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Abstract: The new generation of robots (Industry 5.0 and beyond) is expected to be accompanied by
the massive introduction of autonomous and cooperative agents in our society, both in the industrial
and service sectors. Cooperation with humans will be simplified by humanoid robots with a similar
kinematic outline and a similar kinematic redundancy, which is required by the diversity of tasks
that will be performed. A bio-inspired approach is proposed for coordinating the redundant DOFs
of such agents. This approach is based on the ideomotor theory of action, combined with the passive
motion paradigm, to implicitly address the degrees of freedom problem, without any kinematic
inversion, while producing coordinated motor patterns structured according to the typical features
of biological motion. At the same time, since the approach is force-field-based, it allows us to integrate
in the computational loop parallel modules that exploit the redundancy of the system for satisfying
geometric or kinematic constraints implemented by appropriate repulsive force fields. Moreover, the
model is expanded to include dynamic constraints associated with the Lagrangian dynamics of the
humanoid robot to improve the energetic efficiency of the generated actions.

Keywords: biomimetic robotics; cognitive robotics; neural simulation of action; prospection; passive
motion paradigm; generative body schema; degrees of freedom problem

1. Introduction

Humanoid robots share with humans the issue of how to deal with the redundancy of a complex,
articulated body for the coordination of purposive actions. The first researcher to address the problem
scientifically was probably Nikolai Bernstein [1], who observed the performance of professional
workers in repetitive tasks, as hammering blacksmiths, and found that precise hammer trajectories
across repetitive trials were produced by highly variable rotation patterns of the redundant set of
joints recruited for the task. From such observations Bernstein [2] formulated the general problem of
motor redundancy, to be solved by the worker’s brain, observing that the motor system must produce
many more control signals than the variables that characterize and constrain typical skilled actions,
and proposed that the solution consists in the elimination of redundant degrees of freedom, allowing
the brain to focus only on the essential elements.

The issue of motor redundancy, focused on the problem of how to coordinate the excessive
number of DoFs (Degrees of Freedom), is intertwided with the empirical evidence that human multi-
joint movements are charachterized by spatio-temporal invariants of the motion of the end-effector,
whatever the number of recruited DoFs, such as the bell-shaped speed profile in reaching movements
[3] or the anticorrelation of the speed and curvature profiles in general gestures of the hand, as in
cursive handwriting [4,5]. As a matter of fact, the spatio-temporal invariances express the smoothness
of biological motion in general full-body actions [6]. They can be explained by the minimum jerk
model [7], in the framework of a remarkable feature of energetic frugality of biological motion, which
has been demonstrated in human motor control [8] as well as in industrial robotics [9].

The general rationale of the smoothness of biological motion in connection with the emergence
of figural-kinematic invariances can be linked to the ideomotor theory, already formulated by
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psychologists of the 19th century, as William James [10] and recently reviewed with more solid
neurophysiological support [11,12]. According to this theory, the brain of a skilled person initiates
the computational process that will lead to the performance of a purposive action by formulating the
idea of the relevant sensory consequences (as the expected trajectory of the end-effector) rather than
the detailed coordination of the DoFs recruited for the actual execution of the action and the
corresponding muscle activation patterns. Shortly, an action idea mediates between the intention to
act and the generation of detailed motor control patterns. The problem is how to express
computationally such a process that requires facing the broad imbalance between the numerosity of
the DoFs of the body and the number of parameters that characterize the action idea. Such an
imbalance is already high in the human case. Still, it pales compared with other species such as the
elephant trunk and the octopus tentacles, i.e.,, muscular hydrostats with infinite DoFs. On the other
hand, it is remarkable that the invariant features of the elephant’s purposive actions [13] are quite
similar to those of human biological motion.

The approaches developed to deal with DoF imbalance reveal a wide range of opposite
evaluations. For example, some researchers designate it (negatively) as redundancy [14], whereas
others [15] describe it (positively) as motor abundance, emphasizing a basket of affordances that
includes flexibility and adaptability to various ancillary aspects of skilled behavior.

The issue of kinematic redundancy in robotic manipulators is well established and formulated
mainly as a problem of inverse kinematics. This is a complex problem, in contrast with direct
kinematics (the mapping of joint rotation patterns into the corresponding law of motion of different
body parts, i.e., different end-effectors): direct kinematics is a well-defined problem with a unique
solution, whichever the number of DoFs, whereas inverse kinematics is an ill-posed problem which
may involve infinite solutions or no solution at all. The number of methods proposed in robotics is
very large. Most focus on the Jacobian matrix, with various forms of pseudo-inversion whose
computational robustness decreases with the increase of the degree of redundancy of the robot
architecture, as in humanoid robots. In particular, many proposals are based on the null space
projection technique developed in the 1980s [16-18]. However, most robotic redundancy resolution
schemes do not allow integration of the inverse kinematic process with the issue of smoothness,
typical of biological motion, or the various constraints that the coordinated joint rotation patterns are
supposed to satisfy, as the range of motion of the DoFs, the range of torque of the actuators, or the
range of stability in bipedal standing.

The proposed approach is bio-inspired, in the general sense that it is built upon the recognition
of the already cited bliss of motor abundance, articulated in such a way to include the basic elements
of the ideomotor theory and the intrinsic smoothness of biological motion, integrated with the
capability of multiple constraint satisfaction. The main module is a computational model, named
Passive Motion Paradigm (PM) [19-21], which is based on the Jacobian matrix of the body schema,
as in many robotic formulations, but without any attempt to invert it or explicit utilization of the
associated null space. The basic concept, implicit in the ideomotor theory, is to shift the focus from
primitive motions to primitive force fields: this means that if our brain is requested to carry out the
ill-posed task of coordinating the multiple DoFs of the body in order to “push” the end-effector
towards a designated target, it may instead imagine to “pull” the end-effector to the target and then
the body will follow, i.e., the whole kinematic chain will passively yield to the pulling field thus
producing a coordinate rotation pattern of the redundant DoFs. This is equivalent to using the
transpose Jacobian for mapping a pulling force field, defined in the low-dimensional task space, into
an equivalent torque field, operating in the high-dimensional joint space. The “passivity” of the
planning paradigm is modulated by a compliance matrix that maps the torque field into incremental
joint rotations and then, via the same Jacobian matrix, into the incremental motion of the end-effector,
attracted to the target according to the ideomotor theory by an attractive force field.

The attractive dynamics of the PMP can be integrated with the repulsive dynamics of additional
modules which express geometric or structural constraints, as the RoM (limited Range of Motion) of
the different DoFs or the constraint of bipedal stability that implies a RoM of the position of the center
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of mass of the body on the support area. Such constraints can generate online repulsive torque fields
combined additively with the attractive torque field for a coordinated synergy formation process that
implicitly exploits the null space for a trade-off between the competing requirements of the different
modules. In this paper, the PMP approach to motor redundancy is extended with the motor
adaptation of the compliance matrix related to a number of other dynamic constraints involving the
torque requirements of the different actuators.

2. Methods

The proposed model of coordination of the redundant DoFs of full-body robots is illustrated in
Figure 1. The top panel is the general block diagram built around the PMP (Passive Motion Paradigm)
module, which implements the ideomotor theory, in parallel with two blocks which implement
geometric and kinematic constraints to be satisfied on-line during the simulation of the model for
driving the full-body synergy formation process: (a) the CoM constraint for the postural stability of
the standing robot, i.e., the requirement of constraining the projection of the CoM (Center of Mass)
inside the convex hull of the support area between the feet, and (b) the RoM constraint, for the
structural integrity of the body model, i.e., the requirement to keep the rotation angle of each DoF
inside the Range of Motion of each joint. Additional blocks can be integrated to express other specific
postural constraints.
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Figure 1. Block diagram of the bio-inspired proposed model for the coordination of redundant humanoid

robots.

All these blocks are driven by the current kinematic state vector, which includes the DoF angular
vector q and the corresponding angular speed ¢; the blocks interact during the execution of a
movement by combining specific torque fields: (1) the focal torque field t;,., determined by the
attraction force of the end-effector to the target, (2) the postural torque field 7., induced by a virtual
force applied to the pelvis of the body as a function of the position of the projected body CoM on the
support base in order to repulse it from the boundary, (3) the RoM torque field 7,,, applied to each
DoF to repulse it from the limits of the structural Range of Motion. The combined torque field t(t)
closes the loop of the PMP model by mapping the torque field into a motion field ¢(t) of the whole
body through the compliance matrix C. For simplicity, we may assume that there are no multi-joint
actuators (as it occurs in the human body for multi-joint muscles). Thus, the compliance matrix is
diagonal, identified by a compliance vector Cvec whose elements express the relative degree of

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.1233.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 June 2025 d0i:10.20944/preprints202506.1233.v1

participation of each DoF in a planned coordinated action. In particular, setting to 1 all the
components of the vector means that all the DoFs share the same availability to contribute to the
coordinated action: thus, for a 7 DoFs model, Cvec =[1111111].

The robot body model is a single planar kinematic chain with eight segments and seven joints,
as illustrated in Figure 2. By assigning different patterns to Cvec we obtain different kinematic
patterns. Still, all these movements share the same spatio-temporal invariant features of the end-
effector, including the trajectory and the speed profile. At the same time, the oscillation of the
projection of the CoM on the support base remains inside a safety margin, and the oscillations of each
DoF inside the corresponding RoM. Such kinematic invariance of the model is equivalent to a trade-
off of the three different kinematic requirements defined above by some path planning in the null
space of the kinematic structure. In general, the higher the dimensionality of the null space, the easier
it is to identify a good trade-off. For example, the simulations reported in the next section are related
to a planar robot with 7 DoFs and a 2-dimensional task space: this means that the null-space is 5-
dimensional, with a good room for maneuver for constraint satisfaction. Moreover, while the
coordination paradigm illustrated above allows to satisfy simultaneously multiple
geometric/kinematic requirements on-line, it is possible to exploit the modulation of the Cvec
parameter vector for additional dynamics constraints. In particular, the graph of Figure 1 is related
to the modulation of the vector in such a way as to constrain the torque requirement of each DoF for
the given action plan. For example, the simulations illustrate an adaptation procedure that minimizes
the worst actuator’s peak torque. For simplicity, the robot model is planar, with seven joints and eight
corresponding links (see Figure 2): the geometric and structural parameters are listed in Tables 1 and
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Figure 2. Geometric model of the simulated robot.

Table 1. Robot links.

Segment 1 2 3 4 5 6 7 8
Name foot leg thigh  pelvis trunk arm forearm hand
Length(m) 03 0505 0411 0153 0432 0332 0271  0.192
Weight (kg) 7.6 19.6 11.8 27.3 4.2 2.8 2.2
Inertia

Moment (kg 0.1615 02759 0.0230 0,4236 0.0367 0.0171  0.0061
m?)

Table 2. Robot joints.
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6
Joint 1 2 3 4 5 6 7
Name ankle knee hip lumbar shoulder elbow  wrist
RoM min (deg) +45 -10 -30 -140 -210 0 -15
RoM max (deg)+100 +120 +45 +15 +10 +120 +45

Now, let us describe in detail the different modules used in the synergy formation process of the
redundant robot.

2.1. PMP Module

The PMP module activates a force field that attracts the moving target p,,; to the designated
Target:
F; = K,(Target — ppm,) - Go(t)
e ()
Pme t
The moving target is initially located in the same position as the end-effector, p,:(to) = pe(to),
where t, is the activation time of the Go-signal, a non-linear gain function with a limited duration
T and a quickly rising profile diverging to infinity at t = t, + T, in agreement with the terminal
attractor theory [22]:
Go=00=t—t, =T
Go=-t =685 4 3¢ _ t=to 2)
O—E'D—65 —156*+106 5—TO<t—tO<T
Shortly, integrating eq. 1 with the non-linear gain of eq. 2 generates a straight trajectory of the
moving target that reaches the designated target at time T after the start, whatever the initial distance
and with a bell-shaped velocity profile, thus meeting the ideomotor theory’s rationale and the
biological motion’s smoothness. The structure of the PMP module in Figure 2 shows that,
simultaneously with the generation of the moving target described above, the end-effector of the
robot, reconstructed by integrating over time the direct kinematic equation

be=Jedqd (3)
is attracted to the moving target by the following elastic force field
Fo = Ko (Pmt — Pe)- (4)

Thus, there are two interacting force fields: the former field F,,, attracts the moving target to
the final target, and the latter field F, attracts the end-effector to the moving target. This field is then
mapped from the task space to the joint space by the following equation, which is dual to eq. 3:

— T
Tf oc — ] e Fe . (5 )
The loop of the PMP module is then closed through the compliance matrix:
g=Cr. (6)

In summary, the two interacting force fields of the PMP module generate two trajectories, of the
moving target end and the end-effector, respectively, which in most case are almost coincident, unless
the CoM constraint module and/or the RoM constraint module induce some deviation to comply with
the constraint in the null space.

The Jacobian matrix of the end-effector has two rows and seven columns: J, = [J; J; ... J;]. The

columns are computed recursively in a backward order, from the wrist to the ankle:
— 5'7
J7 =1Lz [ +C,

C; = cos (Th=1 k)

A 7
Si=sin(Shmay)

Ji=Jiz1 +L;- [;2] where {
S
Ji=]2+L;- [+C1]

2.2. CoM-Constraint Module

The purpose of this module is to apply a virtual force to the pelvis area to contrast the danger of
falling induced indirectly by the focal reaching movement. An index of such a threat is the closeness
of the projection of the CoM on the support base from the corresponding borders. In the specific case

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.1233.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 June 2025 d0i:10.20944/preprints202506.1233.v1

of the simulations reported in this paper, the support base is a segment whose length is the foot length
(30 cm), connected to the ankle joint at a point that is the origin of the Cartesian reference system. The
range of motion of the projection of the CoM must be constrained between y,,;, = —5cm and
Ymax = 25 cm (the Acom input of Figure 1).

This module is driven by the ongoing law of motion of the whole body, i.e., q(t) and ¢(t),
which allows for the reconstruction of the current position of the CoM p,,, by combining the CoMs

of each body segment (p.(i),i = 1: 7), including a load hold by the end-effector:
_ [Yeom] _ 2, pc(i)-Mi+pe - load
Feom = [Zcom - 1Zi7=1 M;+Load ®)

Supposing that the CoM of each link is in the middle of the link, the corresponding coordinate
vectors of the previous equation can be computed as follows, where (p;(i),i = 1:7) are the vectors
of the seven joints, with p;(1) = 0:

] ) G
pi+1)=p,@O+L;- [Si] C; = cos (Th—1qx)

A 9
S =sin (o q) O

C. where {
peli+1) =y +05 - L]

The projection of the CoM on the support base is the y coordinate of p.om, i.e., Yom and the
purpose of this module is to ensure that it remains in the range of values defined above while the
attractive force of the PMP module applied to the end-effector, i.e., F,, might induce the CoM to
violate the constraint. In order to achieve this task a virtual force field F, is applied to the central
part of the pelvis: this force should be directed backward if Y., is closer to ypq, thanto yp;, and
forward in the opposite case. In particular, F, is computed according to the following field, a

function of the position of y.,,, inside the safe interval (Viuin = Yimax):
Ycom=ymax) (Ymin—ycom)
&) o

F. = fYVeom) = Keom (e 4 —e€

The field is null in the middle of the interval, positive and exponentially increasing in the right

part, negative and exponentially decreasing in the left part. The parameter A, defined as a small part
of the safe interval (A = M ), modulates the sharpness of the generated force profiles: sharper

and sharper as k increases: for k > 10 all the torque profiles cross the limits of the safe interval with
the same value: F, = +K,,,, for the right limit and F, = —K,,,, for the left limit. In the simulations
reported in the next section k =50 and K., =400N. The force field is mapped into the
corresponding torque field, similarly to eq. 5:

Teom = ]cT Fe(11)

The employed Jacobian matrix is defined for a part of the whole kinematic chain(from the ankle

to the hip), which includes 3 DoFs. The three columns of the Jacobian are computed as follows:
— 05- =53
Jc(3) =0.5"L [+C3

J.2)=J.3)+ L, - [:gz] where {

1o = 1@ + [ 4]

C; = cos (Th=1qx)

; 12
S; = sin (Z;c=1 Qk) (12

2.3. RoM-Constraint Module

The RoM of each DoF is an interval between a minimum and maximum angular value; thus, the
input to this module is Arom: (qumin (i) = qmax(8)) i = 1: 7. The goal is to repulse each DoF from either
joint limit, and this is implemented in a similar way to the CoM module by activating the following

repulsive torque field:
q(H)—qmax (i) Qmin—q9®

Trom (1) = —Krom ° (e a0 —e A0 ) i=1:7. (12)

The parameter A(i) is defined as a small part of the safe interval of each DoF, and it determines

the sharpness of the generated torque profiles: A(i) = M. In the simulations reported in

the next section k =50 and Kg,) = 300 Nm for all the DoFs of the model; the related RoMs are
listed in Table 2.
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2.4. C-Matrix Adaptation Module

By combining the torque fields generated by the three modules described above and mapping
the torque field into a motion field through the compliance matrix, the model coordinates the
redundant DoFs, selecting a path in the null space that satisfies all the requirements instant by instant,
i.e., on line, while keeping the same spatio-temporal structure. Additional modules can be integrated
in this architecture for expressing additional constraints of the generated synergy, either on-line
constraints that operate on the instantaneous value of the kinematic state or off-line constraints that
aim at the modulation of the compliance matrix for affecting features of the overall generated action.
In particular, the off-line module implemented in this simulation study illustrates a dynamic rather
than a kinematic constraint, as do the two modules described above. In particular, the dynamic
constraint is related to the torque requirements for the robot actuators, given a family of kinematically
equivalent coordinated movements.

As shown in the picture, the following kinematic action profile of the planned coordinated action
is saved:

[gi=q@®i=17tet, o t] (13)

This kinematic action profile is transformed into the corresponding generalized force profile that
expresses the time course of the torques requested for each actuator:

[Gi=Q@®i=17t€et, o t] (13)

The transformation is carried out by using the Lagrange formulation of the equations of motion
for robotic arms:

O=5(5) - ori=17

U(q) = Zi=1 Mi 9 i + Migaa 27 (14)
K(q,q) = Xi= (éMkaz + élkwkz) + glloadw72

U and K are, respectively, the potential and kinetic energy functions of the robot; (z, k = 1:7)
are the vertical coordinates of the CoM of each link; (v, k = 1:7) are the velocities of the CoM and
(wk, k = 1:7) the corresponding angular velocities. The analysis of the generalized force profile is
used to adapt the C,,. parameter vector with the purpose of optimizing some dynamic indicator of
the stress faced by the actuators. In particular, the simulations reported in the next section used the
following indicator, namely the maximum peak value of the torque for the whole ensemble of
actuators and the given kinematic profile:

Qpeak = {2%“7( [Q; = Q:i(D)] (15)

tetg—ts

This goal is achieved by a simple gradient descent procedure for the minimization of Qpeqx:

évec = Ig}]}grcl Qpeak (Cpec) (16)

The procedure initiates with the default assignment of unitary values to all the components of
the vector, the simulation of the model, and the estimation of Qpeq; it proceeds with repeated
simulations, updating the vectors according to the gradient of Qpeqx-

From a computational point of view, the simulation model is an explicit system of first-order
differential equations of high dimensionality. The simulations illustrated in the results were carried
out using MATLAB® (MathWorks, MATLAB R2023b), adopting the forward Euler method or the 4th-
order Runge-Kutta method for integrating the differential equation system, with a time step of 0.1
ms. The simulation software is available on demand.

3. Results

Figure 3 shows an example of the simulation of the model described in the previous section. The
parameters of the simulated action are as follows: duration 1s, distance of the target 0.43m, no load.
Panel A1 shows the initial and final posture of the movement, together with the plotted trajectory of
the end effector (in blue) and the trajectory of the projection of the CoM on the support base (in green);
panel A2 is the corresponding plot of the torques of each DoF and panel B3 shows that for this
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simulation the C,. is assigned the default uniform value (blue markers). Panel A2 is related to the
same action performed at the end of the C-matrix adaptation process where the Qpeqx (eq. 15) is
reduced from an initial value of 130 Nm to a final value of 43 steps, after 15 steps of the gradient
descent process, as shown in panel A3; the corresponding configuration of C,,.. is shown in panel
A4 (red markers), and the modified time course of the torques is plotted in panel B3. Moreover, panel
C of Figure 3 plots the time course of the joint rotation patterns for the initial uniform C,.. (in blue)
and the final adapted C,.. (in red). By comparing such rotation patterns and the corresponding
torque vectors (panels A2 vs. B2), it is surprising to realize that a rather small modification of the
kinematics can significantly improve the dynamics, reducing the peak torque by more than 50%.
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Figure 3. Panels A1 and A2 represent the initial and final posture of an action with the same duration of 1 s, the
same initial posture, the same final target and zero load but different C,,.. The two vectors are plotted in panel
B3: red markers correspond to Al and blue markers to B1. The corresponding torque profiles generated by the
Lagrange equations are plotted in panels A2 and B2. Panel C shows the joint rotation patterns related to A1 (blue
traces) and to A2 (red traces).

Figure 4 shows the effect of changing the movement direction, while keeping the movement
duration (1s) and the absence of load. In all the cases, the adaptation procedure provides a significant
reduction of the peak torque and the corresponding optimized C,.. profiles share the shoulder as
the prominent DoF, while keeping the DoFs of the upper limb at a higher level than the lower limb.
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The figure also shows that, independent of the C,.. profiles, some direction is more challenging for
the precision of the kinematic coordination, as is shown by the deviation of the end-effector from the
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Figure 4. A, B, C correspond to three simulations with the same initial posture, the same duration of 1s, the same
target distance of 0.43m, no load, but different final target. Panels 1 represent the initial and final posture of
simulations with the uniform C,,., plotted in panels 4 with blue markers. Panels 2 represent the initial and final
posture of simulations with the adapted C,,., plotted in panels 4 with red markers.The corresponding torque
profiles generated by the Lagrange equations are plotted in panels A2 and B2. Panel C shows the joint rotation
patterns related to Al (blue traces) and to A2 (red traces).

Figure 5 shows the effect of changing the load, while keeping the same movement direction,
distance (0.43m), and duration (1s): the load is 0 in panels A, 20kg in panels B, and 40kg in panels C.
In all the cases, the adaptation procedure provides a significant reduction of the peak torque and the
corresponding optimized C,,. profiles shift the prominent DoF from the upper part to the lower part
of the body as the load increases.
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Figure 5. The three simulations differ for the load: no load (A), 20kg load (B), 40kg load (C). The direction of the
movement and the distance of the target is the same (0.43m), as the movement duration (1s). A1, B1, C1 show
the initial and final postures with the default C,.. configuration; A2, B2, C2 show the postures after C-matrix
adaptation; A3, B3, C3 show the corresponding torque vectors after adaptation; A4, B4, C4 show the initial (blue
markers) and final (red markers) C,,, configurations.

Figure 6 shows the effect of the speed of the movement, related to varying duration: 1.4s, 1s,
0.6s. In all the cases, the adaptation procedure provides a significant reduction of the peak torque;
the optimized C,,. profiles are very similar for slow or very slow movements, as are the required
generalized torques. The third simulation (duration 0.6s) is somewhat different because the kinetic
component of the Lagrange function becomes preponderant with respect to the potential component.
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Figure 6. The three simulations differ for the duration: 1.4s (A), 1s (B), 0.6s (C). The direction of the movements
and the distance of the target is the same (0.43m), the load is null. A1, B1, C1 show the initial and final postures
with the default C,, configuration; A2, B2, C2 show the postures after C-matrix adaptation; A3, B3, C3 show
the corresponding torque vectors after adaptation; A4, B4, C4 show the initial (blue markers) and final (red

markers) Cp.. configurations.

The reported simulations show the variability of the torque requirements in relation to similar
kinematic coordinated patterns.

4. Discussion

It is generally assumed that the problem of motor redundancy is the central problem of motor
control. As observed in the introduction, the early solution, suggested by Nikolai Bernstein one
century ago [1], was the “elimination of redundant degrees-of-freedom”, with the assumption that
once redundant/unnecessary DoFs have been identified, the neural controller can focus on the
essential/nonredundant DoFs in a straightforward manner. However, this is far from trivial in
general, even from the dual point of view of observing multi-joint skilled behavior and attempting to
partition the multi-DoF space in controlled and uncontrolled manifolds, according to the uncontrolled
manifold concept (UCM) [23]. The opposite process, namely, given the task, how to partition the
configuration space for generating a purposive, coordinated action, by focusing control on a carefully
identified manifold while “leaving alone” the UCM, is much more complicated and reminds us the
difficulty of dealing with inverse kinematics based on our knowledge of direct kinematics. In any
case, the UCM concept, originated in neurobiology, is quite similar to the null-space concept adopted
in industrial robotics, which is the basis for many inversion algorithms.

Traditionally, the industrial robotic approach to inverse kinematics has been formulated as an
optimization method, given a kinematic characterization of the task, based on a variety of cost
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functions: the result is the quest for a complex computational process whose speed and robustness
strongly worsen with an increasing degree of redundancy. This is the reason for which the
“anguish/agony” of motor redundancy resolution through explicit mathematical optimization
methods has been challenged by the emphasis on the “bliss” of motor abundance [24] based on the
assumption about the numerosity of the DoFs that the more the better. For example, experimental
evidence supports the hypothesis that the availability of a large number of DoFs improves the human
ability to carry out tasks that require taking into account multiple constraints simultaneously and
with minimal interference among them [25], thus enhancing the flexibility of the performance.

The rationale of the principle of motor abundance is somehow related to the consideration that
the dynamics of high-dimensional motor control can be understood only in an “ecological”
framework that links brain, body, and environment in the same dynamical process, integrating
neurobiological, biomechanical, and physical processes. In particular, this idea is captured by the
equilibrium point hypothesis on the strict relationship between posture and movement [26-28], by
positing that posture is not directly controlled by the brain in a detailed way but is force-field driven,
i.e., it is the “biophysical consequence” of equilibrium among muscular and environmental forces:
“movement” is viewed as a symmetry-breaking phenomenon, i.e., the transition from an equilibrium
state to another one.

The organization/reorganization of the abundant/redundant DoFs of the human body for the
production of purposive actions can also be characterized in terms of the principle of minimum
interaction [29,30], namely the natural tendency of complex systems, as the neuromuscular system, to
reduce the number and intensity of interactions among the subsystems or components recruited to
achieve a desired outcome or maintain a specific state. For example, such interaction parsimony can
be achieved by threshold mechanisms so that deviations from the average intended synergy are only
corrected when they interfere significantly with the task goals.

At the same time, we should not restrict the range of application of the general principles
summarized above, as the equilibrium point hypothesis, to the strict motor control area without
including embodied motor cognition as well. The reason is that different forms of a simulation theory of
cognition [31-35] clearly show that an essential part of such a theory is that the simulation of action is
performed by the same neural mechanisms as those typically involved in movement execution and
perception. The point is that the mental simulation of actions is an essential component of
prospection. It builds upon the mental simulation of actions to evaluate their potential future
sensorimotor, environmental, and social effects, thus supporting an informed decision-making
process [36-38].

The proposed model for the bio-inspired coordination of motor redundance/abundance of
humanoid robots is closely linked to the equilibrium point hypothesis because the PMP, originated
as an extension of EPH, is indeed characterized by “musceles synergies and actions without
movements” [21]: this means that covert/imagined actions and overt/executed actions are totally
equivalent from the ideomotor point of view, except for the specific activation of central pattern
generators. Furthermore, in agreement with the principle of kinematic abundance, PMP is not
computationally intensive but is characterized by an equilibrium-seeking dynamics driven by
internal or external force fields. In particular, the main loop of the PMP module can be implemented
by coupled neural networks, trained according to self-supervised training and capable to simulate
the Jacobian and transpose Jacobian matrices [39]. At the same time, the integration of multiple
constraints by interaction of torque fields in full-dimensional space is the simplest form of
exploitation of the principle of motor abundance. Moreover, the non-linear repulsive fields that
implement the CoM-constraint and the RoM-constraint were conceived to match the principle of
minimum interaction: the chosen non-linear profile is equivalent to a threshold activation algorithm
that tends to reduce the chance of conflicts between the different components of the constraint
satisfaction modules.
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