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Abstract: This paper suggests the Exponentiated Power Shanker (EPS) distribution, a fresh three-
parameter extension of the standard Shanker distribution with the ability to extend a wider class of
data behaviors, from right-skewed and heavy-tailed phenomena. The structural properties of the
distribution, namely the complete and incomplete moments, entropy, and moment generating function
are derived and examined in a formal manner. Maximum likelihood estimation (MLE) techniques
are used for estimation of parameters, as well as a Monte Carlo simulation study to account for
estimator performance across varying sample sizes and parameter values. The EPS model is also
generalized to a regression paradigm to include covariate data, whose estimation is also conducted
via MLE. Practical utility and flexibility of the EPS distribution are demonstrated through two real
examples: one for duration of repairs and another for HIV/AIDS mortality in Germany. Comparisons
with some of the existing distributions, i.e., Power Zeghdoudi, Power Ishita, Power Prakaamy, and
Logistic-Weibull, are made through some of the goodness-of-fit statistics such as log-likelihood, AIC,
BIC, and Kolmogorov-Smirnov statistic. Graphical plots, including PP plots, QQ plots, TTT plots, and
empirical CDFs, further confirm the high modeling capacity of the EPS distribution. Results confirm
the high goodness-of-fit and flexibility of the EPS model, making it a very good tool for reliability and
biomedical modeling.

Keywords: exponentiated power distribution; censored data; regression model; CD4 count; HIV/AIDS
mortality

1. Introduction

The study of lifetime distributions plays a crucial role in reliability analysis and survival modeling.
[1] pioneered a notable approach by developing a one-parameter lifetime distribution based on a
two-component mixture: an exponential distribution and a gamma distribution (with a shape parame-
ter of 2), both sharing a common scale parameter 6, and mixed with a proportion of p = %. This
methodology was inspired by [2]’s foundational work on mixing proportions. Distributions derived
from this innovative method often exhibit a desirable bathtub-shaped hazard rate, making them highly
suitable for various real-life reliability applications. Their appeal lies in their simplicity, consolidating
properties of both exponential and gamma distributions into a single-parameter framework. This
simplicity has subsequently spurred numerous investigations, leading to the development of other
mixture-based distributions, including the Chris-Jerry distribution by [3], the Odoma distribution by
[4], the Pranav distribution by [5], the Aradhana distribution by [6], and the Fav-Jerry distribution by
[7], among others. To enhance the flexibility of baseline distributions, particularly in capturing complex
data characteristics such as skewness, kurtosis, and varied goodness-of-fit, power distributions have
emerged as a significant advancement. This approach introduces an additional shape parameter, which
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invariably improves the adaptability of the resulting distribution. For example, the power Lindley dis-
tribution, proposed by [8], remarkably captures diverse hazard rate shapes (increasing, decreasing, and
bathtub), a capability the original one-parameter Lindley distribution lacks. Similarly, [9] introduced
the two-parameter power Shanker distribution, adept at modeling increasing, decreasing, and constant
hazard rates. These power parameters critically modify the shape of the distribution by influencing
skewness and tail behavior, enabling a better fit for skewed or heavy/light-tailed data, and facilitating
the modeling of non-monotonic hazard rates often observed in survival and reliability data. Such
enhancements lead to improved goodness-of-fit over base models, as widely supported by empirical
applications using real-life datasets. The increasing complexity of real-world data, as summarized in
Table (1) along with standard limitations and advanced solutions, necessitates the development of
sophisticated distributions capable of accurately capturing and explaining these intricate behaviors.

Table 1. Emerging Data Behaviors, Standard Limitations, and Advanced Models

Behavior ‘ Examples ‘ Standard Limitation ‘ Advanced Models ‘ References
Heavy Tails Financial returns, in- | Normal, exponential | Pareto, t-distribution, Gen- | [10,11]
surance claims decay too quickly eralized Pareto Distribution
(GPD), Log-Cauchy, Stable
distributions
Skewness Income, survival | Normal/logistic ~are | Skew-normal, Skew-t, Expo- | [12,13]
times symmetric nentiated, Transmuted mod-
els
Multimodality Gene expression, sur- | Standard distributions | Mixture models, Dirichlet | [14,15]
vey responses are unimodal processes, Kernel Density Es-
timation (KDE)
Zero-inflation Doctor visits, insur- | Poisson underesti- | Zero-inflated Poisson, Zero- | [16,17]
ance claims mates zeros inflated Negative Binomial
Complex bounded | Proportions, rates (0 | Beta/uniform lack | Kumaraswamy, Beta- | [18,19]
shapes to1) shape flexibility Kumaraswamy, Generalized
Beta (GB) family
Non-monotonic Reliability /survival | Weibull assumes | Exponentiated Weibull, Bath- | [20,21]
hazard data monotonic hazard tub models
Dependence (Tem- | Sensor data, climate, | Assumes indepen- | ARIMA, GARCH, Spatial Au- | [22,23]
poral/Spatial) markets dence toregressive (SAR) models,
Copulas
Censoring or Trun- | Survival, income | Assumes complete | Tobit models, Kaplan-Meier | [24,25]
cation data data estimator, Cox proportional
hazards model
Nonlinear/Mixed | Random or hierarchi- | Cannot capture hetero- | Generalized Linear Mixed | [26,27]
structures cal effects geneity Models (GLMMs), Bayesian
Hierarchical Models

Beyond power transformations, another potent method for increasing distributional flexibility
is through the exponentiation approach. This technique, often involving the addition of an extra
shape parameter, is well-regarded for its capacity to modify the tail behavior and further enrich the
variety of hazard rate shapes a distribution can model. Applying this exponentiation method to
the Power Shanker distribution yields the Exponentiated Power Shanker (EPS) distribution. The
EPS distribution consequently inherits enhanced flexibility from both the power and exponentiation
processes, making it highly adaptable for modeling diverse data patterns and achieving superior
goodness-of-fit. Furthermore, for practical applications in regression analysis, particularly with
positive-valued data such as survival times, it is common to apply a logarithm transformation to
the random variable. This transformation allows a linear predictor, dependent on covariates, to
directly influence the scale or location parameters of the distribution, leading to a more interpretable
and tractable regression framework. Numerous studies underscore the critical role of clinical and
demographic factors, such as age and various comorbidities (e.g., cardiovascular disease, asthma,
diabetes, neurological disorders, and obesity), as significant predictors of survival times [28-32].
These variables, commonly treated as covariates in statistical models, are essential for enhancing the
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interpretability of regression-based survival analyses in biomedical contexts. The inherent complexities
of such data, including individual heterogeneity and the frequent presence of censoring, necessitate
highly flexible and robust modeling approaches. To address these challenges, we propose the novel
Exponentiated Power Shanker (EPS) distribution and its regression counterpart, the Log-Exponentiated
Power Shanker (LEPS) regression model. By integrating the LEPS within a regression framework, our
model offers an enhanced capability to analyze the lifetimes of COVID-19 patients in Brazil, particularly
under the prevalent censoring conditions found in medical data. This robust framework allows for the
accurate capture of covariate effects, such as age, heart disease, asthma, diabetic condition, neurological
condition, and obesity, on patient lifetimes, thereby facilitating a deeper understanding of disease
dynamics.

The primary objectives of this study encompass the introduction of the Exponentiated Power
Shanker (EPS) distribution, a three-parameter extension of the Shanker distribution, designed to
enhance modeling flexibility for diverse data behaviors, including right-skewed and heavy-tailed
phenomena prevalent in reliability and survival analysis. This involves a systematic derivation and
examination of its core theoretical properties, such as complete and incomplete moments, entropy, and
moment-generating function. Furthermore, the study aims to apply Maximum Likelihood Estimation
for parameter estimation of the EPS distribution, assessing its performance through a Monte Carlo
simulation across various sample sizes and parameter values. The research also extends the EPS
framework into a regression model, the Log-Exponentiated Power Shanker (LEPS) regression, to
incorporate covariate data, with parameter estimation also performed via MLE, thereby enabling the
modeling of covariate influence on the distribution’s parameters. Ultimately, the study showcases
the applicability and superior goodness-of-fit of the proposed distributions using real-world datasets.
Specifically, the EPS distribution is fitted to failure times of item data and mortality rates of HIV/AIDS
patients in Germany. The LEPS regression model is then applied to analyze the lifetimes (in days) of
COVID-19 patients in Brazil, correlating these lifetimes with clinical covariates including age, heart
disease, asthma, diabetic condition, neurological condition, and obesity. A comprehensive evaluation,
encompassing comparisons against existing distributions using various goodness-of-fit statistics and
graphical diagnostics, confirms the models’ performance.

The novelty of this work resides in several key aspects. The proposed Exponentiated Power
Shanker (EPS) distribution innovatively combines power transformation and exponentiation ap-
proaches, yielding a three-parameter distribution significantly more adaptable than its predecessors.
This dual enhancement introduces an additional shape parameter, enabling it to capture complex
data characteristics such as varying skewness, kurtosis, and a wider array of hazard rate shapes,
including bathtub, L-shape, increasing, and decreasing, which simpler distributions lack. The EPS
distribution is particularly designed to effectively model complex data behaviors like right-skewed
and heavy-tailed phenomena that often challenge less flexible distributions. The development and
specific application of the Log-Exponentiated Power Shanker (LEPS) regression model are novel,
especially for analyzing positive-valued data like lifetimes in a regression context. By applying a
logarithm transformation, the model facilitates linear predictors based on covariates to influence the
distribution’s parameters, offering a more interpretable framework for biomedical and reliability data
with censoring. The study’s practical utility is robustly demonstrated through diverse real-world
applications: fitting the EPS distribution to failure times of item data and mortality rates of HIV/AIDS
patients in Germany, and utilizing the LEPS regression model for analyzing COVID-19 patient lifetimes
in Brazil against relevant clinical covariates. This showcases its broad applicability and effectiveness
in challenging data environments. Finally, the work includes a rigorous evaluation of the proposed
distributions, comprising formal derivations of structural properties, a Monte Carlo simulation for
parameter estimation, and extensive comparisons with several existing distributions using multiple
goodness-of-fit criteria and graphical diagnostics, collectively affirming its superior modeling capacity.

Following the introduction, Section 2 is dedicated to a detailed construction of the EPS distribution
itself. With this as a foundation, Section 3 examines its structural properties. It subsequently focuses
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on parameter estimation in Section 4, where the Maximum Likelihood Estimation (MLE) methodology
is outlined. In Section 5, the discussion extends to the application of the EPS distribution under a
regression framework. For verifying the theoretical derivations and estimation techniques, a compre-
hensive simulation study is presented in Section 6. Then Section 7 addresses real-world applications,
specifically demonstrating the application of the distribution with the fitting of Log-EPS Regression in
Section 7.1 and its application on reliability data in Section 7.2. Finally, Section 8 summarises the paper
with an overview of the most significant findings and potential future research directions.

2. The Exponentiated Power Shanker (EPS) Distribution

The cumulative distribution function (CDF) of Power Shanker distribution due to [9] is given as
follows

Ox™

G(x;0,0) =1— [14— P

}—W; x>0, 1)

where 6, & > 0 are the scale and shape parameters respectively. The probability density function (PDF)
corresponding to equation (1) is

n6?

g(x;0,0) = mx’“l(() + x%)e 0", 2

[33] and [34] developed the exponentiated family of distributions. By definition, a random variable X
is said to assume exponentiated-G distribution if its CDF and PDF are respectively

F(x;¢,8) = G(x;:0)", ©)

and
f(x6,8) =cg(x;8)G(x; &), (4)

where ¢ is the parameter vector of G(.). By substituting Equation (1) into Equation (3) yields Equation
(5). Similarly, substituting Equations (1) and (2) into Equation (4) yields Equation (6). Hence, the CDF
and PDF of the X ~ EPS (c, 6, «) are expressed as follows;

I Cc
F(x;c,f),a):{l— [1_._929’;1}69%} , x>0,c,40>0, (5)
and ) .
cof g Ox® 1 )T
f(x;c,0,a) = 92+1(9+x) “le=tx {1—|:1+92+1]6 9"} . (6)

The hazard rate function (HRF) is given as

2 o X O c—1
S8 (0 xt)an e {1 14 G e}
x| ,—gxa 1€
1-{1- 1+ g5 oo}

To verify the normalization condition, we evaluate

e C¢x92 1 —0x lex — Oy el
I = ; 92+1(9—|—x"‘)x”‘ e x{l—[1+92+1}e x dx.

h(x;c,0,a) =

Substituting t = x*, we get dt = ax*~!dx, yielding:

° of? —6t ot o\
—/ I (0+t)e {1—[1+92+1}e } dt.
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Now, expand the bracketed term using the binomial expansion:

0t | o\ _ & (c—1 k 0t \* o
(1 |:1+92+1]6 ) —kgo ' (1) 1+92+1 e .

Rewriting the integral using the summation, we have:

_ o0 & fe-1 k[ —(k+1)0t or \*
I_mk;)< r )(—1) /O (6+t)e <1+92+1> dt.

Each term inside the summation is a gamma-like integral. Using the gamma function identity,

T [® o arg,  T(m+1)
W/o e Tdt = =t

we find that the integral simplifies to 1. This confirms that f(x;c, 6, «) is properly normalized.

3.5

pdf
2.0
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1.0

Figure 1. The PDF of X ~ EPS (¢, 0, «)
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Figure 2. The PDF of X ~ EPS (¢, 0, «)

Figures 1 and 2 collectively illustrate the substantial flexibility of the PDF for the EPS distribution,
parameterized by ¢, 8, and «. Figure 1 showcases the capacity of the EPS distribution to exhibit
various unimodal shapes, ranging from markedly right-skewed (as seen with the black, red, blue, and
orange curves) to distinctly left-skewed (exemplified by the green dashed-dotted curve). These plots
demonstrate that varying the parameters allows the mode of the distribution to shift across the range
of x values, accommodating different central tendencies and degrees of asymmetry in the data. Figure
2 further highlights the versatility of the EPS distribution, particularly its ability to model shapes
commonly encountered in survival and reliability analysis. The black and red dashed curves, with
their sharp initial peaks near zero followed by a decline, indicate a decreasing PDF shape, which is
characteristic of phenomena where events are more likely to occur early in the observation period.
Most notably, the green dashed-dotted curve in Figure (2 demonstrates a complex, irregular shape,
suggesting that the EPS distribution is capable of capturing more intricate data patterns beyond simple
unimodal or monotonically decreasing forms. The orange dashed-dotted curve in this figure provides
another example of a unimodal, right-skewed shape. Together, both figures affirm that by adjusting
its three parameters, the EPS distribution can adeptly fit a wide array of empirical data distributions,
including those with varying skewness, different peak locations, and even non-standard or decreasing
probability densities, making it a robust tool for diverse modeling applications.
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Figure 3. The HRF of X ~ EPS (¢, 0, a)
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Figure 4. The HRF of X ~ EPS (¢, 0, a)

Figures 3 and 4 graphically depict the versatility of the EPS distribution in modeling various
shapes of the HRE, which is crucial for understanding instantaneous failure rates in survival and
reliability analysis. Figure 3 demonstrates the EPS distribution’s capacity to exhibit the widely
recognized bathtub shape, where the hazard initially decreases, remains relatively constant, and
then increases. This figure also illustrates the ability to capture continuously increasing and decreasing
hazard rate patterns depending on the chosen parameter combinations of c, 6, and «. Complementing
Figure 3, Figure 4 further accentuates the diverse HRF shapes achievable by the EPS distribution. It
reinforces the presence of prominent bathtub shapes, along with clear examples of increasing and
decreasing hazard functions. Notably, some parameter settings in Figure 4 demonstrate scenarios
where the hazard rate can be nearly constant or exhibit sharp, pronounced decreases, indicating early
life failures. The broad range of HRF configurations across both figures underscores the inherent
flexibility of the EPS distribution, making it highly adaptable for modeling complex time-to-event data
that might exhibit different risk characteristics over time, from early life reliability issues to wear-out
phases or simply monotonically changing risk profiles.
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2.1. Linear Representation

x)c—1
Using the generalized binomial theorem on {1 {1 + 5 +1] —Ox } , the pdf in Equation (6)
can be expressed as

© o J —1\ (i\ (j+k-1
f(x;c,a,0) = (64 x) (— 1l+k< )()( )
FaILLY AN
w 92 I 2k (j+1) =1 ,— (i+1)0x"
3. Structural Characteristics

The 7" crude moment of X ~ EPS (c, &, ) is defined as

P caf? 1 g 0x* 1 g )}
W= s (0 4 x%)x"ta-1p0% {1— |:1+92+1]€ ox } dx.

Applying bi 1 th 1o 12 0 ]V e obtain
pp ymg 1nom1a eorem on 92+1 P € obtal

) g2 @ —1y [ 0 i
= Z( (0 + x%)xrHaTe (1003 |1 zx dx. @)
0 +1 0 0 +1

We further decompose {1 + } using binomial expansion to have Equation (7) reduce to

92+1
2, d i) git2 00 P,
,=co 1) . . 7/ 0 + x) @ () Fr—1p—=(i+1)0x" 7,
L ( )(1 @+ 0T
0o i o o0

Intuitively, we replace Y~ ) by Y ). and complete the integration as follows;
i=0j=0 j=0i=j

S oEeE e\ 02 [eT[l+j+1]  T24+j+1
=B B () O w a e |

J [(1+ 8] e [(1+ j)ep

z
The incomplete 7" moment of X defined as m,(z) = [ x" f(x)dx can be written;
0

wg? [z « Ox )
my(z) = eczﬁ ; (0 4 x%)x"ta-1p0x {1 - [1+ 62+1]e“9" } dx.

The same steps used in the complete moment yield the incomplete moment, hence

= c—1 i+2 Oy[1+j+L,(14))0z%] y[2+j+ %, (1+/)02%]
N C];; ( )(]) (92+1)f+1{ At e (A geps }

The Rény entropy of X ~ EPS (c,«, ) is

5 log {/f“’(x; c, zx,9)dx},
0

where f(x;c,a,0) is the pdf of EPS distribution and w # 1. Using the general binomial expansion for

Rg =

the decomposition, the Rény entropy is given as
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RE:ﬁlog{(eziJwiiihX z+k( w(c 1—1)>(;> (]’"‘I,i_l)((;zj)

5 92ktith— ZwF(“(]_h+2) w+1)
[(w+1)9] h+2) —w—+1

The moment generating function Mx (t) and the characteristic function ®x (it) are respectively

o= () EEE L ()0 e

j=0i=jr=0k=

{9F[r+rx(]—|—1)] Ir+a(j+2)] }
[(1+1)9]r+a(]+1) [(i+1)9]r+a(j+2) ’

and

Dy (it) = (92+1> iiiz 1+k< 1) <]> <]—ch{—1> (1:? 02-j—2k

{6F[r+a(]+1)] T[r+a(j +2)] }
[(1+1)9]r+a(]+1) [(i+1)9]r+a(1+2)
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Figure 5. Mean, Variance, Skewness, and Kurtosis

Figure (5) evidently illustrates the influence of parameters c and « on the most significant statistical
moments of the EPS distribution: mean, variance, skewness, and kurtosis. Mean and variance plots
exhibit a typically homogeneous tendency. Both moments increase as a function of ¢ and «. Exactly, for
a fixed w, there is an initial steep increase with c (by some 2.0-2.5), after which the rate of increase slows
down, suggesting saturation or asymptotic behavior. Similar positive correlation with increasing «
is observed, particularly when c is small. This close similarity in behaviour between the mean and
variance indicates that while the central tendency of the distribution itself varies as a result of changes
in ¢ and «, its overall variability increases proportionally.

In contrast, plots for skewness and kurtosis portray a more intricate and non-linear association
with the parameters. For skewness, although high positive values are seen when both ¢ and « are low,
the distribution becomes more symmetric (skewness gets closer to zero) as they increase. Interestingly,
there are areas where a rise in ¢ may reduce skewness at first, even to negative values in some instances,
before a possible turnaround. The kurtosis plot also exhibits dynamic behavior. Extremely high
kurtosis, indicating heavy tails and spiked peakness (leptokurtic distributions) occurs when ¢ and «
are low. However, when c and « increase in size, the kurtosis decreases, suggesting a move towards
distributions with lighter tails and less spiky peaks, perhaps near to mesokurtic or even platykurtic
ones. These plots illustrate that while ¢ and a always influence the location and scale (mean and
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variance) of the EPS distribution, their influence on its shape (skewness and kurtosis) is considerably
more complex and non-monotonic. The discussed sensitivity of skewness and kurtosis to the smaller
values of ¢ and « illustrates the way small changes in these parameters can significantly alter the
asymmetry and tail behavior of the distribution. Conversely, for higher values of the parameters, the
distribution will converge to a less extreme and more symmetric shape. Such intimate knowledge is
central to correct interpretation of model fits as well as parameter selection in practical applications of
the EPS distribution.

4. Maximum Likelihood Estimation

Let xq,x2, -+, x, be n independent and identically distributed random variables from the EPS
distribution, and let & = (c, 6, a) be the vector of unknown parameters. Then, the log-likelihood
function for ¥ is given by:

US) = n{logc+loga+210g6 —log (6> + 1)} —0) xf+) log(6+x})
i=1 i=1

+(w1)ilog(xi)+(c1)ilog{ [1+929:1]e_9x?}.

i=1 i=1

Taking partial derivatives of the log-likelihood with respect to the parameters yields:

U n & Ox .
—=-+) logdl—|1 L |e=0x 1,
¢ C+i:1 Og{ {4_92‘?1}6 }

Hence, setting g—ﬁ = 0, we obtain the MLE for c:

L p—— " . )

L tog {1 - [1+ g2 |7}

The partial derivative with respect to a is:

0{1 n
%—f—GZx logxl—l—z ngl+210g(xi)
o 0+t 3
gt )
) Z log x;e 9"1 [9(92 +1)x% — Ox% 4 62x2]

=1 (62 + 1){1 {1 + (92+1)}e_9x?}

The partial derivative with respect to 6 is:

—6xt x¥(1-62) o Oxf
of  2n  2nd i i (c—1) i ¢ [ GRSV (1 + 941)}
B 6 2+1 ! X a '

i=1 =0+ i=1 1— [l + (92+1)}e_€x?

(10)

Setting % =0and % = 0 and solving numerically, the MLEs for 6 and « are obtained. These can
be computed in R using the optim() function. Let

[X exlX
Ai=14—1— Bi=e ™ D/ =1-AB=1— |1+ o0
92 + 1 1 1 11 92 + 1
x%(1— 62
M= (19<2+1)2) —xf A, Nj=BiM;,  E;=0(0%+1)x} —0xf +6°x7".

The second partial derivatives are then given by:
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ﬂ - _E‘ 826 o 826 _ i BiMi_ azf - 82€ o i logxiBiEi
a2 2’ 9cdd o90dc = D; ' dcoa  dadc = (62+1)D;
Po_ 2 _2m1-¢) ¢ 4_@_1)§M
962 02 (2412 F(0+x) i=1 D7
1—6? oN;  9(B;M;)
o6 = B <(92+1)2 l>adae_ 90
9%/ n 9x log xl) " logx; d(B;E;) oD,
a2~ *7*92’5 (log x;) +2 *112 62 + 1) Dz[( o )D’(BZEZ)<aa>]
oD; fo‘ logxiBi(92+9xi) a(BiEi) o ) ”
where 5 1 and i Bjx! logxl(—HEl +0(6°+1)—60+26 xi)
R0 oM no " xflogx; n (Nip, NP
anap ~ abox LN 108% Mg — (D) ; D?2

aD; . fo‘ log xiBi(Gz + GJC?‘) JdN; 1—62 zexgx
where 5 = 241 and 5y = Biilogxi{ ~6Mi+ | g 1

The Hessian matrix H(S) for the parameter vector & = (¢, 6, ) is a 3 x 3 symmetric matrix:

9% 9%¢ 9%¢
852 dcadb dcon
J4

& _ | 9 20 9%
H(S) = | s o e
92 92

dadc  owdf on2

The concept of MLE relies on finding the parameter values that maximize the likelihood function
(or equivalently, the log-likelihood function) for a given set of observed data. While the method is
widely used, it is essential to understand the conditions under which the MLE is guaranteed to exist
and be unique. Without such guarantees, numerical optimization procedures like the optim() function
in R might converge to a local maximum, fail to converge, or yield multiple possible solutions, leading
to ambiguous or incorrect parameter estimates. For a general parametric statistical model, let f(x|J)
be the PDF of the random variable X, where S is the vector of unknown parameters belonging to a
parameter space ©. Given 1 independent and identically distributed (i.i.d.) observations x1, x2, ..., Xy,
the log-likelihood function is given by:

n A
() = ¥ log f(x{|3). The MLE S is defined as, & = arg max /(). The existence and uniqueness
i=1

RIS(C)
of & depend on the properties of the log-likelihood function £(J) and the parameter space ©.

4.1. Conditions for Existence

A maximum likelihood estimator is guaranteed to exist under the following general conditions:

1. The log-likelihood function /() must be continuous over the parameter space ©. This ensures
that the function does not have "jumps" that would prevent a maximum from being attained.
For the EPS distribution, the log-likelihood function ¢(<) is a composite of continuous functions
(logarithms, exponentials, sums, products), so it is generally continuous wherever it is defined.
However, careful consideration must be given to the domains of logarithmic terms, e.g., logc,

loga, log 6, log(6? + 1), log x;, and the term log {1 - [1 + 92 =)
c>0,a>0,0>0,x; >0, and the argument of the last logarlthm must be strictly positive.

—6x; } These terms imply that

2. If the parameter space © is a compact set (i.e., closed and bounded), and the log-likelihood func-
tion is continuous on ©, then by the Extreme Value Theorem, a maximum of ¢(3) is guaranteed
to exist within ©. In practice, parameter spaces for distributions are often open (e.g., (0, %) for
scale or shape parameters), which are not compact. In such cases, alternative conditions are
needed, such as:
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(a) £(¥) — —oo0 as J approaches the boundary of © or goes to infinity: This condition ensures
that the maximum does not lie on the boundary or at infinity, forcing it into the interior
of the parameter space. For the EPS distribution, for example, as ¢ — 07 ora — 07 or
6 — 07T, certain terms in /(<) tend to —oo, which is a desirable property for ensuring
an interior maximum. Similarly, if parameters become excessively large, the likelihood
should tend to zero.

4.2. Conditions for Uniqueness

Even if an MLE exists, it may not be unique. Uniqueness is typically ensured by:

1. If the log-likelihood function /(<) is strictly concave over the parameter space ©, and if a
maximum exists, then that maximum is unique. A strictly concave function has at most one
global maximum.

(@) Mathematically, strict concavity can be checked by examining the Hessian matrix of the
log-likelihood function, H(S) = [%} If H(S) is negative definite for all & € ©, then
£(S3) is strictly concave. This is often the most challenging condition to verify analytically
for complex likelihood functions.

(b)  For the EPS distribution, one would need to compute the second partial derivatives with

respect to ¢, «, and 6, and then form the 3 x 3 Hessian matrix. Demonstrating that this
matrix is negative definite across the entire parameter space can be very difficult.

4.3. Implications for the EPS Distribution
For the EPS distribution and its MLEs for (c, 6, a):

1.  The analytical solution for ¢ (Equation 8) implicitly depends on 6 and «. This means that ¢
exists uniquely given specific values of 6 and a. However, the global MLE for ¢ depends on the
numerically optimized values of 8 and «.

2. Since the likelihood equations for 6 and « (Equations 9 and 10 set to zero) do not have closed-form
solutions, numerical methods like optim() are necessary. The success and reliability of these
numerical methods heavily depend on the underlying properties of the log-likelihood function
related to existence and uniqueness:

(a) Local Maxima: If the log-likelihood function for the EPS distribution is not strictly concave,
optim() might converge to a local maximum instead of the global maximum. This
highlights the importance of choosing good initial values for the optimization (e.g., from
moment estimators or a grid search) and potentially running the optimization from
multiple starting points to increase confidence in finding the global optimum.

(b) Boundary Issues: The parameters c, 8, « must be positive. The numerical optimization
routine must be constrained to respect these bounds (e.g., using method="L-BFGS-B" with
lower arguments in R’s optim() function). If the true MLE lies on the boundary of the
parameter space, standard derivative-based methods may not apply directly, and the
maximum might not be at a point where the gradient is zero.

(c) Identifiability: A fundamental prerequisite for uniqueness is that the model must be iden-
tifiable, meaning that different parameter vectors must correspond to different probability
distributions. If the EPS distribution is not identifiable (i.e., different combinations of
¢,0,a can produce the exact same distribution), then unique MLEs cannot exist. While
most well-defined distributions are identifiable, it’s a theoretical point to consider.

5. Regression

Suppose one makes the transformation Y = log (X) where X ~ EPS (c, 6, «) with pdf in Equation
(6). Set o = % and = e, the LEPS density, cdf, and survival function for y € R are given by
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flyeom) = — (e et ) )
( i +1>
i (11)
(4) =AR N
X {1_ 1+ ezy 76( )} ,
e T +1
SSRRCIN
(y,ccry):{l 1+ 62 e‘e( )},
e +1
and () .
K2 vk
S(y;c,a,y)zl—{l— 1+ ezy e*e( )},
+1

where ¢,0,0 > 0 and u € R. Hence, for X ~ EPS (c,6,a), Y = log(X) ~ LEPS (c,0,u). Define

Z= (Y 1) , the survival and density functions are respectively
e* z ‘
S(z;e,ou)=1-<1— 14+ —— e v %,
e~ +1
and )
z c—
cw(z)e™® e* z
f(Z;C,U',;l)_(ZZ{l— 1+T eie } P (12)
(7(6_7+1) e +1

2
where w(z) = T 4%, Using equation (11), we construct a parametric regression model for
the response variable Y; and a vector of explanatory variables v; = (vi1, V2, , Vjp) @s

yi:v/,B+azz-, i=1,2,--,n, (13)

where ji; = v'B, = (B1,- -, B p)/ is the vector of unknown regression coefficients and z is the
random error with density in Equation (12). Define the survival and density functions of Y;|v' are

/ e%i Z; ‘
S(y|V):1— 1-— 1+T e ¢’ ,
and -
, C(ezi*# =+ 322i>g—ezi o . c—1
flylv) = 7 1= 14— — | , (14)
(T( 7+ 1) e” v +1

2 ) —
where w(z;) = €%~ @ +¢* and z; = 4.

5.1. MLE of For Right-Censored Sample

Suppose the lifetime X of n individuals diagnosed with COVID-19 virus is EPS (p) distributed.
Let y|v/ be the response variable of a parametric regression model from the EPS (p) distribution with
pdf in Equation (14). To estimate the parameters j of the transformed model, the n individuals are
quarantined and subjected to routine treatment at the same time. After time (t), (n — m) individuals
recovers. If the lifetimes of the other m(> 0) individuals are denoted by y1,¥2, ..., ym. Then, the
likelihood of B can be expressed as

(v, (Hf v )f[mw),
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where f(y|v') is the pdf in equation (14). It is witty to write

° Zi c—1
Np—et Zi .
P(Y>t):P(Z>t):/Cw(ZZQQ{1_ 1+ e_e,} ir.
t 0(677'+1) e” o +1

The estimates of the unknown parametric regression coefficients f are obtained using numerical
iteration implemented in R.

6. Simulation Study

The EPS distribution is simulated over three scenarios to examine the validity of the MLEs. The
acceptance-rejection technique is employed to simulate random samples of size n = 50,100, 200, and 400
from the distribution. The aforementioned procedure is replicated 1000 times, and the average esti-
mates (AEs), the biases, and the mean squared errors (MSEs) are calculated.

The algorithm for simulating random samples is based on the acceptance-rejection method:

1.  Generate f from the density
h(t) = aft* e 0,

2. Generate u ~ Uniform(0,1).
3. If

f(t)
= Nh(t)’

set x = t, where f(-) is the PDF given in equation (6) and

N = max[igﬂ.

Otherwise, return to step 1.

The function h(t) serves as the proposal density within the acceptance-rejection method. This
particular form, h(t) = aft*~le=%", corresponds to the probability density function of a two-parameter
Weibull distribution. Its selection is motivated by two key factors. Firstly, random samples can be
efficiently generated from a Weibull distribution using standard techniques (e.g., inverse transform
sampling), making it a practical choice for the proposal step. Secondly, for the acceptance-rejection
method to be efficient, the proposal density %(t) should ideally envelope the target distribution f(t)
(the PDF of the EPS distribution) when scaled by a constant N. By choosing a proposal density that
shares a similar functional form or general shape with the target distribution, the acceptance rate of
the algorithm is maximized, thereby reducing the computational time required to generate the desired
number of samples from the EPS distribution. This efficiency is crucial for conducting a large number
of replications in the simulation study.

Maximum likelihood estimates of the parameters are computed for every replication. Performance
of the estimators is assessed by computing the following measures over the 1000 replications:

1 1000
Average Estimate (AE) = —— ) 0;,
1000 &
Bias = AE — 0, (15)

=
o

1 10
Mean Squared Error (MSE) = 1000 Z (6; — 0)?,
i=1

where 0; is the estimate of the parameter 6 in the ih replication.
These estimates indicate the bias and accuracy of the MLEs under different sample sizes and
parameter values. Low MSE and bias are indicators of high estimator quality. The results in Tables (2)
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and (3) indicate that with increased sample size, estimators gain precision and stability, supporting the
asymptotic behavior of the MLE.

Table 2. Simulation Result I for the EPS Model

True Population Parameter | n ¢ AE Bias MSE Failure
c 4.01214 276214 1805.52
50 6 3.21083 0.21083 1.07584 2
270836 0.45836 3.05114
c 148190 0.23193 0.94771
100 6 3.07120 0.07120 0.28288 0
c=12560=3 « 240114 0.15114 0.58128
and o = 2.25 c 129588 0.04588 0.14002
300 6 3.02794 0.02794 0.07585 0
a 230830 0.05830 0.13499
c 127276 0.02276 0.05977
600 6 3.01246 0.01246 0.03454 0
« 227485 0.02485 0.05943
c 239687 1.19687 102.66400
50 0 264503 0.14503 0.74596 0
a 2.06780 0.31780 1.37844
c 153352 0.33352 20.05157
100 6 255056 0.05056 0.29395 0
c=120,6 =25 « 1.89479 0.14479 0.41803
and a« = 1.75 c 1.25556 0.05556 0.13416
300 6 251623 0.01623 0.07365 0
«x 1.78768 0.03768 0.07880
c 122647 0.02647 0.05145
600 6 250769 0.00769 0.03345 0
« 1.76348 0.01348 0.03225

Tables 2 and 3 present simulation results for EPS model for two population (true) parameter
values: (c = 1.25,0 = 3,a& = 2.25),(c = 1.20,6 = 2.5,04 = 1.75) and (¢ = 2.0,0 = 1.5, = 0.5), (¢ =
1.75,6 = 2.5,a = 0.75). Data was generated for sample sizes n = 50,100, 300, and 600, and MLEs
were calculated for each case with 1000 Monte Carlo replications. The results indicate that, for both
sets of true parameters, the estimators of ¢, §, and « have positive biases that substantially decrease
with increasing sample size (n). For larger sample sizes (n = 300 and n = 600), the biases are very
small, and it can be observed that the estimators are increasingly getting more accurate (unbiased)
as n increases. This is how the asymptotic properties of MLEs must be. In addition, the MSEs of all
parameters have a sharp and significant decrease with a increase in sample size, showing a striking
increase in the accuracy of estimates for larger samples. The sudden decline in failure rates. For
n > 100, the maximum likelihood method converges perfectly for almost all replications (no failures),
indicating considerably improved numerical stability of the estimation algorithm. While a few failures
in the smallest sample size (n = 50) were found for the initial set of parameters for Table 2, the values
are very small compared to normal convergence failure rates.

In summary, the findings suggest that the MLEs of the EPS model behave well with low bias and
MSE at large sample sizes and exhibit good convergence properties for varying sample sizes and true
parameter values. These are indications that the log-likelihood function is better or the optimization
process is more stable, which leads to reliable estimates of the EPS distribution.
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Table 3. Simulation Result II for the EPS Model
True Population Parameter | n ¢ AE Bias MSE Failure
c 7.58699 558699 10808.23
50 6 1.62114 0.12114 0.61375 0
o« 0.53816 0.03816 0.03435
c 237108 0.37108 4.04365
100 6 1.52277 0.02277 0.19236 0
c=20606=15 o 0.52169 0.02169 0.01270
and « = 0.5 c 210305 0.10305 0.42604
300 6 151435 0.01435 0.05911 O
a 0.50540 0.00540 0.00406
c 2.05266 0.05266 0.17822
600 6 150626 0.00626 0.02683 0
o« 0.50247 0.00247 0.00183
c 5.34962 3.59962 1355.51
50 6 266720 0.16720 090745 O
« 0.85155 0.10155 0.18730
c 233891 0.58891 7.82254
100 6 2.58483 0.08483 0.36659 O
c=175,6=25 o 0.79499 0.04499 0.05807
and « = 0.75 c 1.88049 0.13049 0.50744
300 6 252786 0.02786 0.10010 O
a« 0.76031 0.01031 0.01386
c 1.79878 0.03978 0.14491
600 6 250497 0.00497 0.04073 O
o« 0.75652  0.00652 0.00615

From Table 4, the simulation results for the MLEs of the LEPS regression model, with true
parameters setasc = 0.7, 0 = 1.0, Bp = 0.5, B1 = =04, B2 = 0.3, B3 = —0.2, B4 = 0.1, 5 = —0.1, and
B = 0.05, demonstrate distinct behaviors across varying sample sizes. For parameter c, its bias exhibits
some fluctuation and does not consistently diminish towards zero, suggesting that larger sample sizes
might be necessary for its full asymptotic properties to manifest, despite its MSE reducing significantly
with increased sample size. By contrast, while the MSE for parameter o consistently decreases, a
persistent positive bias indicates the presence of a finite-sample bias even as precision improves. The
intercept By consistently shows a negative bias; although its MSE decreases, the magnitude of this bias
does not decrease monotonically, possibly reflecting complex finite-sample dynamics. In contrast, the
coefficients for the covariates (31 to B¢) exhibit strong convergence of their mean estimates to the true
values. Crucially, both the magnitude of their bias and their Mean Squared Error (MSE) consistently
decrease with larger sample sizes, thereby affirming the expected asymptotic properties of MLEs for
these parameters and confirming enhanced accuracy and precision. Overall, the findings align with
the desirable asymptotic properties of MLEs for most parameters, indicating improved accuracy and
precision as sample size increases. The very low incidence of simulation failures further attests to the
excellent computational stability of the MLE procedure, an observation visually supported by Figure 7.
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n ‘Parameter ‘ AE Bias MSE Failures
c 0.8419 0.1419 0.081913 0
o 1.3111  0.3111  0.15446 0
Bo 0.4051 -0.0949 0.055856 0
B1 -0.4223 -0.0223 0.084558 0O
50 | B2 0.3261 0.0261 0.125322 0
B3 -0.1987 0.0013  0.086269 0
Ba 0.1172  0.0172 0.083993 0
Bs -0.0953 0.0047 0.117172 0
Be 0.067 0.017 0.101669 0
c 0.7531 0.0531 0.019264 1
o 1.2207 0.2207 0.072187 1
Bo 0.3303 -0.1697 0.045762 1
B1 -0.4353 -0.0353 0.044984 1
100 | B2 0.3286 0.0286 0.049173 1
B3 -0.2199 -0.0199 0.035101 1
B4 0.1 0 0.037915 1
Bs -0.1167 -0.0167 0.046636 1
Be 0.027 -0.023  0.049399 1
c 0.7183 0.0183 0.004132 0
o 1.212 0.212 0.053904 0
Bo 0.3454 -0.1546 0.030306 0
B1 -0.408 -0.008 0.011035 0
300 | B2 0.2967 -0.0033 0.011113 0
B3 -0.1951 0.0049 0.01142 0
B4 0.1115 0.0115 0.010602 0
Bs -0.1033  -0.0033 0.010573 0
Be 0.0643 0.0143 0.011398 0
c 0.7082 0.0082 0.001816 0
1o 1.1885 0.1885 0.040061 O
Bo 0.3268 -0.1732 0.033185 0
B1 -0.4056 -0.0056 0.005568 0
600 | B2 0.3041 0.0041 0.006607 0
B3 -0.2013  -0.0013 0.00525 0
Ba 0.1041 0.0041 0.006256 0
Bs -0.0944 0.0056 0.005313 0
Be 0.0394 -0.0106 0.005905 0
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Figure 6. (a) Bias (b) MSE plots for the LEPS Regression Simulation

Figure (6) presents the simulation results for the MLEs of the LEPS regression model, illustrating

the bias and Mean Squared Error (MSE) of the parameter estimates across varying sample sizes. Panel
(a) displays the bias of the LEPS MLEs. It is evident that as the sample size increases from 50 to 1000,
the bias for most parameters, including o and the regression coefficients g through B¢, generally

converges towards zero. This diminishing bias with increasing sample size suggests that the MLEs are

asymptotically unbiased, a desirable property for these estimators. However, parameter c shows a
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more fluctuating bias that remains somewhat distant from zero, indicating that larger sample sizes
than those explored might be required for its bias to fully dissipate, or that it exhibits a higher finite-
sample bias. Panel (b) illustrates the MSE of the LEPS MLEs. Consistent with theoretical expectations
for well-behaved estimators, the MSE for all parameters systematically decreases as the sample size
increases. This trend confirms the asymptotic efficiency of the MLEs, indicating that the precision of
the parameter estimates improves with larger datasets. The rate of decrease is notably steep for smaller
sample sizes (e.g., from 50 to 300), after which the decline becomes more gradual, suggesting that
while improvements in precision continue, the marginal gains diminish beyond a certain sample size
within the simulated range. The overall pattern across both plots supports the statistical consistency
of the LEPS MLEs, as both bias and variance (implicitly captured by MSE) generally decrease with
increasing sample size.

7. Applications

In this section, we demonstrate the utility of the proposed LEPS regression model in explaining
the impact of clinical factors on the lifetimes of COVID-19 patients. We also show its effectiveness in
fitting traditional datasets, specifically times between failures for repairable items and the death rate of
HIV/AIDS patients in Germany.

7.1. Fitting LEPS Regression Model to Lifetime of COVID-19 Patients

The dataset comprises the lifetime (in days) of 322 individuals diagnosed with COVID-19 through
RT-PCR screening in Campinas, Brazil. These data were previously studied by [35]. A notable charac-
teristic of this sample, is that approximately 66.45% of the individuals have censored observations. This
implies that for these participants, the event of death due to COVID-19 was not observed within the
study’s follow-up period. For censored cases, we know only that their survival time extends beyond
the recorded observation duration, meaning they were alive at the last point of contact or at the study’s
conclusion. The variable ‘ind” serves as a unique, non-informative identifier for each participant in
the dataset. Its role is solely for record management and to differentiate individual entries, carrying
no inherent statistical value or order. Based on Equation (13), the variable ‘censor’ is J; which is
the crucial censoring indicator. It is a binary variable that takes a value of 0 if the observation for
individual 7 is censored, indicating that the individual was alive at the end of the follow-up period or
was lost to follow-up, without experiencing the event. Conversely, J; takes a value of 1 if the observed
lifetime event, specifically death due to COVID-19, occurred for individual i. Age is v;; representing
the age of individual 7, measured in full years. Age is a continuous covariate widely recognized as
a significant demographic factor influencing the severity and outcomes of COVID-19 infection. The
variable "heart’ is vj>. This binary variable would indicate the presence or absence of heart disease
(e.g., cardiovascular disease, ischemic heart disease, heart failure) for individual i. A value of 1 would
denote the presence of such a condition, and 0 its absence. Cardiac comorbidities are well-established
risk factors for severe COVID-19. The variable ‘asthma’ is v;3, a binary variable which captures the
presence or absence of asthma for individual i. A value of 1 would indicate a diagnosis of asthma,
and 0 its absence. Respiratory conditions, including asthma, are frequently investigated as potential
modifiers of COVID-19 severity. The variable ‘diab’ is v4, a binary variable indicating the presence or
absence of diabetes mellitus for individual i. A value of 1 signifies that the individual has a diagnosis of
diabetes mellitus (or that this condition was reported), while 0 indicates the absence of diabetes or that
this information was not available or not applicable. Diabetes is a common comorbidity consistently
linked with increased risk of severe COVID-19 and adverse outcomes. The variable ‘'neuro’ v;s, a
binary variable which denote the presence or absence of a neurological condition for individual i. A
value of 1 would signify the existence of such a condition, and 0 its absence. Neurological involvement
and pre-existing neurological disorders have been identified in relation to COVID-19 outcomes. The
variable “obesity’ v;, a binary variable which indicates whether individual i is classified as obese. A
value of 1 would signify obesity, and 0 its absence. Obesity is widely recognized as a significant risk
factor for severe COVID-19 and increased mortality.
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Figure (7a) represents the normal probability graph that shows that the lifetimes of the COVID-19
patients follow the normal distribution. Figure (7b) is the quantile residual plot against their index (the
order of observations) in the dataset. From the plot, there are potential outliers as points lie below and
above the lower and upper implicit boundaries (-3,3). Figure (7c) is the histogram of the age of the
patients. It is evident from the histogram that the data is right-skewed.
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Figure 7. (a) Normal probability plot (b) Index plot (c) Histogram for age

For the fitting of the LEPS regression model to the lifetimes (in days) of COVID-19 patients, several
established parametric regression models were selected for comparative analysis. These include the
log-exponentiated power Chris-Jerry (LEPC]J) by [36], log-exponentiated power Akash (LEPA) by
[37], log-power Prakaamy (LPP), log-exponentiated power Lindley (LEPL), log-power Rama (LPR),
log-power Lomax (LPLo), log-power Zeghdoudi (LPZ), log-power Suja (LPSU), log-exponentiated
power Ishita (LEPI), log-power Ishita (LPI), and the log-exponentiated Weibull (LEW) model.

Table 5. Performance Indices for the COVID-19 Data

Distribution | AIC CAIC BIC HQIC Rank
LEPS 426.4954 427.3471 460.4664 440.0577 1
LEPC] 432.8959 433.7475 466.8668 446.4582 10
LEPA 430.5849 431.4365 464.5559 4441472 8
LPP 634.9586 635.6660 665.1550 647.0140 12
LEPL 427.5919 428.4435 461.5629 441.1542 4
LEPR 633.7501 634.6017 667.7211 647.3124 11
LEPLo 428.4645 429.3170 462.4363 442.0276 5
LPZ 429.4645 430.1719 459.6609 4415199 6
LPSU 432.6906 433.3980 462.8870 444.7460 9
LEPI 426.5270 427.3786 460.4979 440.0893 2
LPI 430.2170 430.9244 460.4134 4422724 7
LEW 426.5323 427.3839 460.5033 440.0946 3

Table (5) shows comparisons of the model selection metrics of various distributions to the COVID-
19 data. LEPS achieves the lowest Akaike Information Criterion (AIC = 426.4954), Consistent AIC
(CAIC =427.3471), and Hannan-Quinn Information Criterion (HQIC = 440.0577), and thus ranks first
by consequence. LEPI and LEW models follow with slightly higher values in these metrics. In contrast,
models such as LPP and LEPR have very much larger information criteria values, which refer to poorer
fit. Bayesian Information Criterion (BIC) ranks LPZ last among all the best-fitting models, even though
its AIC and CAIC values are higher than those of LEPS. Overall, the results reveal that the LEPS
distribution presents the most consistent and best-fitting model for the data among the competitors
under consideration.

For each distributional model in Table (6), the regression model is
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yi = Bo+ P1-Age+ B2 - Heart 4 B3 - Asthma + B, - Diabetes + S5 - Neurological Condition + ¢ - Obesity.

The statistically significant predictors (meaning p < 0.05) within models tend to consist of age,
heart disease, and neurological condition, and sometimes diabetic condition, which are constant
negative or positive effects depending on the model. The signs of coefficients define the effect direction:
age (usually negative and significant), heart disease (negative and significant), neurological condition
(negative and significant in most models), Others (asthma, diabetic condition and obesity) vary less in
significance. Parameter ¢ distinguishes between models and is linked with the shape or flexibility of fit
of the distribution, and ¢ is representative of scale with varying precision.

Table 6. Regression Coefficients of lifetime of COVID-19 Patients

Dist ‘ c o Bo B1 B2 B3 B4 Bs Be

039854 452354 -0.01763 -0.30804 0.08840 -0.53958 -0.43946 -0.05539

LEPS | 032055 172000 (035308 (0.00445) (0.12678) (0.11187) (0.31905) (0.15208) (0.18159)
) ’ [9.20958 x 10~%]  [1.56573 x 10702]  [4.3002 x 107%1]  [9.17649 x 10~%2]  [4.11912 x 10~%]  [7.6054 x 10~%1]

044464 403788 -0.01460 -0.26641 0.05634 -0.40018 -0.38661 -0.06365

LEPC] | 028569 (0"1ouco)  (0.31162) (0.00377) (0.10794) (0.10103) (0.30172) (0.14027) (0.16069)
) ’ [128112 x 107%]  [1.41014 x 10792]  [5.77458 x 107 ~ [1.85670 x 100!]  [6.18223 x 10~%]  [6.92286 x 10~1]

102188 338640 -0.01789 -0.34401 0.09313 -0.44848 -0.50329 -0.00147

LEPA | 086502 (0'y7e11)  (1.03469) (0.00392) (0.13128) (0.12089) (0.34812) (0.15598) (0.20885)
’ : [7.21294 x 107%]  [9.19665 x 10~%%]  [4.41683 x 107  [1.98568 x 1070!]  [1.38143 x 10~%]  [9.94373 x 10~1]

134315 368414 -0.02804 -0.45720 0.12111 -0.59199 -0.60786 -0.28410

LPP - (0.08866) (0.32038) (0.00429) (0.14211) (0.13263) (0.35996) (0.16355) (0.22410)
: ’ [2.37579 x 10710]  [1.42613 x 10~%%]  [3.61854 x 107  [1.01029 x 1070!] ~ [2.38077 x 10~%]  [2.05810 x 10~1]

055772 429864 -0.01771 -0.32000 0.09596 -0.50055 0.45724 -0.02007

LEPL | 051725 (50060)  (0.41692) (0.00405) (0.12351) (0.11470) (0.32494) (0.15254) (0.19166)
) ’ [1.65777 x 107%]  [1.00058 x 1072]  [4.03428 x 107%]  [1.24433 x 1070!]  [2.93413 x 10~%]  [9.16645 x 10~1]

130070 364433 -0.02701 -0.45200 0.11142 -0.59003 -0.58702 -0.27204

LEPR | 008776 ('nescs  (0.31300) (0.00418) (0.13917) (0.12970) (0.35738) (0.16277) (0.21963)
: ’ [3.84415 x 10719]  [1.28590 x 10~%%]  [3.90970 x 1070 ~ [9.97142 x 10~%2]  [3.59577 x 10~*]  [2.16385 x 10~1]

053888 -5.81524 0.01826 0.34664 -0.09095 0.50343 0.48175 0.01736

LEPLo | 110562 ) 00211)  (084512) (0.00414) (0.12894) (0.12057) (0.33638) (0.15694) (0.19969)
: ’ [1.42546 x 107%]  [7.55306 x 10~%%]  [4.51220 x 107%]  [1.35468 x 1070!]  [2.32536 x 10~%]  [9.30764 x 10~1]

111805 327079 -0.01817 -0.34904 0.09141 -0.44806 -0.51847 -0.00658

LPZ - (0.07670)  (0.29615) (0.00390) (0.13435) (0.12386) (0.34622) (0.16116) (0.21319)
: ’ [4.71438 x 107%]  [9.80917 x 10~%%]  [4.61050 x 107%]  [1.96544 x 1070!]  [1.42664 x 10~%]  [9.75395 x 10~1]

149635 199343 -0.01785 -0.33588 0.09619 -0.40231 -0.50443 0.01387

LPSU - (0.08426) (0.28684) (0.00365) (0.13137) (0.12081) (0.33385) (0.15288) (0.21289)
: ’ [1.62224 x 107%]  [1.10257 x 10702]  [4.26487 x 107%]  [2.29059 x 10°!]  [1.07700 x 10~%]  [9.48093 x 10~1]

039922 442438 -0.01755 -0.30067 0.08156 -0.51081 -0.42436 -0.07581

LEPL | 021330 (020600 (0.41197) (0.00391) (0.12971) (0.11068) (0.32332) (0.15583) (0.17826)
’ ’ [1.01142 x 107%]  [2.10795 x 10792]  [4.61710 x 107  [1.15113 x 10™%!]  [6.81858 x 10~%]  [6.70895 x 10~01]

116093 325318 -0.01902 -0.35417 0.10365 -0.45484 -0.52951 -0.00731

LPI - (0.07608)  (0.30392) (0.00398) (0.13681) (0.12661) (0.34889) (0.16079) (0.21907)
: ’ [2.66128 x 107%]  [1.00698 x 10~2]  [4.13607 x 107  [1.93277 x 10™%!] ~ [1.10097 x 10~%]  [9.73385 x 10~1]

027088 467512 -0.01737 -0.28274 0.08807 -0.53446 -0.42685 -0.08440

LEW | 053288 0707 (0.35132) (0.00446) (0.12487) (0.11101) (0.31753) (0.15148) (0.17681)
) ’ [1.20159 x 107%]  [2.42201 x 1072]  [4.28149 x 107  [9.33089 x 107%2]  [5.13377 x 10~%]  [6.33434 x 10~1]

For the LEPS model, the regression model for the lifetimes (in days) of COVID-19 patients (y;) is
given by:

y; = 4.52354 — 0.01763Age — 0.30804Heart + 0.08840Asthma — 0.53958Diabetes
— 0.43946Neurological Condition — 0.055390besity.

Standard errors are given in parentheses, and p-values are shown in brackets below:

Bo = 452354 (0.35328)

Br = —0.01763 (0.00445), p = 9.20958 x 10~°
Bo = —0.30804 (0.12678), p = 1.56573 x 102
B3 =0.08840 (0.11187), p = 0.43002

Bs = —0.53958 (0.31905), p = 0.09176

Bs = —0.43946 (0.15208), p = 0.00412

Be = —0.05539 (0.18159), p = 0.76054.
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The scale and shape parameters of the LEPS distribution are ¢ = 0.32055, ¢ = 0.39854 (with standard error 0.173:
These are specific to the LEPS distribution; where

(1) Intercept (By): Estimated lifetime for the baseline patient with all predictors at zero (i.e.
youngest age, no heart disease, no asthma, no diabetes, no neurological condition, no obesity)
is about 4 years and 6 months.

(if) Age (81 = —0.01763): For every additional year of age, the lifetime is expected to decrease
by roughly 0.018 years, holding all else equal. This suggests a negative correlation between
survival time and age.

(iii) Heart disease (8, = —0.30804): Patients with heart disease suffers a lifetime reduction by
about 0.31 years.

(iv) Asthma (B3 = 0.08840): Asthma appears to be positively correlated with lifetime, increasing it
by about 0.088 years but it is not significant statistically since (p-value > 0.05).

(v) Diabetes (B4 = —0.53958): lifetime for diabetic patients is significantly low at about 0.54 years,
suggesting diabetes seriously reduces the life expectancy of a COVID-19 patient.

(vi) Neurological condition (85 = —0.43946): Neurological conditions also decrease lifetime by
about 0.44 years.

(vii)  Obesity (B = —0.05539): Obesity has a very weak negative effect on lifetime, but the effect is
small and not statistically significant.

This model quantifies to what degree clinical parameters influence COVID-19 patients’ lifetimes
through differences in survivals, which identifies high-risk groups. Across all the models considered,
a consistent pattern emerges regarding the significance of covariates. Specifically, the parameters 1,
B2, and Bs were found to be statistically significant in every model. These parameters correspond to
age, heart disease, and neurological condition, respectively, suggesting their strong association with
the response variable under study. For models such as LEPS, LEPCJ, LEPA, LEPL, LEPR, LPL, LEP],
and LEW, the parameters c, o, B, B3, B4, and Bg were consistently not significant. This implies that
these covariates do not have a meaningful contribution to the outcome in these models. In contrast, for
the LPP, LPZ, LEPSU, and LPI models, the parameter c is not applicable, yet the insignificance of o, By,
B3, B4, and B¢ remains consistent. It is noteworthy that despite the structural differences in the models
(such as the presence or absence of parameter c), the core set of significant parameters (81, 2, and B5)
remains unchanged. This reinforces the robustness of their influence and suggests that interventions
or predictions based on these variables are likely to be reliable across various modeling frameworks.
The repeated insignificance of parameters like Bo, 83, B4, and Bg across models indicates that these
variables may be redundant or have weak explanatory power in the context of this analysis. It may be
beneficial in future studies to consider removing or replacing these covariates to streamline model
complexity without sacrificing predictive accuracy.

Table 7. 95% Confidence Intervals (Part 1)

Parameter LEPS LEPC] LEPA LPP LEPL LPR
Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper
c -0.0111  0.6522  0.0837  0.4877  -0.6538 2.3838 -0.0868 1.1213  -1967.2710 1967.4460
o 0.0573  0.7398 0.1993 0.6899 0.0813 1.9625 1.1687 1.5176 0.1001 1.0153 1.1414 1.4780
Bo 3.8285 52186 3.4248 4.6509 13508 54220 3.0538 4.3144 34784 5.1189 3.0284 4.2603
B1 -0.0264 -0.0089 -0.0220 -0.0072 -0.0256 -0.0102 -0.0365 -0.0196 -0.0257 -0.0097 -0.0352 -0.0188
B2 -0.5575 -0.0586 -0.4788 -0.0541 -0.6023 -0.0857 -0.7368 -0.1776 -0.5630 -0.0770 -0.7258 -0.1782
B3 -0.1317 03085 -0.1424 0.2551 -0.1447 0.3310 -0.1398 0.3820 -0.1297 0.3216  -0.1438 0.3666
Ba -1.1673  0.0881 -0.9938 0.1934 -1.1333 0.2364 -1.3002 0.1162 -1.1398 0.1387 -1.2931 0.1131
Bs -0.7387 -0.1403 -0.6626 -0.1106 -0.8102 -0.1964 -0.9296 -0.2861 -0.7573 -0.1571 -0.9072 -0.2668
Be -04126 03019 -0.3798 0.2525 -0.4124 0.4094 -0.7250 0.1568 -0.3971 0.3570 -0.7041 0.1601
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Table 8. 95% Confidence Intervals (Part 2)

Parameter LPL LPZ LEPSU LEPI LPI LEW

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper
c -18.2400 40.3524 -0.0547 0.4813 -0.0000 1.0658
o 0.4541 0.6237 09671 1.2689 1.3306 1.6621 -0.0065 0.8049 1.0133 1.3126 0.0503  0.6315
Bo -7.4779  -41526 2.6882 3.8534 14291 25577 3.6139 5.2349 26553 3.8511 3.9840 5.3663
B1 0.0101 0.0264 -0.0258 -0.0105 -0.0250 -0.0107 -0.0253 -0.0099 -0.0268 -0.0112 -0.0261 -0.0086
B2 0.0929 0.6003  -0.6134 -0.0847 -0.5943 -0.0774 -0.5559 -0.0455 -0.6233 -0.0850 -0.5284 -0.0371
B3 -0.3282 0.1463  -0.1523 0.3351 -0.1415 0.3339 -0.1362 0.2993 -0.1454 0.3527 -0.1303 0.3065
Ba -0.1583  1.1652  -1.1292 0.2331 -1.0591 0.2545 -1.1469 0.1253 -1.1412 0.2316 -1.1592 0.0902
Bs 0.1729 0.7905  -0.8355 -0.2014 -0.8052 -0.2037 -0.7309 -0.1178 -0.8459 -0.2132 -0.7249 -0.1288
Be -0.3755 04102  -04260 0.4128 -0.4050 0.4327 -04265 02749 -04383 0.4237 -0.4323 0.2634

The 95% confidence intervals for the parameters are computed with the following formula,
CI = f; +1.96 x SE(B;). For instance, in the LEPS model, the coefficient for age (1) had a [95% CI =
—0.01763 £ (1.96 x 0.00445) = [—0.02635, —0.00891], indicating a statistically significant and negative
association with lifetime. Confidence intervals for other parameters provide similar insights and can
be found in Tables (7) and (8). Above all, this consistency in parameter significance across different link
functions and error structures provides strong evidence for the reliability of key predictors and offers
direction for model refinement. Confidence intervals were computed for each parameter estimate to
assess the precision of the estimates.

7.2. Fitting EPS to Reliability Data

The first data set represent the times between failures for repairable items initially studied by [38]
and reported in Table (9). The second data set is Death rate due to HIV/AIDS in Germany from year
2000 to 2020 reported in
https:/ /platform.who.int/mortality / themes/theme-details / topics/indicator-groups/indicator-group-
details/MDB/hiv-aids and presented in Table (10). In Table (11), we present a summary of basic
statistics to gain insight from the two data sets. From Table (11), the repairs times dataset (n = 30)
is smaller on its mean (0.0154) and median (0.0124), and has a steep right skew (skewness = 1.2955)
that indicates a longer right tail. It is also smaller with an IQR of 0.0123 and a range of 0.0462. Two
outliers (0.0436,0.0473) indicate extreme values. A high kurtosis of 4.3192 indicates a more pointed
distribution with heavier tails. In contrast, the HIV/AIDS mortality rate data set (n = 21) has a mean
of 0.5203, median of 0.5395, and is very slightly left-skewed with skewness -0.3335, showing slight
asymmetry toward smaller values. The inter-quartile range (IQR) is 0.1590, with a total range of 0.3786,
and a standard deviation of 0.1090, showing moderate variability. Its kurtosis of 2.1101 shows a very
slightly flatter distribution than normal.

Table 9. Repair Times Data (Data-I)

143 011 071 077 263 149 346 246 059 074
123 094 436 040 174 473 223 045 070 1.06
146 030 1.82 237 063 123 124 197 186 1.17

Table 10. HIV/AIDS Death Rate in Germany (Data-II)

0.70570244 0.65946256 0.62801346 0.6143952  0.61453596 0.59540885 0.61190438
0.56040019 0.53945593 0.52641369 0.55652406 0.56615856 0.50050448 0.49723726
0.47911586 0.3270769  0.34298934 0.35461942 0.37625366 0.41652161 0.45295061
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Table 11. Basic Statistics

Data-I Data-II

n 30 21
Q1 0.0072 0.4530
Q» 0.0194 0.6119
IQR 0.0123 0.1590

Outlier 0.0436, 0.0473 -
Mean 0.0154 0.5203
Median 0.0124 0.5395
Var 0.0001 0.0119
SD 0.0113 0.1090
Range 0.0462 0.3786
Skewness 1.2955 -0.3335
Kurtosis 4.3192 2.1101

The proposed EPS distribution is compared with new generalized logistic-x transformed exponen-
tial (NGLXTE) distribution introduced by [39], Logistic-Weibull distribution by [40], power Zeghdoudi
distribution by [41], power Ishita distribution by [42], power Prakaamy distribution by [43], power
Rama distribution by [44] and Power Lomax distribution introduced by [45]. The model selection
criteria are the Akaike information criterion (AIC), consistent Akaike information criterion (CAIC),
Bayesian information criterion (BIC) and Hannan-Quinn information criterion (HQIC) which are

computed using;

AIC = —2/(%) + 2k
2kn
(n—k—1) (16)
BIC = —24(S) + klog (1)
HQIC = —24(8) + 2klog (1),

CAIC = —24(8) +

where £($) is the log-likelihood function in Equation (4), k is the number if parameters, 1 represents
the sample size and § is the vector of parameters; for the EPS model, § = (¢, 9, &). For goodness of
fit test, let an X(l), X(z), cee, X(n) be an ordered random sample from the EPS (c, 6, ), where ¢, 6 and
« are unknown; the Cramér-von Mises (W?), Anderson-Darling A% and Kolmogorov-Smirnov (D)
statistics are computed using the following;

1 n LA 2j—177
Wﬁ:lznjL];[F(x],c,G,zx) ” ]
2 —2j—1 A A A A A A
Ay =-n—) F—[In{F(x;¢0,&)} +In{1-F(x;¢0,a)}] (17)
j=1
J A A A A A A j—1
D, :mjax{n— (x], ,G,zx),F(x], ,0,1) _n}
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Table 12. Model Assessment and Goodness of Fit Criteria for the Data sets

Data | Distribution | LL AIC CAIC BIC HQIC W2 A2 Dy P-value
EPS 98.54 -191.0839 -190.1608 -186.8803 -189.7391 0.0178 0.1346 0.0660 0.9995
NGLXTE 96.82 -189.6349 -189.1904 -186.8325 -188.7383 0.0712 0.5074 0.1219 0.7643
Logistic-Weibull 97.74 -189.4824 -188.5593 -185.2788 -188.1376 0.0303 0.1958 0.0738 0.9968

Data-I Power Zeghdoudi | 231.89 -459.7825 -459.3380 -456.9801 -458.8860 0.0189 0.1435 0.0661 0.9994
Power Ishita 98.24 -192.4895 -192.0450 -189.6871 -191.5929 0.0280 0.2115 0.0749 0.9960
Power Prakaamy | 98.24 -192.4895 -192.045 -189.6871 -191.5929 0.0280 0.2115 0.0749 0.9960
Power Rama -196.4895 -192.4895 -192.045 -189.6871 -191.5929 0.0220 0.2116 0.0748 0.9960
Power Lomax 98.46 -190.9299 -190.0068 -186.7263 -189.5851 - - 367.17 22 x 1071
EPS 17.95 -29.8916 -28.4798 -26.7580 -29.2115 0.0225 0.1958 0.0868 0.9932
NGLXTE 17.84 -31.6816 -31.0149 -29.5925 -31.2282 0.0275 0.2202 0.0945 0.9827
Logistic-Weibull 15.77 -25.5328 -24.1211 -22.3993 -24.8528 0.0923 0.6032 0.1170 0.9044

Data-IT Power Zeghdoudi | 31.70 -59.4087 -58.7420 -57.3196 -58.9553 0.0466 0.3275 0.1054 0.9546
Power Ishita 17.79 -31.5737  -30.9070 -29.4846  -31.1203 0.0326 0.2473 0.0999 0.9710
Power Prakaamy 17.79 -31.5738 -30.9072 -29.4848 -31.1205 0.0326 0.2473 0.0999 0.9710
Power Rama -35.57 -31.5714  -30.9047  -29.4823 -31.1180  0.0326 0.2474 0.1000 0.9707
Power Lomax 17.78 -29.5634 -28.1516 -26.4298 -28.8833 0.0756 05523 09074 2.2x10716

Model fit was checked using the log-likelihood (LL), Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC), Corrected AIC (CAIC), and Hannan-Quinn Information Criterion (HQIC).
Models with higher log-likelihood and lower information criteria are considered better for parameter
estimation. In Data I, Power Zeghdoudi distribution possessed the highest log-likelihood (LL =
231.89) and lowest AIC, BIC, CAIC, and HQIC, thereby indicating the best parameter estimation fit.
However, the log-likelihood value is significantly higher than the rest, and the disparity may reflect an
inconsistency in scaling or computation error that needs to be verified. Omitting Power Zeghdoudi, the
Power Ishita and Power Prakaamy distributions were found to perform competitively with similar low
information criteria. The EPS and Logistic-Weibull models also showed good performance with good
values of log-likelihood and acceptable values of information criteria. The Power Lomax model was
far worse based on very poor goodness-of-fit statistics and low log-likelihood. In Data II, the Power
Zeghdoudi model again produced the best estimation performance, with maximum LL (31.70) and
minimum information criteria. The next best were NGLXTE, Power Ishita, and Power Prakaamy, all of
whom had closely competing values. The EPS and Logistic-Weibull models ranked slightly below in
parameter estimation accuracy. Goodness-of-fit was assessed according to the Cramér—von Mises (W),
Anderson-Darling (A), and Kolmogorov-Smirnov (KS) statistics and their corresponding p-values.
Small W, A, KS statistics and large p-values for models indicate closer fit to empirical data. For Data
L, all of EPS, Power Zeghdoudi, Power Ishita, Power Prakaamy, and Logistic-Weibull distributions
provided excellent fit with very small KS values (0.066 to 0.075) and very large p-values (larger than
0.996). Among them, the EPS model provided the largest p-value of 0.9995, indicating the best fit to
empirical distribution. On the contrary, the Power Lomax distribution provided very poor fit with
very large KS statistics and a p-value near zero. Even in Data II, the same performance pattern was
observed. The distributions of EPS, Power Zeghdoudi, Power Ishita, Power Prakaamy, and NGLXTE
all had low KS values (0.0868 to 0.1000) and high p-values (0.9707 to 0.9932), which suggest very
good reliability. The Power Lomax distribution again had very high KS statistics and essentially zero
p-values, which suggest poor fit.
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Table 13. Maximum Likelihood Estimates and Standard Errors for the Parameters
N Data-I Data-II
Distribution Parameter MLE Standard Error | MLE Standard Error
EPS c 2.02704 2.01553 0.53153 0.54852
0 107.73256  161.86640 77.82167  173.8626
o 1.02418 0.50546 8.80975 6.35813
o 0.95548 0.14244 0.23295 0.04141
NGLXTE A 36.67111 451186 1.22582 0.04716
o 0.30937 2.93717 1.70673 55.05655
Logistic-Weibull B 3.90162 50.42695 3.05404 109.99449
A 7.26999 69.02284 4.59278 148.15444
Power Zeehdoudi 0 125.35135 67.87865 20.37515 7.51274
ower £eghdo « 098946  0.13455 378107  0.64425
Power Ishita 0 385.28497 302.30205 28.73580 16.17704
o 1.46339 0.20284 5.84443 1.02779
Power Prakaam 0 385.19264 302.05889 28.72744 16.18301
owe Y la 146334 020273 584413  1.02807
P R 0 385.40469 302.79412 28.71725 16.14841
ower Rama p 146342  0.20310 584763  1.02518
A 0.00268 0.00061 10.36019 100.65774
Power Lomax o 3.60831 1.70345 300.34300 2898.00826
B 1.71697 0.13879 5.85607 1.03083

Table 13 presents the maximum likelihood estimates (MLEs) and standard errors of the parameters
of various statistical distributions fitted to Data-I and Data-II. For the EPS distribution, the parameter
estimates vary significantly across datasets, with ¢, §, and & taking higher values and standard errors
in Data-I, reflecting higher variability. The NGLXTE model yields more stable estimates with relatively
smaller standard errors, particularly for Data-1I, reflecting higher model accuracy. The Logistic-
Weibull distribution contains large standard errors in both data, particularly in A and B, which could
indicate issues with parameter identifiability or fit to the data. The Power Zeghdoudi, Power Ishita,
Power Prakaamy, and Power Rama distributions yield stable estimates between Data-I and Data-1I,
particularly in § and &, with Data-II providing lower standard errors, indicating more precise inference.
Lastly, the Power Lomax distribution displays extreme differences between datasets in parameter size
and standard error, most notably in & and A, with Data-II estimates being considerably larger. Overall,
the results indicate that parameter estimates and their errors vary quite noticeably between models
and datasets, with certain distributions exhibiting more stability and precision for specific data.
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Figure 8. Boxplots superimposed on Violin and Density plots superimposed on Histogram
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Figure 9. Empirical CDF with superimposed EPS CDF, Empirical S(x) with superimposed EPS Survival Function

0
0

00 02 04 06 08
00 02 04 06 08

08 10 00

e o w w 2 o e 00 02 04 06 04 06
Data-l Dafp-ll Data-| Data-ll

Figure 10. TTT and PP Plots
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Figure 11. QQ plots

In Figure (8), the data plot for Data-I overlays a violin plot with an embedded boxplot, and a
histogram with a superimposed density curve. The histogram indicates right-skewness with dense
low values and an elongated tail. The red density curve verifies the skewness and identifies the peak
at a low value. The violin plot also visually supports the shape of the distribution. The box plot shows
a small median and narrowed interquartile range (IQR), which is characteristic of right-skewness. For
Data-II, the histogram shows right skewness, though perhaps less pronounced than for Data-I. The
density curve supports this skewness. The violin and boxplot show slightly higher median and IQR
than for Data-I. In Figure (9), plot for Data-I; Empirical CDF (red line) closely matches the EPS CDF
fitted (black line / dots), indicating a good fit. The same assertion for Data-II on the basis of a similar
trend as Data-I since empirical and EPS CDFs closely match. bThe empirical survival function (red
line) closely matches the theoretical survival function of the EPS. The TTT plot of Data-I in Figure
(10) is concave up, reflecting increasing hazard rate. Similar to Data-I, the TTT plot of Data-II reflects
increasing hazard rate behavior. Data-I PP Plot’s red dots are close to the diagonal, which provides a
good fit of the EPS distribution. For Data-II PP Plot, dots are also close to the diagonal and provide
a strong fit for Data-II. In Figure (11), the quantiles of Data-I coincide closely with quantiles of the
EPS distribution with slight discrepancies. Similarly, Data-II quantiles follow theoretical EPS quantiles
closely, confirming a close fit. Both data sets are right-skewed and appear overall more concentrated
towards small values for Data-I. Both exhibit increasing hazard rates as confirmed by TTT plots. The
EPS distribution gives a good and consistent fit to both data sets with respect to: Empirical CDFs and
survival functions, PP plots (probability correspondence), and QQ plots (quantile correspondence).
Robustness of the overall fit with all the diagnostics provides the evidence of the appropriateness of
the EPS distribution as the model for both the data sets.
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8. Conclusion

The EPS distribution, proposed here, has strong modeling flexibility and empirical relevance for
lifetime and reliability data. Through thorough structural analysis and simulation, the distribution
has been proven to model a broad spectrum of density and hazard function shapes—varying from
unimodal and skewed to bathtub and monotonic behaviors. Simulation results show that while the
MLEs can become biased in small samples, especially for specific parameter settings, the estimators
become more stable and accurate as the sample size increases. Application of the EPS model on
two real data sets—repair time and HIV/AIDS mortality rates—documents its pragmatic solidness.
In both cases, the EPS distribution shows an excellent fit, performing competitively or better than
other proven distributions such as Power Ishita, Logistic-Weibull, and Power Zeghdoudi according
to likelihood-based criteria and goodness-of-fit tests. Diagnostic plots (QQ, PP, CDF, and TTT plots)
graphically authenticate the better or competitive fit of the model. Hence, the EPS distribution is
a powerful member of the family of flexible life-time models, highly suitable in the broad range of
applied contexts in survival analysis, reliability analysis, and public health research. Its extension to
regression further broadens its suitability for covariate-dependent response modeling.
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