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Abstract 

In this article, the classification of signals arising from the movements of the lower limb of the leg 

(LLL) based on electromyography (EMG) (walking, sitting, up and down the stairs) was carried out. 

In the data collection process, 25 athletes aged 15‐22 were involved, and two types of data sets (DS‐

dataset) were formed using FreeEMG and Biosignalsplux devices. Six important time and frequency 

domain  features were extracted  from  the EMG signals — RMS  (Root Mean Square), MAV  (Mean 

Absolute Value), WL (Waveform Length), ZC (Zero Crossing), MDF (Median Frequency) and SSC 

(Slope Sign Changes). Several classification algorithms were used to detect and classify movements, 

including RF  (Random Forest), NN  (Neural Network), SVM  (Support Vector Machine), k‐NN  (k‐

Nearest Neighbors)  and  LR  (Logistic  Regression) models.  Analysis  of  the  experimental  results 

showed  that  the RF  algorithm  achieved  the  highest  accuracy  of  98.7% when  classified with DS 

collected via  the Biosignalsplux device, demonstrating  an  advantage  in  terms of performance  in 

motion recognition.   

Keywords:  athletes;  electromyography;  filter;  dataset;  Biosignalsplux;  FreeEMG;  classification 

algorithms; confusion matrix; classification report 

 

1. Introduction 

Surface EMG (sEMG) signal represents neuromuscular activity during potential changes on the 

skin surface during muscle contraction. Surface EMG signal detection  is a non‐invasive detection 

method. It is important in the analysis of sports movements, clinical diagnostics, and rehabilitation. 

In particular, the most important movements in sports are performed using the muscles of the arms 

and legs. 

In recent years, extensive research has been conducted on leg movement detection using EMG 

signals [1–6]. These studies are mainly aimed at improving the control capabilities of rehabilitation 

technologies,  smart  prostheses,  and  exoskeleton  robotic  systems.  In  particular,  various machine 

learning  algorithms  (SVM,  RF,  KNN,  TCN  ‐  Temporal  Convolutional  Network)  and  feature 

extraction methods  (in  the  time,  frequency,  time‐frequency domains) have been used  to  classify 

movement  from  EMG  signals.  However,  problems  such  as  increasing  classification  accuracy, 
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ensuring  fatigue  resistance,  and  real‐time  performance  efficiency  are  still  relevant.  Therefore, 

approaches in this area and their results are analyzed by studying the existing literature (Table 1). 

Table 1. Literature review on EMG‐based LLL segment movement studies. 

Ref.  Devices  Data Preprocessing  Members  Classification 

[1]  Biometrics sEMG signal sensor 
Trap filter, Butterworth bandpass 

filter 
6  SVM: 95.66% 

[2] 
Trigno Avanti 

Sensor 

Notch filter, band‐pass filter, 

Butterworth filter 
22  RF: 92.90% 

[3] 
SX230 sensors, Data LOG 

MWX8 
N/I  10  CatBoost: 94% 

[4]  NVX52  Band‐pass filter, Butterworth filter  28  LDA: 96.64% 

[5]  Biosignalsplux  Band‐pass filter, windowing  12  SSA‐SVM: 98.9% 

[6]  MWX8  Butterworth filter  22  SVM: 96.03% 

[7]  sEMG‐FES module 

Windowing, empirical mode 

decomposition (EMD) and notch 

filter 

N/I 
FES‐sEMGNet: 

93.33% 

[8]  USBamp EMG amplifier  N/I  10 

Multi‐channel fusion 

based on S‐transform: 

96% 

[9]  STM32F103C8 
Notch filter, elliptical bandpass 

filter 
8  SVM: 100% 

[10]  PLUX wireless EMG 
Band‐pass, notch filter, wavelet 

decomposition, wavelet threshold 
20  CNN‐TL: 96.13% 

[11]  FreeEMG 
High‐pass filter, low‐past filter, 

band‐pass filter, notch filter 
28  RF: 96.97% 

In a study [1] aimed at assessing the muscle activity of the LLL segment, an experimental method 

was developed  to detect  leg movements  from EMG signals of human movement. Feature vectors 

were formed based on time‐domain features (such as RMS, MAV, ZC), and based on this data, an 

SVM classifier was selected to detect 5 main leg movements. As a result of experiments conducted 

based on the proposed model, an average accuracy rate of 95.66% was recorded. 

The potential of EMG signals is gaining importance in gait analysis and control of rehabilitation 

exoskeletons. The study evaluated the effectiveness of machine learning algorithms (KNN, RF, SVM) 

in classifying movements based on EMG signals obtained  from 22 participants  [2]. As a  result of 

experiments, the RF model with a combination of time and frequency domain features showed the 

highest result (92%).   

Research is underway on smart prosthetic systems based on EMG signals to improve the quality 

of  life  of  patients with  lower  limb  amputations.  In  study,  EMG  signals  from  leg muscles were 

obtained and time domain features and the CatBoost algorithm were used to classify 5 movements 

(level walking, up the stairs, down the stairs and ramp ascent and descent) [3].   

An  integrated approach of EEG and EMG signals based on discriminant correlation analysis 

(DCA) was considered for detecting bilateral LLL segment movements [4]. EEG and EMG signals 

from 28 healthy participants were combined at the feature level and 5 types of classifiers were used 

to detect movements. The multimodal approach showed a particularly high performance (96.64%) 

with the linear discriminant analysis (LDA) classifier. 

Next, a study was reviewed in which a new classification approach based on EMG and Sparrow 

Search Algorithm (SSA) optimized for LLL segment motion detection was proposed [5]. In the study, 

EMG signals recorded for 4 different motions (walking, up the stairs, down the stairs and sitting and 

standing) were processed  and  separated  into  feature  vectors  based  on  their  time  and  frequency 

domain features. The SSA‐SVM model was compared with the traditional SVM and TCN models in 

motion pattern detection. The SSA‐SVM model achieved the highest classification accuracy (98.9%). 

Inter‐subject  differences  in  sEMG  signals  are  a  major  problem  in  detecting  LLL  segment 

movements in exoskeleton robots. In this regard, a motion detection method based on sEMG signals 
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using non‐negative matrix  factorization, multiple nonlinear features, Fisher discriminant function, 

and  GA‐PSO  optimized  SVM  is  proposed  [6].  This  approach  achieved  96.03%  accuracy  in 

distinguishing 3 different movements in 11 healthy and 11 knee pathology participants. 

Existing  functional  electrical  stimulation  (FES) devices are  inconvenient  to place and  cannot 

detect the user’s movement intention or muscle fatigue, which limits their application in daily life. A 

new wearable  FES  system  based  on  sEMG with  electrodes  specially woven  for  the  user  is  an 

important step  in this direction  [7]. The proposed deep  learning‐based parallel model FES system 

was tested on five participants and was able to detect lower leg movements and muscle fatigue with 

high accuracy (93.33%). 

In order to improve human‐computer interaction in the control of smart prosthetics, a method 

for detecting LLL segment movements based on sEMG signals is proposed. To overcome the problem 

of phase information loss in existing methods, the proposed approach implements S‐transform‐based 

energy density analysis and multi‐channel synthesis [8]. In this regard, sEMG signals obtained from 

six muscles of ten participants were analyzed based on four movements and a detection accuracy of 

96% was achieved. 

Although the number and location of sEMG electrodes have been widely studied to improve the 

classification accuracy in movement target detection, an increase in the number of channels also leads 

to an increase in processing time. In this regard, the classification accuracy of 1 to 4 sEMG channels 

installed in the right LLL segment of healthy subjects was compared [9]. MAV, ZC, WL and SSC were 

used as feature vectors, which were reduced by Principal Component Analysis (PCA), and then the 

classification was performed using the SVM algorithm. The results showed that accuracy of over 90% 

could  be  achieved when using  3  or  4  channels,  but  the difference  in  accuracy  between  2  and  4 

channels did not exceed 5%, regardless of the number of samples being 500 or 1000, indicating that 

increasing the number of channels does not always guarantee maximum accuracy. 

A novel solution is to use a CNN‐Transformer‐LSTM (CNN‐TL) coupled model based on sEMG 

data  to  classify  LLL  segment  movements  with  greater  accuracy  [10].  sEMG  signals  from  20 

participants were collected during 4 movements, analyzed in the time and frequency domains, and 

the selected features were fed into a neural network. The CNN‐TL model achieved 96% accuracy and 

was 3.76%, 5.92%, and 14.92% higher than CNN, LSTM, and SVM, respectively. 

The use of EMG  signals  is  important  in  assessing  and monitoring  the physical  condition of 

athletes involved in wrestling. In the literature reviewed in this regard, 8 general physical exercises 

and 2  technical movements specific  to athletes were selected as  the main evaluation criteria, and 

during  their performance, EMG  signals were  recorded using  sensors  installed at  the most active 

points of the body [11]. Based on the EMG data, the athletesʹ movements were divided into 10 classes 

and analyzed using 5 different classification algorithms, and the RF model achieved an accuracy of 

96.97%. 

Figure 1  illustrates the sequence of  the research organization process. In the  first stage of the 

process, EMG signals are recorded in real time using 2 devices, and a data set is formed. In the next 

stage, the initial signal processing process is performed on the raw data. In this stage, the signals are 

cleaned of various noise and artifacts, and signal cleaning filtration operations are performed using 

low‐pass filter high‐pass filter, band‐pass filter and notch filters. After the initial processing, a feature 

extraction stage is performed to identify the most important components of the signal. In the final 

stage, each  leg movement  is classified using machine  learning or deep  learning algorithms  (SVM, 

KNN, RF, NN and LR). 
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Figure 1. The process of collecting and classifying EMG signals. 

2. Data Collection Organization 

2.1. Devices 

Special  test‐experiments were  conducted  to  organize  the  DS.  During  the  experiments,  the 

athletes were adjusted taking into account the characteristics of the LLL segment movements. 

Two devices were used to record the EMG signal: the 8‐channel BTS FreeEMG 1000 (Figure 2, a) 

(Italy, BTS Bioengineering S.P.A.) and  the 8‐channel Biosignalsplux  (Figure 2, b)  (Portugal, PLUX 

Wireless Biosignals S.A.) devices. The  technical  characteristics of  these  two devices are shown  in 

Table 2. 

Table 2. Comparative analysis of FreeEMG and Biosignalsplux devices. 

Device 
Data 

acquisition 
Channels 

Size/ 

Weight 

Sampling 

frequency 

(Hz) 

Wireless 

connection 
Areas of application 

FreeEMG 

[12] 
EMG  ≤8 

27 mm × 37 

mm × 15 

mm / 14 g 

≤4000  Wi‐Fi 

 Functional assessment of 

gait analysis 

 Sports biomechanics 

 Injury prevention and 

return to play. 

 Cognitive and mobility 

recovery. 

Biosignals‐

plux [5] 

ECG, 

EMG, EEG 
≤8 

54 mm × 85 

mm × 10 

mm / 45 g 

≤4000    Bluetooth 
 Analysis of gait, muscle and 

movement disorders 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 July 2025 doi:10.20944/preprints202507.2188.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.2188.v1
http://creativecommons.org/licenses/by/4.0/


  5  of  13 

 

 

 

Figure 2. a) FreeEMG and b) Biosignalsplux device. 

During the signal recording process, Ag/AgCl (silver chloride) electrodes were used and placed 

in the innervation zones of the muscles (Figure 3, a, b). 

 

Figure 3. Electrode placement: a – anterior, b – posterior. 

The  electrodes  of  the BTS  FreeEMG  and  Biosignalsplux devices were  selected  to  target  the 

muscles that were most active during leg movements (Figure 3). Based on the location of the human 

leg muscles and the correspondence between the muscles and movement, the following muscles were 

selected  for  each  of  the  right  and  left  legs:  fibularis  anterior,  soleus,  gastrocnemius  lateral  and 

gastrocnemius medial. 

2.2. DS Structure 

In the study, the main muscles of the LLL segment were selected, considering that the leg plays 

an important role in human movement. In addition, 4 important types of physical exercises that are 

most often used in the leg were selected: walking, sitting and standing, up the stairs, and down the 

stairs (Figure 4). 

During the study, a separate DS was created for each device. Each participant repeated the leg 

movements 5 times. Each session was held once a week. 15 sessions were held in 3 weeks. The volume 

of the DS is as follows: 

15 (repetition) × 4 (class number) × 25 (members) = 1500 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 July 2025 doi:10.20944/preprints202507.2188.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.2188.v1
http://creativecommons.org/licenses/by/4.0/


  6  of  13 

 

b)a) d)c)  

Figure 4. Leg movement exercises used in the experiment (a ‐ walking, b‐ sitting and standing, c ‐ up the stairs, 

d ‐ down the stairs). 

The experiment was conducted on 25 students, including 11 girls and 14 boys. 

As  a  sample,  the  representative  segments  of  EMG  signals  recorded  from  the  lateral 

gastrocnemius muscle of the left leg are visually presented in Figure 5. This figure illustrates the time‐

domain variations of the EMG signals corresponding to each movement. 

c)

d)

b)

a)
BiosignalspluxFreeEMG

 

Figure 5. Visual representation of EMG signals obtained from the left gastrocnemius lateral muscle (a ‐ walking, 

b‐ sitting and standing, c ‐ up the stairs, d ‐ down the stairs). 

3. Feature Extraction and Classification 

This section describes the step‐by‐step process of detecting athletesʹ  leg movements based on 

EMG signals, pre‐filtering the signals, and forming a set of features necessary for their classification. 

Characteristic  features  of  movements  are  extracted,  and  modern  and  efficient  classification 

algorithms are used to automatically identify movements based on these features. 

As part of  the  study, analyses were  conducted on EMG data  sets  collected  separately using 

FreeEMG and Biosignalsplux devices. The data collected using each device was processed separately, 

and  the  accuracy  of  the  classification models  used  to  classify movements was  compared.  The 

experimental results analyzed the effect of the feature set on classification for different devices, as 

well as the performance of the algorithms, and their advantages and disadvantages were identified. 
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3.1. Filtration of EMG Signal 

Factors  that negatively affect  the quality of EMG signals  (noise)  include: power  line, motion 

artifacts,  intermuscular  interference, signal saturation, and physiological noise [13]. Various  filters 

are used to eliminate these factors. High‐pass filters are used to reduce motion artifacts and smooth 

the signal at frequencies of 10–30 Hz. Low‐pass filters remove high frequencies, separate the signal 

envelope,  and  are  used  before  analog‐to‐digital  conversion.  Bandpass  filters  eliminate  low 

frequencies in the range of 5–20 Hz and high frequencies in the range of 200–1000 Hz. Notch filters 

are effective in removing electrical noise at frequencies of 50 or 60 Hz [14,15]. 

3.2. Feature Extraction 

It  is not  recommended  to use  raw EMG  signals directly  in classification algorithms, because 

these signals are very large and have a diverse nature. Therefore, the feature extraction method is 

used. Through this process, useful information is extracted from the signal and the data volume is 

reduced. The feature extraction technique is a necessary step for identifying effective patterns, and 

its effectiveness increases the accuracy of the classification result [16]. Table 3 presents an analysis of 

the studies conducted on the features of EMG signals.   

Table 3. Analysis of the literature on the properties of the EMG signal. 

Feature 
Literature where the feature is 

used 

Highest classification 

accuracies (%) 

RMS  [17–19,22,24]  ≤95% 

MAV  [17,18,21,23,25]  ≤97.44% 

WL  [18,19,23,24]  ≤97% 

ZC  [18,19,21,25]  ≤96% 

MDF  [18,19,23]  ≤97% 

SSC  [18,19,21]  ≤96% 

Standard Deviation (STD)  [18,19]  ≤58.27% 

Variance (VAR)  [17–20]  ≤65.04% 

Mean  [18,19]  ≤58.27% 

Skew  [18–20]  ≤65.04% 

For efficient classification, the best 6 features were selected from the EMG signals based on the 

results of various scientific works. 

The RMS feature has been used in many studies such as [17–19,22] and [24]. In particular, 95% 

accuracy was achieved in studies [22] and [24]. This feature is a key parameter representing the total 

energy of the signal and provides stable results in classification. MAV is also found in many sources, 

for example, it was used in [17,18,21,23] and [25]. In [17], 97.44% accuracy was achieved and in [23], 

97% accuracy was achieved. This feature calculates the average power of the signal in a simple and 

efficient way. WL represents the overall complexity of the signal shape. It was used in [18,19,23], and 

[24], and in [23] it gave 97% accuracy. This feature provides good discrimination in classification. ZC 

is the frequency variation of the signal by counting the zero crossing points. This feature was used in 

[18,19,21], and [25]. In particular, it showed 96% accuracy in [21]. MDF is a frequency domain feature 

that indicates the spectral midpoint of the signal energy. It was used in [18,19], and [23], and in [23] 

it achieved 97% accuracy and  in  [19]  it achieved 93%. SSC  represents  the variability of  the signal 

shape. This feature was used in [18,19], and [21], and in [21] it achieved 96% accuracy. 

Six of the studied features ‐ RMS, MAV, WL, ZC, MDF, and SSC ‐ represent important aspects 

of  the EMG  signal  and were  selected as  the best because  they helped  in  classification with high 

accuracy in various studies. The remaining features ‐ STD, VAR, Mean, and Skew ‐ were not used 

because they showed low accuracy in the analyzed studies.   

The six feature extraction models selected above are calculated as follows: 
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 RMS is a widely used time‐domain feature in electromyographic (EMG) signal processing [22]. 

RMS  effectively  reflects  muscle  contraction  intensity  and  is  sensitive  to  signal  amplitude 

variations, making it valuable for assessing neuromuscular activity. It can be obtained as: 

2

0

1 N

i
i

RMS x
N 

    (1) 

 
 MAV reflects the overall magnitude of muscle activation and is often used in real‐time EMG‐

based  control  systes  due  to  its  computational  simplicity  and  responsiveness  to  muscle 

contractions [21] and is defined as: 

1

1 N

i
i

MAV x
N 

    (2)

 WL reflects the complexity and variability of the signal and is sensitive to both amplitude and 

frequency changes, making it useful for capturing the dynamic characteristics of muscle activity 

[23] and is calculated as follows: 

1
1

N

i i
i

WL x x 


    (3)

 ZC quantifies  the number of  instances where  the  signal amplitude  transitions  through zero, 

indicating a change in polarity [21]. It can be obtained as: 

 
1

1
0

*
N

i i
i

ZC f x x





    (4)

 MDF  represents  the  frequency  point  within  the  EMG  power  spectrum  at  which  the 

spectrum is partitioned into two regions of equal power [23] and is defined as: 

1

1

2

M

j
j

MDF p


    (5)

 SSC characterize the frequency‐related dynamics of EMG signals by quantifying the number of 

sign  reversals  in  the  signal’s  slope within  a defined  time window  [19]  and  is  calculated  as 

follows: 

   
1

1 1
2

              

   
         (     

          

1

 0  
)

N

i i i i
i

S

if x threshold

o
f

therw

C f x x

ise

x x

x



 






    


 



  (6)

3.3. Classification 

Convolutional neural network (CNN) is a supervised learning model (SLM) that has shown high 

performance for temporal and visual data analysis. Many studies have used CNN models to achieve 

high  performance  [27,31]. However, when  processing  images  in  the  classification  process,  high‐

performance GPUs are required. 

In this study, five classification algorithms ‐ RF, k‐NN, LR, SVM, and NN ‐ were used to classify 

athletes’ LLL  segment movements  for both DSs  collected  from  two devices and  the  classification 

results were  compared. These methods  are known  to work  effectively with  features  in different 

structures and to ensure the stability of classification results [11,27–29]. 
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The confusion matrix serves as the main indicator in the evaluation of classification models. It 

allows you to visually represent the results of the selected classification algorithm. The evaluation 

results of the RF model used in this study for both DS are shown in Figure 6 in the form of a confusion 

matrix, and the values of precision, recall, f1‐score are shown in Table 4. 

a) b)

 

Figure 6. a) Confusion matrix for FreeEMG, b) Confusion matrix for Biosignalsplux. 

Table 4. RF model classification results. 

Class 
DS collected from FreeEMG  DS collected from Biosignalsplux 

precision  recall  f1‐score  precision  recall  f1‐score 

walking  0.96  1.00  0.98  1.00  1.00  1.00 

sitting and standing  1.00  0.92  0.96  1.00  0.96  0.98 

up the stairs  0.97  0.93  0.95  1.00  1.00  1.00 

down the stairs  0.88  0.95  0.91  0.96  1.00  0.98 

The  classification  accuracy  for  the  athletesʹ LLL  segment movement  classes was  calculated 

separately using the 5 selected classification algorithms using both DSs, and a generalized evaluation 

was performed based on these results. 

 

Figure 7. Classification results. 
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Experimental  tests showed  that all classifiers, based on  the selected  feature set, were able  to 

classify athletesʹ  footwork with high efficiency. The results differed  in accuracy depending on the 

type of movement, and there were some significant differences between the classifiers (Figure 7). 

4. Discussion 

In this study, data were collected using two different devices, FreeEMG and Biosignalsplux, to 

detect athletesʹ  leg movements  through EMG signals, and classification was performed using  five 

classification algorithms, RF, k‐NN, LR, SVM, and NN. The movements were divided into four types: 

walking, sitting and standing, up the stairs, and down the stairs. 

The analysis of the research results shows that the RF algorithm showed the highest accuracy 

among all tested classifiers in classifying movements. In both devices, the RF algorithm outperformed 

the other models  in all  types of movements.  In particular,  for walking movements,  the FreeEMG 

device  achieved  95%  accuracy,  and  the  Biosignalsplux  device  achieved  98.7%.  For  sitting  and 

standing movements, the accuracies were 91.4% and 95.8%, for up the stairs 94.3% and 96.6%, and 

for down the stairs 93% and 97.2%, respectively. These indicators prove the effectiveness of the RF 

algorithm  in  identifying  differences  between  complex  movements,  its  stability,  and  its  high 

adaptability  to  the  characteristics  of  the  EMG  signal.  When  used  in  conjunction  with  the 

Biosignalsplux device, the RF algorithm provided the highest results in all cases. 

In addition, the NN and kNN algorithms also showed high accuracy results. For example, in the 

walking movement,  the NN  algorithm worked with  93.4%  accuracy  in  FreeEMG  and  95.2%  in 

Biosignalsplux. The kNN algorithm has achieved the highest results in other studies for classifying 

EMG signals [30]. However, in our study, it performed worse than the RF and NN models. In the 

down the stairs movement, the kNN algorithm achieved 92.4% accuracy in FreeEMG and 96.6% in 

Biosignalsplux. 

At the same time, the results of the SVM and LR algorithms were relatively lower. In the sitting 

and standing movements, LR showed 82.3% accuracy in the FreeEMG device and 86.7% accuracy in 

the  Biosignalsplux  device, while  SVM  achieved  85.5%  and  87.2%  accuracy,  respectively.  It was 

observed that the SVM and LR algorithms could not perform at the level of powerful models such as 

RF and NN in cases of complex, dynamic movements or in cases where there is similarity between 

movements.  In  some  studies,  high  results were  obtained  by  hybridizing  the  SVM model with 

methods such as ReliefF and Chi2 to improve its accuracy [28,31]. 

5. Conclusions 

The article presents the recognition of athletes’ LLL segment movements based on EMG signals. 

A total of 25 athletes participated in the data collection process. The study analyzed previous work 

on movement  recognition using EMG  signals.  It  is worth noting  that  in  this  study, unlike other 

studies,  data  were  collected  separately  from  two  different  devices  and  their  classification 

performance was  compared.  The  Biosignalsplux  device  provided  higher  accuracy  in movement 

classification  compared  to  FreeEMG.  The  Biosignalsplux  device  consistently  outperformed  the 

FreeEMG device for each movement type and classifier, and this difference was especially evident in 

the cases of walking and down the stairs. 

The EMG signals were filtered to remove various noise and artifacts. In the next stage, several 

literatures were analyzed and the RMS, MAV, WL, ZC, MDF and SSC features of the EMG signal that 

provide high accuracy in classification were selected and DSs were created using these features. RF, 

LR, SVM, NN and kNN classification algorithms were tested on the basis of EMG signals collected 

by  FreeEMG  and Biosignalsplux  devices  to  recognize  4  types  of  leg movements  of  athletes. All 

algorithms showed an overall accuracy of 82.3%  to 98.7%. The RF algorithm achieved  the highest 

result, with an accuracy of up  to 97%  in  the Biosignalsplux device. This  result demonstrated  the 

effectiveness of the RF algorithm in identifying differences between movements in the EMG signal. 
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Based on the above analysis,  it can be said that the combination of the RF algorithm and the 

Biosignalsplux device can be recommended as the most optimal technological solution for detecting 

athletesʹ leg movements based on EMG signals. 
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