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Abstract

In this article, the classification of signals arising from the movements of the lower limb of the leg
(LLL) based on electromyography (EMG) (walking, sitting, up and down the stairs) was carried out.
In the data collection process, 25 athletes aged 15-22 were involved, and two types of data sets (DS-
dataset) were formed using FreeEMG and Biosignalsplux devices. Six important time and frequency
domain features were extracted from the EMG signals — RMS (Root Mean Square), MAV (Mean
Absolute Value), WL (Waveform Length), ZC (Zero Crossing), MDF (Median Frequency) and SSC
(Slope Sign Changes). Several classification algorithms were used to detect and classify movements,
including RF (Random Forest), NN (Neural Network), SVM (Support Vector Machine), k-NN (k-
Nearest Neighbors) and LR (Logistic Regression) models. Analysis of the experimental results
showed that the RF algorithm achieved the highest accuracy of 98.7% when classified with DS
collected via the Biosignalsplux device, demonstrating an advantage in terms of performance in
motion recognition.

Keywords: athletes; electromyography; filter; dataset; Biosignalsplux; FreeEMG; classification
algorithms; confusion matrix; classification report

1. Introduction

Surface EMG (sEMG) signal represents neuromuscular activity during potential changes on the
skin surface during muscle contraction. Surface EMG signal detection is a non-invasive detection
method. It is important in the analysis of sports movements, clinical diagnostics, and rehabilitation.
In particular, the most important movements in sports are performed using the muscles of the arms
and legs.

In recent years, extensive research has been conducted on leg movement detection using EMG
signals [1-6]. These studies are mainly aimed at improving the control capabilities of rehabilitation
technologies, smart prostheses, and exoskeleton robotic systems. In particular, various machine
learning algorithms (SVM, RF, KNN, TCN - Temporal Convolutional Network) and feature
extraction methods (in the time, frequency, time-frequency domains) have been used to classify
movement from EMG signals. However, problems such as increasing classification accuracy,
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ensuring fatigue resistance, and real-time performance efficiency are still relevant. Therefore,
approaches in this area and their results are analyzed by studying the existing literature (Table 1).

Table 1. Literature review on EMG-based LLL segment movement studies.

Ref. Devices Data Preprocessing Members Classification
[1] Biometrics SEMG signal sensor Trap filter, Butftiel.-gzorth bandpass 6 SVM: 95.66%
2] Trigno Avanti Notch filter, band—Pass filter, ” RF: 92.90%
Sensor Butterworth filter
5X230 sensors, Data LOG oso
[3] MWX8 N/I 10 CatBoost: 94%
[4] NVX52 Band-pass filter, Butterworth filter 28 LDA: 96.64%
[5] Biosignalsplux Band-pass filter, windowing 12 SSA-SVM: 98.9%
[6] MWX8 Butterworth filter 22 SVM: 96.03%
Windowing, empirical mode )
[7] SEMG-FES module decomposition (EMD) and notch N/ FES-sEMGNet:
. 93.33%
filter
Multi-channel fusion
[8] USBamp EMG amplifier N/I 10 based on S-transform:
96%
9] STMB32F103C8 Notch filter, eflilllt}:;lcal bandpass 8 SVM: 100%
[10] PLUX wireless EMG Band-pass, notch filter, wavelet 20 CNN-TL: 96.13%
decomposition, wavelet threshold
[11] FreeEMG High-pass filter, low-past filter, 8 RF: 96.97%

band-pass filter, notch filter

In a study [1] aimed at assessing the muscle activity of the LLL segment, an experimental method
was developed to detect leg movements from EMG signals of human movement. Feature vectors
were formed based on time-domain features (such as RMS, MAV, ZC), and based on this data, an
SVM classifier was selected to detect 5 main leg movements. As a result of experiments conducted
based on the proposed model, an average accuracy rate of 95.66% was recorded.

The potential of EMG signals is gaining importance in gait analysis and control of rehabilitation
exoskeletons. The study evaluated the effectiveness of machine learning algorithms (KNN, RF, SVM)
in classifying movements based on EMG signals obtained from 22 participants [2]. As a result of
experiments, the RF model with a combination of time and frequency domain features showed the
highest result (92%).

Research is underway on smart prosthetic systems based on EMG signals to improve the quality
of life of patients with lower limb amputations. In study, EMG signals from leg muscles were
obtained and time domain features and the CatBoost algorithm were used to classify 5 movements
(level walking, up the stairs, down the stairs and ramp ascent and descent) [3].

An integrated approach of EEG and EMG signals based on discriminant correlation analysis
(DCA) was considered for detecting bilateral LLL segment movements [4]. EEG and EMG signals
from 28 healthy participants were combined at the feature level and 5 types of classifiers were used
to detect movements. The multimodal approach showed a particularly high performance (96.64%)
with the linear discriminant analysis (LDA) classifier.

Next, a study was reviewed in which a new classification approach based on EMG and Sparrow
Search Algorithm (SSA) optimized for LLL segment motion detection was proposed [5]. In the study,
EMG signals recorded for 4 different motions (walking, up the stairs, down the stairs and sitting and
standing) were processed and separated into feature vectors based on their time and frequency
domain features. The SSA-SVM model was compared with the traditional SVM and TCN models in
motion pattern detection. The SSA-SVM model achieved the highest classification accuracy (98.9%).

Inter-subject differences in SEMG signals are a major problem in detecting LLL segment
movements in exoskeleton robots. In this regard, a motion detection method based on sEMG signals
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using non-negative matrix factorization, multiple nonlinear features, Fisher discriminant function,
and GA-PSO optimized SVM is proposed [6]. This approach achieved 96.03% accuracy in
distinguishing 3 different movements in 11 healthy and 11 knee pathology participants.

Existing functional electrical stimulation (FES) devices are inconvenient to place and cannot
detect the user’s movement intention or muscle fatigue, which limits their application in daily life. A
new wearable FES system based on sEMG with electrodes specially woven for the user is an
important step in this direction [7]. The proposed deep learning-based parallel model FES system
was tested on five participants and was able to detect lower leg movements and muscle fatigue with
high accuracy (93.33%).

In order to improve human-computer interaction in the control of smart prosthetics, a method
for detecting LLL segment movements based on sSEMG signals is proposed. To overcome the problem
of phase information loss in existing methods, the proposed approach implements S-transform-based
energy density analysis and multi-channel synthesis [8]. In this regard, sEMG signals obtained from
six muscles of ten participants were analyzed based on four movements and a detection accuracy of
96% was achieved.

Although the number and location of sSEMG electrodes have been widely studied to improve the
classification accuracy in movement target detection, an increase in the number of channels also leads
to an increase in processing time. In this regard, the classification accuracy of 1 to 4 sSEMG channels
installed in the right LLL segment of healthy subjects was compared [9]. MAV, ZC, WL and SSC were
used as feature vectors, which were reduced by Principal Component Analysis (PCA), and then the
classification was performed using the SVM algorithm. The results showed that accuracy of over 90%
could be achieved when using 3 or 4 channels, but the difference in accuracy between 2 and 4
channels did not exceed 5%, regardless of the number of samples being 500 or 1000, indicating that
increasing the number of channels does not always guarantee maximum accuracy.

A novel solution is to use a CNN-Transformer-LSTM (CNN-TL) coupled model based on sEMG
data to classify LLL segment movements with greater accuracy [10]. sEMG signals from 20
participants were collected during 4 movements, analyzed in the time and frequency domains, and
the selected features were fed into a neural network. The CNN-TL model achieved 96% accuracy and
was 3.76%, 5.92%, and 14.92% higher than CNN, LSTM, and SVM, respectively.

The use of EMG signals is important in assessing and monitoring the physical condition of
athletes involved in wrestling. In the literature reviewed in this regard, 8 general physical exercises
and 2 technical movements specific to athletes were selected as the main evaluation criteria, and
during their performance, EMG signals were recorded using sensors installed at the most active
points of the body [11]. Based on the EMG data, the athletes' movements were divided into 10 classes
and analyzed using 5 different classification algorithms, and the RF model achieved an accuracy of
96.97%.

Figure 1 illustrates the sequence of the research organization process. In the first stage of the
process, EMG signals are recorded in real time using 2 devices, and a data set is formed. In the next
stage, the initial signal processing process is performed on the raw data. In this stage, the signals are
cleaned of various noise and artifacts, and signal cleaning filtration operations are performed using
low-pass filter high-pass filter, band-pass filter and notch filters. After the initial processing, a feature
extraction stage is performed to identify the most important components of the signal. In the final
stage, each leg movement is classified using machine learning or deep learning algorithms (SVM,
KNN, RF, NN and LR).
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Figure 1. The process of collecting and classifying EMG signals.
2. Data Collection Organization

2.1. Devices

Special test-experiments were conducted to organize the DS. During the experiments, the
athletes were adjusted taking into account the characteristics of the LLL segment movements.

Two devices were used to record the EMG signal: the 8-channel BTS FreeEMG 1000 (Figure 2, a)
(Italy, BTS Bioengineering S.P.A.) and the 8-channel Biosignalsplux (Figure 2, b) (Portugal, PLUX
Wireless Biosignals S.A.) devices. The technical characteristics of these two devices are shown in

Table 2.
Table 2. Comparative analysis of FreeEMG and Biosignalsplux devices.
Data Size/ Sampling Wireless
Device 2 Channels 1ze frequency 1retes Areas of application
acquisition Weight (Hz) connection
. Functional assessment of
gait analysis
27 mm x 37 . Sports biomechanics
FreeEM
re[el 2 = EMG <8 mm x 15 <4000 Wi-Fi e Injury prevention and
mm/14g return to play.
3 Cognitive and mobility
recovery.
54 mm x 85
Biosignals- ECG, . Analysis of gait, muscle and
< <
plux [5] EMG, EEG <8 mm x 10 <4000 Bluetooth movement disorders
mm/45g
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Figure 2. a) FreeEMG and b) Biosignalsplux device.

During the signal recording process, Ag/AgCl (silver chloride) electrodes were used and placed
in the innervation zones of the muscles (Figure 3, a, b).

Figure 3. Electrode placement: a — anterior, b — posterior.

The electrodes of the BTS FreeEMG and Biosignalsplux devices were selected to target the
muscles that were most active during leg movements (Figure 3). Based on the location of the human
leg muscles and the correspondence between the muscles and movement, the following muscles were
selected for each of the right and left legs: fibularis anterior, soleus, gastrocnemius lateral and
gastrocnemius medial.

2.2. DS Structure

In the study, the main muscles of the LLL segment were selected, considering that the leg plays
an important role in human movement. In addition, 4 important types of physical exercises that are
most often used in the leg were selected: walking, sitting and standing, up the stairs, and down the
stairs (Figure 4).

During the study, a separate DS was created for each device. Each participant repeated the leg
movements 5 times. Each session was held once a week. 15 sessions were held in 3 weeks. The volume
of the DS is as follows:

15 (repetition) x 4 (class number) x 25 (members) = 1500

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 4. Leg movement exercises used in the experiment (a - walking, b- sitting and standing, c - up the stairs,
d - down the stairs).

The experiment was conducted on 25 students, including 11 girls and 14 boys.

As a sample, the representative segments of EMG signals recorded from the lateral
gastrocnemius muscle of the left leg are visually presented in Figure 5. This figure illustrates the time-
domain variations of the EMG signals corresponding to each movement.
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Figure 5. Visual representation of EMG signals obtained from the left gastrocnemius lateral muscle (a - walking,

b- sitting and standing, c - up the stairs, d - down the stairs).

3. Feature Extraction and Classification

This section describes the step-by-step process of detecting athletes' leg movements based on
EMG signals, pre-filtering the signals, and forming a set of features necessary for their classification.
Characteristic features of movements are extracted, and modern and efficient classification
algorithms are used to automatically identify movements based on these features.

As part of the study, analyses were conducted on EMG data sets collected separately using
FreeEMG and Biosignalsplux devices. The data collected using each device was processed separately,
and the accuracy of the classification models used to classify movements was compared. The
experimental results analyzed the effect of the feature set on classification for different devices, as
well as the performance of the algorithms, and their advantages and disadvantages were identified.

) 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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3.1. Filtration of EMG Signal

Factors that negatively affect the quality of EMG signals (noise) include: power line, motion
artifacts, intermuscular interference, signal saturation, and physiological noise [13]. Various filters
are used to eliminate these factors. High-pass filters are used to reduce motion artifacts and smooth
the signal at frequencies of 10-30 Hz. Low-pass filters remove high frequencies, separate the signal
envelope, and are used before analog-to-digital conversion. Bandpass filters eliminate low
frequencies in the range of 5-20 Hz and high frequencies in the range of 200-1000 Hz. Notch filters
are effective in removing electrical noise at frequencies of 50 or 60 Hz [14,15].

3.2. Feature Extraction

It is not recommended to use raw EMG signals directly in classification algorithms, because
these signals are very large and have a diverse nature. Therefore, the feature extraction method is
used. Through this process, useful information is extracted from the signal and the data volume is
reduced. The feature extraction technique is a necessary step for identifying effective patterns, and
its effectiveness increases the accuracy of the classification result [16]. Table 3 presents an analysis of
the studies conducted on the features of EMG signals.

Table 3. Analysis of the literature on the properties of the EMG signal.

Literature where the feature is Highest classification
Feature .
used accuracies (%)

RMS [17-19,22,24] <95%
MAV [17,18,21,23,25] <97.44%

WL [18,19,23,24] <97%

ZC [18,19,21,25] <96%

MDF [18,19,23] <97%

SSC [18,19,21] <96%
Standard Deviation (STD) [18,19] <58.27%
Variance (VAR) [17-20] <65.04%
Mean [18,19] <58.27%
Skew [18-20] <65.04%

For efficient classification, the best 6 features were selected from the EMG signals based on the
results of various scientific works.

The RMS feature has been used in many studies such as [17-19,22] and [24]. In particular, 95%
accuracy was achieved in studies [22] and [24]. This feature is a key parameter representing the total
energy of the signal and provides stable results in classification. MAYV is also found in many sources,
for example, it was used in [17,18,21,23] and [25]. In [17], 97.44% accuracy was achieved and in [23],
97% accuracy was achieved. This feature calculates the average power of the signal in a simple and
efficient way. WL represents the overall complexity of the signal shape. It was used in [18,19,23], and
[24], and in [23] it gave 97% accuracy. This feature provides good discrimination in classification. ZC
is the frequency variation of the signal by counting the zero crossing points. This feature was used in
[18,19,21], and [25]. In particular, it showed 96% accuracy in [21]. MDF is a frequency domain feature
that indicates the spectral midpoint of the signal energy. It was used in [18,19], and [23], and in [23]
it achieved 97% accuracy and in [19] it achieved 93%. SSC represents the variability of the signal
shape. This feature was used in [18,19], and [21], and in [21] it achieved 96% accuracy.

Six of the studied features - RMS, MAV, WL, ZC, MDF, and SSC - represent important aspects
of the EMG signal and were selected as the best because they helped in classification with high
accuracy in various studies. The remaining features - STD, VAR, Mean, and Skew - were not used
because they showed low accuracy in the analyzed studies.

The six feature extraction models selected above are calculated as follows:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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» RMSis a widely used time-domain feature in electromyographic (EMG) signal processing [22].
RMS effectively reflects muscle contraction intensity and is sensitive to signal amplitude
variations, making it valuable for assessing neuromuscular activity. It can be obtained as:

RMS = lZN:|x|2 )
NS

» MAV reflects the overall magnitude of muscle activation and is often used in real-time EMG-
based control systes due to its computational simplicity and responsiveness to muscle
contractions [21] and is defined as:

1 N
MAV ZWZM @)

i=1

»> WL reflects the complexity and variability of the signal and is sensitive to both amplitude and
frequency changes, making it useful for capturing the dynamic characteristics of muscle activity
[23] and is calculated as follows:

N
WL = Z |xl. - xH| 3)
i=1

»  ZC quantifies the number of instances where the signal amplitude transitions through zero,
indicating a change in polarity [21]. It can be obtained as:

N-1
ZC = Zf(xi *X.01) 4)
i=0

> MDF represents the frequency point within the EMG power spectrum at which the
spectrum is partitioned into two regions of equal power [23] and is defined as:

1Y 5
MDF:Eij ®)

J=1

»  SSC characterize the frequency-related dynamics of EMG signals by quantifying the number of
sign reversals in the signal’s slope within a defined time window [19] and is calculated as
follows:

SC = ]lvz_;f[(xz —x, )% (xi X )}

1 if x > threshold

0 otherwise

(6)
fx)= {

3.3. Classification

Convolutional neural network (CNN) is a supervised learning model (SLM) that has shown high
performance for temporal and visual data analysis. Many studies have used CNN models to achieve
high performance [27,31]. However, when processing images in the classification process, high-
performance GPUs are required.

In this study, five classification algorithms - RF, k-NN, LR, SVM, and NN - were used to classify
athletes” LLL segment movements for both DSs collected from two devices and the classification
results were compared. These methods are known to work effectively with features in different
structures and to ensure the stability of classification results [11,27-29].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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The confusion matrix serves as the main indicator in the evaluation of classification models. It
allows you to visually represent the results of the selected classification algorithm. The evaluation
results of the RF model used in this study for both DS are shown in Figure 6 in the form of a confusion
matrix, and the values of precision, recall, f1-score are shown in Table 4.

a)
Confusion Matrix Confusion Matrix

100 100

down the stairs o down the stairs o o o
80 80
) 1 . " [
sitting and standing - 0% sitting and standing - 00%
2 0y 60
2 k|
, G
w Kl
& &
- 2 0 0 - 40 . 0 0 [ - 40
k. faaledi 67% 0.0% 00% U e s, 00% 0.0% 0.0%
-20 -20
0 0 0 N [] [} o
walking - 0 ey 0.0% walking - 5o, 0.0% 0.0%
' . ' -0 ' ' ' -0
down the stairs sitting and standing  up the stairs walking down the stairs sitting and standing  up the stairs walking
Predicted class Predicted class

Figure 6. a) Confusion matrix for FreeEMG, b) Confusion matrix for Biosignalsplux.

Table 4. RF model classification results.

DS collected from FreeEMG DS collected from Biosignalsplux

Class precision  recall  fl-score  precision recall f1-score
walking 0.96 1.00 0.98 1.00 1.00 1.00
sitting and standing 1.00 0.92 0.96 1.00 0.96 0.98
up the stairs 0.97 0.93 0.95 1.00 1.00 1.00
down the stairs 0.88 0.95 0.91 0.96 1.00 0.98

The classification accuracy for the athletes’ LLL segment movement classes was calculated
separately using the 5 selected classification algorithms using both DSs, and a generalized evaluation
was performed based on these results.

NN KNN
A, : = ~ o r = 2 2 YUYW
NN —”ur:‘):kun NN 39,75‘;‘4’"‘”
S o 1 oo
SVM T90,50% SVM
S o 50
LR T 785,00% LR
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Figure 7. Classification results.
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Experimental tests showed that all classifiers, based on the selected feature set, were able to
classify athletes' footwork with high efficiency. The results differed in accuracy depending on the
type of movement, and there were some significant differences between the classifiers (Figure 7).

4. Discussion

In this study, data were collected using two different devices, FreeEMG and Biosignalsplux, to
detect athletes' leg movements through EMG signals, and classification was performed using five
classification algorithms, RF, k-NN, LR, SVM, and NN. The movements were divided into four types:
walking, sitting and standing, up the stairs, and down the stairs.

The analysis of the research results shows that the RF algorithm showed the highest accuracy
among all tested classifiers in classifying movements. In both devices, the RF algorithm outperformed
the other models in all types of movements. In particular, for walking movements, the FreeEMG
device achieved 95% accuracy, and the Biosignalsplux device achieved 98.7%. For sitting and
standing movements, the accuracies were 91.4% and 95.8%, for up the stairs 94.3% and 96.6%, and
for down the stairs 93% and 97.2%, respectively. These indicators prove the effectiveness of the RF
algorithm in identifying differences between complex movements, its stability, and its high
adaptability to the characteristics of the EMG signal. When used in conjunction with the
Biosignalsplux device, the RF algorithm provided the highest results in all cases.

In addition, the NN and kNN algorithms also showed high accuracy results. For example, in the
walking movement, the NN algorithm worked with 93.4% accuracy in FreeEMG and 95.2% in
Biosignalsplux. The kNN algorithm has achieved the highest results in other studies for classifying
EMG signals [30]. However, in our study, it performed worse than the RF and NN models. In the
down the stairs movement, the kNN algorithm achieved 92.4% accuracy in FreeEMG and 96.6% in
Biosignalsplux.

At the same time, the results of the SVM and LR algorithms were relatively lower. In the sitting
and standing movements, LR showed 82.3% accuracy in the FreeEMG device and 86.7% accuracy in
the Biosignalsplux device, while SVM achieved 85.5% and 87.2% accuracy, respectively. It was
observed that the SVM and LR algorithms could not perform at the level of powerful models such as
RF and NN in cases of complex, dynamic movements or in cases where there is similarity between
movements. In some studies, high results were obtained by hybridizing the SVM model with
methods such as ReliefF and Chi2 to improve its accuracy [28,31].

5. Conclusions

The article presents the recognition of athletes’ LLL segment movements based on EMG signals.
A total of 25 athletes participated in the data collection process. The study analyzed previous work
on movement recognition using EMG signals. It is worth noting that in this study, unlike other
studies, data were collected separately from two different devices and their classification
performance was compared. The Biosignalsplux device provided higher accuracy in movement
classification compared to FreeEMG. The Biosignalsplux device consistently outperformed the
FreeEMG device for each movement type and classifier, and this difference was especially evident in
the cases of walking and down the stairs.

The EMG signals were filtered to remove various noise and artifacts. In the next stage, several
literatures were analyzed and the RMS, MAV, WL, ZC, MDF and SSC features of the EMG signal that
provide high accuracy in classification were selected and DSs were created using these features. RF,
LR, SVM, NN and kNN classification algorithms were tested on the basis of EMG signals collected
by FreeEMG and Biosignalsplux devices to recognize 4 types of leg movements of athletes. All
algorithms showed an overall accuracy of 82.3% to 98.7%. The RF algorithm achieved the highest
result, with an accuracy of up to 97% in the Biosignalsplux device. This result demonstrated the
effectiveness of the RF algorithm in identifying differences between movements in the EMG signal.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Based on the above analysis, it can be said that the combination of the RF algorithm and the
Biosignalsplux device can be recommended as the most optimal technological solution for detecting
athletes' leg movements based on EMG signals.
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