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Figure 5. Data Enrichment Process. 

5. Machine Learning Models Training & Optimization 

To design an accurate and powerful indoor localization system based on BLE RSSI data, various 

interdependent components need to be well designed, validated, and integrated. They range from 

signal propagation condition classification between Line-of-Sight (LoS) and non-Line-of-Sight 

(NLoS) to distance estimation from RSSI, beacons selection using intelligent algorithms, to final 

computation of the device's position. In this section, we methodically describe and evaluate each core 

component's performance. 

5.1. LoS-Non LoS Classification 

To ensure localization accuracy in complex indoor environments, the proposed system 

integrates a classification module to distinguish between LoS and NLoS signal conditions. The 

performance of the machine learning models in LoS and NLoS classification was evaluated using 

four classifiers with train/test ratio=80/20 and random state = 42: a Random Forest classifier, a kNN 

classifier, a support vector machine (SVM), and a neural network were trained and compared. 

Random Forest classifier showed the best overall performance of achieving 83.4% accuracy, 86.7% 

precision, 84.9% recall, and an F1 score of 85.8% as shown in Table 2.  

Table 2. Comparative table of Machine Learning algorithms. 

Model Accuracy Precision Recall F1-Score Weight 

Random Forest 0.834 0.867 0.849 0.858 60% 

k-Nearest Neighbors (kNN) 0.813 0.848 0.833 0.840 20% 

Support Vector Machine (SVM) 0.705 0.686 0.923 0.787 10% 

Neural Network 0.722 0.736 0.826 0.778 10% 

The results show a well-performing model in terms of high sensitivity and specificity. In support 

of the superiority of Random Forest, the area under the ROC curve (Figure 6) was also good (AUC = 

0.91), which represents its exceptional ability to distinguish between LoS and NLoS conditions. The 

second-best performing algorithm was the kNN classifier that performed slightly lower but stable 

performance (accuracy = 81.3%, AUC = 0.88). However, the SVM model was characterized by high 

recall (92.3%), but with lower accuracy (68.6%), and detected more NLoS cases and possibly more 

false positives. Meanwhile, the neural network model performed well (accuracy = 72.2%, AUC = 0.81), 
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but showed a good balance of accuracy (73.6%) and recall (82.6%). In general, the results indicate that 

a set-based model, for example the Random Forest model performed robustly and accurately in the 

LoS/NLoS classification process in dynamic environments with variation in obstacles. 

 

Figure 6. Roc diagram for LoS/NLoS classification. 

5.2. Distance Estimation  

For the distance estimation problem, a different approach was followed since contrary to be 

binary problem of LoS-NLoS classification, in this case, we have a regression problem (the values 

range from 0.5 – 4.0). The procedure is the same, several algorithms were tested and the results 

produced were used for the comparison of the algorithms shown in Figure 7. 

 

Figure 7. Comparison Machine Learning diagram. 
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According to the metrics shown in Figure 7, LSTM and Gradient Boosting appear to have the 

lowest RMSE value (0.6229) and the highest R² (0.7107 and 0.7097 respectively), which means that 

this algorithm has the best overall performance in distance prediction. 

To establish the accuracy of RSSI-based range estimation and LoS/NLoS-aware features, a 

variety of machine learning models that include both traditional as well as deep learning approaches 

were tested. Performance was quantified in terms of three significant parameters: Mean Absolute 

Error (MAE), Root Mean Squared Error (RMSE), and the coefficient of determination (R²). Figure 7 

depicts that tree-based models such as Random Forest and Gradient Boosting outperform linear and 

kernel-based models in the sense of having lower values for MAE and RMSE and higher values for 

R², which indicates superior generalization and lower prediction bias. The performance of the LSTM 

model was not far behind the best-performing models in terms of RMSE and achieved a good value 

for R². The methodology illustrates the effectiveness of temporal modeling in addressing the 

sequence-dependent variability in RSSI data. However, performance was poor for lighter models like 

Linear Regression and Decision Trees in terms of RMSE but good in terms of R² values.  

5.3. Beacon Selection Optimization 

Too many active beacons in a confined space can cause signal interference, leading to noisy 

RSSI readings and reduced localization accuracy. Selecting a non-overlapping or spatially distributed 

subset helps improve signal quality. The Beacon Selection Problem (BSP) involves the selection of a 

subset of beacons based on specific optimization criteria. Although it is commonly believed that the 

utilization of more beacons in multilateration methods improves the accuracy of the localization 

process, this is valid only when the estimated distances between the beacons and the trackable objects 

are accurately estimated. Signals can be affected by multipath propagation, environmental 

interference, and hardware induced error, hence a distance estimation based on those distorted 

signals, will propagate an error to the localization result. Therefore, implementing a robust BSP 

method is essential to filter out unreliable signals, ensuring that only the most accurate and stable 

beacons contribute to the positioning process.  

In this section, a multi-criteria weighted scoring system is introduced to solve the BSP. It 

evaluates the beacons based on their signal and its produced characteristics such as the Line-of-Sight 

(LoS) availability, RSSI signal strength, signal variance, packet loss rate and other techniques. In order 

for a scoring system to be effective, factors used in the tool should be as independent, precise, and 

objective as possible. For each of the methods used, a maximum score (named Involvement Ratio) 

has been assigned and the maximum score a beacon can get is 1.  

Various tests were conducted to find the optimal involvement ratios for each scoring criterion. 

The scoring parameters as well as their respective involvement ratios are presented in Table 3. 

Table 3. Comparative table of Machine Learning algorithms. 

Name Description Involvement Ratio 

Line of Sight  
Beacons with a direct LoS to the receiver generally provide more 

stable RSSI readings.  
0.20 

RSSI Strength Score 
Beacons are scored based on their mean RSSI value. It utilizes the 

raw signal.  
0.25 

Distance 
Beacons that are estimated to be closer to the target get a higher 

score, as they provide more reliable signals.  
0.2 

RSSI Variance Score 
Lower signal variance is preferred, as high fluctuations indicate 

instability. It is calculated based on the raw signal.  
0.1 

Entropy Score 

This method quantifies the entropy of a beacon’s RSSI distribution, 

favoring beacons that provide more distinctive signal patterns 

useful for localization. It is calculated based on the raw signal.  

0.15 

Loss Rate 
The loss rate is computed based on the number of missing packets 

in a given time window . It utilizes the raw signal. 
0.1 
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An example scenario is presented to prove the adequate functionality of the scoring system and 

the involvement ratios. It consists of 9 beacons, 5 of which were in LoS with the target at distances of 

0.5m, 1m, 1.5m, 2m and 2.5m, while for the rest 4 there was a human between the beacon and the 

target (NLoS) and their respective distances were 1m, 2m, 3m and 4m.   Each beacon’s sample 

consists of 2 seconds worth of received packets (the expected number of packets is 20 but not all are 

received, especially on indirect and distant beacons, hence the Loss Rate).  

In this scenario it is obvious that the three highest scores (Top 35%) were given to the closest 

beacons that were in direct line of sight. They are followed by three beacons, at 1m, 2m and 2.5m, the 

first not being in Line of Sight. Even though it was expected that this beacon would be lower, details 

such as the Loss Rate, variance etc. determined the score, hence the beacon with ID 4 has a more 

reliable signal. The result is followed by 3 beacons that were not in Line of Sight with the target. The 

scenario and the results are visualized at Figure 8. 

 

Figure 8. Scenario visualization. 

5.4. Location Estimation  

In indoor localization systems, the problem of determining the position of an unknown point 

based on its distances from multiple known reference points can be addressed using two main 

techniques: Trilateration and Non-Least Squares [26]. Trilateration determines the target’s location 

by measuring the radii of circles (or spheres in 3D space) centered at known reference points, with 

their intersections revealing the unknown position. In contrast, non-least-squares approaches do not 

rely on minimizing squared errors. Instead, they are designed to handle environmental factors such 

as signal interference, measurement noise, outliers, and non-line-of-sight conditions, which can 

distort distance calculations. These techniques are particularly useful in challenging environments 

where traditional trilateration methods may struggle to provide accurate results. 
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In this paper, a non-least-squares technique is applied to estimate the unknown position of a 

non-static node. We formulate the localization problem as a nonlinear least squares optimization and 

solve it using the Levenberg-Marquardt Optimizer, a highly efficient and reliable method for refining 

position estimates in real-world localization scenarios. The Levenberg-Marquardt Optimizer 

combines the Gauss-Newton method and gradient descent, dynamically adjusting between them to 

enhance convergence. When the solution is far from optimal, it operates like gradient descent to 

maintain stability; as it nears the optimal solution, it transitions to the faster Gauss-Newton method 

for improved accuracy. This adaptability makes it particularly effective in handling noisy distance 

measurements. 

6. Evaluation/Experimental Results 

6.1. Setup 

The proposed localization process was evaluated in the Ambient Assisted Living (AAL) 

environment within the ESDA-LAB premises [26]. The AAL environment is shown in Figure 9. The 

setup consists of TI Sensor Tag (CC2650) devices acting as beacons, each in a fixed position. These 

devices broadcast simple messages at a frequency of 10 messages per second.  

On the receiver side, the device whose position we aim to estimate is a SparkFun ESP32, typically 

attached on obstacles or users in standard localization setups. Its role is limited to receiving messages 

from the beacons, extracting the RSSI from each beacon's transmission, and forwarding the collected 

data to the application running the proposed localization algorithm to estimate its position. 

 

Figure 9. Localization Process - Evaluation Setup (AAL). 

6.2. Signal Filtering 

Signal filtering is an essential procedure for RSSI-based indoor localization systems to mitigate 

signal fluctuations caused by multipath interference and environmental noise. Three filtering 

techniques were tested in this work: the Kalman filter, the Weighted Moving Average (WMA) and 

the Gaussian Filter. Various tests revealed the optimal parameters for each filter, aiming to minimize 

the distance estimation error.  

Kalman filter is one of the most used filters in relevant applications, as it is particularly effective 

in dynamic environments where RSSI readings fluctuate rapidly due to movement or interference. 
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By continuously updating its estimates based on prior values and new measurements, the Kalman 

filter can provide stable and accurate RSSI readings. The optimal parameters of the filter in our case 

are F = 1, H = 1, Q = 0.1 and R = 8.55 after tests.  

The weighted moving average (WMA) filter is one more popular filtering technique with 

sufficient results. It smooths RSSI values by assigning higher weights to more recent measurements 

while still considering past values, while a window defines the number of the latest values being 

used in the calculation. In our dataset, greater window sizes lead to less error and deviation. On a 

deployed system though, where the targets are moving objects, it is inefficient to use wide windows.  

In our case, a window size of 20 offers the optimal balance between the accuracy and the time needed 

to collect those measurements.  

The Gaussian filter applies a Gaussian-weighted convolution to the RSSI readings, giving more 

emphasis to values near the center of the window while gradually reducing the influence of outliers. 

This method is particularly useful for environments where RSSI fluctuations follow a normal 

distribution, as it effectively removes high-frequency noise while preserving important signal 

variations. The algorithm has been tested and used in various relevant works. 

A dataset consisting of measurements at 0.5m, 1.5m and 2.5m is used to produce metrics on the 

filters’ efficiency. The measurements are taken at an empty space thus the received signal, raw and 

filtered, owes to be the most stable possible. As we can see from Table 4, at 0.5m, all filters perform 

similarly with low MSE and variance, but as the distance increases, MSE and variance rise 

significantly. Kalman performs best at 1.5m with MSE at 4.57 ⋅ 10-2 and its variance being slightly 

higher than Gaussians. More notable differences are observed at 2.5m, in which Gaussian 

outperforms all 3 filters at 4.90 ⋅ 10-1  MSE and 6.75 ⋅ 10-2 variance. Overall, the Gaussian filter 

provides the best trade-off between error reduction and consistency (performs better at large 

distances such as 2.5m), while the Kalman filter performs well at short to medium distances but 

becomes less reliable at longer ranges. 

Table 4. Learning algorithms MSE and variance at different distances. 

 
Kalman WMA Gaussian 

MSE (m2) Variance MSE(m2) Variance MSE(m2) Variance 

0.5m 3.50 ⋅ 10-3 2 ⋅ 10-4 3.40 ⋅ 10-3 1 ⋅ 10-4 3.40 ⋅ 10-3 1 ⋅ 10-4 

1.5m 4.57 ⋅ 10-2 6.84 ⋅ 10-3 4.83 ⋅ 10-2 7.4 ⋅ 10-3 4.73 ⋅ 10-2 6.1 ⋅ 10-3 

2.5m 5.08 ⋅ 10-1 8.31 ⋅ 10-2 5.17 ⋅ 10-1 8.96 ⋅ 10-2 4.90 ⋅ 10-1 6.75 ⋅ 10-2 

Mean 1.84 ⋅ 10-1 3.02 ⋅ 10-2 1.89 ⋅ 10-1 3.24 ⋅ 10-2 1.8 ⋅ 10-1 6.46 ⋅ 10-2 

In Figure 10, the three signals are shown in the same scenario (empty space) but at different 

distances (0.5, 1.5 and 2.5 meters). We observe that there are some points where a signal has spikes 

that intervene another signal and negatively affect its structure. For this reason, we applied filters to 

normalize the sample to make it more distinct. From the filters applied, we ended up with three that 

had the best results and are depicted in the middle of each signal: Gaussian (orange), Kalman (blue) 

and Weighted Moving Average (pink). We observe that the WMA filter responds faster and abrupts 

changes in the signal compared to the Gaussian filter where the change is done more smoothly (this 

is more obvious in the area between 200-400 in the x-axis of the sample and at a distance of 1.5m). On 

the other hand, the Gaussian manages to make smoother changes when there are fluctuations in the 

signal and in this way, we can have a smoother transition (this is observed more at the distance of 

2.5m between 150 and 200 of the x-axis). 
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Figure 10. Comparison of the 3 filters. 

6.3. ML Algorithms Results (Distance Estimation) 

The same approach as LoS/NLoS classification was followed, using a train/test ratio = 80/20 and 

random_state = 42, with the main difference that now the problem we must deal with is a regression 

problem. With this approach we tested the following algorithms, and the results are shown in Table 

5.  

Table 5. Model Comparison for LoS/NLoS classification. 

Model MAE (m) MSE (m2) RMSE (m) R² MAPE (%) MedAE (m) Variance 

Linear Regression 0,72 0,80 0,89 0,38 45,56% 0,62 0,38 

Random Forest 

Regressor 
0,50 0,57 0,76 0,56 30,14% 0,30 0,56 

Support Vector 

Regressor 
0,59 0,66 0,81 0,48 33,84% 0,44 0,49 

K-Nearest 

Neighbors 

Regressor 

0,50 0,57 0,76 0,56 30.74% 0,30 0,56 

Gradient Boosting 

Regressor 
0,55 0,56 0,75 0,56 34,07% 0,42 0,56 

Among the models compared, the Random Forest Regressor and the K-Nearest Neighbors 

Regressor had the best and most consistent performance for all metrics. Both the Random Forest 

Regressor and the K-Nearest Neighbors Regressor recorded the lowest MAE (0.50), MSE (0.57), and 

RMSE (0.76) while having a relatively stable R² score of 0.56. While the Gradient Boosting Regressor 

performed slightly better in terms of MSE (0.56), it was less stable, particularly regarding MAPE 

(34.07%) and MedAE. Linear Regression performed the worst on all the performance metrics, 

reflecting its low capacity to represent the nonlinear relationship prevalent in RSSI-based range 
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estimation. Overall, the results validate the suitability of ensemble and non-parametric models 

(Random Forest, KNN) for representing the complicated, noisy patterns of indoor signal propagation. 

6.4. Position Estimation 

The evaluation of the overall localization system is performed in the surrounding area of AAL 

House as illustrated in Figure 9. Measurements were carried out across four separate paths, which 

have been individually segmented, as illustrated in Figure 11. The left part of the figure displays the 

actual trajectory, whereas the right part provides a visual comparison between the predicted 

trajectories produced by the proposed localization system and the corresponding ground truth data.  

 

Figure 11. Location Routes Evaluation. 

The accuracy of the proposed localization system is assessed using the Root Mean Square Error 

(RMSE) and the mean localization error as quantitative performance metrics. The results of the 

localization system estimates are illustrated in Figure 12. 

 

Figure 12. Location Estimation Results. 

The RMSE values ranging from 0.66m up to 0.95m and mean errors between 0.50 m and 0.87 m.  

From all the evaluated routes, Route #1 exhibits the lowest RMSE and mean localization error, which 

can be attributed to the high density of beacons employed by the localization system and from the 

relatively unobstructed space. An additional insight that validates the effectiveness of the beacon 

selection process (as part of the beacon optimization selection part) is the convergence of localization 
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errors toward the positions of the nearest beacons. Routes #3 and #4 exhibit similar RMSE and mean 

localization error, primarily influenced by the low density of the selected beacons utilized by the 

localization system. In contrast, Route #2 exhibits the highest RMSE and mean localization error, 

which can be attributed to the presence of multiple obstacles within that section of the indoor 

environment. 

7. ADLS 

7.1. ADL Design 

Modeling an Activity of Daily Living (ADL) using positional data in an indoor environment 

involves leveraging spatial context alongside sensor information to infer activities based on a 

person’s location and movement. Indoor positioning data (from Wi-Fi, Bluetooth, RFID, or other 

positioning systems) provides information on where the individual is located within a specific area, 

which can be used to classify activities based on typical spatial patterns associated with each activity.  

The first step is to define the ADLs that must be modeled (e.g., eating, cooking, sleeping, 

walking, or sitting). Each ADL is often linked to a specific location within an indoor environment 

(Table 6). 

Table 6. ADLs and their location in indoors environments. 

Room ADLs 

Kitchen Cooking, eating, cleaning 

Living room Watching TV, sitting, resting 

Bathroom Showering, washing hands 

Bedroom Sleeping, dressing 

ADLs are not only location-based but also time-dependent. It is important to recognize that a 

person might start their activity in one location and move to another (e.g., cooking might start in the 

kitchen and then transition to sitting at the dining table). To model the temporal context, the time 

window must be defined as well as the activity transitions. The next step is to extract features 

collecting data from the indoor positioning system as the person moves around the environment. 

This data might include location coordinates, indicating the person’s position in the room or house, 

timestamps, to correlate the position with time (e.g., duration in each location) and movement 

patterns, e.g. movements between rooms or specific locations within a room. The final step is utilizing 

the positional and temporal features and training a machine learning model to recognize activities 

based on the person’s location and movement patterns. In this work 3 ADLS were defined. Table 7 

shows the ADLs, the features related to each one and the machine learning result. 

Table 7. ADLs description. 

ADL Location Feature Extraction Machine Learning 

Cooking Kitchen 

Time spent in the kitchen, speed of 

movement, and transitions between the 

refrigerator, stove, and sink. 

Classify the activity as cooking based on 

patterns of movement and time spent in 

the kitchen. 

Resting / 

Sitting 
Living room 

Duration of stillness in a specific area, no 

movement or low movement for an 

extended period. 

Recognize this activity by identifying 

prolonged stays in the living room with 

minimal movement. 

Sleeping Bedroom 

Long periods of inactivity, detection of 

the person lying down, and absence of 

transitions. 

Classify the activity as sleeping on long 

periods in the bedroom with little to no 

movement. 
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7.2. Evaluation 

The ADLs evaluation was done classifying user movement paths between rooms using 

coordinate data provided in CSV files. Each file represented a single path, containing time-stamped 

coordinates as well as the starting room and ending room. The goal was to build a model that could 

predict the origin and destination of a path based on its coordinate sequence. 

Initially, multiple CSV files were uploaded, each labeled with a specific path such as "office to 

bed" or "sofa to kitchen." The coordinate data was parsed from strings like [-6.13, -7.76] and structured 

into numeric arrays. A preliminary plot was generated where each path was visualized using a line 

connecting its coordinate points. Figure 13 shows that although the starting and ending areas were 

relatively distinct, some paths overlapped or intersected, especially around central areas. 

 

Figure 13. User Paths Visualization. 

Machine learning models were then used to classify the paths. Basic feature extraction involved 

computing the mean and standard deviation of the x and y coordinates for each path. These were fed 

into models including a Random Forest, k-Nearest Neighbors (k-NN), and a Multi-Layer Perceptron 

(MLP). The models performed poorly (all of them had an accuracy of 40% at most). Predictions 

frequently misidentified paths that overlapped in space, despite having distinct labels. 

To improve feature quality, full coordinate sequences were flattened into fixed-size vectors. This 

allowed models to consider more information about each path. Additional features such as path 

length, direction vectors, and start/end points were also computed and used to refine the model 

inputs. However, even with these enhancements, accuracy remained low due to the similar shapes 

among paths. 

As an alternative to machine learning, a simple rule-based method was implemented. This 

method stored the start and end coordinates of each known path. When a new path was provided, 

its start and end coordinates were compared to each known pair using Euclidean distance. The label 

of the closest known path was returned as the predicted path. This approach assumes that the user’s 

movement between rooms tends to start and end in consistent physical locations, which was mostly 

true based on the data. 
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To test the rule-based classifier, six test samples were used (e.g. "office to bed", "office to kitchen" 

etc.). This was further supported by a confusion matrix shown in Figure 14. The rule-based method 

correctly identified most of them correctly, giving an accuracy of 100%. In two circumstances (bed-

>fridge and bed->kitchen) the model was confused but still made the correct prediction with high 

accuracy. The confusion derives from the fact that both paths had the same starting point and very 

close ending points as shown in Figure 15.  

 

Figure 14. Confusion matrix. 

In addition to this, a visualization was created showing only the start and end points of each 

path. Green dots represented start points, and red dots represented end points. These were connected 

by dashed lines, and each point was labeled with the associated room. The visualization confirmed 

that while path shapes overlapped, start and end positions were often distinct enough to uniquely 

identify the path. 
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Figure 15. User Paths Visualization. 

Based on these observations, a hybrid approach was used combining a rule-based system with 

a machine learning model to improve path classification accuracy. If a full path has starting and 

ending coordinates close to a known path, the system confidently assigns the corresponding label 

using simple distance checks. If the path is ambiguous, the model predicts the most likely destination 

based on learned patterns. This method balances precision and flexibility, making it ideal for small 

or overlapping datasets. 

The last challenge was to identify a user's destination based on their movement path, using 

coordinate data from CSV files. First, the features from each path were extracted, including 

coordinates, starting and ending points and direction. Several machine learning models were trained 

and combined with a rule-based system to create a hybrid classifier. This hybrid approach uses 

simple distance checks to confidently match known paths, while relying on the trained model for 

more ambiguous cases. To handle partial paths, the first half of the file’s coordinates were extracted 

and the model predicted where that half-path leads. Even if multiple paths start from the office and 

end at bed, their paths may differ slightly — especially in the first half. 

In Table 8 two probability tables are shown for the paths Bed to Kitchen and Office to Bed. It is 

clearly shown that the results are better when the path doesn’t overlap with others. 

Table 8. Partial Predictions. 

Bed to kitchen Partial Prediction Office to bed Partial Prediction 

Destination Probability (%) Destination Probability (%) 

Bed -> kitchen 99.82 office -> bed 75.11 

bed -> fridge 0.17 bed -> kitchen 16.45 

office -> bed 0.01 armchair -> kitchen 4.28 

8. Limitations and Future Work 

Despite the promising results and the comprehensive design of the proposed localization and 

ADL monitoring framework, several limitations need to be addressed. One of the primary challenges 

lies in the sensitivity of RSSI-based positioning to environmental factors such as multipath effects, 

interference, and dynamic changes in indoor layouts. Although signal filtering and data enrichment 
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processes help mitigate these issues, they cannot fully eliminate the inherent variability of RSSI 

signals, which may lead to occasional inaccuracies in localization, particularly in cluttered or highly 

variable environments. 

The system also assumes consistent beacon placement and hardware characteristics. In real-

world scenarios, hardware variability or battery degradation could affect signal quality, potentially 

impacting the performance of the machine learning models that were trained under idealized 

conditions. Similarly, user-specific behavior variations, such as differences in movement patterns or 

ADL performance, are not currently personalized, which may limit the framework's accuracy for 

broader deployment. 

Another limitation is the reliance on preconfigured areas of interest and static annotations for 

ADL detection. While the proposed method is effective for controlled or semi-structured 

environments, it may struggle to generalize across diverse residential layouts or to adapt to frequent 

environmental changes without manual intervention. Additionally, the rule-based classifier that was 

employed in ADL recognition may not scale well for more complex or overlapping paths where 

behavioral ambiguity increases. 

In terms of future work, one promising direction is the integration of generative adversarial 

networks (GANs) to synthetically expand RSSI datasets, enhancing the robustness of ML models 

under varied conditions. Moreover, the feedback loop mechanism, which currently adjusts system 

parameters post hoc, could be improved with real-time adaptive learning techniques, allowing for 

dynamic model retraining based on streaming data. Another critical advancement would be the 

inclusion of context-aware and personalized ADL models that adapt to individual behavior and 

preferences over time, leveraging sensors measurements.  

9. Conclusions 

This work presents a scalable framework for indoor localization designed to work seamlessly in 

real-world environments. By using RSSI signal processing, machine learning and ADL recognition, 

the system proposed effectively overcomes common challenges such as signal noise and changes in 

indoor conditions. The integration of machine learning for tasks like distance estimation, LoS/NLoS 

detection, and activity recognition enables position and ADLs monitoring. The experiments 

conducted showed that each component of the system performs well both separately and combined 

with the other components. As for future work, the system is planned to be more personalized, 

adaptable, enhancing safety, independence and quality of life. 
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