
Article Not peer-reviewed version

Coordinating the Redundant DOFs of

Humanoid Robots

Pietro Giovanni Morasso *

Posted Date: 16 June 2025

doi: 10.20944/preprints202506.1233.v1

Keywords: Cognitive robotics; Neural simulation of action; Prospection; Passive Motion Paradigm;

Generative Body Schema; Degrees of freedom problem

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/3611606


 

Article 

Coordinating the Redundant DOFs of Humanoid 
Robots 
Pietro Morasso 

Italian Institute of Technology, Center for Human Technologies Robotic, Brain, and Cognitive Sciences 
Research Unit, Genoa, Italy; pietro.morasso@iit.it 

Abstract: The new generation of robots (Industry 5.0 and beyond) is expected to be accompanied by 
the massive introduction of autonomous and cooperative agents in our society, both in the industrial 
and service sectors. Cooperation with humans will be simplified by humanoid robots with a similar 
kinematic outline and a similar kinematic redundancy, which is required by the diversity of tasks 
that will be performed. A bio-inspired approach is proposed for coordinating the redundant DOFs 
of such agents. This approach is based on the ideomotor theory of action, combined with the passive 
motion paradigm, to implicitly address the degrees of freedom problem, without any kinematic 
inversion, while producing coordinated motor patterns structured according to the typical features 
of biological motion. At the same time, since the approach is force-field-based, it allows us to integrate 
in the computational loop parallel modules that exploit the redundancy of the system for satisfying 
geometric or kinematic constraints implemented by appropriate repulsive force fields. Moreover, the 
model is expanded to include dynamic constraints associated with the Lagrangian dynamics of the 
humanoid robot to improve the energetic efficiency of the generated actions. 

Keywords: biomimetic robotics; cognitive robotics; neural simulation of action; prospection; passive 
motion paradigm; generative body schema; degrees of freedom problem 
 

1. Introduction 

Humanoid robots share with humans the issue of how to deal with the redundancy of a complex, 
articulated body for the coordination of purposive actions. The first researcher to address the problem 
scientifically was probably Nikolai Bernstein [1], who observed the performance of professional 
workers in repetitive tasks, as hammering blacksmiths, and found that precise hammer trajectories 
across repetitive trials were produced by highly variable rotation patterns of the redundant set of 
joints recruited for the task. From such observations Bernstein [2] formulated the general problem of 
motor redundancy, to be solved by the worker’s brain, observing that the motor system must produce 
many more control signals than the variables that characterize and constrain typical skilled actions, 
and proposed that the solution consists in the elimination of redundant degrees of freedom, allowing 
the brain to focus only on the essential elements. 

The issue of motor redundancy, focused on the problem of how to coordinate the excessive 
number of DoFs (Degrees of Freedom), is intertwided with the empirical evidence that human multi-
joint movements are charachterized by spatio-temporal invariants of the motion of the end-effector, 
whatever the number of recruited DoFs, such as the bell-shaped speed profile in reaching movements 
[3] or the anticorrelation of the speed and curvature profiles in general gestures of the hand, as in 
cursive handwriting [4,5]. As a matter of fact, the spatio-temporal invariances express the smoothness 
of biological motion in general full-body actions [6]. They can be explained by the minimum jerk 
model [7], in the framework of a remarkable feature of energetic frugality of biological motion, which 
has been demonstrated in human motor control [8] as well as in industrial robotics [9]. 

The general rationale of the smoothness of biological motion in connection with the emergence 
of figural-kinematic invariances can be linked to the ideomotor theory, already formulated by 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 June 2025 doi:10.20944/preprints202506.1233.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1233.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

psychologists of the 19th century, as William James [10] and recently reviewed with more solid 
neurophysiological support [11,12]. According to this theory, the brain of a skilled person initiates 
the computational process that will lead to the performance of a purposive action by formulating the 
idea of the relevant sensory consequences (as the expected trajectory of the end-effector) rather than 
the detailed coordination of the DoFs recruited for the actual execution of the action and the 
corresponding muscle activation patterns. Shortly, an action idea mediates between the intention to 
act and the generation of detailed motor control patterns. The problem is how to express 
computationally such a process that requires facing the broad imbalance between the numerosity of 
the DoFs of the body and the number of parameters that characterize the action idea. Such an 
imbalance is already high in the human case. Still, it pales compared with other species such as the 
elephant trunk and the octopus tentacles, i.e., muscular hydrostats with infinite DoFs. On the other 
hand, it is remarkable that the invariant features of the elephant’s purposive actions [13] are quite 
similar to those of human biological motion. 

The approaches developed to deal with DoF imbalance reveal a wide range of opposite 
evaluations. For example, some researchers designate it (negatively) as redundancy [14], whereas 
others [15] describe it (positively) as motor abundance, emphasizing a basket of affordances that 
includes flexibility and adaptability to various ancillary aspects of skilled behavior. 

The issue of kinematic redundancy in robotic manipulators is well established and formulated 
mainly as a problem of inverse kinematics. This is a complex problem, in contrast with direct 
kinematics (the mapping of joint rotation patterns into the corresponding law of motion of different 
body parts, i.e., different end-effectors): direct kinematics is a well-defined problem with a unique 
solution, whichever the number of DoFs, whereas inverse kinematics is an ill-posed problem which 
may involve infinite solutions or no solution at all. The number of methods proposed in robotics is 
very large. Most focus on the Jacobian matrix, with various forms of pseudo-inversion whose 
computational robustness decreases with the increase of the degree of redundancy of the robot 
architecture, as in humanoid robots. In particular, many proposals are based on the null space 
projection technique developed in the 1980s [16–18]. However, most robotic redundancy resolution 
schemes do not allow integration of the inverse kinematic process with the issue of smoothness, 
typical of biological motion, or the various constraints that the coordinated joint rotation patterns are 
supposed to satisfy, as the range of motion of the DoFs, the range of torque of the actuators, or the 
range of stability in bipedal standing. 

The proposed approach is bio-inspired, in the general sense that it is built upon the recognition 
of the already cited bliss of motor abundance, articulated in such a way to include the basic elements 
of the ideomotor theory and the intrinsic smoothness of biological motion, integrated with the 
capability of multiple constraint satisfaction. The main module is a computational model, named 
Passive Motion Paradigm (PM) [19–21], which is based on the Jacobian matrix of the body schema, 
as in many robotic formulations, but without any attempt to invert it or explicit utilization of the 
associated null space. The basic concept, implicit in the ideomotor theory, is to shift the focus from 
primitive motions to primitive force fields: this means that if our brain is requested to carry out the 
ill-posed task of coordinating the multiple DoFs of the body in order to “push” the end-effector 
towards a designated target, it may instead imagine to “pull” the end-effector to the target and then 
the body will follow, i.e., the whole kinematic chain will passively yield to the pulling field thus 
producing a coordinate rotation pattern of the redundant DoFs. This is equivalent to using the 
transpose Jacobian for mapping a pulling force field, defined in the low-dimensional task space, into 
an equivalent torque field, operating in the high-dimensional joint space. The “passivity” of the 
planning paradigm is modulated by a compliance matrix that maps the torque field into incremental 
joint rotations and then, via the same Jacobian matrix, into the incremental motion of the end-effector, 
attracted to the target according to the ideomotor theory by an attractive force field. 

The attractive dynamics of the PMP can be integrated with the repulsive dynamics of additional 
modules which express geometric or structural constraints, as the RoM (limited Range of Motion) of 
the different DoFs or the constraint of bipedal stability that implies a RoM of the position of the center 
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of mass of the body on the support area. Such constraints can generate online repulsive torque fields 
combined additively with the attractive torque field for a coordinated synergy formation process that 
implicitly exploits the null space for a trade-off between the competing requirements of the different 
modules. In this paper, the PMP approach to motor redundancy is extended with the motor 
adaptation of the compliance matrix related to a number of other dynamic constraints involving the 
torque requirements of the different actuators. 

2. Methods 

The proposed model of coordination of the redundant DoFs of full-body robots is illustrated in 
Figure 1. The top panel is the general block diagram built around the PMP (Passive Motion Paradigm) 
module, which implements the ideomotor theory, in parallel with two blocks which implement 
geometric and kinematic constraints to be satisfied on-line during the simulation of the model for 
driving the full-body synergy formation process: (a) the CoM constraint for the postural stability of 
the standing robot, i.e., the requirement of constraining the projection of the CoM (Center of Mass) 
inside the convex hull of the support area between the feet, and (b) the RoM constraint, for the 
structural integrity of the body model, i.e., the requirement to keep the rotation angle of each DoF 
inside the Range of Motion of each joint. Additional blocks can be integrated to express other specific 
postural constraints. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 June 2025 doi:10.20944/preprints202506.1233.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1233.v1
http://creativecommons.org/licenses/by/4.0/


 4 

 

 

Figure 1. Block diagram of the bio-inspired proposed model for the coordination of redundant humanoid 
robots. 

All these blocks are driven by the current kinematic state vector, which includes the DoF angular 
vector 𝑞𝑞  and the corresponding angular speed 𝑞̇𝑞 ; the blocks interact during the execution of a 
movement by combining specific torque fields: (1) the focal torque field 𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓 , determined by the 
attraction force of the end-effector to the target, (2) the postural torque field 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐, induced by a virtual 
force applied to the pelvis of the body as a function of the position of the projected body CoM on the 
support base in order to repulse it from the boundary, (3) the RoM torque field 𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟 applied to each 
DoF to repulse it from the limits of the structural Range of Motion. The combined torque field 𝜏𝜏(𝑡𝑡) 
closes the loop of the PMP model by mapping the torque field into a motion field 𝑞̇𝑞(𝑡𝑡) of the whole 
body through the compliance matrix 𝐶𝐶. For simplicity, we may assume that there are no multi-joint 
actuators (as it occurs in the human body for multi-joint muscles). Thus, the compliance matrix is 
diagonal, identified by a compliance vector 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  whose elements express the relative degree of 
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participation of each DoF in a planned coordinated action. In particular, setting to 1 all the 
components of the vector means that all the DoFs share the same availability to contribute to the 
coordinated action: thus, for a 7 DoFs model, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = [1 1 1 1 1 1 1]. 

The robot body model is a single planar kinematic chain with eight segments and seven joints, 
as illustrated in Figure 2. By assigning different patterns to 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  we obtain different kinematic 
patterns. Still, all these movements share the same spatio-temporal invariant features of the end-
effector, including the trajectory and the speed profile. At the same time, the oscillation of the 
projection of the CoM on the support base remains inside a safety margin, and the oscillations of each 
DoF inside the corresponding RoM. Such kinematic invariance of the model is equivalent to a trade-
off of the three different kinematic requirements defined above by some path planning in the null 
space of the kinematic structure. In general, the higher the dimensionality of the null space, the easier 
it is to identify a good trade-off. For example, the simulations reported in the next section are related 
to a planar robot with 7 DoFs and a 2-dimensional task space: this means that the null-space is 5-
dimensional, with a good room for maneuver for constraint satisfaction. Moreover, while the 
coordination paradigm illustrated above allows to satisfy simultaneously multiple 
geometric/kinematic requirements on-line, it is possible to exploit the modulation of the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
parameter vector for additional dynamics constraints. In particular, the graph of Figure 1 is related 
to the modulation of the vector in such a way as to constrain the torque requirement of each DoF for 
the given action plan. For example, the simulations illustrate an adaptation procedure that minimizes 
the worst actuator’s peak torque. For simplicity, the robot model is planar, with seven joints and eight 
corresponding links (see Figure 2): the geometric and structural parameters are listed in Tables 1 and 
2. 

 
Figure 2. Geometric model of the simulated robot. 

Table 1. Robot links. 

Segment 1 2 3 4 5 6 7 8 
Name foot leg thigh pelvis trunk arm forearm hand 
Length (m) 0.3 0.505  0.411 0.153 0.432 0.332 0.271 0.192 
Weight (kg)  7.6  19.6 11.8 27.3 4.2 2.8 2.2 
Inertia 
Moment (kg 
m2) 

 0.1615 0.2759 0.0230 0,4236 0.0367 0.0171 0.0061 

Table 2. Robot joints. 
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Joint 1 2 3 4 5 6 7 
Name ankle knee hip lumbar shoulder elbow wrist 
RoM min (deg) +45   -10  -30 -140 -210 0 -15 
RoM max (deg) +100  +120 +45 +15 +10 +120 +45 

Now, let us describe in detail the different modules used in the synergy formation process of the 
redundant robot. 

2.1. PMP Module 

The PMP module activates a force field that attracts the moving target 𝑝𝑝𝑚𝑚𝑚𝑚  to the designated 
Target: 

�𝐹𝐹𝑡𝑡 = 𝐾𝐾𝑡𝑡(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑝𝑝𝑚𝑚𝑚𝑚) ∙ 𝐺𝐺𝐺𝐺(𝑡𝑡)
𝑝̇𝑝𝑚𝑚𝑚𝑚 = 𝐹𝐹𝑡𝑡  

 (1) 

The moving target is initially located in the same position as the end-effector, 𝑝𝑝𝑚𝑚𝑚𝑚(𝑡𝑡0) = 𝑝𝑝𝑒𝑒(𝑡𝑡0), 
where 𝑡𝑡0 is the activation time of the Go-signal, a non-linear gain function with a limited duration 
𝑇𝑇 and a quickly rising profile diverging to infinity at 𝑡𝑡 = 𝑡𝑡0 + 𝑇𝑇, in agreement with the terminal 
attractor theory [22]: 

�
𝐺𝐺𝐺𝐺 = 0 0 ≥  𝑡𝑡 − 𝑡𝑡0 ≥ 𝑇𝑇

𝐺𝐺𝐺𝐺 = 𝜌̇𝜌
1−𝜌𝜌

 𝜌𝜌 = 6 𝛿𝛿5 − 15 𝛿𝛿4 + 10 𝛿𝛿3 𝛿𝛿 = 𝑡𝑡−𝑡𝑡0
𝑇𝑇

 0 < 𝑡𝑡 − 𝑡𝑡0 < 𝑇𝑇  (2) 

Shortly, integrating eq. 1 with the non-linear gain of eq. 2 generates a straight trajectory of the 
moving target that reaches the designated target at time T after the start, whatever the initial distance 
and with a bell-shaped velocity profile, thus meeting the ideomotor theory’s rationale and the 
biological motion’s smoothness. The structure of the PMP module in Figure 2 shows that, 
simultaneously with the generation of the moving target described above, the end-effector of the 
robot, reconstructed by integrating over time the direct kinematic equation 

𝑝̇𝑝𝑒𝑒 = 𝐽𝐽𝑒𝑒  𝑞̇𝑞, (3) 
is attracted to the moving target by the following elastic force field 
𝐹𝐹𝑒𝑒 = 𝐾𝐾𝑒𝑒  (𝑝𝑝𝑚𝑚𝑚𝑚 − 𝑝𝑝𝑒𝑒). (4) 
Thus, there are two interacting force fields: the former field 𝐹𝐹𝑚𝑚𝑚𝑚 attracts the moving target to 

the final target, and the latter field 𝐹𝐹𝑒𝑒 attracts the end-effector to the moving target. This field is then 
mapped from the task space to the joint space by the following equation, which is dual to eq. 3: 

𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐽𝐽𝑒𝑒𝑇𝑇 𝐹𝐹𝑒𝑒. (5) 
The loop of the PMP module is then closed through the compliance matrix: 
𝑞̇𝑞 = 𝐶𝐶 𝜏𝜏. (6) 
In summary, the two interacting force fields of the PMP module generate two trajectories, of the 

moving target end and the end-effector, respectively, which in most case are almost coincident, unless 
the CoM constraint module and/or the RoM constraint module induce some deviation to comply with 
the constraint in the null space. 

The Jacobian matrix of the end-effector has two rows and seven columns: 𝐽𝐽𝑒𝑒 = [𝐽𝐽1 𝐽𝐽2 … 𝐽𝐽7]. The 
columns are computed recursively in a backward order, from the wrist to the ankle: 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝐽𝐽7 = 𝐿𝐿7 · �−𝑆𝑆7+𝐶𝐶7

� 
… .

𝐽𝐽𝑖𝑖 = 𝐽𝐽𝑖𝑖+1 + 𝐿𝐿𝑖𝑖 · �−𝑆𝑆𝑖𝑖+𝐶𝐶𝑖𝑖
� 

… .
𝐽𝐽1 = 𝐽𝐽2 + 𝐿𝐿1 · �−𝑆𝑆1+𝐶𝐶1

� 

where �
𝐶𝐶𝑖𝑖 = cos �∑ 𝑞𝑞𝑘𝑘𝑖𝑖

𝑘𝑘=1 �
𝑆𝑆𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠 �∑ 𝑞𝑞𝑘𝑘𝑖𝑖

𝑘𝑘=1 �
  (7) 

2.2. CoM-Constraint Module 

The purpose of this module is to apply a virtual force to the pelvis area to contrast the danger of 
falling induced indirectly by the focal reaching movement. An index of such a threat is the closeness 
of the projection of the CoM on the support base from the corresponding borders. In the specific case 
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of the simulations reported in this paper, the support base is a segment whose length is the foot length 
(30 cm), connected to the ankle joint at a point that is the origin of the Cartesian reference system. The 
range of motion of the projection of the CoM must be constrained between 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 = −5 𝑐𝑐𝑐𝑐  and 
𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 = 25 𝑐𝑐𝑐𝑐 (the ∆𝑐𝑐𝑐𝑐𝑐𝑐 input of Figure 1). 

This module is driven by the ongoing law of motion of the whole body, i.e., 𝑞𝑞(𝑡𝑡) and 𝑞̇𝑞(𝑡𝑡), 
which allows for the reconstruction of the current position of the CoM 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐 by combining the CoMs 
of each body segment (𝑝𝑝𝑐𝑐(𝑖𝑖), 𝑖𝑖 = 1: 7), including a load hold by the end-effector: 

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 = �
𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐
𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐� = ∑ 𝑝𝑝𝑐𝑐(𝑖𝑖)∙𝑀𝑀𝑖𝑖+𝑝𝑝𝑒𝑒 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙7

𝑖𝑖=1
∑ 𝑀𝑀𝑖𝑖+𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿7
𝑖𝑖=1

 (8) 

Supposing that the CoM of each link is in the middle of the link, the corresponding coordinate 
vectors of the previous equation can be computed as follows, where (𝑝𝑝𝐽𝐽(𝑖𝑖), 𝑖𝑖 = 1: 7) are the vectors 
of the seven joints, with 𝑝𝑝𝐽𝐽(1) = 0: 

�
𝑝𝑝𝐽𝐽(𝑖𝑖 + 1) = 𝑝𝑝𝐽𝐽(𝑖𝑖) + 𝐿𝐿𝑖𝑖 ∙ �

𝐶𝐶𝑖𝑖
𝑆𝑆𝑖𝑖
� 

𝑝𝑝𝑐𝑐(𝑖𝑖 + 1) = 𝑝𝑝𝐽𝐽(𝑖𝑖) + 0.5 ∙ 𝐿𝐿𝑖𝑖 ∙ �
𝐶𝐶𝑖𝑖
𝑆𝑆𝑖𝑖
�
 where �

𝐶𝐶𝑖𝑖 = cos �∑ 𝑞𝑞𝑘𝑘𝑖𝑖
𝑘𝑘=1 �

𝑆𝑆𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠 �∑ 𝑞𝑞𝑘𝑘𝑖𝑖
𝑘𝑘=1 �

 (9) 

The projection of the CoM on the support base is the y coordinate of 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐, i.e., 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 and the 
purpose of this module is to ensure that it remains in the range of values defined above while the 
attractive force of the PMP module applied to the end-effector, i.e., 𝐹𝐹𝑒𝑒, might induce the CoM to 
violate the constraint. In order to achieve this task a virtual force field 𝐹𝐹𝑐𝑐 is applied to the central 
part of the pelvis: this force should be directed backward if 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 is closer to 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚  than to 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 and 
forward in the opposite case. In particular, 𝐹𝐹𝑐𝑐  is computed according to the following field, a 
function of the position of 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 inside the safe interval (𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 →  𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚): 

𝐹𝐹𝑐𝑐 = 𝑓𝑓(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐) = 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐 �𝑒𝑒
(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐−𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚)

𝛥𝛥 − 𝑒𝑒
(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦)

𝛥𝛥 � (10) 

The field is null in the middle of the interval, positive and exponentially increasing in the right 
part, negative and exponentially decreasing in the left part. The parameter Δ, defined as a small part 
of the safe interval (Δ = 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘
 ), modulates the sharpness of the generated force profiles: sharper 

and sharper as 𝑘𝑘 increases: for 𝑘𝑘 > 10 all the torque profiles cross the limits of the safe interval with 
the same value: 𝐹𝐹𝑒𝑒 = +𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐 for the right limit and 𝐹𝐹𝑒𝑒 = −𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐 for the left limit. In the simulations 
reported in the next section 𝑘𝑘 = 50  and 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐 = 400 𝑁𝑁 . The force field is mapped into the 
corresponding torque field, similarly to eq. 5: 

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐽𝐽𝑐𝑐𝑇𝑇 𝐹𝐹𝑐𝑐 (11) 
The employed Jacobian matrix is defined for a part of the whole kinematic chain(from the ankle 

to the hip), which includes 3 DoFs. The three columns of the Jacobian are computed as follows: 

⎩
⎪
⎨

⎪
⎧ 𝐽𝐽𝑐𝑐(3) = 0.5 ∙ 𝐿𝐿3 · �−𝑆𝑆3+𝐶𝐶3

� 

 𝐽𝐽𝑐𝑐(2) = 𝐽𝐽𝑐𝑐(3) + 𝐿𝐿2 · �−𝑆𝑆2+𝐶𝐶2
� 

𝐽𝐽𝑐𝑐(1) = 𝐽𝐽𝑐𝑐(2) +· �−𝑆𝑆1+𝐶𝐶1
� 

where �
𝐶𝐶𝑖𝑖 = cos �∑ 𝑞𝑞𝑘𝑘𝑖𝑖

𝑘𝑘=1 �
𝑆𝑆𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠 �∑ 𝑞𝑞𝑘𝑘𝑖𝑖

𝑘𝑘=1 �
  (12) 

2.3. RoM-Constraint Module 

The RoM of each DoF is an interval between a minimum and maximum angular value; thus, the 
input to this module is 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥: (𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖) → 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖)) 𝑖𝑖 = 1: 7. The goal is to repulse each DoF from either 
joint limit, and this is implemented in a similar way to the CoM module by activating the following 
repulsive torque field: 

𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖) = −𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅 ∙ �𝑒𝑒
𝑞𝑞(𝑖𝑖)−𝑞𝑞max(𝑖𝑖)

𝛥𝛥(𝑖𝑖) − 𝑒𝑒
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚−𝑞𝑞(𝑖𝑖)

𝛥𝛥(𝑖𝑖) � 𝑖𝑖 = 1: 7. (12) 

The parameter Δ(𝑖𝑖) is defined as a small part of the safe interval of each DoF, and it determines 
the sharpness of the generated torque profiles: Δ(𝑖𝑖) =  𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖)−𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖)

𝑘𝑘
. In the simulations reported in 

the next section 𝑘𝑘 = 50 and 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅 = 300 𝑁𝑁𝑁𝑁 for all the DoFs of the model; the related RoMs are 
listed in Table 2. 
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2.4. C-Matrix Adaptation Module 

By combining the torque fields generated by the three modules described above and mapping 
the torque field into a motion field through the compliance matrix, the model coordinates the 
redundant DoFs, selecting a path in the null space that satisfies all the requirements instant by instant, 
i.e., on line, while keeping the same spatio-temporal structure. Additional modules can be integrated 
in this architecture for expressing additional constraints of the generated synergy, either on-line 
constraints that operate on the instantaneous value of the kinematic state or off-line constraints that 
aim at the modulation of the compliance matrix for affecting features of the overall generated action. 
In particular, the off-line module implemented in this simulation study illustrates a dynamic rather 
than a kinematic constraint, as do the two modules described above. In particular, the dynamic 
constraint is related to the torque requirements for the robot actuators, given a family of kinematically 
equivalent coordinated movements. 

As shown in the picture, the following kinematic action profile of the planned coordinated action 
is saved: 

�𝑞𝑞𝑖𝑖 = 𝑞𝑞𝑖𝑖(𝑡𝑡) 𝑖𝑖 = 1: 7 𝑡𝑡 ∈ 𝑡𝑡𝑜𝑜 ↔ 𝑡𝑡𝑓𝑓� (13) 
This kinematic action profile is transformed into the corresponding generalized force profile that 

expresses the time course of the torques requested for each actuator: 
�𝑄𝑄𝑖𝑖 = 𝑄𝑄𝑖𝑖(𝑡𝑡) 𝑖𝑖 = 1: 7 𝑡𝑡 ∈ 𝑡𝑡𝑜𝑜 ↔ 𝑡𝑡𝑓𝑓� (13) 
The transformation is carried out by using the Lagrange formulation of the equations of motion 

for robotic arms: 

⎩
⎪
⎨

⎪
⎧ 𝑄𝑄𝑖𝑖 = 𝑑𝑑

𝑑𝑑𝑑𝑑
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑞̇𝑞𝑖𝑖
� − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑞𝑞𝑖𝑖
 𝑖𝑖 = 1: 7 

𝑈𝑈(𝑞𝑞) = ∑ 𝑀𝑀𝑘𝑘  𝑔𝑔 𝑧𝑧𝑘𝑘7
𝑘𝑘=1 + 𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  𝑧𝑧7 

 𝐾𝐾(𝑞𝑞, 𝑞̇𝑞) = ∑ �1
2
𝑀𝑀𝑘𝑘𝑣𝑣𝑘𝑘2 + 1

2
𝐼𝐼𝑘𝑘𝜔𝜔𝑘𝑘

2� + 1
2

7
𝑘𝑘=1 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝜔𝜔7

2

  (14) 

𝑈𝑈 and 𝐾𝐾 are, respectively, the potential and kinetic energy functions of the robot; (𝑧𝑧𝑘𝑘, 𝑘𝑘 = 1: 7) 
are the vertical coordinates of the CoM of each link; (𝑣𝑣𝑘𝑘 , 𝑘𝑘 = 1: 7) are the velocities of the CoM and 
(𝜔𝜔𝑘𝑘 ,𝑘𝑘 = 1: 7) the corresponding angular velocities. The analysis of the generalized force profile is 
used to adapt the 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣 parameter vector with the purpose of optimizing some dynamic indicator of 
the stress faced by the actuators. In particular, the simulations reported in the next section used the 
following indicator, namely the maximum peak value of the torque for the whole ensemble of 
actuators and the given kinematic profile: 

𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = max
𝑖𝑖=1:7

𝑡𝑡∈𝑡𝑡0−𝑡𝑡𝑓𝑓

⌈𝑄𝑄𝑖𝑖 = 𝑄𝑄𝑖𝑖(𝑡𝑡)⌉ (15) 

This goal is achieved by a simple gradient descent procedure for the minimization of 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝: 
𝐶̂𝐶𝑣𝑣𝑣𝑣𝑣𝑣 = min

𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣
𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣) (16) 

The procedure initiates with the default assignment of unitary values to all the components of 
the vector, the simulation of the model, and the estimation of 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ; it proceeds with repeated 
simulations, updating the vectors according to the gradient of 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 

From a computational point of view, the simulation model is an explicit system of first-order 
differential equations of high dimensionality. The simulations illustrated in the results were carried 
out using MATLAB® (MathWorks, MATLAB R2023b), adopting the forward Euler method or the 4th-
order Runge–Kutta method for integrating the differential equation system, with a time step of 0.1 
ms. The simulation software is available on demand. 

3. Results 

Figure 3 shows an example of the simulation of the model described in the previous section. The 
parameters of the simulated action are as follows: duration 1s, distance of the target 0.43m, no load. 
Panel A1 shows the initial and final posture of the movement, together with the plotted trajectory of 
the end effector (in blue) and the trajectory of the projection of the CoM on the support base (in green); 
panel A2 is the corresponding plot of the torques of each DoF and panel B3 shows that for this 
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simulation the 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣 is assigned the default uniform value (blue markers). Panel A2 is related to the 
same action performed at the end of the C-matrix adaptation process where the 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (eq. 15) is 
reduced from an initial value of 130 Nm to a final value of 43 steps, after 15 steps of the gradient 
descent process, as shown in panel A3; the corresponding configuration of 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣 is shown in panel 
A4 (red markers), and the modified time course of the torques is plotted in panel B3. Moreover, panel 
C of Figure 3 plots the time course of the joint rotation patterns for the initial uniform 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣 (in blue) 
and the final adapted 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣  (in red). By comparing such rotation patterns and the corresponding 
torque vectors (panels A2 vs. B2), it is surprising to realize that a rather small modification of the 
kinematics can significantly improve the dynamics, reducing the peak torque by more than 50%. 

 

Figure 3. Panels A1 and A2 represent the initial and final posture of an action with the same duration of 1 s, the 
same initial posture, the same final target and zero load but different 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣. The two vectors are plotted in panel 
B3: red markers correspond to A1 and blue markers to B1. The corresponding torque profiles generated by the 
Lagrange equations are plotted in panels A2 and B2. Panel C shows the joint rotation patterns related to A1 (blue 
traces) and to A2 (red traces). 

Figure 4 shows the effect of changing the movement direction, while keeping the movement 
duration (1s) and the absence of load. In all the cases, the adaptation procedure provides a significant 
reduction of the peak torque and the corresponding optimized 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣 profiles share the shoulder as 
the prominent DoF, while keeping the DoFs of the upper limb at a higher level than the lower limb. 
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The figure also shows that, independent of the 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣 profiles, some direction is more challenging for 
the precision of the kinematic coordination, as is shown by the deviation of the end-effector from the 
straight path. 

 

Figure 4. A, B, C correspond to three simulations with the same initial posture, the same duration of 1s, the same 
target distance of 0.43m, no load, but different final target. Panels 1 represent the initial and final posture of 
simulations with the uniform 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣, plotted in panels 4 with blue markers. Panels 2 represent the initial and final 
posture of simulations with the adapted 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣, plotted in panels 4 with red markers.The corresponding torque 
profiles generated by the Lagrange equations are plotted in panels A2 and B2. Panel C shows the joint rotation 
patterns related to A1 (blue traces) and to A2 (red traces). 

Figure 5 shows the effect of changing the load, while keeping the same movement direction, 
distance (0.43m), and duration (1s): the load is 0 in panels A, 20kg in panels B, and 40kg in panels C. 
In all the cases, the adaptation procedure provides a significant reduction of the peak torque and the 
corresponding optimized 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣 profiles shift the prominent DoF from the upper part to the lower part 
of the body as the load increases. 
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Figure 5. The three simulations differ for the load: no load (A), 20kg load (B), 40kg load (C). The direction of the 
movement and the distance of the target is the same (0.43m), as the movement duration (1s). A1, B1, C1 show 
the initial and final postures with the default 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣 configuration; A2, B2, C2 show the postures after C-matrix 
adaptation; A3, B3, C3 show the corresponding torque vectors after adaptation; A4, B4, C4 show the initial (blue 
markers) and final (red markers) 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣 configurations. 

Figure 6 shows the effect of the speed of the movement, related to varying duration: 1.4s, 1s, 
0.6s. In all the cases, the adaptation procedure provides a significant reduction of the peak torque; 
the optimized 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣 profiles are very similar for slow or very slow movements, as are the required 
generalized torques. The third simulation (duration 0.6s) is somewhat different because the kinetic 
component of the Lagrange function becomes preponderant with respect to the potential component. 
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Figure 6. The three simulations differ for the duration: 1.4s (A), 1s (B), 0.6s (C). The direction of the movements 
and the distance of the target is the same (0.43m), the load is null. A1, B1, C1 show the initial and final postures 
with the default 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣 configuration; A2, B2, C2 show the postures after C-matrix adaptation; A3, B3, C3 show 
the corresponding torque vectors after adaptation; A4, B4, C4 show the initial (blue markers) and final (red 
markers) 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣 configurations. 

The reported simulations show the variability of the torque requirements in relation to similar 
kinematic coordinated patterns. 

4. Discussion 

It is generally assumed that the problem of motor redundancy is the central problem of motor 
control. As observed in the introduction, the early solution, suggested by Nikolai Bernstein one 
century ago [1], was the “elimination of redundant degrees-of-freedom”, with the assumption that 
once redundant/unnecessary DoFs have been identified, the neural controller can focus on the 
essential/nonredundant DoFs in a straightforward manner. However, this is far from trivial in 
general, even from the dual point of view of observing multi-joint skilled behavior and attempting to 
partition the multi-DoF space in controlled and uncontrolled manifolds, according to the uncontrolled 
manifold concept (UCM) [23]. The opposite process, namely, given the task, how to partition the 
configuration space for generating a purposive, coordinated action, by focusing control on a carefully 
identified manifold while “leaving alone” the UCM, is much more complicated and reminds us the 
difficulty of dealing with inverse kinematics based on our knowledge of direct kinematics. In any 
case, the UCM concept, originated in neurobiology, is quite similar to the null-space concept adopted 
in industrial robotics, which is the basis for many inversion algorithms. 

Traditionally, the industrial robotic approach to inverse kinematics has been formulated as an 
optimization method, given a kinematic characterization of the task, based on a variety of cost 
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functions: the result is the quest for a complex computational process whose speed and robustness 
strongly worsen with an increasing degree of redundancy. This is the reason for which the 
“anguish/agony” of motor redundancy resolution through explicit mathematical optimization 
methods has been challenged by the emphasis on the “bliss” of motor abundance [24] based on the 
assumption about the numerosity of the DoFs that the more the better. For example, experimental 
evidence supports the hypothesis that the availability of a large number of DoFs improves the human 
ability to carry out tasks that require taking into account multiple constraints simultaneously and 
with minimal interference among them [25], thus enhancing the flexibility of the performance. 

The rationale of the principle of motor abundance is somehow related to the consideration that 
the dynamics of high-dimensional motor control can be understood only in an “ecological” 
framework that links brain, body, and environment in the same dynamical process, integrating 
neurobiological, biomechanical, and physical processes. In particular, this idea is captured by the 
equilibrium point hypothesis on the strict relationship between posture and movement [26–28], by 
positing that posture is not directly controlled by the brain in a detailed way but is force-field driven, 
i.e., it is the “biophysical consequence” of equilibrium among muscular and environmental forces: 
“movement” is viewed as a symmetry-breaking phenomenon, i.e., the transition from an equilibrium 
state to another one. 

The organization/reorganization of the abundant/redundant DoFs of the human body for the 
production of purposive actions can also be characterized in terms of the principle of minimum 
interaction [29,30], namely the natural tendency of complex systems, as the neuromuscular system, to 
reduce the number and intensity of interactions among the subsystems or components recruited to 
achieve a desired outcome or maintain a specific state. For example, such interaction parsimony can 
be achieved by threshold mechanisms so that deviations from the average intended synergy are only 
corrected when they interfere significantly with the task goals. 

At the same time, we should not restrict the range of application of the general principles 
summarized above, as the equilibrium point hypothesis, to the strict motor control area without 
including embodied motor cognition as well. The reason is that different forms of a simulation theory of 
cognition [31–35] clearly show that an essential part of such a theory is that the simulation of action is 
performed by the same neural mechanisms as those typically involved in movement execution and 
perception. The point is that the mental simulation of actions is an essential component of 
prospection. It builds upon the mental simulation of actions to evaluate their potential future 
sensorimotor, environmental, and social effects, thus supporting an informed decision-making 
process [36–38]. 

The proposed model for the bio-inspired coordination of motor redundance/abundance of 
humanoid robots is closely linked to the equilibrium point hypothesis because the PMP, originated 
as an extension of EPH, is indeed characterized by “musceles synergies and actions without 
movements” [21]: this means that covert/imagined actions and overt/executed actions are totally 
equivalent from the ideomotor point of view, except for the specific activation of central pattern 
generators. Furthermore, in agreement with the principle of kinematic abundance, PMP is not 
computationally intensive but is characterized by an equilibrium-seeking dynamics driven by 
internal or external force fields. In particular, the main loop of the PMP module can be implemented 
by coupled neural networks, trained according to self-supervised training and capable to simulate 
the Jacobian and transpose Jacobian matrices [39]. At the same time, the integration of multiple 
constraints by interaction of torque fields in full-dimensional space is the simplest form of 
exploitation of the principle of motor abundance. Moreover, the non-linear repulsive fields that 
implement the CoM-constraint and the RoM-constraint were conceived to match the principle of 
minimum interaction: the chosen non-linear profile is equivalent to a threshold activation algorithm 
that tends to reduce the chance of conflicts between the different components of the constraint 
satisfaction modules. 
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