

Review

Not peer-reviewed version

Pancreatic Cancer Management by Pentacyclic Triterpenes

Abdulaziz M. S. Alqahtani , [Sultan F. Kadasah](#) , [Mohamed O. Radwan](#) *

Posted Date: 29 February 2024

doi: [10.20944/preprints202402.1741.v1](https://doi.org/10.20944/preprints202402.1741.v1)

Keywords: Pancreatic cancer; natural products; pentacyclic triterpenes

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

Pancreatic Cancer Management by Pentacyclic Triterpenes

Abdulaziz M. S. Alqahtani ¹, Sultan F. Kadasah ¹ and Mohamed O. Radwan ^{2,*}

¹ Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia

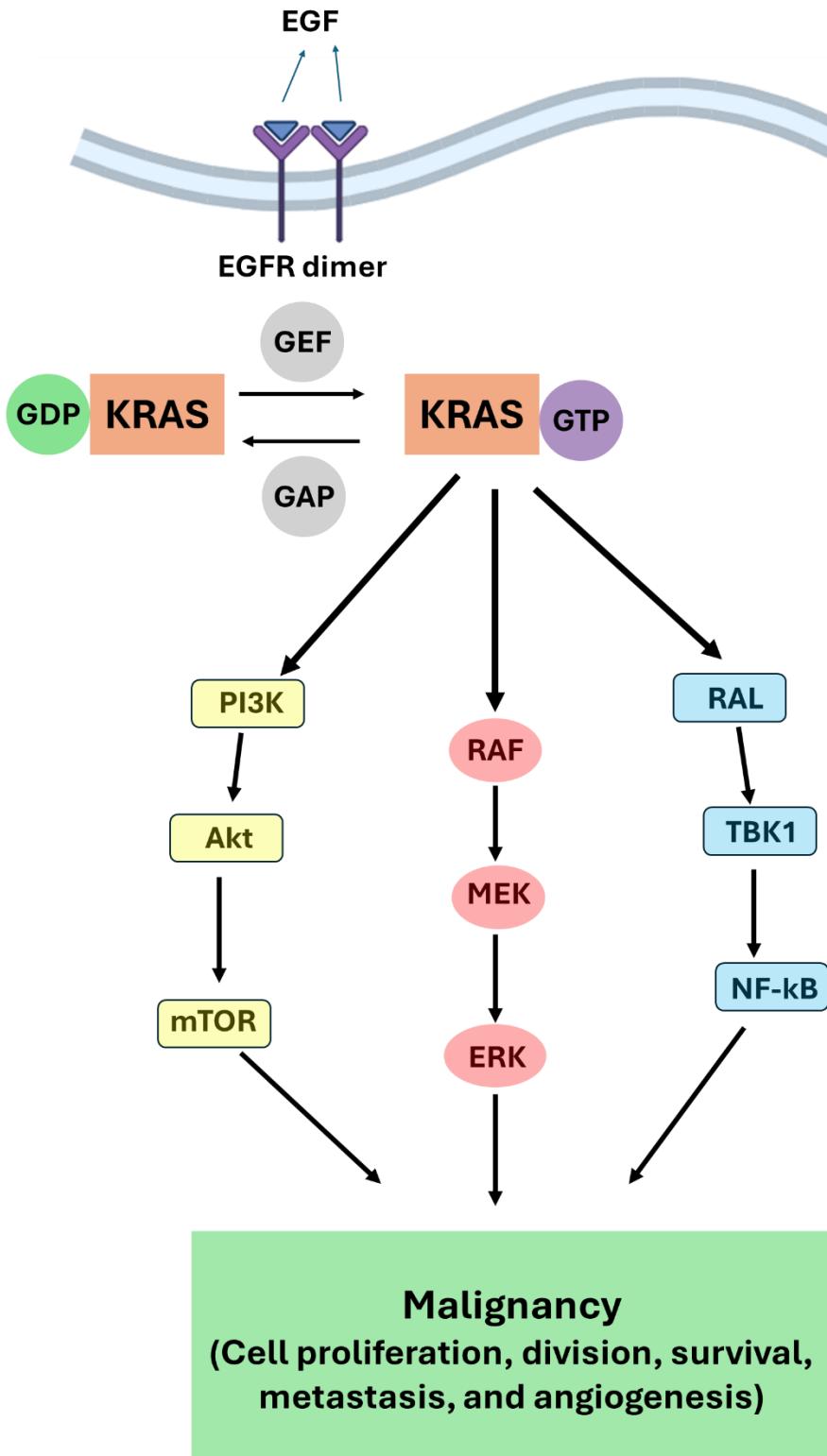
² Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973.

* Correspondence: mohamedradwan@kumamoto-u.ac.jp (M.O.R.).

Abstract: Pancreatic cancer (PC) is considered one of the most challenging and formidable malignancies to treat because it is usually diagnosed at terminal stage, thus it is characterized by a poor prognosis with 5% of patients living over 5 years. The late diagnosis leads to a lower success rate of resectability, hence chemotherapy or chemoradiotherapy are the only hopes for most PC patients. However, the available drug combinations for PC treatment did not provide satisfactory clinical outcomes. There is a pressing and urgent need to discover new chemotherapeutics which fight PC with tolerable side effects and less liability for resistance. Pentacyclic triterpenes (PTs) are privileged structures with a multitude of biological activities mitigating several ailments, particularly in neoplasm field. They are characterized by a high therapeutic window and their activity can be highly enhanced through structural modifications. Indeed, several parent PTs such as oleanolic acid, ursolic acid, lupeol, betulinic acid, and celastrol proved effective against different PC phenotypes inhibiting their proliferation, invasion, and metastasis mainly via KRAS modulation. Some PTs worked as adjuvant chemosensitizers in gemcitabine-resistant or TRAIL-resistant cells. Owing to their potential in PC treatment, we present this review article summarizing PC pathogenesis and the promising role of PTs in the management of PC when used either solely or in combination with other chemotherapies such as gemcitabine and 5-Fluorouracil.

Keywords: pancreatic cancer; natural products; pentacyclic triterpenes

1. Introduction


Pancreatic ductal adenocarcinoma (PC) represents a formidable and an exceptionally devastating ailment which is ranked as the third leading cause of cancer-related death in the United States of America. PC is characterized with low survival rate compared to other cancer types (only 12%) with over 60000 new cases each year [1,2]. Several studies and meta-analysis showed that cigarette smoking, high alcohol intake, obesity, and diabetes are potential risk factors that can be associated to PC in different ratios [3–5].

Activating mutations of Kirsten rat sarcoma viral oncogene homolog (KRAS) were identified in around 91% of PC patients and about 30% of all cancers [6–10]. KRAS is one isoform of the RAS GTPase proteins in addition to HRAS, and NRAS. Further deletion or inactivating mutations of tumor-suppressor genes TP53 or SMAD4 maintain the progress of PC [10–12]. In the cell membrane, the inactive guanosine diphosphate (GDP)-bound KRAS is activated by guanine nucleotide exchange factor (GEF) proteins affording guanosine triphosphate (GTP)-bound KRAS through protein tyrosine kinase receptor such as epidermal growth factor receptor (EGFR) [13]. Aberrant activation of KRAS leads to inappropriate downstream signaling of different pathways implicated in cell proliferation including activation of downstream signaling molecules including RAF, Phosphoinositide 3-kinase (PI3K), and RAL [14,15].

In Ras-RAF-MEK-ERK pathway, the activated Ras recruits RAF, triggering a downstream signaling pathway activating MEK1/2 and extracellular signal-regulated kinases 1/2 (ERK1/2), consequently, which in turn, move into the nucleus and phosphorylates nuclear transcription factors implicated in cell

proliferation [14]. PI3K is the second Ras effector known as Ras-PI3K-AKT-mTOR pathway [13]. Its activation transforms phosphatidylinositol (4,5)-biphosphate (PIP2) to phosphatidylinositol (3,4,5)-triphosphate (PIP3). The latter binds Akt which in turn triggers downstream signaling promoting Mammalian target of rapamycin (mTOR) which regulates gene transcription and orchestrate cell proliferation, survival, growth, and immune cell differentiation [16].

The third Ras effector is Ral-GTPases protein [17]. Indeed, GTP-bound Ral-A and Ral-B were found to be highly expressed in PC [18,19]. They activate NF- κ B through TBK1-binding kinase 1 (TBK1) and thus promote subsequent gene transcription, cytokine production, and contributing to oncogenesis [20,21] (Figure 1).

Figure 1. KRAS signaling cascade implicated in pancreatic cancer through three effector pathways.

Depending on the severity of each case and the resectability, multidisciplinary management of PC is recommended [22]. In addition to resection and radiation, chemotherapy possesses a pivotal role in increasing the life expectancy of PC patients [6]. Nonetheless, only 15%–20% of newly-diagnosed patients are eligible for resection due to metastasis. About 75% of patients will suffer from recurrence within 2 years after resection [23]. FOLFIRINOX, a chemotherapy combination of fluorouracil, irinotecan, leucovorin, and oxaliplatin is a standard first-line therapy [6,24]. The second combination encompasses gemcitabine and paclitaxel. The currently available chemotherapy is modestly effective, encountering resistance of this recalcitrant disease and causing severe undesirable effects. Therefore, there is a continuous quest for new PC drugs to address the issues of present treatments.

Natural products presented privileged skeletons and structural basis to develop modern drugs [25,26]. Several anticancer drugs are basically natural products or semisynthetic compounds [27,28]. For example, Vincristine is a natural vinca alkaloid that is used for the treatment of leukemia, lymphoma, neuroblastoma and other cancers whereas its congener vinblastine is particularly beneficial in the treatment of Hodgkin's lymphoma [29]. Etoposide is a semisynthetic epipodophyllotoxin and the frontline chemotherapeutic drug in treatment of various cancers including non-Hodgkin lymphoma, glioblastoma, and nonlymphocytic leukemia [30]. Furthermore, bleomycin and actinomycin D are complex structures derived from bacterial source and widely used antibiotic anticancer agents [31,32]. Concomitantly, several marine derived products are used in the clinic for cancer management [33].

As we mentioned above, irinotecan is a member of FOLFIRINOX combination for PC therapy. Notably, irinotecan is a semisynthetic analogue of the pentacyclic alkaloid camptothecin that works by inhibition of topoisomerase I. Paclitaxel is a member of the second combination for PC treatment alongside with gemcitabine. The former is one of the most widely employed antineoplastic drugs of natural origin [34].

Several natural products proved effective against PC by modulating different signaling pathways [35–37]. For example curcumin has a synergistic effect when administered with gemcitabine [38,39]. Resveratrol induced apoptosis and autophagy in PC by upregulating the apoptotic marker Bax and inhibition of nutrient-deprivation autophagy factor-1 (NAF-1), respectively [40–42].

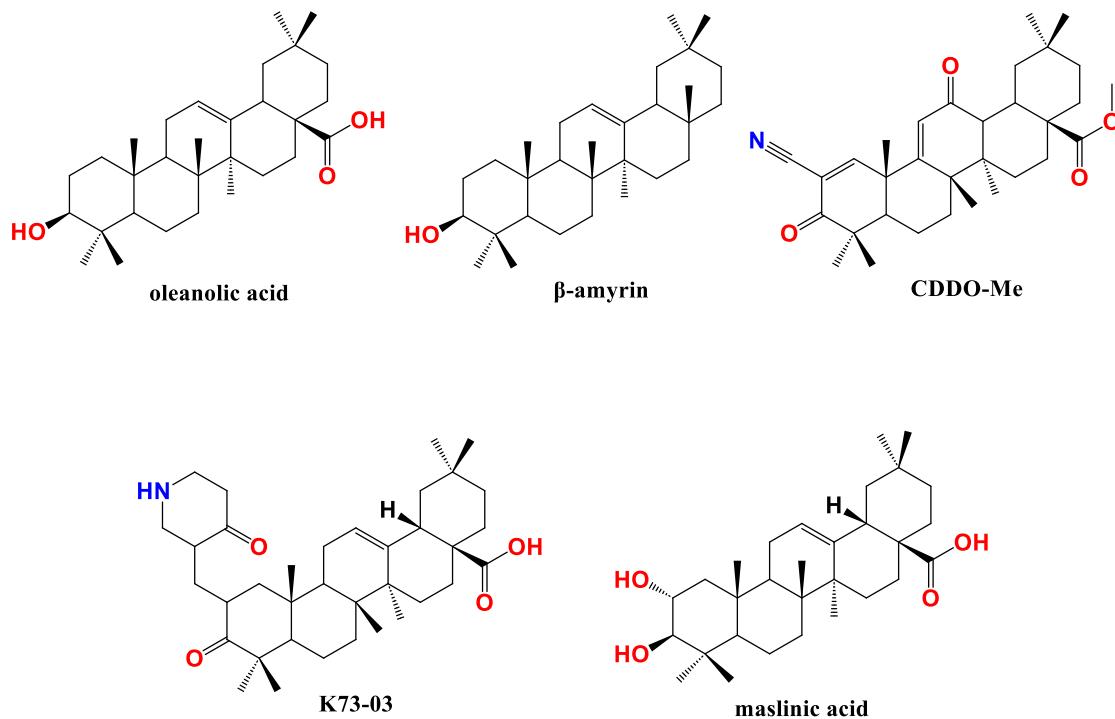
Pentacyclic triterpenes (PTs) are hydrophobic phytochemicals existing in plants and endowed with a vast array of biological activities including, anti-inflammatory [43,44], anti-atherosclerotic [45,46], antihypertensive [45,47], hepatoprotective [48–50], anti-viral [51,52], anti-fibrosis [53,54], and anti-ulcer effects [55]. PTs and their semisynthetic derivatives are particularly promising anticancer agents with a favorable safety profile [56–59].

In the framework of our interest in cancer chemotherapy and the tremendous biological importance of natural products especially triterpenes, we present the first review article to exhaustively explore the cytotoxic effect of PTs on different PC cells.

2. Methods

We collected the English language articles that relates triterpenes to pancreatic cancer keywords from Web of Science and PubMed database. The search resulted in around 54 articles; we excluded 3 retracted research papers of them.

3. Results


MK615 is the Japanese apricot extract which is a mixture of several triterpenes from including mainly oleanolic acid (OA) and ursolic acid (UA) [60]. The mixture exhibited antiproliferative effect in vitro and in vivo against MIAPaCa-2 PC cells in a dose-dependent manner, accompanied by an insignificant effect on human umbilical vein endothelial Cells (HUVEC) reflecting its safety. The anti-

proliferative effect was observed in presence or absence of gemcitabine and ascribed to massive accumulation of ROS [61].

Triterpene mixture from the medicinal mushroom *Poria cocos* repressed the growth of different PC cells after 48 hours incubation; PANC-1 ($IC_{50} = 24.5 \mu\text{g/ml}$), MiaPaca-2 ($IC_{50} = 23.0 \mu\text{g/ml}$), AsPc-1 ($IC_{50} = 11.3 \mu\text{g/ml}$) and BxPc-3 cells ($IC_{50} = 1.0 \mu\text{g/ml}$). The titled extract triggered significant cell cycle arrest at G0/G1 phase and mitigated invasiveness of BxPc-3 cells via matrix metalloproteinase-9 (MMP-7) downregulation [62]. The same research group revealed the suppression of cell division cycle 20 (CDC20) by the same extract in PANC-1 cells dose-dependently [63]. Having said that, we will focus in this review on the activity of pure PTs rather than extracts. The below-mentioned bioactive PTs were classified according to their respective chemical type.

3.1. Oleanane type PTs in pancreatic cancer

Oleanolic acid (OA) (Figure 2), found in olive, jujube, ginseng, and Hawthorn berries, is the most widely studied PT in terms of structural modifications with multifaceted bioactivities [64]. OA cytotoxic effect on BxPC3 PC cells is quite strong with IC_{50} value 190 nM [65]. Nevertheless, IC_{50} of the parent β -amyrin (Figure 2) is 0.42 μM highlighting the pivotal role of -COOH group in activity [65].

Figure 2. Oleanane type pentacyclic triterpenes (PT) active against pancreatic cancer (PC).

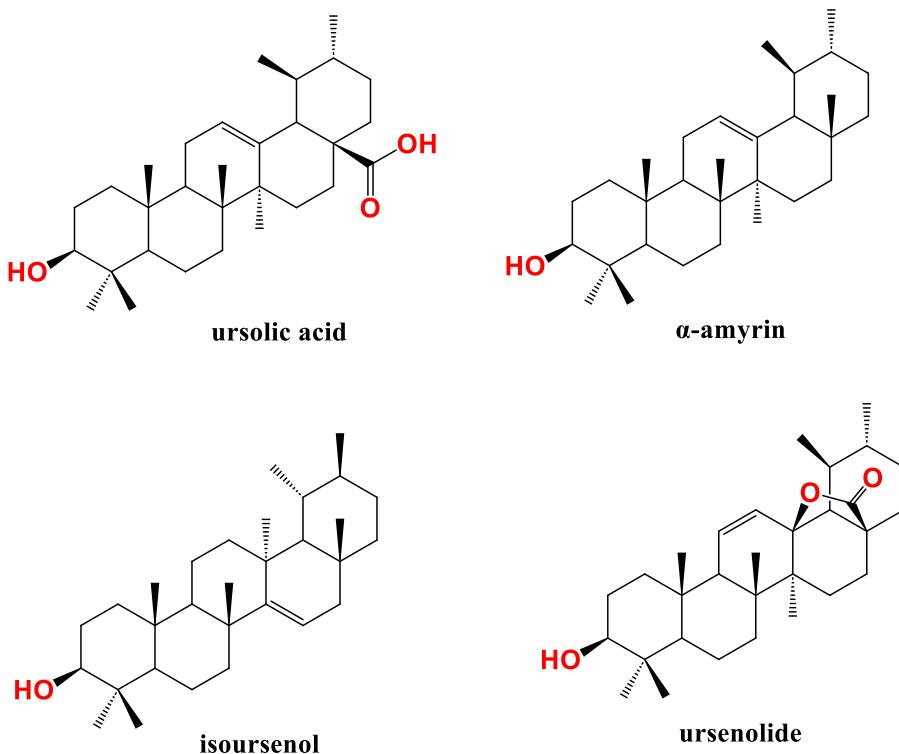
Wei et al., studied the synergism between OA and 5-Fluorouracil. They found that OA potentiated 5-Fluorouracil apoptotic cell death in PANC-28 cells via increasing caspase-3 expression. The combination significantly upregulated Bax while decreasing B-cell lymphoma-2 (Bcl-2) and survivin [66]. Another synergistic effect was observed for OA/doxorubicin combination on PANC-1 cells. Indeed, the apoptotic antiproliferative potency of OA/doxorubicin combination was remarkably higher than that of each drug alone as assessed by MTT assay. The combination delayed wound closure time in the cellular wound healing assay. Concomitantly, the titled combination upregulated mRNA expression of proapoptotic genes including caspases, Bax, and p53 and downregulated the expression of Bcl-2 and survivin genes [67].

The widely known synthetic OA derivative Methyl-2-cyano-3,12-dioxoleana-1,9(11)-dien-28-oate (CDDO-Me) (Figure 2) induced apoptosis in MiaPaCa-2 and PANC-1 PC cells excessive

generation of ROS including hydrogen peroxide and superoxide anions. The ROS release resulted in of hTERT telomerase inhibition. The antiproliferative and apoptotic effect of CDDO-Me were reversed by cotreatment with the antioxidant N-acetylcysteine [68].

Another synthetic OA derivative, K73-03 (Figure 2), exhibited remarkable autophagic and apoptotic antiproliferative effect on AsPC-1 cells via serine peptidase inhibitor, Kazal type 1 (SPINK1) pathway. The latter is overexpressed in different neoplasms including PC promoting proliferation, aggressiveness and chemoresistance [69]. MTT and wound healing assay revealed that K73-03 reduced AsPC-1 cell viability, size, and number of colonies in a dose-dependent manner. Indeed, K73-03 upregulated Bax, cleaved caspase-3, cleaved PARP and downregulated Bcl-2 concentration. Further mechanistic studies showed that K73-03 treatment upregulated microRNA-421 (miR-421) level and suppressed SPINK1 signaling pathway. The results were consistent in AsPC-1 cells xenografts in nude mice model [70].

The same research group indicated to the crucial role of epigenetic regulation of miR-421/SPINK1 in overcoming gemcitabine resistance. Basically, gemcitabine combined with K73-03 showed increased mitochondrial damage and apoptotic antiproliferative effect on AsPC-1 and MIA PaCa-2 cells higher than either of each drug alone. K73-03 significantly enhanced gemcitabine effect and suppressed the wound closure in gemcitabine-resistant AsPC-1 and MIA PaCa-2 cells. Noticeably, miR-421 level is lower, and SPINK1 level is higher in gemcitabine-resistant PC cells than in sensitive PC cells. The cytotoxic effect was attributed to remarkable synergistic increase in miR-421 and decrease in SPINK1 by K73-03/gemcitabine combination [71]. Additionally, another study indicated that K73-03 is a potent EGFR inhibitor as assessed by reverse pharmacophore screening and molecular dynamics simulations using EGFR crystal structure from protein data bank (PDB: 3W2S). The titled compound caused G2/M-phase arrest and suppressed ASPC-1 cells migration. Immunoblot assay exposed that K73-03 repressed the phosphorylation EGFR and Akt leading to a remarkable in vitro and in vivo anti-PC effect [72].


Maslinic acid (MA) (Figure 2), another representative of oleanane type PTs, was found to potentiate the apoptotic antiproliferative effect of tumor necrosis factor alpha (TNF α) on PC cells PANC-28. This synergism was achieved as MA enhanced TNF α -induced accumulation of caspase and cleaved PARP. The most crucial effect is that MA inhibits TNF α -induced NF- κ B activation which is the main side effect of TNF α treatment. Mechanistically, MA suppressed tumor necrosis factor α (TNF α)-induced I κ B degradation, p65 phosphorylation and nuclear translocation in PANC-28 cells. Consequently, MA downregulated the expression of anti-apoptosis genes, including Survivin, Bcl-2, Bcl-xL, and IAP-1, proliferation genes, including cyclin D1 and c-Myc, and metastasis/angiogenesis related genes such as vascular endothelial growth factor (VEGF), and matrix metalloproteinase-9 (MMP-9). In mouse xenograft model implanted with pancreatic cancer cells, MA reproduced the in vitro outcome by reducing tumor size and weight in a dose-dependent manner [73].

A similar outcome was obtained upon treatment of PANC-1 and other cancer phenotypes with MA as reported by Lin et al. In the titled cells, MA treatment increased DNA fragmentation and upregulated the apoptotic proteins cleaved caspases, and Bax, but without significant reduction of Bcl-2 expression. At 8 and 16 μ M, MA reduced PANC-1 invasion and migration by suppressing VEGF and transforming growth factor- β 1 (TGF- β 1) levels [74].

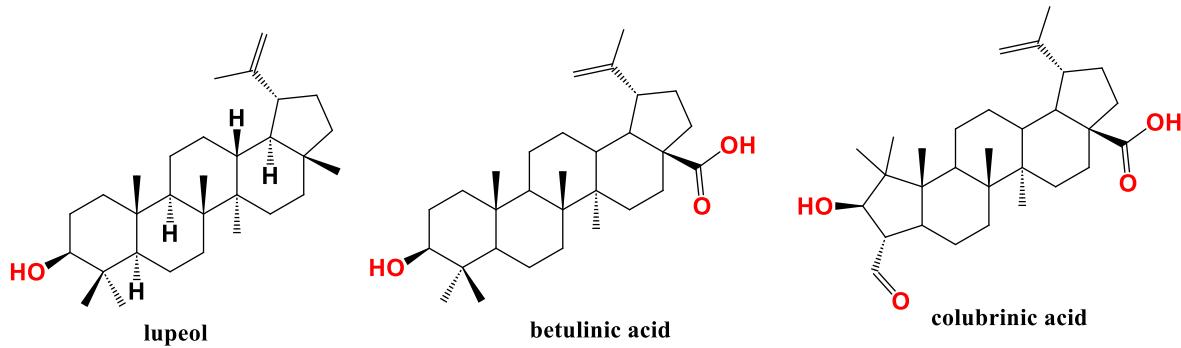
To improve its physicochemical properties by enhancing its solubility and bio-accessibility, Garridoa et al., formulated MA in solid lipid nanoparticles using diverse shell compositions. They tested the new formulation on PC cells BxPC3 growth. Indeed, the new formulation exhibited improved in vitro digestion, cell permeability, and crossing the gut barrier to reach cancer cells. The released MA in the basolateral compartment from models of in vitro gut barrier were sufficient to reduce BxPC3 viability [75]. Primarily, the formulation showed insignificant cytotoxicity on fibroblasts reflecting a high therapeutic index. The same research group validated their results in vivo using a xenograft mice model implanted with BxPC3 and breast cancer cells MCF-7. The used solid lipid nanoparticles were no toxic in mice either by oral or intravenous administration [76].

3.2. Ursane PTs in pancreatic cancer

Ursolic acid (UA) (Figure 3) is a common representative of the ursane type PT found in rosemary, apple, and grape skin. Li et al. found that UA has the potential to circumvent gemcitabine resistance issue. UA reduced growth and induced apoptosis in three different types of gemcitabine-resistant PC cells viz., PANC-1, MIA PaCa-2, and Capan-1 in a dose-dependent manner. The apoptosis involved increased concentrations of caspases 3/7/8/9 and activation of JNK activity. Furthermore, UA treatment suppressed total PI3K and the phosphorylated Akt levels in MIA PaCa-2 cells dose-dependently. These data were validated *in vivo* where administration of UA resulted in tumor regression in MIA PaCa-2 xenograft model without general toxicity [77].

Figure 3. Ursane type pentacyclic triterpenes (PT) active against pancreatic cancer (PC).

Another research group found that UA apoptotic cell death mechanism in gemcitabine-resistant MIA PaCa-2, AsPC-1, and PANC-28 cells is attributed to NF- κ B suppression and signal transducer and activator of transcription 3 (STAT3) activation. In mice model bearing PANC-28 cells, UA oral administration reduced tumor volume and weight, and enhanced gemcitabine effect. Surprisingly, UA/gemcitabine combination impeded PC metastasis to liver and spleen tissues via reducing Ki-67 and CD31 markers. Additionally UA treatment reduced tumor markers for cell survival (survivin) as well as Bcl-2, cell proliferation (cyclin D1), metastasis (ICAM-1 and MMP-9), and inflammation (COX-2) as assessed by immunohistochemical analysis of pancreatic tumor tissues [78].


The receptor for advanced glycation end products (RAGE) is a multiligand transmembrane receptor in the immunoglobulin (Ig) family and a key player in promoting PC and other several cancers [79–81]. Additionally, RAGE induces NF- κ B response and several reports have showcased the presence of a positive feedback loop between RAGE and NF- κ B [82,83]. In brief, stimulation of RAGE enhances angiogenesis and cancer development by upregulating PKI3/mTOR/Akt, VEGF, MMPs, MAPKs, NF- κ B, downregulating p53 signaling. RAGE silencing greatly decreased I κ B- α , and NF- κ B/p65 protein phosphorylation and consequently mitigated multidrug resistance protein 1 (MDR1) protein expression. UA treatment suppressed RAGE, NF- κ B/p65, and MDR1 protein levels in gemcitabine-resistant MIA PaCa-2 PC cells dose dependently. Conclusively, UA treatment was as efficient as RAGE silencing in abolishing MDR1 protein expression upon gemcitabine treatment environment. The chemo-sensitization effect of UA was reproduced and confirmed in mice bearing gemcitabine-resistant MIA PaCa-2 cells [82].

Ursolic acid lactone analogue, ursenolide (Figure 3), from *Callistemon citrinus* proved apoptotic antiproliferative against PANC-1 cells under nutrients deprived conditions (NDM). This is accompanied by less ability to metastasis as assessed by wound healing assay. Mechanistically, ursenolide suppressed the phosphorylation of Akt and mTOR under NDM [84].

In a similar vein, the IC_{50} of α -amyrin and isoursenol (Figure 3), from *Thymus alternans* Essential oil, against BxPC3 was 1.84 μ M and 1.42 μ M, respectively, after 72 h incubation [65]. The mentioned results indicates to the potent anti-PC effect of ursane based compounds.

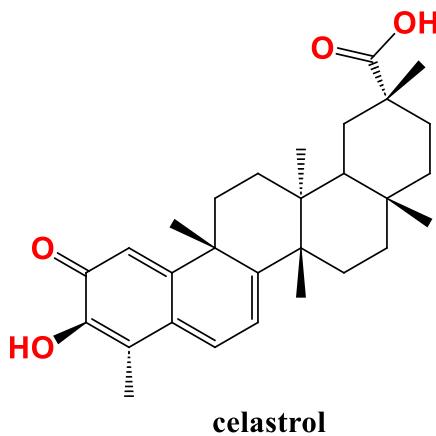
3.3. Lupane type PTs in pancreatic cancer

Lupeol (Figure 4), a representative of lupane PTs class, induced apoptosis and reduced viability of AsPC-1 PC cells in a dose-dependent manner as tested by MTT and apoptosis assays. Lupeol impeded Ras-RAF-MEK-ERK and Ras-PI3K-AKT-mTOR pathways and reduced NF- κ B/p65 phosphorylation in the titled cells. Concomitantly, lupeol induced poly (ADP-ribose) polymerase PARP cleavage and increased caspases and Bax protein expression. Collectively, lupeol adopted a multi-prong approach to interrupt different signaling cascades resulting in induction of apoptosis in PC cells [85].

Figure 4. Lupane type pentacyclic triterpenes (PT) active against pancreatic cancer (PC).

Murtaza et al., studied the effect of lupeol on resistant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) therapy-resistant AsPC-1 cells overexpressing cellular FLICE like inhibitory protein (cFLIP). Incubation of AsPC-1 and PANC-1 cells with lupeol caused a dose-dependent antiproliferative effect with respective IC_{50} of 27.5 μ M and 10 μ M via PARP cleavage pathway. Indeed, lupeol was found to downregulate the transcriptional activation and expression of cFLIP and increase the cellular TRAIL protein level. It reduced AsPC-1 viability in either cFLIP-suppressed cells or cFLIP-overexpressing cells. Furthermore, lupeol significantly chemo-sensitized the highly resistant AsPC-1 cells to recombinant TRAIL-mediated apoptosis. These results were validated using xenograft mice model implanted with AsPC-1 cells where lupeol reduced the tumor volume and development without apparent signs of toxicity [86].

A recent study explored the effect of lupeol on KRAS signaling cascade. The authors found that lupeol snugly fits KRAS crystal structure (PDB: 4EPR) in silico and validated this outcome experimentally. Differential scanning fluorimetry (DSF) revealed that lupeol binds GDP-bound wild and mutant KRAS protein. In 2D and 3D cell culture models, lupeol exhibited significant antiproliferative effect on KRAS-induced cancer cells including PDE-KRAS, HCT116, and different National Cancer Institute (NCI)-KRAS active panel of cells with insignificant effect on normal pancreatic cells HPNE [87].


Arai et al., tried to isolate natural compounds from *Zizyphus cambodiana* targeting the hedgehog (Hh)/GLI signaling cascade which implicated in different tumors formation and development including PC [88]. Two lupeol analogues viz. colubrinic acid and betulinic acid (Figure 4) inhibited Hh/GLI1 pathway and GLI1-mediated transcriptional activity in PANC1 cells as identified by suppressing protein patched homolog (PTCH) and Bcl-2 using immunoblot assay. The cytotoxicity IC₅₀ of colubrinic acid and betulinic acid was 43 μ M and 44 μ M, respectively as determined by

fluorometric microculture cytotoxicity assay. Finally, colubrinic acid inhibited GLI-mediated mRNA expression of PTCH in PANC1 cells [89].

In another study, betulinic acid demonstrated antiproliferative effect on PC cells PANC-1 and SW1990 cells with respective IC_{50} 47 and 38 μM . Wound healing test revealed that betulinic acid reduced the migration and invasion of PANC-1 and SW1990 cells dose-dependently. The proapoptotic effect is of betulinic acid belongs to mTOR pathway, increasing caspases and Bax and suppressing Bcl-2. In vivo validation was performed and confirmed that betulinic acid treatment reduced tumor volume and weight of transplanted PANC-1 tumor cells [90].

3.4. Friedelane type PTs in pancreatic cancer

Celastrol (Figure 5) is an interesting representative of friedelane PTs with a unique quinone methide moiety and a vast array of bioactivities; it is extracted from *Tripterygium wilfordii* Hook F. [91,92]. Celastrol was identified as a chemokine receptor, CXCR4 inhibitor which implicated in metastasis; this effect was cell type-specific as it occurred in AsPC-1 and PANC-28 PC cells, breast cancer cells MCF-7 and MDA-MB-231, colorectal carcinoma cells HCT116, and squamous cell carcinoma SCC-4. It was found that celastrol downregulate mRNA level of CXCR4 as assessed by quantitative RTPCR [93]. Since CXCR4 is essential for CXCL12-induced invasion and metastasis [94], celastrol impeded CXCL12-induced invasion of AsPC-1 cells which indicate to the its promising role for circumvent cancer spreading [93].

Figure 5. Structural formula of celastrol.

Co-treatment with celastrol improved sensitivity of the resistant PANC-1 cells to TRAIL. Mechanistically, celastrol/TRAIL combination significantly upregulated 4E-binding protein 1 (4E-BP1) concentration and increased its dephosphorylation in PANC-1 cells, interrupted the formation of eIF4E/eIF4G complex and suppressed the anti-apoptotic c-FLIP and XIAP proteins synthesis. This is accompanied by enhanced generation of ROS and the activation of c-Jun N-terminal kinase (JNK). Celastrol sensitized BxPc-3 to TRAIL although BxPc-3 are irresponsive to TRAIL alone [95].

Youn et al., uncovered new genetic pathways modulated by celastrol in PC cells. Using sulforhodamine B (SRB) assay, they confirmed that celastrol suppressed the proliferation of 8 types of PC cells where Miapaca-2 and BxPc-3 were the most sensitive to celastrol treatment with respective IC_{50} 7.30 μM and 7.79 μM with minimal effect on normal human pancreatic duct epithelial cell line (HPDE) ($IC_{50}>20\mu M$). As anticipated, celastrol induced DNA fragmentation, activated caspases 3/7, and reduced prostaglandin E2 formation compared to untreated cells. RTPCR showed that celastrol upregulated DNA-damage-inducible transcript 4 (DDIT3) and activating transcription factor 3 (ATF3) and downregulated ribonucleotide reductase regulatory subunit M2 (RRM2) and minichromosome maintenance 4 (MCM4) genes [96].

4. Conclusions

In this review, we explored how PTs can modulate PC leading to prominent apoptotic cell and synergistic effect when combined with other chemotherapies. OA stands out as a prominent cytotoxic agent against BxPc-3 cells (IC_{50} 190 nM). OA proved considerable synergism when combined with 5-Fluorouracil or doxorubicin against PANC-28 or PANC-1 cells, respectively. An interesting OA derivative, K73-03 overcame gemcitabine resistance in AsPC-1 and MIA PaCa-2 cells. Furthermore, MA promoted $TNF\alpha$ antiproliferative effect but suppressed NF- κ B activation in vitro and in vivo.

UA is an efficient chemosensitizer for gemcitabine against the resistant PANC-1, MIA PaCa-2 cells, and Capan-1 cells. Its main mechanism is suppressing KRAS downstream signaling and RAGE suppression. Other ursane type PTs such as ursenolide is an efficient suppressor of Akt/mTOR pathway in PANC-1 cells. Lupeol has a multi-prong modality against PC interrupting all KRAS downstream signaling. It acted as TRAIL sensitizer in AsPC-1 cells. Betulinic acid significantly reduced PANC-1 viability in vitro and in vivo by induction of apoptosis via Hh/GLI1 pathway inhibition.

Additionally, celastrol anticancer effect is attributed to CXCR4 inhibition. It reduced AsPC-1 viability, invasion, and metastasis. Furthermore, it sensitized PANC-1 cells to TRAIL treatment. Celastrol mechanism involves upregulation of *DDIT3* and *ATF3* and downregulation of *MCM4* and *MCM4* genes. Collectively, PTs can represent promising adjuvant chemotherapy for PC treatment inhibiting proliferation, invasion, and metastasis with a favorable safety profile.

Author Contributions: Conceptualization, M.O.R.; methodology, A.M.S.A., S.F.K., M.O.R.; software, A.M.S.A., S.F.K., M.O.R.; investigation A.M.S.A., S.F.K.; resources A.M.S.A., S.F.K.; data curation A.M.S.A., S.F.K.; writing—original draft preparation, A.M.S.A., M.O.R.; writing—review and editing, A.M.S.A., M.O.R.; visualization, A.M.S.A., S.F.K.; supervision, M.O.R.; project administration, M.O.R.; funding acquisition, A.M.S.A., S.F.K. All authors have read and agreed to the published version of the manuscript.

Funding: Not applicable.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are thankful to the Deanship of Graduate Studies and Scientific Research at University of Bisha for supporting this work through the Fast-Track Research Support Program.

Conflicts of Interest: All the authors declare that they have no conflict of interest of any kind..

References

1. Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. *CA. Cancer J. Clin.* **2023**, *73*, 17–48, doi:10.3322/caac.21763.
2. Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States. *Cancer Res.* **2014**, *74*, 2913–2921, doi:10.1158/0008-5472.CAN-14-0155.
3. Bosetti, C.; Lucenteforte, E.; Silverman, D.T.; Petersen, G.; Bracci, P.M.; Ji, B.T.; Negri, E.; Li, D.; Risch, H.A.; Olson, S.H.; et al. Cigarette Smoking and Pancreatic Cancer: An Analysis from the International Pancreatic Cancer Case-Control Consortium (Panc4). *Ann. Oncol. Off. J. Eur. Soc. Med. Oncol.* **2012**, *23*, 1880–1888, doi:10.1093/annonc/mdr541.
4. Genkinger, J.M.; Spiegelman, D.; Anderson, K.E.; Bergkvist, L.; Bernstein, L.; van den Brandt, P.A.; English, D.R.; Freudenberg, J.L.; Fuchs, C.S.; Giles, G.G.; et al. Alcohol Intake and Pancreatic Cancer Risk: A Pooled Analysis of Fourteen Cohort Studies. *Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol.* **2009**, *18*, 765–776, doi:10.1158/1055-9965.EPI-08-0880.
5. Johansen, D.; Stocks, T.; Jonsson, H.; Lindkvist, B.; Björge, T.; Concin, H.; Almquist, M.; Häggström, C.; Engeland, A.; Ulmer, H.; et al. Metabolic Factors and the Risk of Pancreatic Cancer: A Prospective Analysis of Almost 580,000 Men and Women in the Metabolic Syndrome and Cancer Project. *Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol.* **2010**, *19*, 2307–2317, doi:10.1158/1055-9965.EPI-10-0234.
6. Park, W.; Chawla, A.; O'Reilly, E.M. Pancreatic Cancer: A Review. *JAMA* **2021**, *326*, 851–862, doi:10.1001/jama.2021.13027.

7. Tanaka, A.; Radwan, M.O.; Hamasaki, A.; Ejima, A.; Obata, E.; Koga, R.; Tateishi, H.; Okamoto, Y.; Fujita, M.; Nakao, M.; et al. A Novel Inhibitor of Farnesyltransferase with a Zinc Site Recognition Moiety and a Farnesyl Group. *Bioorg. Med. Chem. Lett.* **2017**, *27*, 3862–3866, doi:10.1016/j.bmcl.2017.06.047.
8. Klochkov, S.G.; Neganova, M.E.; Yarla, N.S.; Parvathaneni, M.; Sharma, B.; Tarasov, V.V.; Barreto, G.; Bachurin, S.O.; Ashraf, G.M.; Aliev, G. Implications of Farnesyltransferase and Its Inhibitors as a Promising Strategy for Cancer Therapy. *Semin. Cancer Biol.* **2019**, *56*, 128–134, doi:10.1016/j.semcaner.2017.10.010.
9. Aguirre, A.J.; Bardeesy, N.; Sinha, M.; Lopez, L.; Tuveson, D.A.; Horner, J.; Redston, M.S.; DePinho, R.A. Activated Kras and Ink4a/Arf Deficiency Cooperate to Produce Metastatic Pancreatic Ductal Adenocarcinoma. *Genes Dev.* **2003**, *17*, 3112–3126, doi:10.1101/gad.1158703.
10. Hingorani, S.R.; Wang, L.; Multani, A.S.; Combs, C.; Deramaudt, T.B.; Hruban, R.H.; Rustgi, A.K.; Chang, S.; Tuveson, D.A. Trp53R172H and KrasG12D Cooperate to Promote Chromosomal Instability and Widely Metastatic Pancreatic Ductal Adenocarcinoma in Mice. *Cancer Cell* **2005**, *7*, 469–483, doi:10.1016/j.ccr.2005.04.023.
11. Bardeesy, N.; Cheng, K.-H.; Berger, J.H.; Chu, G.C.; Pahler, J.; Olson, P.; Hezel, A.F.; Horner, J.; Lauwers, G.Y.; Hanahan, D.; et al. Smad4 Is Dispensable for Normal Pancreas Development yet Critical in Progression and Tumor Biology of Pancreas Cancer. *Genes Dev.* **2006**, *20*, 3130–3146, doi:10.1101/gad.1478706.
12. Izeradjene, K.; Combs, C.; Best, M.; Gopinathan, A.; Wagner, A.; Grady, W.M.; Deng, C.-X.; Hruban, R.H.; Adsay, N.V.; Tuveson, D.A.; et al. Kras(G12D) and Smad4/Dpc4 Haploinsufficiency Cooperate to Induce Mucinous Cystic Neoplasms and Invasive Adenocarcinoma of the Pancreas. *Cancer Cell* **2007**, *11*, 229–243, doi:10.1016/j.ccr.2007.01.017.
13. Kim, H.J.; Lee, H.N.; Jeong, M.S.; Jang, S.B. Oncogenic KRAS: Signaling and Drug Resistance. *Cancers* **2021**, *13*, 5599, doi:10.3390/cancers13225599.
14. Merz, V.; Gaule, M.; Zecchetto, C.; Cavaliere, A.; Casalino, S.; Pesoni, C.; Contarelli, S.; Sabbadini, F.; Bertolini, M.; Mangiameli, D.; et al. Targeting KRAS: The Elephant in the Room of Epithelial Cancers. *Front. Oncol.* **2021**, *11*.
15. Jancík, S.; Drábek, J.; Radzioch, D.; Hajdúch, M. Clinical Relevance of KRAS in Human Cancers. *J. Biomed. Biotechnol.* **2010**, *2010*, 150960, doi:10.1155/2010/150960.
16. Zou, Z.; Tao, T.; Li, H.; Zhu, X. mTOR Signaling Pathway and mTOR Inhibitors in Cancer: Progress and Challenges. *Cell Biosci.* **2020**, *10*, 31, doi:10.1186/s13578-020-00396-1.
17. D'Adamo, D.R.; Novick, S.; Kahn, J.M.; Leonard, P.; Pellicer, A. Rsc: A Novel Oncogene with Structural and Functional Homology with the Gene Family of Exchange Factors for Ral. *Oncogene* **1997**, *14*, 1295–1305, doi:10.1038/sj.onc.1200950.
18. Lim, K.-H.; O'Hayer, K.; Adam, S.J.; Kendall, S.D.; Campbell, P.M.; Der, C.J.; Counter, C.M. Divergent Roles for RalA and RalB in Malignant Growth of Human Pancreatic Carcinoma Cells. *Curr. Biol. CB* **2006**, *16*, 2385–2394, doi:10.1016/j.cub.2006.10.023.
19. Liu, P.; Wang, Y.; Li, X. Targeting the Untargetable KRAS in Cancer Therapy. *Acta Pharm. Sin. B* **2019**, *9*, 871–879, doi:10.1016/j.apsb.2019.03.002.
20. Carbone, C.; Melisi, D. NF-κB as a Target for Pancreatic Cancer Therapy. *Expert Opin. Ther. Targets* **2012**, *16 Suppl 2*, S1–10, doi:10.1517/14728222.2011.645806.
21. Henry, D.O.; Moskalenko, S.A.; Kaur, K.J.; Fu, M.; Pestell, R.G.; Camonis, J.H.; White, M.A. Ral GTPases Contribute to Regulation of Cyclin D1 through Activation of NF-κB. *Mol. Cell. Biol.* **2000**, *20*, 8084–8092.
22. Kolbeinsson, H.M.; Chandana, S.; Wright, G.P.; Chung, M. Pancreatic Cancer: A Review of Current Treatment and Novel Therapies. *J. Investig. Surg. Off. J. Acad. Surg. Res.* **2023**, *36*, 2129884, doi:10.1080/08941939.2022.2129884.
23. Groot, V.P.; Rezaee, N.; Wu, W.; Cameron, J.L.; Fishman, E.K.; Hruban, R.H.; Weiss, M.J.; Zheng, L.; Wolfgang, C.L.; He, J. Patterns, Timing, and Predictors of Recurrence Following Pancreatectomy for Pancreatic Ductal Adenocarcinoma. *Ann. Surg.* **2018**, *267*, 936–945, doi:10.1097/SLA.0000000000002234.
24. Halbrook, C.J.; Lyssiotis, C.A.; Pasca di Magliano, M.; Maitra, A. Pancreatic Cancer: Advances and Challenges. *Cell* **2023**, *186*, 1729–1754, doi:10.1016/j.cell.2023.02.014.
25. Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. *J. Nat. Prod.* **2016**, *79*, 629–661, doi:10.1021/acs.jnatprod.5b01055.
26. Koehn, F.E.; Carter, G.T. The Evolving Role of Natural Products in Drug Discovery. *Nat. Rev. Drug Discov.* **2005**, *4*, 206–220, doi:10.1038/nrd1657.
27. Cragg, G.M.; Newman, D.J. Plants as a Source of Anti-Cancer Agents. *J. Ethnopharmacol.* **2005**, *100*, 72–79, doi:10.1016/j.jep.2005.05.011.
28. Huang, M.; Lu, J.-J.; Ding, J. Natural Products in Cancer Therapy: Past, Present and Future. *Nat. Prod. Bioprospecting* **2021**, *11*, 5–13, doi:10.1007/s13659-020-00293-7.

29. Moudi, M.; Go, R.; Yien, C.Y.S.; Nazre, Mohd. Vinca Alkaloids. *Int. J. Prev. Med.* **2013**, *4*, 1231–1235.

30. Shah, Z.; Gohar, U.F.; Jamshed, I.; Mushtaq, A.; Mukhtar, H.; Zia-UI-Haq, M.; Toma, S.I.; Manea, R.; Moga, M.; Popovici, B. Podophyllotoxin: History, Recent Advances and Future Prospects. *Biomolecules* **2021**, *11*, 603, doi:10.3390/biom11040603.

31. Ali, T.F.S.; Ciftci, H.I.; Radwan, M.O.; Koga, R.; Ohsugi, T.; Okiyama, Y.; Honma, T.; Nakata, A.; Ito, A.; Yoshida, M.; et al. New SIRT2 Inhibitors: Histidine-Based Bleomycin Spin-Off. *Bioorg. Med. Chem.* **2019**, *27*, 1767–1775, doi:10.1016/j.bmc.2019.03.003.

32. Koba, M.; Konopa, J. [Actinomycin D and its mechanisms of action]. *Postepy Hig. Med. Doswiadczałnej Online* **2005**, *59*, 290–298.

33. Alves, C.; Silva, J.; Pinteus, S.; Gaspar, H.; Alpoim, M.C.; Botana, L.M.; Pedrosa, R. From Marine Origin to Therapeutics: The Antitumor Potential of Marine Algae-Derived Compounds. *Front. Pharmacol.* **2018**, *9*, 777, doi:10.3389/fphar.2018.00777.

34. Gallego-Jara, J.; Lozano-Terol, G.; Sola-Martínez, R.A.; Cánovas-Díaz, M.; de Diego Puente, T. A Compressive Review about Taxol®: History and Future Challenges. *Molecules* **2020**, *25*, 5986, doi:10.3390/molecules25245986.

35. Yue, Q.; Gao, G.; Zou, G.; Yu, H.; Zheng, X. Natural Products as Adjunctive Treatment for Pancreatic Cancer: Recent Trends and Advancements. *BioMed Res. Int.* **2017**, *2017*, e8412508, doi:10.1155/2017/8412508.

36. He, X.; Wang, N.; Zhang, Y.; Huang, X.; Wang, Y. The Therapeutic Potential of Natural Products for Treating Pancreatic Cancer. *Front. Pharmacol.* **2022**, *13*.

37. Kim, A.; Ha, J.; Kim, J.; Cho, Y.; Ahn, J.; Cheon, C.; Kim, S.-H.; Ko, S.-G.; Kim, B. Natural Products for Pancreatic Cancer Treatment: From Traditional Medicine to Modern Drug Discovery. *Nutrients* **2021**, *13*, 3801, doi:10.3390/nu13113801.

38. Hosseini, M.; Hassanian, S.M.; Mohammadzadeh, E.; ShahidSales, S.; Maftouh, M.; Fayazbakhsh, H.; Khazaei, M.; Avan, A. Therapeutic Potential of Curcumin in Treatment of Pancreatic Cancer: Current Status and Future Perspectives. *J. Cell. Biochem.* **2017**, *118*, 1634–1638, doi:10.1002/jcb.25897.

39. Rambam Health Care Campus *Phase II Trial of Gemcitabine and Curcumin in Patients With Advanced Pancreatic Cancer*; clinicaltrials.gov, 2010;

40. Yang, L.; Yang, L.; Tian, W.; Li, J.; Liu, J.; Zhu, M.; Zhang, Y.; Yang, Y.; Liu, F.; Zhang, Q.; et al. Resveratrol Plays Dual Roles in Pancreatic Cancer Cells. *J. Cancer Res. Clin. Oncol.* **2014**, *140*, 749–755, doi:10.1007/s00432-014-1624-4.

41. Qin, T.; Cheng, L.; Xiao, Y.; Qian, W.; Li, J.; Wu, Z.; Wang, Z.; Xu, Q.; Duan, W.; Wong, L.; et al. NAF-1 Inhibition by Resveratrol Suppresses Cancer Stem Cell-Like Properties and the Invasion of Pancreatic Cancer. *Front. Oncol.* **2020**, *10*.

42. Ratajczak, K.; Glatzel-Plucińska, N.; Ratajczak-Wielgomas, K.; Nowińska, K.; Borska, S. Effect of Resveratrol Treatment on Human Pancreatic Cancer Cells through Alterations of Bcl-2 Family Members. *Molecules* **2021**, *26*, 6560, doi:10.3390/molecules26216560.

43. Radwan, M.O.; Ismail, M.A.H.; El-Mekkawy, S.; Ismail, N.S.M.; Hanna, A.G. Synthesis and Biological Activity of New 18 β -Glycyrrhetic Acid Derivatives. *Arab. J. Chem.* **2016**, *9*, 390–399, doi:10.1016/J.ARABJC.2013.06.032.

44. Tsai, S.-J.; Yin, M.-C. Antioxidative and Anti-Inflammatory Protection of Oleanolic Acid and Ursolic Acid in PC12 Cells. *J. Food Sci.* **2008**, *73*, H174–178, doi:10.1111/j.1750-3841.2008.00864.x.

45. Somova, L.I.; Shode, F.O.; Ramnanan, P.; Nadar, A. Antihypertensive, Antiatherosclerotic and Antioxidant Activity of Triterpenoids Isolated from Olea Europaea, Subspecies Africana Leaves. *J. Ethnopharmacol.* **2003**, *84*, 299–305, doi:10.1016/s0378-8741(02)00332-x.

46. Kadasah, S.F.; Radwan, M.O. Overview of Ursolic Acid Potential for the Treatment of Metabolic Disorders, Autoimmune Diseases, and Cancers via Nuclear Receptor Pathways. *Biomedicines* **2023**, *11*, 2845, doi:10.3390/biomedicines11102845.

47. Zhang, S.; Liu, Y.; Wang, X.; Tian, Z.; Qi, D.; Li, Y.; Jiang, H. Antihypertensive Activity of Oleanolic Acid Is Mediated via Downregulation of Secretory Phospholipase A2 and Fatty Acid Synthase in Spontaneously Hypertensive Rats. *Int. J. Mol. Med.* **2020**, *46*, 2019–2034, doi:10.3892/ijmm.2020.4744.

48. Gutiérrez-Rebolledo, G.A.; Siordia-Reyes, A.G.; Meckes-Fischer, M.; Jiménez-Arellanes, A. Hepatoprotective Properties of Oleanolic and Ursolic Acids in Antitubercular Drug-Induced Liver Damage. *Asian Pac. J. Trop. Med.* **2016**, *9*, 644–651, doi:10.1016/j.apjtm.2016.05.015.

49. Xu, G.-B.; Xiao, Y.-H.; Zhang, Q.-Y.; Zhou, M.; Liao, S.-G. Hepatoprotective Natural Triterpenoids. *Eur. J. Med. Chem.* **2018**, *145*, 691–716, doi:10.1016/j.ejmech.2018.01.011.

50. Radwan, M.O.; Kadasah, S.F.; Aljubiri, S.M.; Alrefaei, A.F.; El-Maghrabey, M.H.; El Hamd, M.A.; Tateishi, H.; Otsuka, M.; Fujita, M. Harnessing Oleanolic Acid and Its Derivatives as Modulators of Metabolic Nuclear Receptors. *Biomolecules* **2023**, *13*, 1465, doi:10.3390/biom13101465.

51. Pompei, R.; Laconi, S.; Ingianni, A. Antiviral Properties of Glycyrrhizic Acid and Its Semisynthetic Derivatives. *Mini Rev. Med. Chem.* **2009**, *9*, 996–1001, doi:10.2174/138955709788681636.
52. Sun, Z.-G.; Zhao, T.-T.; Lu, N.; Yang, Y.-A.; Zhu, H.-L. Research Progress of Glycyrrhizic Acid on Antiviral Activity. *Mini Rev. Med. Chem.* **2019**, *19*, 826–832, doi:10.2174/138955751966619011911125.
53. Yang, Y.; Huang, Y.; Huang, C.; Lv, X.; Liu, L.; Wang, Y.; Li, J. Antifibrosis Effects of Triterpene Acids of *Eriobotrya Japonica* (Thunb.) Lindl. Leaf in a Rat Model of Bleomycin-Induced Pulmonary Fibrosis. *J. Pharm. Pharmacol.* **2012**, *64*, 1751–1760, doi:10.1111/j.2042-7158.2012.01550.x.
54. Lee, M.K.; Lee, K.Y.; Jeon, H.Y.; Sung, S.H.; Kim, Y.C. Antifibrotic Activity of Triterpenoids from the Aerial Parts of *Euscaphis Japonica* on Hepatic Stellate Cells. *J. Enzyme Inhib. Med. Chem.* **2009**, *24*, 1276–1279, doi:10.3109/14756360902829709.
55. Somensi, L.B.; Costa, P.; Boeing, T.; Mariano, L.N.B.; Longo, B.; Magalhães, C.G.; Duarte, L.P.; Maciel E Silva, A.T.; de Souza, P.; de Andrade, S.F.; et al. Gastroprotective Properties of Lupeol-Derived Ester: Pre-Clinical Evidences of Lupeol-Stearate as a Potent Antiulcer Agent. *Chem. Biol. Interact.* **2020**, *321*, 108964, doi:10.1016/j.cbi.2020.108964.
56. Chudzik, M.; Korzonek-Szlacheta, I.; Król, W. Triterpenes as Potentially Cytotoxic Compounds. *Molecules* **2015**, *20*, 1610–1625, doi:10.3390/molecules20011610.
57. I. Ciftci, H.; O. Radwan, M.; E. Ozturk, S.; Ulusoy, N.G.; Sozer, E.; E. Ellakwa, D.; Ocak, Z.; Can, M.; F.S. Ali, T.; I. Abd-Alla, H.; et al. Design, Synthesis and Biological Evaluation of Pentacyclic Triterpene Derivatives: Optimization of Anti-ABL Kinase Activity. *Molecules* **2019**, *24*, 3535–3535, doi:10.3390/molecules24193535.
58. Tang, Z.-Y.; Li, Y.; Tang, Y.-T.; Ma, X.-D.; Tang, Z.-Y. Anticancer Activity of Oleanolic Acid and Its Derivatives: Recent Advances in Evidence, Target Profiling and Mechanisms of Action. *Biomed. Pharmacother. Biomedecine Pharmacother.* **2022**, *145*, 112397, doi:10.1016/j.biopha.2021.112397.
59. Radwan, M.O.; Abd-Alla, H.I.; Alsaggaf, A.T.; El-Mezayen, H.; Abourehab, M.A.S.; El-Beeh, M.E.; Tateishi, H.; Otsuka, M.; Fujita, M. Gypsogenin Battling for a Front Position in the Pentacyclic Triterpenes Game of Thrones on Anti-Cancer Therapy: A Critical Review—Dedicated to the Memory of Professor Hanaa M. Rady. *Molecules* **2023**, *28*, 5677, doi:10.3390/molecules28155677.
60. Inoue, M.; Honma, Y.; Urano, T.; Suzumiya, J. Japanese Apricot Extract (MK615) Potentiates Bendamustine-Induced Apoptosis via Impairment of the DNA Damage Response in Lymphoma Cells. *Oncol. Lett.* **2017**, *14*, 792–800, doi:10.3892/ol.2017.6219.
61. Hattori, M.; Kawakami, K.; Akimoto, M.; Takenaga, K.; Suzumiya, J.; Honma, Y. Antitumor Effect of Japanese Apricot Extract (MK615) on Human Cancer Cells in Vitro and in Vivo through a Reactive Oxygen Species-Dependent Mechanism. *Tumori* **2013**, *99*, 239–248, doi:10.1177/030089161309900220.
62. Cheng, S.; Eliaz, I.; Lin, J.; Sliva, D. Triterpenes from *Poria Cocos* Suppress Growth and Invasiveness of Pancreatic Cancer Cells through the Downregulation of MMP-7 Erratum in /ijo/44/5/1781. *Int. J. Oncol.* **2013**, *42*, 1869–1874, doi:10.3892/ijo.2013.1902.
63. Cheng, S.; Castillo, V.; Sliva, D. CDC20 Associated with Cancer Metastasis and Novel Mushroom-derived CDC20 Inhibitors with Antimetastatic Activity. *Int. J. Oncol.* **2019**, *54*, 2250–2256, doi:10.3892/ijo.2019.4791.
64. Castellano, J.M.; Ramos-Romero, S.; Perona, J.S. Oleanolic Acid: Extraction, Characterization and Biological Activity. *Nutrients* **2022**, *14*, 623, doi:10.3390/nu14030623.
65. Dall'Acqua, S.; Peron, G.; Ferrari, S.; Gandin, V.; Bramucci, M.; Quassinti, L.; Mártonfi, P.; Maggi, F. Phytochemical Investigations and Antiproliferative Secondary Metabolites from *Thymus Alternans* Growing in Slovakia. *Pharm. Biol.* **2017**, *55*, 1162–1170, doi:10.1080/13880209.2017.1291689.
66. Wei, J.; Liu, H.; Liu, M.; Wu, N.; Zhao, J.; Xiao, L.; Han, L.; Chu, E.; Lin, X. Oleanolic Acid Potentiates the Antitumor Activity of 5-Fluorouracil in Pancreatic Cancer Cells. *Oncol. Rep.* **2012**, *28*, 1339–1345, doi:10.3892/or.2012.1921.
67. Esmaeili, H.; Nasrollahzadeh Sabet, M.; Mosaed, R.; Chamanara, M.; Hadi, S.; Hazrati, E.; Farhadi, A.; Heidari, M.F.; Behroozi, J. Oleanolic Acid Increases the Anticancer Potency of Doxorubicin in Pancreatic Cancer Cells. *J. Biochem. Mol. Toxicol.* **2023**, *37*, e23426, doi:10.1002/jbt.23426.
68. Deeb, D.; Gao, X.; Liu, Y.; Varma, N.; Arbab, A.; Gautam, S. Inhibition of Telomerase Activity by Oleanane Triterpenoid CDDO-Me in Pancreatic Cancer Cells Is ROS-Dependent. *Molecules* **2013**, *18*, 3250–3265, doi:10.3390/molecules18033250.
69. Chen, F.; Long, Q.; Fu, D.; Zhu, D.; Ji, Y.; Han, L.; Zhang, B.; Xu, Q.; Liu, B.; Li, Y.; et al. Targeting SPINK1 in the Damaged Tumour Microenvironment Alleviates Therapeutic Resistance. *Nat. Commun.* **2018**, *9*, 4315, doi:10.1038/s41467-018-06860-4.
70. Shopit, A.; Li, X.; Tang, Z.; Awsh, M.; Shobet, L.; Niu, M.; Wang, H.; Mousa, H.; Alshwmi, M.; Tesfaldet, T.; et al. miR-421 up-Regulation by the Oleanolic Acid Derivative K73-03 Regulates Epigenetically SPINK1

Transcription in Pancreatic Cancer Cells Leading to Metabolic Changes and Enhanced Apoptosis. *Pharmacol. Res.* **2020**, *161*, 105130, doi:10.1016/j.phrs.2020.105130.

71. Shopit, A.; Li, X.; Wang, S.; Awsh, M.; Safi, M.; Chu, P.; Jia, J.; Al-Radhi, M.; Baldi, S.; Wang, F.; et al. Enhancement of Gemcitabine Efficacy by K73-03 via Epigenetically Regulation of miR-421/SPINK1 in Gemcitabine Resistant Pancreatic Cancer Cells. *Phytomedicine Int. J. Phytother. Phytopharm.* **2021**, *91*, 153711, doi:10.1016/j.phymed.2021.153711.

72. Zhou, Z.; Dong, Y.; Li, N.; Niu, M.; Wang, S.; Zhou, Y.; Sun, Z.; Chu, P.; Tang, Z. An Oleanolic Acid Derivative, K73-03, Inhibits Pancreatic Cancer Cells Proliferation in Vitro and in Vivo via Blocking EGFR/Akt Pathway. *Cell Biol. Int.* **2022**, *46*, 1801–1813, doi:10.1002/cbin.11866.

73. Li, C.; Yang, Z.; Zhai, C.; Qiu, W.; Li, D.; Yi, Z.; Wang, L.; Tang, J.; Qian, M.; Luo, J.; et al. Maslinic Acid Potentiates the Anti-Tumor Activity of Tumor Necrosis Factor α by Inhibiting NF- κ B Signaling Pathway. *2010*.

74. Lin, C.; Yan, S.; Yin, M. Inhibitory Effects of Maslinic Acid upon Human Esophagus, Stomach and Pancreatic Cancer Cells. *J. Funct. Foods* **2014**, *11*, 581–588, doi:10.1016/j.jff.2014.08.020.

75. Aguilera-Garrido, A.; Arranz, E.; Gálvez-Ruiz, M.J.; Marchal, J.A.; Galisteo-González, F.; Giblin, L. Solid Lipid Nanoparticles to Improve Bioaccessibility and Permeability of Orally Administered Maslinic Acid. *Drug Deliv.* **2022**, *29*, 1971–1982, doi:10.1080/10717544.2022.2086937.

76. Aguilera-Garrido, A.; Graván, P.; Navarro-Marchal, S.A.; Medina-O'Donnell, M.; Parra, A.; Gálvez-Ruiz, M.J.; Marchal, J.A.; Galisteo-González, F. Maslinic Acid Solid Lipid Nanoparticles as Hydrophobic Anticancer Drug Carriers: Formulation, in Vitro Activity and in Vivo Biodistribution. *Biomed. Pharmacother.* **2023**, *163*, 114828, doi:10.1016/j.bioph.2023.114828.

77. Li, J.; Liang, X.; Yang, X. Ursolic Acid Inhibits Growth and Induces Apoptosis in Gemcitabine-Resistant Human Pancreatic Cancer via the JNK and PI3K/Akt/NF- κ B Pathways. *Oncol. Rep.* **2012**, *28*, 501–510, doi:10.3892/or.2012.1827.

78. Prasad, S.; Yadav, V.R.; Sung, B.; Gupta, S.C.; Tyagi, A.K.; Aggarwal, B.B. Ursolic Acid Inhibits the Growth of Human Pancreatic Cancer and Enhances the Antitumor Potential of Gemcitabine in an Orthotopic Mouse Model through Suppression of the Inflammatory Microenvironment. *Oncotarget* **2016**, *7*, 13182–13196, doi:10.18632/oncotarget.7537.

79. Shahab, U.; Ahmad, M.K.; Mahdi, A.A.; Waseem, M.; Arif, B.; Moinuddin, null; Ahmad, S. The Receptor for Advanced Glycation End Products: A Fuel to Pancreatic Cancer. *Semin. Cancer Biol.* **2018**, *49*, 37–43, doi:10.1016/j.semcan.2017.07.010.

80. Swami, P.; Thiagarajan, S.; Vidger, A.; Indurthi, V.S.K.; Vetter, S.W.; Leclerc, E. RAGE Up-Regulation Differently Affects Cell Proliferation and Migration in Pancreatic Cancer Cells. *Int. J. Mol. Sci.* **2020**, *21*, 7723, doi:10.3390/ijms21207723.

81. Olaoba, O.T.; Kadasah, S.; Vetter, S.W.; Leclerc, E. RAGE Signaling in Melanoma Tumors. *Int. J. Mol. Sci.* **2020**, *21*, 8989, doi:10.3390/ijms21238989.

82. Li, Z.-Y.; Chen, S.-Y.; Weng, M.-H.; Yen, G.-C. Ursolic Acid Restores Sensitivity to Gemcitabine through the RAGE/NF- κ B/MDR1 Axis in Pancreatic Cancer Cells and in a Mouse Xenograft Model. *J. Food Drug Anal.* **2021**, *29*, 262–274, doi:10.38212/2224-6614.3346.

83. Kang, R.; Hou, W.; Zhang, Q.; Chen, R.; Lee, Y.J.; Bartlett, D.L.; Lotze, M.T.; Tang, D.; Zeh, H.J. RAGE Is Essential for Oncogenic KRAS-Mediated Hypoxic Signaling in Pancreatic Cancer. *Cell Death Dis.* **2014**, *5*, e1480, doi:10.1038/cddis.2014.445.

84. Tawila, A.M.; Sun, S.; Kim, M.J.; Omar, A.M.; Dibwe, D.F.; Awale, S. A Triterpene Lactone from Callistemon Citrinus Inhibits the PANC-1 Human Pancreatic Cancer Cells Viability through Suppression of Unfolded Protein Response. *Chem. Biodivers.* **2020**, *17*, e2000495, doi:10.1002/cbdv.202000495.

85. Saleem, M.; Kaur, S.; Kweon, M.-H.; Adhami, V.M.; Afaq, F.; Mukhtar, H. Lupeol, a Fruit and Vegetable Based Triterpene, Induces Apoptotic Death of Human Pancreatic Adenocarcinoma Cells via Inhibition of Ras Signaling Pathway. *Carcinogenesis* **2005**, *26*, 1956–1964, doi:10.1093/carcin/bgi157.

86. Murtaza, I.; Saleem, M.; Adhami, V.M.; Hafeez, B.B.; Mukhtar, H. Suppression of cFLIP by Lupeol, a Dietary Triterpene, Is Sufficient to Overcome Resistance to TRAIL-Mediated Apoptosis in Chemoresistant Human Pancreatic Cancer Cells. *Cancer Res.* **2009**, *69*, 1156–1165, doi:10.1158/0008-5472.CAN-08-2917.

87. Ganaie, A.A.; Siddique, H.R.; Sheikh, I.A.; Parray, A.; Wang, L.; Panyam, J.; Villalta, P.W.; Deng, Y.; Konety, B.R.; Saleem, M. A Novel Terpenoid Class for Prevention and Treatment of KRAS -driven Cancers: Comprehensive Analysis Using in Situ, in Vitro, and in Vivo Model Systems. *Mol. Carcinog.* **2020**, *59*, 886–896, doi:10.1002/mc.23200.

88. Thayer, S.P.; di Magliano, M.P.; Heiser, P.W.; Nielsen, C.M.; Roberts, D.J.; Lauwers, G.Y.; Qi, Y.P.; Gysin, S.; Fernández-del Castillo, C.; Yajnik, V.; et al. Hedgehog Is an Early and Late Mediator of Pancreatic Cancer Tumorigenesis. *Nature* **2003**, *425*, 851–856, doi:10.1038/nature02009.

89. Arai, M.A.; Tateno, C.; Hosoya, T.; Koyano, T.; Kowithayakorn, T.; Ishibashi, M. Hedgehog/GLI-Mediated Transcriptional Inhibitors from *Zizyphus Cambodiana*. *Bioorg. Med. Chem.* **2008**, *16*, 9420–9424, doi:10.1016/j.bmc.2008.09.053.
90. Guo, Y.; Zhu, H.; Weng, M.; Wang, C.; Sun, L. Chemopreventive Effect of Betulinic Acid via mTOR - Caspases/Bcl2/Bax Apoptotic Signaling in Pancreatic Cancer. *BMC Complement. Med. Ther.* **2020**, *20*, 178, doi:10.1186/s12906-020-02976-7.
91. Zhou, J.; Hu, T.; Gao, L.; Su, P.; Zhang, Y.; Zhao, Y.; Chen, S.; Tu, L.; Song, Y.; Wang, X.; et al. Friedelane-Type Triterpene Cyclase in Celastrol Biosynthesis from *Tripterygium Wilfordii* and Its Application for Triterpenes Biosynthesis in Yeast. *New Phytol.* **2019**, *223*, 722–735, doi:10.1111/nph.15809.
92. Venkatesha, S.H.; Moudgil, K.D. Celastrol and Its Role in Chronic Diseases. *Adv. Exp. Med. Biol.* **2016**, *928*, 267–289, doi:10.1007/978-3-319-41334-1_12.
93. Yadav, V.R.; Sung, B.; Prasad, S.; Kannappan, R.; Cho, S.-G.; Liu, M.; Chaturvedi, M.M.; Aggarwal, B.B. Celastrol Suppresses Invasion of Colon and Pancreatic Cancer Cells through the Downregulation of Expression of CXCR4 Chemokine Receptor. *J. Mol. Med.* **2010**, *88*, 1243–1253, doi:10.1007/s00109-010-0669-3.
94. Marchesi, F.; Monti, P.; Leone, B.E.; Zerbi, A.; Vecchi, A.; Piemonti, L.; Mantovani, A.; Allavena, P. Increased Survival, Proliferation, and Migration in Metastatic Human Pancreatic Tumor Cells Expressing Functional CXCR4. *Cancer Res.* **2004**, *64*, 8420–8427, doi:10.1158/0008-5472.CAN-04-1343.
95. Chakravarthy, R.; Clemens, M.J.; Pirianov, G.; Perdios, N.; Mudan, S.; Cartwright, J.E.; Elia, A. Role of the eIF4E Binding Protein 4E-BP1 in Regulation of the Sensitivity of Human Pancreatic Cancer Cells to TRAIL and Celastrol-induced Apoptosis. *Biol. Cell* **2013**, *105*, 414–429, doi:10.1111/boc.201300021.
96. Youns, M.; Askoura, M.; Abbas, H.A.; Attia, G.H.; Khayyat, A.N.; Goda, R.M.; Almalki, A.J.; Khafagy, E.-S.; Hegazy, W.A.H. Celastrol Modulates Multiple Signaling Pathways to Inhibit Proliferation of Pancreatic Cancer via DDIT3 and ATF3 Up-Regulation and RRM2 and MCM4 Down-Regulation. *OncoTargets Ther.* **2021**, *14*, 3849–3860, doi:10.2147/OTT.S313933.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.