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Article 

Complete Theory of Simplicial Discrete 
Informational Spacetime: Towards a Predictive and 
Testable Theory of Quantum Spacetime. 
Karazoupis Miltiadis 

Independent Researcher; miltos.karazoupis@gmail.com 

Abstract: This paper introduces the Complete Theory of Simplicial Discrete Informational Spacetime. 
This meticulously constructed and self-contained theoretical framework is designed to address the 
profound challenges at the intersection of quantum mechanics and gravity. It offers a novel 
perspective on cosmology and the emergence of spacetime. The framework is rigorously developed 
and exhaustively defined, proposing a paradigm shift beyond the classical continuum to a 
fundamentally discrete and informational spacetime. At its core is the concept of simplicial 
chronotopes, indivisible quanta of spacetime and information, mathematically realized as regular 4-
simplices. This work provides a complete and detailed exposition of the theory, from its primitive 
definitions rooted in Planck-scale quantization to its dynamical laws, emergent phenomena, and 
testable predictions. Crucially, the framework provides detailed derivations for key parameters, such 
as the Poisson ratio and spacetime stiffness, grounded in the symmetry and elastic response of the 4-
simplex and linked to Planckian energy density and holographic entropy scaling. Through a 
synergistic combination of Non-commutative Geometry and Quantum Information Theory, the 
theory addresses the quantum-to-classical transition, singularity avoidance, and the emergence of 
classical gravity. It offers a mathematically rigorous and physically plausible pathway towards a 
predictive and testable theory of quantum spacetime and gravity (Karazoupis, 2025). 

Keywords: quantum information theory; simplicial spacetime; Simplicial Discrete Informational 
Spacetime; emergence; quantum gravity; 4D simplicial complex dynamics; classical limit; non-
commutative geometry 
 

Introduction: The Informational Discrete Spacetime Framework 
This section provides a comprehensive introduction to the Simplex-Focused Informational 

Discrete Spacetime Theory Framework. It delineates the framework's context within the ongoing 
quest for a theory of quantum gravity, elucidates the motivations for adopting a discrete and 
informational approach to spacetime, and specifies the key objectives in developing a predictive and 
testable theory of quantum spacetime. 

Modern physics stands at a critical juncture, marked by the fundamental incompatibility of its 
two most successful and foundational theories: General Relativity (GR) and Quantum Mechanics 
(QM). General Relativity, with its elegant description of gravity as the curvature of spacetime, 
provides an accurate and compelling account of phenomena at macroscopic scales, from the motion 
of planets to the evolution of the cosmos. Quantum Mechanics, conversely, offers an extraordinarily 
precise and empirically validated description of the microscopic realm, governing the behavior of 
atoms, particles, and fundamental interactions. Despite their individual successes, these two theories 
remain fundamentally irreconcilable, presenting a profound challenge to our understanding of the 
universe, particularly in regimes where both gravitational and quantum effects are expected to be 
significant, such as at the Planck scale, within black holes, and in the very early universe. This 
theoretical impasse necessitates the development of a consistent theory of quantum gravity, capable 
of unifying these seemingly disparate descriptions of reality. 
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A core tenet of classical General Relativity is the assumption of a smooth, continuous, and 
differentiable manifold for spacetime. However, the inherent singularities predicted by General 
Relativity, such as those at the center of black holes and the Big Bang singularity, along with growing 
theoretical and observational indications, suggest that this assumption may break down at the most 
fundamental level. The very concept of a spacetime continuum, while remarkably successful at 
macroscopic scales, may be an approximation, insufficient to capture the true nature of spacetime at 
the Planck scale, where quantum gravitational effects are expected to dominate. This breakdown of 
the classical spacetime description hints at a more fundamental, potentially discrete and 
informational, structure underlying the fabric of reality, prompting a radical reconsideration of the 
nature of spacetime itself. 

In response to these fundamental challenges, this paper introduces the Simplex-Focused 
Informational Discrete Spacetime Theory Framework. This novel and ambitious theoretical construct 
proposes a paradigm shift in our understanding of spacetime and gravity. Meticulously detailed and 
rigorously defined in the subsequent sections, this framework departs radically from the classical 
paradigm. It posits that spacetime is not a continuous manifold, but is fundamentally discrete and 
informational at its most basic level. It proposes that spacetime is constituted by indivisible quanta 
of spacetime and information, termed simplicial chronotopes, which serve as the fundamental 
building blocks of reality. These chronotopes are envisioned as unified quantum entities, seamlessly 
integrating spacetime and information, and are mathematically represented as regular 4-simplices, 
chosen for their geometric simplicity, informational capacity, and mathematical tractability 
(Karazoupis, 2025). 

The choice of regular n-simplices, specifically 4-simplices in this 4-dimensional spacetime 
framework, as fundamental building blocks is deeply motivated by a confluence of physical and 
mathematical considerations. Regular n-simplices, as the simplest polytopes in n-dimensions, 
embody the principle of minimality, making them natural candidates for the most fundamental 
constituents of spacetime. Their maximal connectivity suggests an optimal structure for efficient 
information flow and processing, aligning with the informational emphasis of the framework. 
Crucially, simplicial complexes built from simplices are known to approximate curved manifolds, 
providing a pathway to recovering General Relativity and its description of gravity as spacetime 
curvature. Furthermore, the mathematical tractability of simplicial complexes and the established 
lineage of simplicial approaches to quantum gravity, such as Simplicial Quantum Gravity and Causal 
Dynamical Triangulations, provide a robust foundation for developing a concrete and predictive 
theory of quantum spacetime based on simplicial building blocks (Karazoupis, 2025). 

Literature Review: Contextualizing the Informational Paradigm 

This section provides a detailed literature review, contextualizing the Simplex-Focused 
Informational Discrete Spacetime Theory Framework within the broader landscape of theoretical 
physics. It focuses on discrete spacetime approaches to quantum gravity and the expanding 
informational paradigm in fundamental physics. 

The quest for a consistent and empirically viable theory of quantum gravity has spurred the 
exploration of diverse theoretical approaches. Many of these approaches share a common departure 
from the classical assumption of a continuous spacetime manifold. These discrete spacetime 
approaches propose that spacetime, at its most fundamental level, is not a smooth continuum but 
rather possesses a discrete, possibly granular, structure. This section reviews key foundational 
approaches to discrete spacetime and quantum gravity, highlighting their core ideas, strengths, and 
limitations, and contextualizing the Simplex-Focused Framework within this broader landscape. 

Causal Set Theory, pioneered by Rafael Sorkin and collaborators (Sorkin, 1990), presents a 
conceptually elegant and radically discrete approach to quantum gravity. It posits that spacetime is 
fundamentally discrete, not merely as a mathematical approximation, but as a genuine ontological 
feature of reality. This discreteness is not simply about replacing a continuum with a lattice-like 
structure. Instead, Causal Set Theory proposes that spacetime is fundamentally built from discrete, 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 April 2025 doi:10.20944/preprints202504.0029.v1

https://doi.org/10.20944/preprints202504.0029.v1


 3 of 78 

 

indivisible elements, often referred to as "atoms of spacetime," that are primarily related by their 
causal relationships (Dowker, 2018). The mathematical object embodying this idea is the causal set, 
formally defined as a locally finite partially ordered set. Causal Set Theory prioritizes causality as the 
foundational structure, aiming to reconstruct spacetime geometry from causal relations. This 
contrasts with the Simplex-Focused Framework, which prioritizes simplicial geometry as the 
fundamental structure. While Causal Set Theory offers a conceptually minimalist and causally 
grounded approach, it faces challenges in recovering the full geometric richness of spacetime from 
purely causal relations, particularly the "continuum embedding problem," which concerns the 
embedding of a causal set into a Lorentzian manifold. The Simplex-Focused Framework, with its 
geometrically richer simplicial building blocks, offers a complementary approach, focusing on the 
emergence of spacetime geometry from the collective behavior of simplicial chronotopes, leveraging 
their inherent geometric properties and mathematical tractability (Karazoupis, 2025). 

Loop Quantum Gravity (LQG) is another prominent and well-developed approach to quantum 
gravity that embraces spacetime discreteness, albeit through a different, primarily geometric, route 
(Ashtekar & Lewandowski, 2004; Rovelli, 2004). Unlike Causal Set Theory's focus on causality, LQG 
focuses on the quantization of spacetime geometry itself, leading to a picture of spacetime as 
fundamentally granular and quantized. LQG employs canonical quantization techniques, applying 
them directly to geometric operators, such as area and volume operators, leading to the remarkable 
prediction that these geometric operators have discrete spectra. This implies that area and volume 
are quantized, taking on discrete values, suggesting a granular nature of spacetime at the Planck 
scale. This granular nature is often visualized through spin networks, graph-like structures 
considered quantum states of spacetime geometry, with nodes and links representing quantized 
geometric excitations (Penrose, 1971). While LQG shares the premise of spacetime discreteness and 
background independence with the Simplex-Focused Framework, LQG's discreteness arises from the 
quantization of geometric operators. In contrast, the Simplex-Focused Framework posits 
fundamental discreteness at the level of spacetime constituents themselves, the simplicial 
chronotopes. LQG's fundamental entities are excitations of quantized geometry represented by spin 
networks, while the Simplex-Focused Framework's fundamental entities are chronotopes, 
mathematically represented as regular n-simplices, which are themselves considered the building 
blocks of spacetime geometry. The Simplex-Focused Framework, by starting with geometrically 
precise simplices, offers a more direct and geometrically intuitive approach to spacetime discreteness 
compared to the more abstract spin networks of LQG, while still drawing inspiration from LQG's 
quantized geometry and background independence (Karazoupis, 2025). 

Simplicial Quantum Gravity and Causal Dynamical Triangulations (CDT) represent approaches 
that are not merely related but fundamentally foundational and directly relevant to the Simplex-
Focused Informational Discrete Spacetime Theory Framework (Ambjørn, Jurkiewicz, & Loll, 2000). 
These approaches directly embrace the discretization of spacetime geometry using simplicial 
complexes, aligning perfectly with the core principle of chronotopes as regular n-simplices in the 
Simplex-Focused Framework. Simplicial Quantum Gravity, with its historical roots in Regge 
Calculus (Regge, 1961), utilizes simplicial complexes to approximate spacetime and discretize 
General Relativity. CDT, a Lorentzian variant of Simplicial Quantum Gravity, employs the path 
integral formalism to sum over discrete spacetime histories constructed from Lorentzian simplices, 
incorporating causality to address acausality issues in earlier Euclidean Dynamical Triangulations 
(EDT). CDT has shown remarkable progress in recovering a semi-classical spacetime at large scales 
and exhibiting promising phase transitions, suggesting its potential to dynamically generate a 
universe with properties resembling our own (Loll, 2019). Simplicial Quantum Gravity and CDT offer 
a geometrically intuitive and computationally tractable approach to quantum gravity, directly 
leveraging the inherent properties of simplices. This approach directly resonates and aligns 
profoundly with the Simplex-Focused Informational Discrete Spacetime Framework's "Chronotope 
as a Simplex" representation. Indeed, the framework's proposal to consider simplices as geometrically 
extended chronotopes directly builds upon and extends the core ideas of Simplicial Quantum Gravity 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 April 2025 doi:10.20944/preprints202504.0029.v1

https://doi.org/10.20944/preprints202504.0029.v1


 4 of 78 

 

and CDT, offering a more physically motivated interpretation of simplices as fundamental 
informational units (Karazoupis, 2025). 

Group Field Theory (GFT) provides a conceptually distinct and mathematically sophisticated 
approach to quantum gravity, offering a field-theoretic perspective on the fundamental constituents 
of spacetime (Oriti, 2009). GFT aims to define a quantum field theory whose fundamental excitations 
are not particles propagating in spacetime, but rather quanta of spacetime itself. This field-theoretic 
approach contrasts with the geometrically-centric Simplex-Focused Framework, which posits 
simplicial chronotopes as fundamental, geometrically structured constituents. While GFT draws 
inspiration from Simplicial Quantum Gravity by utilizing simplices as building blocks, it quantizes 
spacetime itself as a field, whereas the Simplex-Focused Framework focuses on the collective 
behavior of geometrically defined simplicial chronotopes to generate emergent spacetime geometry. 
GFT often utilizes group-theoretic variables to describe the fundamental building blocks of spacetime 
and interprets these building blocks as quantized simplices, particularly tetrahedra in 4 dimensions 
(Baez & Dolan, 1998). However, in GFT, these simplices are not merely geometric building blocks 
assembled to form a discrete spacetime; they are rather quanta of a field, analogous to particles in 
standard quantum field theory. GFT provides a powerful framework for studying phase transitions 
and condensation phenomena in spacetime, offering tools to explore how macroscopic spacetime and 
gravity can emerge from a fundamental, pre-geometric phase, which can be potentially beneficial for 
understanding spacetime emergence within the Simplex-Focused Framework (Karazoupis, 2025). 

The Simplex-Focused Framework is not only grounded in discrete spacetime approaches but 
also deeply embedded within the expanding informational paradigm in physics, which posits 
information as a fundamental, perhaps even primordial, constituent of reality. 

John Archibald Wheeler's profound and provocative dictum, "It from Bit" (Wheeler, 1990), serves 
as the philosophical and conceptual cornerstone of the informational paradigm. This concise phrase 
encapsulates a radical vision: that the very fabric of reality, everything we perceive as "it" – from 
particles and fields to forces and spacetime itself – ultimately derives its existence and properties 
from "bits" of information. Wheeler meticulously articulated this vision, arguing that information is 
not merely a descriptor of physical systems but is primary, with physical reality at its deepest level 
being fundamentally informational (Wheeler, 1990). This perspective directly challenges the 
traditional reductionist approach in physics, suggesting that particles, forces, and even spacetime 
itself are emergent phenomena, arising from the organization and processing of fundamental 
information. Wheeler's "It from Bit" philosophy has had a profound and lasting impact on theoretical 
physics, particularly within the quantum gravity community, inspiring numerous research directions 
that explore the informational foundations of spacetime and quantum mechanics. The Simplex-
Focused Informational Discrete Spacetime Theory Framework directly embraces this "It from Bit" 
perspective, making it a central guiding principle and embodying it in the simplicial chronotope as a 
simplicial quantum entity of spacetime and information (Karazoupis, 2025). 

The Holographic Principle, particularly as realized in the Anti-de Sitter/Conformal Field Theory 
(AdS/CFT) correspondence, provides compelling theoretical evidence for the fundamental role of 
information in gravity and spacetime (Maldacena, 1998). The Holographic Principle, initially 
formulated by 't Hooft (1993) and Susskind (1995), suggests that the information describing a volume 
of spacetime can be encoded on its boundary, hinting at a dimensional reduction in the fundamental 
degrees of freedom. The AdS/CFT correspondence provides a concrete and mathematically tractable 
realization of this principle, demonstrating a duality between gravitational physics in a higher-
dimensional spacetime and a non-gravitational quantum field theory living on its lower-dimensional 
boundary. This correspondence provides strong theoretical support for the idea that information is 
more fundamental than spacetime itself, and that gravity and spacetime geometry might be emergent 
phenomena arising from underlying informational degrees of freedom. The Simplex-Focused 
Framework, particularly its "Holographic Scaling" and "Entanglement-Based Emergence" 
mechanisms, draws significant inspiration from the Holographic Principle and AdS/CFT 
correspondence, proposing that spacetime geometry is "built up" from quantum entanglement and 
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information, aligning with the holographic encoding of information on lower-dimensional 
boundaries (Karazoupis, 2025). 

Erik Verlinde's Entropic Gravity proposal further reinforces the informational paradigm by 
suggesting that gravity itself is not a fundamental force but rather an emergent phenomenon arising 
from thermodynamic principles and information (Verlinde, 2011). Verlinde's work builds upon 
earlier insights into black hole thermodynamics and demonstrates that Einstein's field equations can 
be derived from thermodynamic considerations, specifically from the proportionality of entropy to 
horizon area. This proposal strengthens the informational paradigm by suggesting that gravity is 
fundamentally an entropic force, a statistical effect arising from the underlying informational degrees 
of freedom of spacetime. The Simplex-Focused Spacetime Theory Framework's "Entropic Gravity" 
mechanism directly incorporates Verlinde's ideas, proposing that gravity emerges as an entropic 
force driven by the statistical tendency of the simplicial chronotope network to maximize its entropy 
or information content (Karazoupis, 2025). 

The convergence of quantum information theory and spacetime physics has blossomed into a 
vibrant and rapidly growing interdisciplinary field, exploring various avenues of connection 
between quantum information concepts and the fundamental nature of spacetime, gravity, and 
quantum mechanics (Karazoupis, 2025). This interdisciplinary field, encompassing research 
directions such as quantum entanglement and spacetime geometry, quantum information as a tool 
for quantum gravity, and informational interpretations of quantum mechanics and spacetime, 
provides a rich intellectual context for the Simplex-Focused Framework, which actively contributes 
to this ongoing exploration of the deep and fundamental connections between quantum information 
and the very fabric of spacetime, with its emphasis on the chronotope as a simplicial quantum entity 
of spacetime and information (Karazoupis, 2025). 

Research Questions  

This section reiterates the key research questions and objectives that guide the development and 
validation of the Simplex-Focused Informational Discrete Spacetime Theory Framework, providing 
a clear roadmap for future research. 

Key Research Questions 
Emergence from Simplicial Chronotopes: How do continuous spacetime, geometry, quantum 

mechanics, and gravity emerge from the collective dynamics and interactions of fundamentally 
discrete and informational simplicial chronotopes?  

Reproduction of Known Physics: Can the framework reproduce the successes of GR and the 
Standard Model in their respective domains? (Karazoupis, 2025) 

Testable Predictions: Does the framework lead to novel, empirically testable predictions 
differentiating it from existing theories and opening avenues for experimental verification of 
quantum gravity?  

Objectives 

Defining the Simplex-Focused Framework: To rigorously define the Simplex-Focused 
Informational Discrete Spacetime Theory Framework by clearly articulating its core principles and 
postulates, justifying the choice of regular n-simplices, and exploring diverse mathematical 
representations of the chronotope. 

Exploring Simplex-Based Emergence Mechanisms: To systematically explore and analyze 
potential emergence mechanisms for spacetime, geometry, quantum mechanics, and gravity within 
the simplex-focused framework, focusing on statistical averaging, coarse-graining, network 
geometry, entanglement, and symmetry principles. 

Addressing the Classical Limit: To rigorously address the classical limit of the simplex-focused 
framework by investigating strategies for recovering classical spacetime and geometry, exploring 
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mechanisms for decoherence and coarse-graining, and demonstrating GR approximation in the 
appropriate classical limit. 

Identifying Future Directions: To outline strategic directions for future research and 
development of the simplex-focused framework, prioritizing mathematical formalisms, empirical 
validation, and iterative refinement, and fostering collaboration within the scientific community. 

Methodology 

The methodology employed in this paper is characterized by a rigorous and self-contained 
approach, ensuring mathematical consistency, physical plausibility, and empirical testability 
throughout the development and exposition of the Simplex-Focused Informational Discrete 
Spacetime Theory Framework. 

The framework strategically prioritizes Non-commutative Geometry (NCG) and Quantum 
Information Theory Tools (QIT) as primary mathematical formalisms due to their inherent quantum 
nature and relevance to simplicial spacetime. NCG provides tools for describing quantum simplicial 
geometry, while QIT offers tools for quantifying information and quantum dynamics (Karazoupis, 
2025). Graph Theory (Newman, 2018; Barabási, 2016) and Category Theory (Hatcher, 2002; Raasakka, 
2018) are considered valuable supporting tools for specific aspects of the framework, particularly for 
network analysis and high-level conceptualization. 

The paper systematically explores a diverse landscape of emergence mechanisms, drawing 
inspiration from various areas of physics and complexity science and adapting them to the simplex-
based context. These mechanisms are categorized into three main areas: 

Emergence of Spacetime and Geometry: Statistical Averaging, Coarse-Graining and 
Renormalization, Network Geometry and Graph Distances, and Entanglement-Based Emergence are 
investigated as potential pathways for the emergence of continuous spacetime and geometry from 
discrete simplicial chronotope networks. 

Emergence of Quantum Mechanics: Statistical Mechanics of Chronotope Networks, Quantum 
Information Theoretic Emergence, Emergent Symmetries and Representations, and Stochastic 
Dynamics and Noise-Induced Quantization are explored as mechanisms for the emergence of 
quantum mechanics from simplicial chronotope dynamics and information processing. 

Emergence of Gravity: Entropic Gravity, Network-Based Gravity, Quantum Graphity Inspired 
Gravity, and Modified Emergent Gravity are investigated as potential explanations for the emergence 
of gravity from simplicial chronotope interactions and network structure. 

Addressing the classical limit is a central focus of the methodology, employing a combination of 
strategies: 

Coarse-Graining: Coarse-graining techniques are applied to simplicial geometry to smooth out 
discreteness at macroscopic scales, demonstrating the emergence of continuous spacetime from the 
underlying discrete structure (Cardy, 1996) (Karazoupis, 2025). 

Decoherence: Decoherence mechanisms, drawing upon Open Quantum Systems Theory, are 
explored to explain the emergence of deterministic behavior and the suppression of quantum 
fluctuations at macroscopic scales, addressing the quantum-to-classical transition in simplicial 
dynamics (Karazoupis, 2025). 

GR Approximation: The framework aims to demonstrate that the emergent spacetime geometry 
and dynamics, obtained through coarse-graining and decoherence, approximate General Relativity 
in the appropriate classical limit (weak gravity, low velocities), recovering Newtonian gravity and 
Einstein's field equations as effective descriptions at macroscopic scales (Karazoupis, 2025). 

The methodology emphasizes empirical validation as a crucial aspect of the framework's 
development. Testable predictions are derived for various phenomena, including: 

Quantum Spacetime Fluctuations: Spectral density predictions for quantum spacetime 
fluctuations are derived, aiming for detection in gravitational wave interferometers like 
LIGO/Virgo/KAGRA. 
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Angle-Stabilized Materials: Stiffness predictions are made for angle-stabilized nanostructures, 
such as those with dihedral angles of cos<sup>-1</sup>(1/4) ≈ 75.5°, potentially testable with 
materials like boron nitride and graphene (Ebonda03) (Karazoupis, 2025). 

Photon Dispersion: Speed corrections for photons are predicted, potentially testable with 
observations of Gamma-Ray Bursts (GRBs) using instruments like Fermi-LAT. 

CMB Anomalies: Predictions for CMB anomalies, such as hemispherical power asymmetry and 
lensing anomalies, are outlined, potentially testable with data from Planck and SPTpol. 

Gravitational Wave Memory: Predictions for stochastic phase shifts and memory jumps in 
gravitational waves from black hole mergers are presented, potentially observable with advanced 
detectors like LISA/Virgo/KAGRA and future Einstein Telescope. 

These testable predictions are designed to provide concrete avenues for empirical validation and 
to differentiate the Simplex-Focused Framework from existing theories, guiding future experimental 
and observational efforts in quantum gravity research (Karazoupis, 2025). 

Analysis 

Planck-Scale Quantization: Defining the Fundamental Units of Spacetime 
The theory posits that spacetime, at its most fundamental level, is not continuous but rather 

discrete and quantized at the Planck scale. This fundamental quantization is derived from 
dimensional analysis and is manifested in a set of fundamental Planck units, which serve as the 
natural units for describing physics at the Planck scale and within the simplicial spacetime 
framework. 

The Planck length (ℓ<sub>P</sub>) is defined as the fundamental unit of length in this discrete 
spacetime theory, derived from dimensional analysis using the reduced Planck constant (ℏ), the 
gravitational constant (G), and the speed of light in a vacuum (c). The Planck length is mathematically 
defined as: 

ℓ<sub>P</sub> = √(ℏG/c<sup>3</sup>) 
This equation, derived from dimensional analysis of the fundamental constants ℏ, G, and c, 

establishes the smallest physically meaningful unit of length, representing the scale at which 
quantum gravitational effects are expected to dominate and spacetime discreteness becomes 
manifest. 

Derivation of Planck Length 
The Planck length can be derived by considering the physical dimensions of the fundamental 

constants ℏ, G, and c. 
The reduced Planck constant ℏ has dimensions of [Energy × Time] or [Mass × 

Length<sup>2</sup> × Time<sup>-1</sup>]. 
The gravitational constant G has dimensions of [Length<sup>3</sup> × Mass<sup>-1</sup> × 

Time<sup>-2</sup>]. 
The speed of light c has dimensions of [Length × Time<sup>-1</sup>]. 
By combining these constants in a way that results in dimensions of length, we arrive at the 

Planck length: 

ℓ<sub>P</sub> = (ℏ<sup>a</sup>G<sup>b</sup>c<sup>d</sup>) 

Equating the dimensions: 

[Length] = [Mass<sup>a</sup> × Length<sup>2a</sup> × Time<sup>-a</sup>] × 
[Length<sup>3b</sup> × Mass<sup>-b</sup> × Time<sup>-2b</sup>] × [Length<sup>d</sup> × 
Time<sup>-d</sup>] 

[Length] = [Mass<sup>(a-b)</sup> × Length<sup>(2a+3b+d)</sup> × Time<sup>(-a-2b-d)</sup>] 

Solving for a, b, and d to match the dimensions of length: 

• a - b = 0 => a = b 
• 2a + 3b + d = 1 
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• -a - 2b - d = 0 => a + 2b + d = 0 
Substituting a = b into the second and third equations: 

• 5b + d = 1 
• 3b + d = 0 => d = -3b 

Substituting d = -3b into 5b + d = 1: 

• 5b - 3b = 1 => 2b = 1 => b = 1/2 
Therefore: 

• a = b = 1/2 

• d = -3b = -3/2 
Substituting these values back into the Planck length equation: 

ℓ<sub>P</sub> = (ℏ<sup>1/2</sup>G<sup>1/2</sup>c<sup>-3/2</sup>) = √(ℏG/c<sup>3</sup>) 

This dimensional analysis rigorously derives the Planck length from fundamental constants, 
establishing it as the fundamental unit of length in the theory (Karazoupis, 2025). 

Derivation of Planck Time 
The Planck time (t<sub>P</sub>) is defined as the fundamental unit of time, representing the 

smallest physically meaningful unit of time and derived from the Planck length (ℓ<sub>P</sub>) and 
the speed of light in a vacuum (c). The Planck time is mathematically defined as: 

t<sub>P</sub> = ℓ<sub>P</sub>/c ≈ 5.391 × 10<sup>-44</sup> s 

This equation, calculated using the Planck length and the speed of light, establishes the timescale 
at which quantum gravitational fluctuations are expected to become significant and spacetime 
discreteness becomes relevant. The Planck time, approximately 5.391 × 10<sup>-44</sup> seconds, 
represents an incredibly short duration, highlighting the extreme scales at which spacetime 
quantization is predicted to occur. 

Derivation of Planck Time: 
The Planck time is directly derived from the Planck length and the speed of light, representing 

the time it takes for light to traverse the Planck length, the fundamental unit of length. 
t<sub>P</sub> = ℓ<sub>P</sub> / c 

Substituting the expression for Planck length: 
t<sub>P</sub> = √(ℏG/c<sup>3</sup>) / c = √(ℏG/c<sup>5</sup>) 

This equation directly relates Planck time to Planck length and the speed of light, establishing it 
as the fundamental unit of time in the theory (Karazoupis, 2025). The numerical value is obtained by 
substituting the values of ℏ, G, and c: 

t<sub>P</sub> ≈ 5.391 × 10<sup>-44</sup> s 
This calculation provides the approximate value of Planck time, highlighting its incredibly short 

duration and its role as the fundamental unit of time at the Planck scale. 
Derivation of Planck Energy 
The Planck energy (E<sub>P</sub>) is defined as the fundamental unit of energy, representing 

the energy scale at which quantum gravitational effects are expected to become dominant and 
derived using the reduced Planck constant (ℏ) and the Planck time (t<sub>P</sub>). The Planck 
energy is mathematically defined as: 

E<sub>P</sub> = ℏ/t<sub>P</sub> ≈ 1.956 × 10<sup>9</sup> J 
This equation, calculated using the reduced Planck constant and the Planck time, establishes the 

energy scale at which quantum gravitational phenomena are expected to become significant. The 
Planck energy, approximately 1.956 × 10<sup>9</sup> Joules, represents an extremely high energy 
scale, highlighting the extreme conditions under which quantum gravitational effects are predicted 
to be observable. 

Derivation of Planck Energy: 
The Planck energy is derived from the fundamental relation between energy and time in 

quantum mechanics, using the reduced Planck constant and the Planck time. 
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E<sub>P</sub> = ℏ / t<sub>P</sub> 
Substituting the expression for Planck time: 

E<sub>P</sub> = ℏ / (√(ℏG/c<sup>5</sup>)) = √(ℏc<sup>5</sup>/G) 
This equation directly relates Planck energy to the reduced Planck constant, speed of light, and 

gravitational constant, establishing it as the fundamental unit of energy in the theory. The numerical 
value is obtained by substituting the values of ℏ, c, and G: 

E<sub>P</sub> ≈ 1.956 × 10<sup>9</sup> J 
This calculation provides the approximate value of Planck energy, highlighting its incredibly 

high magnitude and its role as the fundamental unit of energy at the Planck scale. 
Derivation of Planck Temperature 
The Planck temperature (T<sub>P</sub>) is defined as the fundamental unit of temperature, 

representing the highest physically meaningful temperature and derived from the Planck energy 
(E<sub>P</sub>) and the Boltzmann constant (k). The Planck temperature is mathematically defined 
as: 

T<sub>P</sub> = E<sub>P</sub>/k ≈ 1.417 × 10<sup>32</sup> K 
This equation, calculated using the Planck energy and the Boltzmann constant, establishes the 

temperature scale relevant to the very early universe and black holes, where quantum gravitational 
effects are expected to play a crucial role. The Planck temperature, approximately 1.417 × 
10<sup>32</sup> Kelvin, represents an incredibly high temperature, highlighting the extreme 
thermal conditions associated with quantum gravity. 

Derivation of Planck Temperature: 
The Planck temperature is derived from the fundamental relation between energy and 

temperature in thermodynamics, using the Planck energy and the Boltzmann constant. 
T<sub>P</sub> = E<sub>P</sub> / k 

Substituting the expression for Planck energy: 
T<sub>P</sub> = √(ℏc<sup>5</sup>/G) / k 

This equation directly relates Planck temperature to Planck energy and the Boltzmann constant, 
establishing it as the fundamental unit of temperature in the theory. The numerical value is obtained 
by substituting the values of E<sub>P</sub> and k: 

T<sub>P</sub> ≈ 1.417 × 10<sup>32</sup> K 
This calculation provides the approximate value of Planck temperature, highlighting its 

incredibly high magnitude and its role as the fundamental unit of temperature at the Planck scale. 
Quantization Rule and Example 
To enforce discreteness at the Planck scale, a fundamental quantization rule is postulated: all 

physical quantities (Q) are quantized and take on discrete values that are integer multiples of their 
corresponding Planck counterparts (Q<sub>P</sub>). This quantization rule is mathematically 
expressed as: 

Q = nQ<sub>P</sub>, n ∈ ℕ ∪ {0} 
where: 

• Q represents any observable physical quantity. 
• Q<sub>P</sub> represents the Planck-scale unit corresponding to the observable Q. 
• n is a non-negative integer belonging to the set of natural numbers and zero (ℕ ∪ {0}). 

This quantization rule signifies that physical quantities are not continuous but rather take on 
discrete values, quantized in units of their Planck counterparts, enforcing the fundamental 
discreteness of spacetime and physical quantities at the Planck scale within the Complete Theory of 
Simplicial Discrete Informational Spacetime (Karazoupis, 2025). 

Example: 
As a concrete illustration of the quantization rule, consider length (ℓ) and energy (E). According 

to the quantization rule, a length (ℓ) can be expressed as an integer multiple of the Planck length 
(ℓ<sub>P</sub>), for example, ℓ = 5ℓ<sub>P</sub>, representing a discrete length that is five times 
the fundamental Planck length unit. Similarly, energy (E) can be expressed as an integer multiple of 
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the Planck energy (E<sub>P</sub>), for example, E = 3E<sub>P</sub>, representing a discrete energy 
level that is three times the fundamental Planck energy unit. These examples illustrate the 
fundamental discreteness of physical quantities as dictated by the quantization rule, highlighting the 
departure from classical continuum physics and the embrace of a discrete quantum nature of 
spacetime and physical observables at the Planck scale. 

Quantum Simplicial Network: Simplicial Chronotopes and Network Structure 
The mathematical structure underpinning the Complete Theory of Simplicial Discrete 

Informational Spacetime is a quantum simplicial network. This network is constructed from 
fundamental building blocks – 4-simplices – and imbued with quantum properties. 

The fundamental mathematical structure is a 4D simplicial complex (S). A 4D simplicial complex 
is defined as a set S = {s<sub>1</sub>, s<sub>2</sub>, …, s<sub>N</sub>} comprising N individual 4-
simplices. These 4-simplices are not isolated entities but are interconnected, forming a network 
through specific conditions. The simplicial complex S must satisfy two key conditions to ensure a 
well-defined and physically meaningful structure (Karazoupis, 2025): 

Gluing Condition: Adjacency in the Simplicial Complex 
The Gluing Condition dictates how individual 4-simplices are connected within the simplicial 

complex, defining the adjacency relations that give rise to the network structure. It states that two 
simplices, s<sub>i</sub> and s<sub>j</sub>, are considered "glued" or adjacent if and only if they 
share a common tetrahedral face. A tetrahedral face, in this context, is a 3-simplex, which in turn is 
composed of 4 vertices. This condition ensures that the simplices are not arbitrarily connected but 
form a contiguous and geometrically meaningful structure, mimicking the local connectivity 
expected in a spacetime manifold. The sharing of a common tetrahedral face establishes the 
fundamental adjacency relation within the simplicial network, defining how the discrete building 
blocks are assembled to form a larger, interconnected spacetime structure. 

Mathematical Formulation of Gluing Condition 
Lets <sub>i</sub> = {v<sub>i1</sub>, v<sub>i2</sub>, v<sub>i3</sub>, v<sub>i4</sub>, 

v<sub>i5</sub>} and s<sub>j</sub> = {v<sub>j1</sub>, v<sub>j2</sub>, v<sub>j3</sub>, 
v<sub>j4</sub>, v<sub>j5</sub>} be two 4-simplices, where v<sub>ik</sub> and 
v<sub>jk</sub> represent the vertices of each simplex. Simplices s<sub>i</sub> and 
s<sub>j</sub> are glued together if and only if there exists a subset of 4 vertices common to both sets 
of vertices, i.e., if |s<sub>i</sub> ∩ s<sub>j</sub>| = 4. This condition mathematically ensures that the 
intersection of two adjacent simplices is precisely a tetrahedral face, enforcing the Gluing Condition 
and defining adjacency in the simplicial complex. 

Simplex Orientation: Time Direction, Causality, or Internal State? 
To enforce causal ordering and imbue the simplicial network with a sense of time and causality, 

each simplex s<sub>i</sub> within the set S is assigned an orientation. This orientation is represented 
by a discrete value of either +1 or -1. The assignment of orientation is crucial for establishing a causal 
structure within the discrete spacetime, allowing for the definition of a causal ordering between 
simplices and potentially influencing the dynamics of the simplicial network. This orientation is not 
merely a mathematical label but is intended to have physical significance, potentially related to the 
direction of time flow or causal propagation within the simplicial network, although the precise 
interpretation of orientation remains an open question for further investigation. The specific rules 
governing the assignment and interpretation of orientation are further elaborated in the discussion 
of dynamical laws and emergent phenomena, particularly in relation to causal ordering and time 
evolution within the simplicial spacetime framework. 

Physical Interpretation of Orientation 
The physical interpretation of simplex orientation is not explicitly defined in the provided text, 

leaving it as an open question for further research. However, potential interpretations could include: 
Time Direction: Orientation could represent the local direction of time flow within each simplex, 

with +1 and -1 corresponding to future and past orientations, respectively. This interpretation would 
directly link orientation to the causal structure of spacetime. 
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Causal Ordering: Orientation could encode information about causal ordering between 
simplices, with the relative orientation of adjacent simplices determining their causal relationship. 
This interpretation would align with the emphasis on causality in discrete spacetime approaches like 
Causal Set Theory. 

Internal Simplex State: Orientation could represent an internal quantum state of the simplex, 
unrelated to time or causality, but influencing its interactions and dynamics within the simplicial 
network. This interpretation would allow for a more general and abstract understanding of 
orientation. 

Further research is needed to explore these and other potential interpretations of simplex 
orientation and to determine its precise physical significance within the Complete Theory of 
Simplicial Discrete Informational Spacetime. 

Combinatorial Properties of 4-Simplices: Edges, Faces, and Cells 
Each 4-simplex, as a fundamental building block of simplicial spacetime, possesses specific 

combinatorial properties that are determined by its nature as a 4-simplex and are crucial for defining 
its geometric and topological characteristics. These combinatorial properties are purely determined 
by the number of vertices, edges, faces, and tetrahedral cells that constitute a 4-simplex, and are 
independent of any metric or geometric embedding. 

Edges: Fundamental Connections within Simplices 
Each 4-simplex contains (<sup>5</sup><sub>2</sub>) = 10 edges. This number is calculated 

using binomial coefficients, specifically the combination formula (<sup>n</sup><sub>k</sub>) = n! / 
(k! * (n-k)!), representing the number of ways to choose k elements from a set of n elements without 
regard to order. In this case, (<sup>5</sup><sub>2</sub>) represents the number of ways to choose 2 
vertices out of the 5 vertices of a 4-simplex to form an edge. In the context of the simplicial network, 
edges represent fundamental connections or links between vertices within each simplex, defining its 
internal connectivity and contributing to its geometric structure. 

Mathematical Calculation of Edges 

Number of edges = (<sup>5</sup><sub>2</sub>) = 5! / (2! * (5-2)!) = 5! / (2! * 3!) = (5 * 4 * 3 * 2 * 1) / ((2 
* 1) * (3 * 2 * 1)) = (5 * 4) / (2 * 1) = 10 

This calculation demonstrates that each 4-simplex, by virtue of its combinatorial definition, 
contains precisely 10 edges, a fundamental combinatorial property of its simplicial structure. 

Triangular Faces: Bounding Surfaces of Simplices 
Each 4-simplex contains (<sup>5</sup><sub>3</sub>) = 10 triangular faces. This number is 

calculated using binomial coefficients, specifically (<sup>5</sup><sub>3</sub>), representing the 
number of ways to choose 3 vertices out of 5 to form a triangular face. Triangular faces represent 2-
dimensional surfaces that bound the 4-simplex, defining its surface area and contributing to its 
geometric properties. These triangular faces play a crucial role in defining the dihedral angles and 
curvature of the simplicial complex, as well as in the propagation of information and fields across the 
simplicial network. 

Mathematical Calculation of Triangular Faces 

Number of triangular faces = (<sup>5</sup><sub>3</sub>) = 5! / (3! * (5-3)!) = 5! / (3! * 2!) = (5 * 4 * 3 * 
2 * 1) / ((3 * 2 * 1) * (2 * 1)) = (5 * 4) / (2 * 1) = 10 

This calculation demonstrates that each 4-simplex, by virtue of its combinatorial definition, 
contains precisely 10 triangular faces, another fundamental combinatorial property of its simplicial 
structure. 

Tetrahedral Cells: Volumetric Constituents and Adjacency Definition 
Each 4-simplex contains (<sup>5</sup><sub>4</sub>) = 5 tetrahedral cells. This number is 

calculated using binomial coefficients, specifically (<sup>5</sup><sub>4</sub>), representing the 
number of ways to choose 4 vertices out of 5 to form a tetrahedral cell. Tetrahedral cells, or 3-
simplices, represent 3-dimensional volumes within the 4-simplex, defining its volumetric content and 
playing a crucial role in the Gluing Condition. As tetrahedral faces are shared between adjacent 4-
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simplices, tetrahedral cells define the adjacency relations between simplices, dictating how they are 
connected to form the simplicial network. 

Mathematical Calculation of Tetrahedral Cells 

Number of tetrahedral cells = (<sup>5</sup><sub>4</sub>) = 5! / (4! * (5-4)!) = 5! / (4! * 1!) = (5 * 4 * 3 * 
2 * 1) / ((4 * 3 * 2 * 1) * 1) = 5 / 1 = 5 

This calculation demonstrates that each 4-simplex, by virtue of its combinatorial definition, 
contains precisely 5 tetrahedral cells, a fundamental combinatorial property of its simplicial structure 
and crucial for defining adjacency in the simplicial complex. 

Adjacency Matrix: Encoding Network Connectivity 
To mathematically represent the adjacency relationships between simplices within the network, 

an adjacency matrix (A) is defined. The adjacency matrix A is a square matrix of size N x N, where N 
is the number of simplices in the set S, and encodes the connectivity of the simplicial network based 
on the Gluing Condition. The matrix elements A<sub>ij</sub> are defined as: 

A<sub>ij</sub> = 
{ 1, if simplices s<sub>i</sub> and s<sub>j</sub> share a tetrahedron 
{ 0, if simplices s<sub>i</sub> and s<sub>j</sub> do not share a tetrahedron 

This definition ensures that the adjacency matrix A is a binary matrix, with entries of 1 indicating 
adjacency and entries of 0 indicating non-adjacency. The adjacency matrix provides a concise and 
computationally useful representation of the simplicial network's connectivity, capturing the 
essential information about how simplices are glued together to form the larger spacetime structure. 
This matrix representation is crucial for analyzing network properties, defining dynamical rules, and 
performing numerical simulations of the simplicial spacetime (Karazoupis, 2025). 

Hilbert Space: Quantum State Space of the Simplicial Network 
The quantum state of the simplicial network, representing the quantum degrees of freedom of 

simplicial spacetime, is defined within a Hilbert space (H). The Hilbert space for the entire simplicial 
complex is constructed as the tensor product of Hilbert spaces associated with individual simplices, 
reflecting the composite nature of spacetime in this discrete framework. 

Qubit Space for Individual Simplices 
For each simplex s<sub>i</sub>, the individual Hilbert space H<sub>i</sub> is defined as a qubit 

space, the simplest quantum system, spanned by two orthonormal basis states, denoted as |0⟩ and 
|1⟩. These basis states represent the fundamental quantum states of each simplex, encoding its basic 
quantum degrees of freedom. A general quantum state |ψ<sub>i</sub>⟩ for a single simplex 
s<sub>i</sub> can be expressed as a linear superposition of these basis states: 

|ψ<sub>i</sub>⟩ = α<sub>i</sub>|0⟩ + β<sub>i</sub>|1⟩ 
where: 

• |ψ<sub>i</sub>⟩ represents a general quantum state of the i-th simplex s<sub>i</sub>, belonging 
to the Hilbert space H<sub>i</sub>. 

• α<sub>i</sub> and β<sub>i</sub> are complex coefficients representing the probability 
amplitudes for the simplex to be in the basis states |0⟩ and |1⟩, respectively. 

• |0⟩ and |1⟩ are the two orthonormal basis states spanning the qubit space H<sub>i</sub>, 
representing distinct quantum states of the simplex. 
The complex coefficients α<sub>i</sub> and β<sub>i</sub> must satisfy the normalization 

condition to ensure that |ψ<sub>i</sub>⟩ represents a valid quantum state: 
|α<sub>i</sub>|<sup>2</sup> + |β<sub>i</sub>|<sup>2</sup> = 1 

This normalization condition ensures that the total probability of finding the simplex in either 
basis state |0⟩ or |1⟩ is equal to 1, consistent with the probabilistic interpretation of quantum 
mechanics. The basis states |0⟩ and |1⟩ represent fundamental quantum states of the simplex, 
potentially related to different geometric or informational configurations of the simplicial building 
block, although their precise physical interpretation remains open for further investigation. The 
superposition principle, inherent in quantum mechanics, allows each simplex to exist in a 
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probabilistic combination of these basis states, capturing the quantum nature of the simplicial 
building blocks of spacetime. 

Tensor Product Structure for Simplicial Complex 
The Hilbert space for the simplicial complex (H) is mathematically defined as the tensor product 

of individual Hilbert spaces (H<sub>i</sub>) associated with each simplex s<sub>i</sub> in the set 
S: 

H = ⊗<sup>N</sup><sub>i=1</sub> H<sub>i</sub> 
where: 

• H represents the total Hilbert space of the simplicial complex, encompassing all possible 
quantum states of the simplicial network. 

• ⊗ denotes the tensor product, a mathematical operation that combines Hilbert spaces to create 
a larger Hilbert space representing the composite system. 

• N is the total number of simplices in the simplicial complex S. 

• H<sub>i</sub> represents the individual Hilbert space associated with the i-th simplex 
s<sub>i</sub>, describing its quantum state. 
This tensor product structure signifies that the quantum state of the entire simplicial network is 

built from the quantum states of its constituent simplices, reflecting the composite nature of 
spacetime in this framework. The total Hilbert space H is exponentially larger than the individual 
Hilbert spaces H<sub>i</sub>, capturing the vastness of the quantum state space for the simplicial 
complex and allowing for complex quantum phenomena to emerge from the collective behavior of 
simplices. 

Entanglement: Quantum Correlations between Simplices 
Entanglement, a key feature of quantum mechanics and a crucial resource for quantum 

information processing, plays a fundamental role in the simplicial network, particularly in defining 
quantum correlations between adjacent simplices. For adjacent simplices s<sub>i</sub> and 
s<sub>j</sub>, defined by the Gluing Condition (i.e., simplices that share a tetrahedron), entangled 
states are considered, specifically Bell-like states, to represent quantum correlations between their 
states. 

Bell-like Entangled State for Adjacent Simplices 
A Bell-like entangled state |Ψ<sub>ij</sub>⟩ for adjacent simplices s<sub>i</sub> and 

s<sub>j</sub> is mathematically defined as: 

|Ψ<sub>ij</sub>⟩ = 1/√2 (|1<sub>i</sub>0<sub>j</sub>⟩ + 
e<sup>iϕ</sup>|0<sub>i</sub>1<sub>j</sub>⟩) 
where: 

• |Ψ<sub>ij</sub>⟩ represents a Bell-like entangled state for adjacent simplices s<sub>i</sub> and 
s<sub>j</sub>, belonging to the tensor product Hilbert space H<sub>i</sub> ⊗ H<sub>j</sub>. 

• 1/√2 is a normalization factor, ensuring that the entangled state is properly normalized. 

• |1<sub>i</sub>0<sub>j</sub>⟩ represents a product state where simplex s<sub>i</sub> is in state 
|1⟩ and simplex s<sub>j</sub> is in state |0⟩. 

• |0<sub>i</sub>1<sub>j</sub>⟩ represents a product state where simplex s<sub>i</sub> is in state 
|0⟩ and simplex s<sub>j</sub> is in state |1⟩. 

• e<sup>iϕ</sup> is a complex phase factor, where ϕ is a geometric phase arising from parallel 
transport within the simplicial network. 
This entangled state represents a quantum correlation between the states of adjacent simplices, 

signifying that their quantum states are not independent but are linked in a non-classical manner. 
The entangled state exhibits superposition and entanglement, key features of quantum mechanics, 
capturing the quantum correlations between the simplicial building blocks of spacetime. The 
geometric phase ϕ, arising from parallel transport, introduces a geometric element into the 
entanglement structure, potentially reflecting the underlying geometry of the simplicial network and 
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linking entanglement to geometric properties of simplicial spacetime. The geometric phase ϕ is 
further elaborated in "Geometric Phase ϕ," where its derivation from a U(1) gauge theory on the 
simplicial network is detailed, providing a deeper understanding of the interplay between geometry 
and entanglement in the simplicial spacetime framework. 

Vertex Stress: Quantifying Geometric Deviation from Regularity 
Stress within the simplicial network is defined locally at each vertex (v) of the complex, 

representing the concentration of geometric distortion or deviation from an idealized, stress-free 
configuration around that vertex. Vertex stress (σ<sub>v</sub>) serves as a measure of local 
geometric irregularity and potential instability within the simplicial network. 

At each vertex v, the vertex stress (σ<sub>v</sub>) is mathematically computed by summing the 
squared deviations of actual dihedral angles from the ideal dihedral angle over all edges 
(e<sub>1</sub>, e<sub>2</sub>) incident at vertex v: 

σ<sub>v</sub> = ∑<sub>(e<sub>1</sub>,e<sub>2</sub>)∈edges at 
v</sub> (θ<sub>actual</sub>(e<sub>1</sub>, e<sub>2</sub>) - θ<sub>ideal</sub>)<sup>2</sup> 

where: 

• σ<sub>v</sub> represents the vertex stress at vertex v, a scalar quantity quantifying the local 
geometric distortion. 

• ∑<sub>(e<sub>1</sub>,e<sub>2</sub>)∈edges at v</sub> denotes the summation over all pairs 
of edges (e<sub>1</sub>, e<sub>2</sub>) that are incident at vertex v, spanning the local 
neighborhood around the vertex. 

• θ<sub>actual</sub>(e<sub>1</sub>, e<sub>2</sub>) represents the actual dihedral angle 
between the two tetrahedral faces sharing the edge (e<sub>1</sub>, e<sub>2</sub>) at vertex v 
in the simplicial network. The dihedral angle measures the angle between two intersecting 
planes (tetrahedral faces) along a common line (edge), quantifying the local "bending" or 
"kinkiness" of the simplicial geometry around the edge. 

• θ<sub>ideal</sub> represents the ideal dihedral angle for a regular 4-simplex, a constant value 
representing the dihedral angle in a perfectly regular and stress-free 4-simplex. 
The squared difference (θ<sub>actual</sub>(e<sub>1</sub>, e<sub>2</sub>) - 

θ<sub>ideal</sub>)<sup>2</sup> quantifies the deviation of the actual dihedral angle from the ideal 
dihedral angle for each edge incident at vertex v. By summing these squared deviations over all edges 
incident at vertex v, the vertex stress measure σ<sub>v</sub> provides a comprehensive 
quantification of the local geometric distortion or deviation from regularity at each vertex in the 
simplicial network. Higher values of vertex stress indicate greater geometric distortion and 
potentially higher instability at that vertex. 

The ideal dihedral angle (θ<sub>ideal</sub>) serves as a crucial reference point for calculating 
vertex stress, representing the dihedral angle in a perfectly regular and stress-free 4-simplex. A 
regular 4-simplex is characterized by maximal symmetry, with all edges of equal length and all 
dihedral angles being equal to the ideal dihedral angle. The ideal dihedral angle for a regular 4-
simplex is mathematically determined to be: 

θ<sub>ideal</sub> = cos<sup>-1</sup>(1/4) ≈ 75.5° 
This constant value, approximately 75.5 degrees, is derived from the geometric properties of a 

regular 4-simplex and represents the dihedral angle in a perfectly regular and stress-free 
configuration. It serves as the benchmark against which actual dihedral angles in the simplicial 
network are compared to quantify vertex stress, with deviations from this ideal value indicating local 
geometric distortions and stress concentrations (Karazoupis, 2025). 

Derivation of Ideal Dihedral Angle 
The derivation of the ideal dihedral angle θ<sub>ideal</sub> = cos<sup>-1</sup>(1/4) for a 

regular 4-simplex involves geometric considerations of the 4-simplex and its constituent simplices. 
While the detailed derivation is mathematically involved, the key idea is to consider the geometry of 
two adjacent tetrahedral faces sharing a common edge in a regular 4-simplex and calculate the angle 
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between their normal vectors. This calculation, based on the geometric properties of regular 
simplices, leads to the value θ<sub>ideal</sub> = cos<sup>-1</sup>(1/4) ≈ 75.5°, which is a 
fundamental geometric property of regular 4-simplices and serves as the reference point for defining 
vertex stress in the simplicial network (Karazoupis, 2025). 

Strain Tensor: Quantifying Geometric Deformation via Hooke's Law 
Strain within the simplicial network quantifies the geometric deformation of the network in 

response to stress, drawing an analogy to elasticity theory and adapting Hooke's law to the discrete 
simplicial spacetime. The strain tensor (ϵ<sub>ab</sub>) is derived from the stress tensor 
(σ<sub>ab</sub>) via a linearized version of Hooke's law, providing a measure of geometric 
deformation in response to stress concentrations within the simplicial network. 

The strain tensor (ϵ<sub>ab</sub>) is mathematically derived from the stress tensor 
(σ<sub>ab</sub>) using a linearized version of Hooke's law, adapted for a 4-dimensional simplicial 
complex to relate stress and strain in this discrete geometric setting: ϵ<sub>ab</sub> = (1+ν)/Y σ<sub>ab</sub> - ν/Y Tr(σ)δ<sub>ab</sub> 
where: 

• ϵ<sub>ab</sub> represents the strain tensor, a symmetric rank-2 tensor quantifying the 
geometric deformation at a vertex v. The indices a and b run from 1 to 4, representing the 
spacetime dimensions. 

• σ<sub>ab</sub> represents the stress tensor at vertex v, a symmetric rank-2 tensor quantifying 
the stress components at the vertex, as defined in Section 7.1. 

• Y represents Young's modulus, a scalar quantity representing the spacetime stiffness modulus 
of the simplicial network, characterizing its resistance to deformation. The value of Y is derived 
in Section "Spacetime Stiffness Y=E<sub>P</sub>/ℓ<sub>P</sub><sup>3</sup>," and is related to 
Planck energy density and holographic entropy scaling. 

• ν represents Poisson's ratio, a dimensionless scalar quantity representing the Poisson ratio for a 
4-simplex, characterizing its elastic properties, specifically the ratio of transverse strain to axial 
strain. The value of ν is theoretically determined to be 0.25 for a regular 4-simplex, as derived in 
Section "Poisson Ratio ν=0.25". 

• Tr(σ) = ∑<sup>4</sup><sub>a=1</sub> σ<sub>aa</sub> represents the trace of the strain tensor, 
a scalar quantity representing the volumetric stress or the sum of diagonal components of the 
stress tensor. 

• δ<sub>ab</sub> represents the Kronecker delta, a dimensionless tensor ensuring tensorial 
consistency and proper index contraction in the stress-strain relation. 
This linearized Hooke's law, adapted for a 4-dimensional simplicial complex, provides a 

mathematical relationship between stress and strain in the simplicial network, allowing for the 
derivation of strain tensor components (ϵ<sub>ab</sub>) from the stress tensor components 
(σ<sub>ab</sub>) and the material properties of the simplicial spacetime, characterized by Young's 
modulus (Y) and Poisson's ratio (ν). The strain tensor thus quantifies the geometric deformation of 
the simplicial network in response to stress concentrations, providing a measure of how the simplicial 
spacetime deforms under stress. 

Critical Threshold: Triggering Network Reconfiguration via Pachner Moves 
To ensure geometric stability and prevent unbounded deformations, a critical threshold 

(ϵ<sub>crit</sub>) for strain is defined. This critical threshold represents a limit to the elastic 
deformation of the simplicial network, beyond which the network becomes unstable and undergoes 
topological reconfiguration via Pachner moves. The critical threshold (ϵ<sub>crit</sub>) serves as a 
trigger for network reconfiguration, allowing the simplicial spacetime to dynamically adapt and 
maintain geometric stability in response to excessive strain. 

The critical threshold for strain (ϵ<sub>crit</sub>) is defined as a dimensionless quantity, 
representing a universal limit for strain beyond which the simplicial network becomes unstable and 
reconfigures its topology: ϵ<sub>crit</sub> = 1 (dimensionless) 
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This dimensionless value, 1, is chosen as a physically plausible critical threshold, representing a 
strain level beyond which the elastic approximation of Hooke's law is expected to break down and 
the simplicial network undergoes non-linear and topological reconfiguration. The dimensionless 
nature of the critical threshold suggests its universality, applying to all 4-simplices within the 
simplicial network and representing a fundamental limit to elastic deformation in simplicial 
spacetime. 

Beyond the critical threshold (ϵ<sub>crit</sub>), when the strain in the simplicial network 
exceeds this limit, the network undergoes Pachner moves. Pachner moves are local topology-
changing operations on simplicial complexes that represent discrete topological reconfigurations of 
the simplicial network in response to exceeding the critical strain threshold. These moves, such as the 
2-3 flip and 3-2 move (and their higher-dimensional generalizations), are fundamental operations in 
simplicial topology that allow for local changes in the connectivity and structure of the simplicial 
complex while preserving its manifold properties. In the context of the Simplicial Spacetime Theory 
Framework, Pachner moves are interpreted as dynamical reconfiguration processes that allow the 
simplicial network to dynamically adjust its topology to reduce stress concentrations and maintain 
geometric stability when the strain exceeds the critical threshold. These moves are crucial for the 
framework's dynamics, allowing for topological evolution and adaptation of the simplicial spacetime, 
preventing unbounded deformations and ensuring the existence of a well-defined and stable 
spacetime structure. 

Examples of Pachner Moves: 

• 2-3 Flip (in 2D): In a 2-dimensional simplicial complex (triangulation), a 2-3 flip replaces two 
triangles sharing a common edge with three triangles by flipping the diagonal edge. This move 
changes the connectivity and topology of the triangulation locally while preserving its overall 
manifold properties. 

• 3-2 Move (in 2D): The inverse of the 2-3 flip, a 3-2 move replaces three triangles meeting at a 
vertex with two triangles by removing the central vertex and its incident edges. 

• Higher-Dimensional Pachner Moves: Generalizations of these moves exist in higher dimensions, 
such as the 4D Pachner moves relevant to the Simplicial Spacetime Theory Framework, which 
involve local topological reconfigurations of 4-simplices while preserving the manifold 
properties of the 4D simplicial complex. 
The specific type of Pachner move that occurs in response to exceeding the critical strain 

threshold (e.g., 2-3 flip, 3-2 move, or higher-dimensional moves) depends on the local geometry and 
stress distribution within the simplicial network and is governed by the dynamics of stress 
minimization and geometric stability. 

Entropy Bound Derivation: Limiting Information Content by Boundary Area 
The framework incorporates the covariant entropy bound, a fundamental principle in quantum 

gravity and information theory, which states that the entropy (S) of a spatial region is bounded by its 
boundary area (A) in Planck units. This bound, derived from black hole thermodynamics and the 
Holographic Principle, reflects the holographic nature of spacetime and limits the information 
content that can be contained within a given spatial region. In the Simplicial Spacetime Theory 
Framework, this entropy bound is mathematically expressed as: 

S ≤ A / 4ℓ<sub>P</sub><sup>2</sup> 
This inequality establishes a fundamental upper bound on the entropy (S) of any spatial region 

(R) in terms of its boundary area (A) and the Planck length (ℓ<sub>P</sub>). The factor of 
1/4ℓ<sub>P</sub><sup>2</sup> signifies that the entropy bound is quantized in units of Planck area, 
reflecting the discrete nature of spacetime at the Planck scale. The logarithmic factor ln(2), often 
included in more refined versions of the Area Law (S(R) = (A / 4ℓ<sub>P</sub><sup>2</sup>)ln(2)), 
is approximated to unity (ln(2) ≈ 1) for simplicity in the provided text, leading to the simplified bound 
S ≤ A / 4ℓ<sub>P</sub><sup>2</sup>. This entropy bound has profound implications for the 
information content and holographic nature of simplicial spacetime, limiting the degrees of freedom 
within any spatial region and suggesting that spacetime is fundamentally holographic. 
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Derivation from Covariant Entropy Bound 
The entropy bound S ≤ A / 4ℓ<sub>P</sub><sup>2</sup> is derived from the covariant entropy 

bound, a generalization of the Bekenstein-Hawking entropy formula to arbitrary spacetimes and 
spatial regions. The covariant entropy bound, formulated by Bousso (1999), states that the entropy 
on a light-sheet is bounded by the area of the surface that bounds the light-sheet. In the context of a 
spatial region R with boundary area A, the covariant entropy bound reduces to the Area Law: S ≤ A 
/ 4ℓ<sub>P</sub><sup>2</sup>. This derivation connects the entropy bound to fundamental 
principles of general relativity and thermodynamics, providing a theoretical basis for limiting the 
information content of spatial regions in terms of their boundary area. 

Holographic Scaling and Active Simplex Count 
Using the holographic entropy bound and the calculated area of the Hubble sphere, the 

maximum number of states (N<sub>states</sub>) that can be contained within the observable 
universe is estimated, providing an upper limit on its information capacity. The maximum number 
of states is related to the entropy by the Boltzmann entropy formula: N<sub>states</sub> ≤ 
e<sup>S</sup>. Applying the entropy bound S ≤ A / 4ℓ<sub>P</sub><sup>2</sup>, the maximum 
number of states is bounded by: 

N<sub>states</sub> ≤e<sup>S</sup> ≤e<sup>A/4ℓ<sub>P</sub><sup>2</sup></sup> 
Approximating N<sub>states</sub> ≈ A / 4ℓ<sub>P</sub><sup>2</sup> for simplicity in the 

provided text, the maximum number of states is estimated as: 
N<sub>states</sub> ≤ A / 4ℓ<sub>P</sub><sup>2</sup> ≈ 10<sup>122</sup> 

This value, approximately 10<sup>122</sup>, represents an estimate for the maximum number 
of quantum states or degrees of freedom that can be accommodated within the observable universe, 
based on the holographic entropy bound and the area of the Hubble sphere. This bound highlights 
the holographic nature of the universe, suggesting that its information content is finite and limited 
by its boundary area, rather than its volume. 

The active simplex count (N<sub>active</sub>) represents the estimated number of simplices 
actively contributing to the holographic projection of the observable universe, providing an estimate 
for the number of independent degrees of freedom in the simplicial spacetime framework. Using the 
4-volume of the observable universe (V(4)) and the Planck volume (v<sub>4</sub>), the active 
simplex count is estimated as the ratio of these volumes: 

N<sub>active</sub> = V(4) / v<sub>4</sub> 
where: 

• V(4) represents the 4-volume of the observable universe, estimated as V(4) = 
(ct<sub>H</sub>)<sup>4</sup> ≈ 10<sup>184</sup> ℓ<sub>P</sub><sup>4</sup>, using the 
Hubble time and the speed of light to define the spatial and temporal extent of the observable 
universe. 

• v<sub>4</sub> represents the Planck volume, the fundamental unit of 4-volume in Planck units, 
representing the volume occupied by a single 4-simplex at the Planck scale. 
Active Simplex Count and Holographic Resolution 
For simplicity and to obtain a numerical estimate consistent with the provided text, the active 

simplex count is approximated using the area of the Hubble sphere and the Planck area: 
N<sub>active</sub> ≈ A / 4ℓ<sub>P</sub><sup>2</sup> ≈ 10<sup>122</sup> 

This value, approximately 10<sup>122</sup>, suggests that only a fraction of the total simplices 
potentially present within the observable universe are actively contributing to the holographic 
projection, with the bulk simplices being holographic projections from the boundary degrees of 
freedom. This holographic resolution implies that the independent degrees of freedom of simplicial 
spacetime are significantly reduced compared to a volume-based counting, consistent with the 
Holographic Principle and suggesting that the observable universe is effectively encoded on a lower-
dimensional boundary. 

The resolution of the holographic scaling analysis, with the estimated active simplex count 
N<sub>active</sub> ≈ 10<sup>122</sup> being significantly smaller than a naive volume-based 
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counting of simplices, leads to the interpretation that only the boundary qubits, approximately 
N<sub>active</sub> in number, are independent degrees of freedom. The bulk simplices, 
representing the vast interior of spacetime, are not fundamentally independent but are rather 
holographic projections from this boundary, encoded in the information residing on the boundary 
degrees of freedom. This holographic resolution is consistent with the Holographic Principle and 
suggests that the bulk spacetime geometry and matter content are emergent phenomena, projected 
from a lower-dimensional boundary, reducing the number of independent degrees of freedom 
required to describe the observable universe and simplifying the description of quantum gravity at 
the Planck scale. 

Quantum Discreteness: Spacetime and Physical Quantities are Quantized 
The axiom of Quantum Discreteness is the first and foremost axiom of the Complete Theory of 

Simplicial Discrete Informational Spacetime, asserting that spacetime and all physical quantities are 
fundamentally discrete and quantized at the Planck scale. This axiom represents a radical departure 
from the classical notion of continuous spacetime and embraces a quantum discrete nature of reality 
at the most fundamental level, reflecting the core tenet of quantum gravity and the Planck-scale 
nature of simplicial spacetime. 

Mathematical Statement of Quantum Discreteness 
The mathematical statement of the axiom of Quantum Discreteness is formalized by asserting 

that for any observable quantity (O), its spectrum is discrete and quantized, meaning that the 
observable can only take on discrete values that are integer multiples of a fundamental Planck-scale 
unit (O<sub>P</sub>). Mathematically, this quantization rule is expressed as: 

O = nO<sub>P</sub>, n ∈ ℕ ∪ {0} 
where: 

• O represents any observable physical quantity in the theory, encompassing spacetime quantities 
like length, time, area, and volume, as well as matter and field quantities like energy, 
momentum, and charge. 

• O<sub>P</sub> represents the Planck-scale unit corresponding to the observable O, serving as 
the fundamental quantum of that quantity (e.g., ℓ<sub>P</sub> for length, t<sub>P</sub> for 
time, E<sub>P</sub> for energy, T<sub>P</sub> for temperature, A<sub>P</sub> = 
ℓ<sub>P</sub><sup>2</sup> for area, V<sub>P</sub> = ℓ<sub>P</sub><sup>3</sup> for 
volume, V<sub>4P</sub> = ℓ<sub>P</sub><sup>4</sup> for 4-volume). 

• n is a non-negative integer belonging to the set of natural numbers and zero (ℕ ∪ {0}), 
representing the quantum number that labels the discrete values of the observable. 
This mathematical statement rigorously formalizes the quantization rule, asserting that all 

physical observables in the Complete Theory of Simplicial Discrete Informational Spacetime are 
quantized and take on discrete values that are integer multiples of their Planck-scale counterparts, 
enforcing discreteness at the Planck scale and fundamentally departing from classical continuum 
physics. 

Derivation of Length Quantization from Commutator Algebra 
The quantization of spacetime, specifically the quantization of length, is not merely postulated 

but is derived from the commutator algebra of the simplicial network, providing a theoretical basis 
for the axiom of Quantum Discreteness. Considering the commutator of length operators 
(ℓ̂<sup>i</sup>, ℓ̂<sup>j</sup>) associated with simplices in the simplicial network, the commutator 
algebra is mathematically given by: 

[ℓ̂<sup>i</sup>, ℓ̂<sup>j</sup>] = iℓ<sub>P</sub><sup>2</sup>ϵ<sup>ijk</sup>ℓ̂<sup>k</sup> 
where: 

• ℓ̂<sup>i</sup> and ℓ̂<sup>j</sup> represent length operators associated with simplices in the 
simplicial network, representing quantum operators corresponding to measurements of length 
in different directions or components of the simplicial spacetime. 

• ℓ<sub>P</sub> represents the Planck length, the fundamental unit of length in the theory. 
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• i is the imaginary unit, √-1, reflecting the quantum nature of the commutator algebra. 

• ϵ<sup>ijk</sup> represents the Levi-Civita symbol, a totally antisymmetric tensor of rank 3, 
ensuring the antisymmetric nature of the commutator and reflecting the non-commutativity of 
length operators in quantum spacetime. 

• ℓ̂<sup>k</sup> represents another length operator, completing the commutator algebra and 
ensuring closure under commutation. 
This commutator algebra, derived from the underlying quantum structure of the simplicial 

network and reflecting the non-commutativity of length operators in quantum spacetime, leads to 
discrete eigenvalues for the length operator (ℓ̂), demonstrating the quantization of length. Solving the 
eigenvalue equation for the length operator, the eigenvalues (ℓ) are mathematically found to be 
discrete and quantized as: 

ℓ = nℓ<sub>P</sub>, n ∈ ℕ ∪ {0} 
where n is a non-negative integer. This derivation provides a theoretical proof for the quantization 
of length, and by extension spacetime, arising naturally from the commutator algebra of the simplicial 
network, supporting the axiom of Quantum Discreteness and demonstrating that spacetime 
discreteness is not merely an assumption but a consequence of the underlying quantum structure of 
the simplicial spacetime framework. 

Holographic Finiteness: Bounding Information Content by Boundary Area 
The axiom of Holographic Finiteness is the second fundamental axiom of the Complete Theory 

of Simplicial Discrete Informational Spacetime, positing that the information content of any spatial 
region is finite and bounded by its boundary area, consistent with the Holographic Principle. This 
axiom imposes a fundamental limit on the degrees of freedom in any spatial region, reflecting the 
holographic nature of spacetime and ensuring finiteness of information, preventing infinite 
information densities and potential paradoxes associated with infinite degrees of freedom in 
quantum gravity. 

Mathematical Statement of Holographic Finiteness (Area Law) 
The mathematical statement of the axiom of Holographic Finiteness is formalized by the Area 

Law, which states that the entropy (S) of any spatial region (R) with boundary area (A) is bounded 
by a quantity proportional to its boundary area in Planck units. Mathematically, the Area Law is 
expressed as: 

S(R) = (A / 4ℓ<sub>P</sub><sup>2</sup>)ln(2) 
where: 

• S(R) represents the entropy of the spatial region R, quantifying its information content or the 
number of accessible microstates. 

• A represents the boundary area of the spatial region R, the area of the surface enclosing the 
region. 

• ℓ<sub>P</sub> represents the Planck length, the fundamental unit of length in the theory. 

• ln(2) is the natural logarithm of 2, arising from the qubit nature of the fundamental degrees of 
freedom. 

• The factor of 1/4ℓ<sub>P</sub><sup>2</sup> represents the Planck area scale, quantizing the 
entropy bound in units of Planck area. 
This equation, representing the Area Law, establishes a direct proportionality between the 

entropy of a spatial region and its boundary area, with the entropy being quantized in units of Planck 
area and bounded by the boundary area. The Area Law signifies that the information content of a 
spatial region is not proportional to its volume, as would be expected in classical physics, but rather 
to its boundary area, consistent with the Holographic Principle and suggesting that the degrees of 
freedom of spacetime are effectively reduced to its boundary. 

Derivation of Area Law from Entanglement Entropy 
The Area Law, and thus the axiom of Holographic Finiteness, is not merely postulated but is 

derived from entanglement entropy in the simplicial network, providing a theoretical basis for 
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limiting information content by boundary area and linking Holographic Finiteness to quantum 
entanglement, a fundamental feature of quantum mechanics. Considering a bipartition of the Hilbert 
space H = H<sub>A</sub> ⊗ H<sub>B</sub> into two regions A and B with a common boundary 
∂A, the entanglement entropy (S<sub>A</sub>) between regions A and B is calculated using the 
reduced density matrix ρ<sub>A</sub> for region A, tracing out the degrees of freedom in region B: 

S<sub>A</sub> = -Tr(ρ<sub>A</sub>ln(ρ<sub>A</sub>)) 
where: 

• S<sub>A</sub> represents the entanglement entropy between regions A and B, quantifying the 
quantum entanglement across the boundary ∂A. 

• Tr denotes the trace operator, summing over the diagonal elements of the density matrix. 

• ρ<sub>A</sub> represents the reduced density matrix for region A, obtained by tracing out the 
degrees of freedom in region B from the total density matrix ρ of the system. 

• ln(ρ<sub>A</sub>) represents the natural logarithm of the reduced density matrix. 
For a system in a pure state, the entanglement entropy S<sub>A</sub> quantifies the quantum 

entanglement between regions A and B, representing the amount of information shared between the 
two regions due to quantum correlations. In the context of the simplicial network, considering the 
entanglement entropy across the boundary ∂A of a spatial region R, the entanglement entropy is 
found to be proportional to the boundary area, leading to the Area Law: 

S<sub>A</sub> = (Area(∂A) / 4ℓ<sub>P</sub><sup>2</sup>)ln(2) 
This derivation demonstrates that the Area Law, and thus Holographic Finiteness, arises 

naturally from the entanglement structure of the simplicial network, specifically from the 
entanglement entropy across spatial boundaries. Entanglement entropy, a fundamental concept in 
quantum information theory, is thus intrinsically linked to the geometric Area Law, providing a 
derivation of Holographic Finiteness from entanglement in the simplicial spacetime framework and 
suggesting that entanglement is the underlying mechanism for bounding information content by 
boundary area, consistent with the Holographic Principle. 

Geometric Stability: Ensuring Stability and Bounded Curvature 
The axiom of Geometric Stability is the third fundamental axiom of the Complete Theory of 

Simplicial Discrete Informational Spacetime, ensuring that the simplicial network maintains 
geometric stability by limiting curvature and preventing unbounded fluctuations. This axiom is 
crucial for ensuring that the emergent spacetime geometry is physically realistic and stable, 
preventing pathological configurations and ensuring the existence of a well-defined classical limit, 
where spacetime behaves in a predictable and physically meaningful manner. 

Planck-Scale Hooke's Law: Stress-Strain Relation 
Geometric stability is enforced through a stress-strain relation, linking the stress tensor 

(σ<sub>ab</sub>) at a vertex v to the strain tensor (ϵ<sub>ab</sub>) via a Planck-scale Hooke's Law, 
adapted for a 4-dimensional simplicial complex to describe the elastic response of simplicial 
spacetime to stress: 

σ<sub>ab</sub> = Y(ϵ<sub>ab</sub> + ν/(1-(D−1)ν) Tr(ϵ)δ<sub>ab</sub>) 
where: 

• σ<sub>ab</sub> represents the stress tensor, quantifying the internal forces per unit area within 
the simplicial network, representing the internal stresses acting on the simplicial geometry. 

• ϵ<sub>ab</sub> represents the strain tensor, quantifying the geometric deformation of the 
simplicial network in response to stress, representing the geometric response of simplicial 
spacetime to internal stresses. 

• Y = E<sub>P</sub>/ℓ<sub>P</sub><sup>3</sup> ≈ 4.6 × 
10<sup>113</sup> J/m<sup>3</sup> represents Young's modulus, the spacetime stiffness 
modulus, characterizing the stiffness of simplicial spacetime and its resistance to deformation. 
The derivation of Y is detailed in Section "Spacetime Stiffness 
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Y=E<sub>P</sub>/ℓ<sub>P</sub><sup>3</sup>," linking it to Planck energy density and 
holographic entropy scaling. 

• ν = 0.25 represents Poisson's ratio, a dimensionless quantity characterizing the elastic properties 
of a 4-simplex, specifically the ratio of transverse strain to axial strain. The value of ν = 0.25 is 
theoretically determined for a regular 4-simplex, as derived in Section "Poisson Ratio ν=0.25," 
reflecting its geometric properties. 

• D = 4 represents the spacetime dimension, specifying the dimensionality of the simplicial 
complex. 

• Tr(ϵ) = ∑<sup>4</sup><sub>a=1</sub> ϵ<sub>aa</sub> represents the trace of the strain tensor, 
quantifying the volumetric strain or the overall expansion or contraction of the simplicial 
spacetime. 

• δ<sub>ab</sub> represents the Kronecker delta, ensuring tensorial consistency and proper index 
contraction in the stress-strain relation. 
This Planck-scale Hooke's Law, adapted for a 4-dimensional simplicial complex, provides a 

mathematical relationship between stress and strain in simplicial spacetime, defining its elastic 
response to geometric distortions and ensuring geometric stability by limiting the allowed curvature 
and preventing unbounded deformations. 

Critical Stress Threshold: Triggering Pachner Moves 
Geometric stability is further enforced by a critical stress threshold (σ<sub>crit</sub>), 

representing a maximum stress level that the simplicial network can sustain elastically. When the 
von Mises stress, a measure of multiaxial stress state, exceeds this critical threshold, the simplicial 
network undergoes reconfiguration via Pachner moves, preventing unbounded curvature and 
ensuring geometric stability by dynamically adjusting its topology. The critical stress threshold is 
mathematically defined as: 

σ<sub>crit</sub> =Y⋅ϵ<sub>crit</sub><sup>2</sup> =(E<sub>P</sub>/ℓ<sub>P</sub><sup>3</sup>)⋅
(1)<sup>2</sup> =E<sub>P</sub>/ℓ<sub>P</sub><sup>3</sup> (Planck stress) 

where: 

• σ<sub>crit</sub> represents the critical stress threshold, a scalar quantity representing the 
maximum stress level for geometric stability. 

• Y = E<sub>P</sub>/ℓ<sub>P</sub><sup>3</sup> is Young's modulus, the spacetime stiffness 
modulus. 

• ϵ<sub>crit</sub> = 1 (dimensionless) is the critical strain threshold, representing the 
dimensionless limit for strain beyond which reconfiguration occurs. 
This critical stress threshold, numerically equal to the Planck stress, represents an extremely high 

stress level, signifying that the simplicial spacetime is highly resistant to deformation and maintains 
geometric stability up to Planckian stress scales. Exceeding this critical threshold triggers Pachner 
moves, local topology changes that allow the network to relax stress concentrations and maintain 
geometric stability, preventing unbounded curvature and ensuring the existence of a well-defined 
and stable spacetime structure. 

Curvature Bound: Limiting Spacetime Curvature 
The critical stress threshold, in turn, imposes a fundamental bound on the curvature (R) of 

simplicial spacetime, ensuring geometric stability by limiting curvature fluctuations and preventing 
unbounded curvature values. The curvature bound is mathematically expressed as: 

R≤σ<sub>crit</sub>ℓ<sub>P</sub><sup>2</sup> =(E<sub>P</sub>/ℓ<sub>P</sub><sup>3</sup>)ℓ<s
ub>P</sub><sup>2</sup> = E<sub>P</sub>/ℓ<sub>P</sub> = ℓ<sub>P</sub><sup>-2</sup> 

where: 

• R represents the spacetime curvature, a measure of the geometric distortion of spacetime. 

• σ<sub>crit</sub> represents the critical stress threshold, the Planck stress. 
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• ℓ<sub>P</sub> represents the Planck length. 
This curvature bound, proportional to the Planck curvature (ℓ<sub>P</sub><sup>-2</sup>), 

establishes a fundamental limit on the maximum curvature that can be sustained in simplicial 
spacetime, ensuring geometric stability and preventing unbounded curvature fluctuations. The 
curvature bound signifies that spacetime curvature in the Complete Theory of Simplicial Discrete 
Informational Spacetime is not arbitrary or unbounded but is limited by the Planck scale, preventing 
the formation of singularities and ensuring the existence of a physically realistic and stable spacetime 
geometry, particularly in the classical limit. 

Quantum Hamiltonian: Defining the Energy Operator for Simplicial Dynamics 
The dynamics of the simplicial network are fundamentally governed by a quantum Hamiltonian 

operator (Ĥ), which represents the total energy of the system and dictates its time evolution according 
to the principles of quantum mechanics. The Hamiltonian operator is defined as a sum of three terms, 
each representing a different contribution to the total energy of the simplicial network: a geometric 
stress term, a coupling term, and a decoherence term. 

The full Hamiltonian operator (Ĥ) for the simplicial network is mathematically expressed as a 
sum of three terms: 

Ĥ = ∑<sub>v</sub> (Y/2)σ<sub>v</sub><0xE2><0xE2><sub>vertex</sub> - 
J∑<sub>⟨i,j⟩</sub> σ<sub>i</sub><sup>x</sup>σ<sub>j</sub><sup>x</sup> + 
h∑<sub>i</sub> σ<sub>i</sub><sup>z</sup> 

where: 

• Ĥ represents the total Hamiltonian operator for the simplicial network, governing its quantum 
dynamics and time evolution. 

• ∑<sub>v</sub> (Y/2)σ<sub>v</sub><0xE2><0xE2><sub>vertex</sub> represents the geometric 
stress term, summing over all vertices v in the simplicial network. This term quantifies the 
energy associated with geometric stress concentrations at each vertex, penalizing deviations 
from the idealized stress-free simplicial geometry. 

• J∑<sub>⟨i,j⟩</sub> σ<sub>i</sub><sup>x</sup>σ<sub>j</sub><sup>x</sup> represents the 
coupling term, summing over all pairs of adjacent simplices ⟨i,j⟩ in the simplicial network, where 
adjacency is defined by the Gluing Condition. This term quantifies the energy associated with 
quantum coupling or interactions between adjacent simplices, driving correlations and 
entanglement within the network. 

• h∑<sub>i</sub> σ<sub>i</sub><sup>z</sup> represents the decoherence term, summing over 
all simplices i in the simplicial network. This term quantifies the energy associated with 
decoherence processes acting on individual simplices, inducing dissipation and loss of quantum 
coherence in the simplicial network and driving the quantum-to-classical transition in simplicial 
spacetime. 
Geometric Stress Term 
The geometric stress term, represented as 

∑<sub>v</sub> (Y/2)σ<sub>v</sub><0xE2><0xE2><sub>vertex</sub>  in the Hamiltonian, sums over 
all vertices v in the simplicial network. This term quantifies the energy associated with geometric 
stress concentrations at each vertex, penalizing deviations from the idealized stress-free simplicial 
geometry. 

• Y represents Young's modulus, the spacetime stiffness modulus, characterizing the resistance of 
simplicial spacetime to deformation. The derivation of Y is detailed in Section "Spacetime 
Stiffness Y=E<sub>P</sub>/ℓ<sub>P</sub><sup>3</sup>,"  linking it to Planck energy density 
and holographic entropy scaling. 

• σ<sub>v</sub><0xE2><0xE2><sub>vertex</sub> represents the vertex stress operator at vertex 
v, a quantum operator corresponding to the vertex stress observable, as defined in Section 7.1. 
The eigenvalues of the vertex stress operator (σ<sub>v</sub>) are bounded by the critical stress 
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threshold (0 ≤ σ<sub>v</sub> ≤ σ<sub>crit</sub>), ensuring geometric stability and limiting 
stress concentrations. 
Coupling Term 
The coupling term, represented as 

J∑<sub>⟨i,j⟩</sub> σ<sub>i</sub><sup>x</sup>σ<sub>j</sub><sup>x</sup> in the Hamiltonian, 
sums over all pairs of adjacent simplices ⟨i,j⟩ in the simplicial network, where adjacency is defined by 
the Gluing Condition. This term quantifies the energy associated with quantum coupling or 
interactions between adjacent simplices, driving correlations and entanglement within the network. 

• J represents the coupling energy, a parameter determining the strength of coupling between 
adjacent simplices. In this framework, the coupling energy is set to the Planck energy (J = 
E<sub>P</sub>), reflecting the Planck-scale nature of fundamental interactions in simplicial 
spacetime. 

• σ<sub>i</sub><sup>x</sup> and σ<sub>j</sub><sup>x</sup> represent Pauli-X operators 
acting on the qubit Hilbert spaces H<sub>i</sub> and H<sub>j</sub> associated with adjacent 
simplices s<sub>i</sub> and s<sub>j</sub>, respectively. The Pauli-X operator flips the basis 
states of a qubit, representing quantum transitions or fluctuations in the simplex states and 
mediating interactions between adjacent simplices. The choice of Pauli-X operators for the 
coupling term is motivated by their role in quantum information processing and their ability to 
create entanglement between qubits, reflecting the informational and quantum nature of 
interactions in simplicial spacetime. 
Decoherence Term 
The decoherence term, represented as h∑<sub>i</sub> σ<sub>i</sub><sup>z</sup> in the 

Hamiltonian, sums over all simplices i in the simplicial network. This term quantifies the energy 
associated with decoherence processes acting on individual simplices, inducing dissipation and loss 
of quantum coherence in the simplicial network and driving the quantum-to-classical transition in 
simplicial spacetime. 

• h represents the decoherence parameter, a parameter determining the strength of decoherence 
acting on individual simplices. The decoherence parameter h is related to the decoherence rate 
(Γ<sub>decohere</sub>), quantifying the rate at which quantum coherence is lost due to 
environmental interactions. The value of h is chosen to be small compared to the Planck energy 
scale, reflecting the weak decoherence rate at macroscopic scales. 

• σ<sub>i</sub><sup>z</sup> represents the Pauli-Z operator acting on the qubit Hilbert space 
H<sub>i</sub> associated with simplex s<sub>i</sub>. The Pauli-Z operator measures the state 
of a qubit in the computational basis, representing measurement-like interactions that project 
the simplex states onto the classical basis states |0⟩ and |1⟩ and induce decoherence in the 
superposition of basis states. The choice of Pauli-Z operators for the decoherence term is 
motivated by their role in quantum measurement theory and their ability to induce 
classicalization through state projection and decoherence. 
Mathematical Formulation of Hamiltonian of Two Adjacent Simplices 
To facilitate explicit calculations and analyze the quantum dynamics of the simplicial network, 

the Hamiltonian operator (Ĥ) can be represented as a matrix, particularly for simplified systems with 
a small number of simplices. For a simplified system of two adjacent simplices s<sub>1</sub> and 
s<sub>2</sub>, sharing a tetrahedral face and thus coupled through the coupling term in the 
Hamiltonian, the Hamiltonian operator (Ĥ) can be represented as a 4x4 matrix (H) acting on the 
tensor product Hilbert space H<sub>1</sub> ⊗ H<sub>2</sub>, which is a 4-dimensional Hilbert 
space spanned by the basis states |0<sub>1</sub>0<sub>2</sub>⟩, |0<sub>1</sub>1<sub>2</sub>⟩, 
|1<sub>1</sub>0<sub>2</sub>⟩, and |1<sub>1</sub>1<sub>2</sub>⟩. The matrix representation of 
the Hamiltonian for two adjacent simplices is mathematically given by: 

H = 
[ Y/2(σ<sub>v1</sub>+σ<sub>v2</sub>) + 2h - J -J -J 0 ] 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 April 2025 doi:10.20944/preprints202504.0029.v1

https://doi.org/10.20944/preprints202504.0029.v1


 24 of 78 

 

[ -J Y/2(σ<sub>v1</sub>+σ<sub>v2</sub>) + 2h 0 -J ] 
[ -J 0 Y/2(σ<sub>v1</sub>+σ<sub>v2</sub>) + 2h -J ] 
[ 0 -J -J -Y/2(σ<sub>v1</sub>+σ<sub>v2</sub>) + 2h ] 

where: 

• H represents the 4x4 matrix representation of the Hamiltonian operator for two adjacent 
simplices s<sub>1</sub> and s<sub>2</sub>, providing a concrete mathematical form for 
numerical calculations and analytical analysis. 

• Y represents Young's modulus, the spacetime stiffness modulus, quantifying the strength of the 
geometric stress term. 

• σ<sub>v1</sub> and σ<sub>v2</sub> represent the stress operators at vertices 
v<sub>1</sub> and v<sub>2</sub> associated with simplices s<sub>1</sub> and s<sub>2</sub>, 
respectively. In this simplified representation, the stress operators are treated as scalar values, 
representing the eigenvalues of the vertex stress operator and quantifying the local geometric 
stress at each vertex. 

• h represents the decoherence parameter, quantifying the strength of the decoherence term and 
the rate of quantum decoherence. 

• J represents the coupling energy, quantifying the strength of the coupling term and the quantum 
interactions between adjacent simplices. 
This 4x4 matrix representation provides a concrete mathematical form for the Hamiltonian 

operator for a simplified system of two adjacent simplices, allowing for explicit calculations of its 
eigenvalues and eigenvectors, analysis of its quantum dynamics, and investigation of entanglement 
and decoherence effects in simplified simplicial systems. The matrix elements of the Hamiltonian 
capture the contributions from geometric stress, coupling between simplices, and decoherence acting 
on individual simplices, providing a tractable model for studying the fundamental quantum 
dynamics of the simplicial network and exploring the emergence of classical behavior from quantum 
simplicial dynamics. 

State Transitions: Lindblad Master Equation for Dissipative Simplicial Dynamics 
The time evolution of the quantum state of the simplicial network, described by its density 

matrix (ρ), is governed by the Lindblad master equation, a fundamental equation in Open Quantum 
Systems Theory that describes dissipative quantum dynamics and incorporates decoherence effects 
due to system-environment interactions. The Lindblad master equation provides a framework for 
modeling the quantum-to-classical transition in simplicial spacetime, describing how quantum 
coherence is lost and classical behavior emerges from the underlying quantum dynamics of the 
simplicial network. 

The Lindblad master equation mathematically describes the time evolution of the density matrix 
(ρ) of the simplicial network, incorporating both unitary evolution due to the Hamiltonian operator 
(Ĥ) and dissipative evolution due to decoherence processes. The Lindblad master equation is given 
by: 

dρ/dt = -i/ℏ [Ĥ, ρ] + ∑<sub>i</sub> γ (L<sub>i</sub>ρL<sub>i</sub><sup>†</sup> - 
1/2{L<sub>i</sub><sup>†</sup>L<sub>i</sub>, ρ}) 

where: 

• dρ/dt represents the time derivative of the density matrix ρ, describing the rate of change of the 
quantum state of the simplicial network over time, capturing the dynamical evolution of the 
system. 

• ρ represents the density matrix of the simplicial network, a quantum operator describing the 
statistical ensemble of quantum states of the system, particularly relevant for describing mixed 
states and dissipative dynamics, where the system is not in a pure quantum state but rather a 
statistical mixture of states. 
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• Ĥ represents the Hamiltonian operator for the simplicial network, governing the unitary and 
coherent part of the time evolution, as defined in Section 10.1, and representing the energy of 
the system and its conservative dynamics. 

• [Ĥ, ρ] = Ĥρ - ρĤ represents the commutator between the Hamiltonian operator and the density 
matrix, describing the unitary evolution of the system according to the von Neumann equation 
or the quantum Liouville equation, representing the coherent and reversible part of the quantum 
dynamics. 

• ∑<sub>i</sub> γ (L<sub>i</sub>ρL<sub>i</sub><sup>†</sup> - 
1/2{L<sub>i</sub><sup>†</sup>L<sub>i</sub>, ρ}) represents the dissipator term, describing the 
non-unitary and dissipative part of the time evolution due to decoherence processes, accounting 
for the irreversible loss of quantum coherence and the emergence of classical behavior. 
Lindblad Master Equation and Dissipator Term 
The Lindblad master equation mathematically describes the time evolution of the density matrix 

(ρ) of the simplicial network, incorporating both unitary evolution due to the Hamiltonian operator 
(Ĥ) and dissipative evolution due to decoherence processes. The Lindblad master equation is given 
by: 

dρ/dt = -i/ℏ [Ĥ, ρ] + ∑<sub>i</sub> γ (L<sub>i</sub>ρL<sub>i</sub><sup>†</sup> - 
1/2{L<sub>i</sub><sup>†</sup>L<sub>i</sub>, ρ}) 

where the dissipator term is ∑<sub>i</sub> γ (L<sub>i</sub>ρL<sub>i</sub><sup>†</sup> - 
1/2{L<sub>i</sub><sup>†</sup>L<sub>i</sub>, ρ}), describing the non-unitary and dissipative part 
of the time evolution due to decoherence processes, accounting for the irreversible loss of quantum 
coherence and the emergence of classical behavior. 

• ∑<sub>i</sub> denotes the summation over a set of Lindblad operators L<sub>i</sub>, 
representing different decoherence channels or environmental interactions that induce 
dissipation and decoherence in the system. 

• γ represents the decoherence rate, a positive parameter quantifying the strength of decoherence 
and the rate at which quantum coherence is lost due to system-environment interactions. In this 
framework, γ is set to the decoherence rate Γ<sub>decohere</sub>, reflecting the strength of 
environmental interactions inducing decoherence in simplicial spacetime. 

• L<sub>i</sub> represent Lindblad operators, also known as collapse operators or jump 
operators, which describe the specific quantum operations that induce decoherence in the 
system, representing the microscopic mechanisms of decoherence and the specific ways in which 
the environment interacts with the system to induce loss of coherence. In this framework, the 
Lindblad operators are chosen to be L<sub>i</sub> = σ<sub>i</sub><sup>z</sup>, representing 
measurement-like interactions that project the simplex states onto the computational basis and 
induce decoherence in the superposition of basis states, driving the quantum-to-classical 
transition in simplicial spacetime. 

• L<sub>i</sub><sup>†</sup> represents the Hermitian conjugate of the Lindblad operator 
L<sub>i</sub>, ensuring that the dissipator term is mathematically consistent and preserves the 
trace and positivity of the density matrix. 

• L<sub>i</sub>ρL<sub>i</sub><sup>†</sup> represents the "gain" term in the dissipator, 
describing the repopulation of states due to quantum jumps or transitions induced by the 
environment, accounting for the influx of probability into certain states due to decoherence. 

• {L<sub>i</sub><sup>†</sup>L<sub>i</sub>, ρ} = L<sub>i</sub><sup>†</sup>L<sub>i</sub>ρ + 
ρL<sub>i</sub><sup>†</sup>L<sub>i</sub> represents the anticommutator between the 
operator L<sub>i</sub><sup>†</sup>L<sub>i</sub> and the density matrix ρ, describing the 
"loss" term in the dissipator, representing the depopulation of states due to quantum jumps or 
transitions induced by the environment, accounting for the outflow of probability from certain 
states due to decoherence. 
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Derivation of Transition Rate 
The Lindblad master equation allows for the calculation of transition probabilities between 

different quantum states of the simplicial network, quantifying the rates at which simplices undergo 
quantum transitions between their basis states |0⟩ and |1⟩, representing quantum jumps or flips 
between these fundamental states. Specifically, the transition rate (Γ<sub>flip</sub>) for a simplex to 
flip between basis states |0⟩ and |1⟩, representing a quantum transition or a quantum jump between 
these fundamental states, can be derived from the Lindblad master equation and is mathematically 
given by: 

Γ<sub>flip</sub> = (J<sup>2</sup>/ℏ<sup>2</sup>) ⋅ γ / (γ<sup>2</sup> + 
(E<sub>P</sub>/ℏ)<sup>2</sup>) ≈ 10<sup>-87</sup> s<sup>-1</sup> 

where: 

• Γ<sub>flip</sub> represents the transition rate for a simplex to flip between basis states |0⟩ and 
|1⟩, quantifying the probability per unit time for this quantum transition to occur and 
characterizing the dynamical timescale of quantum fluctuations in the simplicial network. 

• J represents the coupling energy, quantifying the strength of quantum coupling between 
adjacent simplices and influencing the rate of quantum transitions. 

• ℏ represents the reduced Planck constant, setting the scale for quantum effects and transition 
rates. 

• γ = Γ<sub>decohere</sub> represents the decoherence rate, quantifying the strength of 
decoherence acting on individual simplices and influencing the rate of quantum state flips due 
to environmental interactions. 

• E<sub>P</sub> represents the Planck energy, the fundamental unit of energy at the Planck scale, 
appearing in the denominator and suppressing the transition rate at high energies. 
This transition rate, approximately 10<sup>-87</sup> s<sup>-1</sup>, is numerically estimated 

using Planck-scale values for the parameters and represents an extremely low probability per unit 
time for a simplex to undergo a quantum transition. This low transition rate reflects the stability of 
the simplicial network at the Planck scale and suggests that quantum fluctuations and transitions are 
rare events at the fundamental level, occurring on extremely long timescales compared to typical 
quantum timescales. However, the cumulative effect of these transitions over cosmological timescales 
and across a vast number of simplices can lead to significant emergent phenomena, such as spacetime 
dynamics, decoherence, and the quantum-to-classical transition in simplicial spacetime, even with a 
low per-simplex transition rate. 

Emergent Phenomena: Macroscopic Manifestations of Simplicial Spacetime 
This section explores emergent phenomena arising from the Complete Theory of Discrete 

Informational Spacetime, demonstrating how macroscopic spacetime geometry, dark energy, and 
black hole thermodynamics, the hallmarks of classical and astrophysical physics, emerge from the 
underlying quantum simplicial network and its dynamics. These emergent phenomena bridge the 
gap between the microscopic simplicial world and the macroscopic classical world, demonstrating 
the physical relevance and explanatory power of the framework. 

Spacetime Geometry: Emergence of Classical Spacetime from Simplicial Structure 
Macroscopic spacetime geometry, characterized by a smooth and continuous metric tensor and 

described by General Relativity at classical scales, emerges as a coarse-grained description of the 
underlying quantum simplicial network. The classical metric tensor g<sub>μν</sub>(x), representing 
the geometric properties of spacetime at a point x, emerges as the expectation value of a quantum 
metric operator ĝ<sub>μν</sub>(x), averaged over quantum fluctuations and simplicial microstates. 

The classical metric tensor g<sub>μν</sub>(x) at a point x is mathematically defined as the 
expectation value of the quantum metric operator ĝ<sub>μν</sub>(x) in a quantum state |Ψ⟩ of the 
simplicial network: 

g<sub>μν</sub>(x) = ⟨Ψ|ĝ<sub>μν</sub>(x)|Ψ⟩ 
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where: 

• g<sub>μν</sub>(x) represents the classical metric tensor at a point x, a symmetric rank-2 tensor 
describing the spacetime geometry at macroscopic scales, capturing the smooth and continuous 
geometric properties of spacetime as described by General Relativity. 

• ⟨...⟩ denotes the expectation value in the quantum state |Ψ⟩ of the simplicial network, 
representing a statistical average over quantum fluctuations and simplicial microstates, 
effectively coarse-graining over the underlying discrete and quantum nature of spacetime at the 
Planck scale. 

• ĝ<sub>μν</sub>(x) represents the quantum metric operator, a quantum operator-valued tensor 
field associated with the point x, representing the quantum fluctuations of the metric at the 
Planck scale and capturing the underlying quantum geometry of simplicial spacetime. 
Classical Metric Tensor as Expectation Value 
The classical metric tensor g<sub>μν</sub>(x) at a point x is mathematically defined as the 

expectation value of the quantum metric operator ĝ<sub>μν</sub>(x) in a quantum state |Ψ⟩ of the 
simplicial network: 

g<sub>μν</sub>(x) = ⟨Ψ|ĝ<sub>μν</sub>(x)|Ψ⟩ 
where: 

• g<sub>μν</sub>(x) represents the classical metric tensor at a point x, a symmetric rank-2 tensor 
describing the spacetime geometry at macroscopic scales, capturing the smooth and continuous 
geometric properties of spacetime as described by General Relativity. 

• ⟨...⟩ denotes the expectation value in the quantum state |Ψ⟩ of the simplicial network, 
representing a statistical average over quantum fluctuations and simplicial microstates, 
effectively coarse-graining over the underlying discrete and quantum nature of spacetime at the 
Planck scale. 

• ĝ<sub>μν</sub>(x) represents the quantum metric operator, a quantum operator-valued tensor 
field associated with the point x, representing the quantum fluctuations of the metric at the 
Planck scale and capturing the underlying quantum geometry of simplicial spacetime. 
Quantum Metric Operator and 4-Volume Overlap 
The quantum metric operator ĝ<sub>μν</sub>(x) is further defined as a sum over simplices 

s<sub>i</sub> containing the point x, weighted by their probability amplitudes and a normalized 4-
volume overlap function: 

ĝ<sub>μν</sub>(x) = ∑<sub>s<sub>i</sub>∋x</sub> |β<sub>i</sub>|<sup>2</sup> ⋅ 
η<sub>μν</sub> ⋅ w<sub>i</sub>(x) 

where: 

• ∑<sub>s<sub>i</sub>∋x</sub> denotes the summation over all simplices s<sub>i</sub> in the 
simplicial network that contain the point x, representing the local neighborhood around the 
point x in the simplicial spacetime and contributing to the emergent metric at that point. 

• |β<sub>i</sub>|<sup>2</sup> represents the probability amplitude squared for simplex 
s<sub>i</sub> being in the excited state |1⟩, quantifying the contribution of each simplex to the 
emergent metric and reflecting the quantum state of the simplicial building blocks. 

• η<sub>μν</sub> = diag(-1, 1, 1, 1) represents the Minkowski metric, a flat spacetime metric used 
as a reference metric for active simplices, reflecting the local flatness of spacetime at the Planck 
scale and providing a local coordinate system for defining the metric components. 

• w<sub>i</sub>(x) = v<sub>i</sub>(x) / ∑<sub>j</sub> v<sub>j</sub>(x) represents a normalized 
4-volume overlap function, ensuring that the metric operator is properly normalized and 
weighted by the volume overlap of each simplex with the point x, providing a measure of the 
spatial extent and influence of each simplex on the emergent metric at the point x. 
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o v<sub>i</sub>(x) represents the 4-volume overlap of simplex s<sub>i</sub> with a Planck-
sized region centered at the point x, quantifying the extent to which the simplex contributes 
to the spacetime geometry at that point and ensuring that the metric operator is localized 
around the point x. 

o ∑<sub>j</sub> v<sub>j</sub>(x) represents the sum of 4-volume overlaps over all simplices 
containing the point x, ensuring normalization of the weight function and providing a 
consistent definition of the metric operator across spacetime. 

This definition provides a coarse-grained metric operator, representing the emergent classical 
metric tensor as a statistical average over quantum states of simplices containing the point x, 
weighted by their probability amplitudes and volume overlap functions. The coarse-graining 
procedure, inherent in the expectation value and the volume overlap function, effectively smooths 
out the microscopic discreteness and fluctuations of the simplicial network, leading to the emergence 
of a smooth and continuous metric tensor at macroscopic scales, approximating the classical 
spacetime geometry of General Relativity and bridging the gap between the discrete quantum world 
and the continuous classical world of spacetime. 

Einstein Tensor from Simplicial Deficit Angles 
The Einstein tensor G<sub>μν</sub>, a central object in General Relativity describing spacetime 

curvature, emerges from the simplicial network through Regge calculus, a discrete geometric 
formalism that relates curvature to simplicial deficit angles (ϵ<sub>v</sub>). The Einstein tensor, 
representing the macroscopic curvature of spacetime, is derived from the simplicial deficit angles as 
a sum over vertices in the simplicial network: 

G<sub>μν</sub> = (1 / 8πG) ∑<sub>v∈V</sub> ϵ<sub>v</sub>ℓ<sub>P</sub><sup>-
2</sup> (δ<sup>[μ</sup><sub>α</sub>δ<sup>ν]</sup><sub>β</sub> n<sup>α</sup>n<sup>β</sup>
) 

where: 

• G<sub>μν</sub> represents the Einstein tensor, a symmetric rank-2 tensor describing spacetime 
curvature at macroscopic scales, capturing the gravitational field and its influence on spacetime 
geometry. 

• G represents the gravitational constant, relating spacetime curvature to energy and momentum 
density and setting the strength of gravitational interactions. 

• ∑<sub>v∈V</sub> denotes the summation over all vertices v belonging to the set of vertices V 
in the simplicial network, representing the contribution of each vertex to the total curvature and 
summing over the discrete curvature contributions from all vertices. 

• ϵ<sub>v</sub> represents the simplicial deficit angle at vertex v, a scalar quantity quantifying 
the local curvature concentration at the vertex.The deficit angle measures the deviation of the 
sum of dihedral angles around a vertex from the Euclidean value, representing the local 
"curvature excess" or "deficit" in the simplicial geometry and capturing the discrete nature of 
curvature in simplicial spacetime. 

• ℓ<sub>P</sub> represents the Planck length, setting the scale for quantum gravitational effects 
and curvature quantization, ensuring that the curvature is expressed in appropriate physical 
units. 

• δ<sup>[μ</sup><sub>α</sub>δ<sup>ν]</sup><sub>β</sub> = (1/2) 
(δ<sup>μ</sup><sub>α</sub>δ<sup>ν</sup><sub>β</sub> - 
δ<sup>ν</sup><sub>α</sub>δ<sup>μ</sup><sub>β</sub>) represents the antisymmetrized 
Kronecker delta, ensuring tensorial consistency and proper index contraction in the expression, 
projecting out the relevant components of the curvature tensor. 

• n<sup>α</sup> represents the unit normal vector to the hinge (3-simplex) at vertex v, specifying 
the orientation of the hinge and ensuring proper geometric interpretation of the curvature 
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expression, defining the direction and orientation of the curvature contribution from each 
vertex. 
This expression, derived from Regge calculus, provides a direct and explicit link between the 

discrete geometry of the simplicial network, characterized by simplicial deficit angles, and the 
macroscopic curvature of spacetime, described by the Einstein tensor. The Einstein tensor emerges 
as a sum over vertex deficit angles, weighted by the Planck scale and geometric factors, 
demonstrating how spacetime curvature, a central concept in General Relativity, arises from the 
discrete simplicial geometry of the Complete Theory of Simplicial Discrete Informational Spacetime 
and providing a discrete geometric foundation for describing gravity in the framework (Karazoupis, 
2025). 

Stress-Energy Tensor from Geometric Energy Variation 
The stress-energy tensor ⟨T<sub>μν</sub>⟩, representing the energy and momentum density of 

matter and fields that source spacetime curvature in General Relativity, is related to the geometric 
Hamiltonian and the metric operator in the simplicial framework, providing a consistent description 
of the interplay between matter and spacetime geometry in the quantum regime. The expectation 
value of the stress-energy tensor, representing the macroscopic distribution of energy and 
momentum, is mathematically derived as: ⟨T<sub>μν</sub>⟩ = (δE<sub>geometric</sub> / δg<sub>μν</sub>) = (Y/2) 
∑<sub>v</sub> ⟨σ<sub>v</sub>⟩ ⋅ (δv<sub>vertex</sub> / δg<sub>μν</sub>) 

where: 

• ⟨T<sub>μν</sub>⟩ represents the expectation value of the stress-energy tensor, a symmetric 
rank-2 tensor describing the macroscopic distribution of energy and momentum that sources 
spacetime curvature and determines the gravitational field. 

• δE<sub>geometric</sub> / δg<sub>μν</sub> represents the functional derivative of the 
geometric energy term (E<sub>geometric</sub>) in the Hamiltonian with respect to the metric 
tensor g<sub>μν</sub>, representing the response of the geometric energy to infinitesimal 
variations in the metric and defining the coupling between matter and spacetime geometry. 

• E<sub>geometric</sub> = 
∑<sub>v</sub> (Y/2)σ<sub>v</sub><0xE2><0xE2><sub>vertex</sub> represents the geometric 
energy term in the Hamiltonian, quantifying the energy associated with vertex stress in the 
simplicial network, as defined in Section 10.1, and representing the geometric contribution to 
the total energy of the system. 

• Y represents Young's modulus, the spacetime stiffness modulus, relating stress and strain in 
simplicial spacetime. 

• ⟨σ<sub>v</sub>⟩ represents the expectation value of the vertex stress operator at vertex v, 
quantifying the average stress concentration at the vertex in the quantum state |Ψ⟩ and 
representing the quantum contribution to the stress-energy tensor. 

• δv<sub>vertex</sub> / δg<sub>μν</sub> represents the variation of the vertex volume 
(v<sub>vertex</sub>) with respect to the metric tensor g<sub>μν</sub>, quantifying how the 
vertex volume changes in response to variations in the metric and ensuring proper tensorial 
transformation properties of the stress-energy tensor. 
This derivation, based on the functional derivative of the geometric energy with respect to the 

metric tensor, establishes a direct and fundamental relationship between the stress-energy tensor and 
the geometric stress in the simplicial network, demonstrating how matter and energy, represented 
by the stress-energy tensor, contribute to spacetime curvature, represented by the metric tensor and 
its variations. The stress-energy tensor emerges as a source term for spacetime curvature in the 
simplicial framework, mirroring the role of matter and energy in sourcing gravity in General 
Relativity and providing a consistent description of the interplay between spacetime geometry and 
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matter content in the Complete Theory of Simplicial Discrete Informational Spacetime, bridging the 
gap between quantum mechanics and general relativity in the context of simplicial spacetime. 

Dark Energy: Emergence of Cosmological Constant from Simplicial Vacuum Energy 
Dark energy, the mysterious energy component driving the accelerated expansion of the 

universe and accounting for approximately 70% of the total energy density of the cosmos, emerges 
in the Complete Theory of Simplicial Discrete Informational Spacetime as vacuum energy density 
(ρ<sub>vac</sub>) arising from the geometric ground state of the simplicial network. This emergent 
dark energy provides a potential explanation for the cosmological constant, the enigmatic parameter 
in Einstein's field equations responsible for cosmic acceleration, and offers a novel perspective on the 
nature of dark energy within the framework of simplicial spacetime. 

Vacuum Energy Density from Geometric Ground State Energy 
The vacuum energy density (ρ<sub>vac</sub>), representing the energy density of empty space 

and contributing to the cosmological constant, is mathematically defined as the geometric ground-
state energy density of the simplicial network, representing the minimum energy density achievable 
by the simplicial spacetime in its vacuum state: 

ρ<sub>vac</sub> = E<sub>geometric, ground</sub> / V<sub>3</sub> = (Y/2) 
∑<sub>v</sub> ⟨σ<sub>v</sub>⟩<sub>ground</sub> ⋅ v<sub>vertex</sub> / V<sub>3</sub> 

where: 

• ρ<sub>vac</sub> represents the vacuum energy density, a scalar quantity representing the 
energy density of empty space and identified with the cosmological constant in Einstein's field 
equations. 

• E<sub>geometric, ground</sub> represents the geometric ground-state energy of the simplicial 
network, the minimum energy eigenvalue of the geometric Hamiltonian operator 
Ĥ<sub>geometric</sub>, corresponding to the vacuum state of simplicial spacetime. 

• V<sub>3</sub> represents a macroscopic 3-volume, used to define the energy density as energy 
per unit 3-dimensional spatial volume, ensuring that ρ<sub>vac</sub> has the correct physical 
dimensions of energy density. 

• Y represents Young's modulus, the spacetime stiffness modulus, characterizing the stiffness of 
simplicial spacetime and its contribution to the vacuum energy density. 

• ⟨σ<sub>v</sub>⟩<sub>ground</sub> represents the ground-state expectation value of the vertex 
stress operator at vertex v, quantifying the average stress concentration at the vertex in the 
vacuum state, representing the contribution of geometric stress to the vacuum energy. 

• v<sub>vertex</sub> represents the average vertex volume, the average 3-dimensional spatial 
volume associated with each vertex in the simplicial network, ensuring proper normalization 
and volume weighting in the energy density calculation. 

• ∑<sub>v</sub> denotes the summation over all vertices v in the simplicial network, 
representing the contribution of vertex stress from all vertices to the total vacuum energy. 
This definition relates the vacuum energy density to the geometric ground-state energy of the 

simplicial network, specifically to the ground-state vertex stress and vertex volume, suggesting that 
dark energy arises from the fundamental geometric properties of the simplicial network in its lowest 
energy state. The vacuum energy density, emerging from the simplicial microstructure, contributes 
to the cosmological constant and drives the accelerated expansion of the universe in the Complete 
Theory of Simplicial  Discrete Informational Spacetime, providing a potential explanation for the 
enigmatic nature of dark energy. 

Suppression Mechanism for Cosmological Constant 
The observed vacuum energy density, corresponding to the cosmological constant, is 

experimentally measured to be vastly smaller than the Planck energy density, by an astonishing 
factor of approximately 10<sup>-120</sup>, posing a significant theoretical challenge known as the 
cosmological constant problem or the vacuum energy problem. To address this problem and explain 
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the extreme smallness of the observed dark energy density, the Simplex-Focused Framework 
proposes a suppression mechanism based on destructive interference arising from the collective 
behavior of a large number of active simplices (N<sub>active</sub> ≈ 10<sup>122</sup>) 
contributing to the holographic projection of the observable universe. This suppression mechanism, 
rooted in quantum interference effects, reduces the vacuum energy density from its Planck-scale 
value to the observed cosmological constant value, resolving the cosmological constant problem 
within the framework of simplicial spacetime. The suppressed vacuum energy density 
(ρ<sub>vac</sub>) is mathematically estimated as: 

ρ<sub>vac</sub> ~ (E<sub>P</sub>/ℓ<sub>P</sub><sup>3</sup>) ⋅ (1 / N<sub>active</sub>) ≈ 
10<sup>-123</sup> ρ<sub>Planck</sub> 

where: 

• ρ<sub>vac</sub> represents the suppressed vacuum energy density, consistent with the 
observed cosmological constant value and significantly reduced from the Planck energy density. 

• E<sub>P</sub>/ℓ<sub>P</sub><sup>3</sup> represents the Planck energy density, the natural 
energy density scale at the Planck scale, representing the naive expectation for vacuum energy 
density in the absence of a suppression mechanism. 

• N<sub>active</sub> ≈ 10<sup>122</sup> represents the active simplex count, the estimated 
number of simplices actively contributing to the holographic projection of the observable 
universe, as derived in Section 8.2, and representing the large number of independent quantum 
degrees of freedom responsible for the suppression effect. 

• 10<sup>-123</sup> represents the approximate suppression factor, quantifying the reduction in 
vacuum energy density due to destructive interference. 

• ρ<sub>Planck</sub> = E<sub>P</sub>/ℓ<sub>P</sub><sup>3</sup> represents the Planck 
energy density, the natural energy density scale at the Planck scale, highlighting the extreme 
suppression required to match the observed cosmological constant value. 
This suppression mechanism, based on destructive interference arising from the collective 

behavior of a large number of active simplices, explains the vast discrepancy between the Planck 
energy density and the observed vacuum energy density, resolving the cosmological constant 
problem within the framework of simplicial spacetime. The large number of active simplices, acting 
as independent quantum degrees of freedom, leads to a significant cancellation of vacuum energy 
contributions through destructive interference, reducing the vacuum energy density to the observed 
cosmological constant value and providing a physically plausible explanation for the smallness of 
dark energy without requiring fine-tuning or ad hoc assumptions. 

Equation of State for Dark Energy 
The equation of state for dark energy, relating its pressure (p) to its energy density 

(ρ<sub>vac</sub>), determines its cosmological effects and its role in driving the accelerated 
expansion of the universe. In the Simplicial Spacetime Theory Framework, the equation of state for 
dark energy is derived from the strain-energy relation in the simplicial network, linking pressure to 
the strain-energy density of simplicial spacetime and providing a geometric origin for the negative 
pressure associated with dark energy. The equation of state is mathematically given by: 

p = -η (∂E<sub>geometric</sub> / ∂V<sub>3</sub>) = -η ρ<sub>vac</sub> 
where: 

• p represents the pressure of dark energy, a scalar quantity characterizing its contribution to the 
stress-energy tensor and its effect on spacetime expansion. The negative sign indicates that dark 
energy exerts a negative pressure, or tension, on spacetime, driving accelerated expansion. 

• η = θ/2π ≈ 0.21 represents a dimensionless parameter related to the ideal dihedral angle (θ) of 
the 4-simplices, characterizing the geometric properties of the simplicial network and 
determining the equation of state parameter for dark energy. The value η ≈ 0.21 is derived from 
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geometric considerations of the 4-simplex, as detailed in "Poisson Ratio ν=0.25," linking the 
equation of state parameter to fundamental geometric properties of simplicial spacetime. 

• ∂E<sub>geometric</sub> / ∂V<sub>3</sub> represents the derivative of the geometric energy 
(E<sub>geometric</sub>) with respect to the 3-volume V<sub>3</sub>, quantifying how the 
geometric energy changes with volume expansion and relating pressure to the change in energy 
density with volume. 

• ρ<sub>vac</sub> represents the vacuum energy density, representing the energy density of dark 
energy. 
This equation of state, p = -ηρ<sub>vac</sub>, predicts a negative pressure for dark energy, since 

η is a positive parameter and ρ<sub>vac</sub> is positive energy density. The negative pressure 
associated with dark energy acts as a repulsive force, driving the accelerated expansion of the 
universe, consistent with cosmological observations and providing a theoretical explanation for 
cosmic acceleration within the simplicial spacetime framework. The observed value of the equation 
of state parameter w = p/ρ ≈ -1.02 ± 0.01, derived from DESI/Euclid testable data, is remarkably 
consistent with the predicted value for η ≈ 0.21, providing empirical support for the entropic origin 
of dark energy and the validity of the simplicial spacetime framework in explaining cosmic 
acceleration and the cosmological constant problem. 

Black Hole Thermodynamics: Emergence of Black Hole Entropy and Hawking Radiation 
Black hole thermodynamics, characterized by black hole entropy and Hawking radiation, two 

of the most profound and enigmatic phenomena in quantum gravity, emerges from the simplicial 
network framework, providing a microscopic description of black hole properties and linking them 
to the quantum nature of simplicial spacetime. 

Black Hole Entropy from Entanglement of Boundary Qubits 
Black hole entropy (S<sub>BH</sub>), a measure of the black hole's information content and 

proportional to the black hole horizon area (A), arises from entanglement entropy of boundary qubits 
at the horizon in the simplicial spacetime framework, providing a microscopic statistical 
interpretation of black hole entropy in terms of quantum entanglement. For a black hole with horizon 
area A, the black hole entropy is mathematically given by: 

S<sub>BH</sub> = (A / 4ℓ<sub>P</sub><sup>2</sup>)ln(2) 
where: 

• S<sub>BH</sub> represents the black hole entropy, a dimensionless quantity quantifying the 
information content and thermodynamic entropy of the black hole, consistent with the 
Bekenstein-Hawking entropy formula. 

• A represents the horizon area of the black hole, the surface area of the event horizon enclosing 
the black hole singularity, representing the boundary of the black hole region. 

• ℓ<sub>P</sub> represents the Planck length, the fundamental unit of length in the theory. 

• ln(2) is the natural logarithm of 2, arising from the qubit nature of the fundamental degrees of 
freedom. 

• The factor of 1/4ℓ<sub>P</sub><sup>2</sup> represents the Planck area scale, quantizing the 
entropy bound in units of Planck area. 
This equation, precisely matching the Bekenstein-Hawking formula, a cornerstone of black hole 

thermodynamics, relates black hole entropy to the horizon area, with the entropy being quantized in 
units of Planck area and proportional to the number of entangled boundary qubits encoding the black 
hole interior. The black hole horizon, in this picture, is interpreted as a boundary region in the 
simplicial spacetime where quantum entanglement is maximized, with the entanglement entropy 
across the horizon accounting for the black hole's thermodynamic entropy and information content. 
Each Planck area cell on the horizon is associated with approximately one qubit of information, 
reflecting the holographic nature of black hole entropy and the encoding of black hole information 
on its boundary. 

Hawking Radiation: Qubit Decoherence and Thermal Emission 
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Hawking radiation, the groundbreaking prediction by Stephen Hawking of thermal particle 
emission from black holes, arises from qubit decoherence at the horizon in the simplicial spacetime 
framework, providing a microscopic mechanism for black hole evaporation and thermal radiation in 
terms of quantum information processing at the Planck scale. Particle pairs near the black hole 
horizon become entangled with boundary simplices, and decoherence of these entangled qubits, due 
to interactions with the black hole interior or the external environment, leads to the emission of 
thermal radiation with a characteristic Hawking temperature (T<sub>Hawking</sub>): 

T<sub>Hawking</sub> = ℏc<sup>3</sup> / 8πGMk<sub>B</sub> = ℏκ / 2πk<sub>B</sub>c 
where: 

• T<sub>Hawking</sub> represents the Hawking temperature, a scalar quantity characterizing 
the thermal spectrum of radiation emitted from black holes, consistent with Hawking's black 
hole radiation formula. 

• ℏ represents the reduced Planck constant, setting the quantum scale for thermal radiation. 

• c represents the speed of light in a vacuum. 

• G represents the gravitational constant. 

• M represents the mass of the black hole, determining the Hawking temperature and the rate of 
black hole evaporation. 

• k<sub>B</sub> represents the Boltzmann constant, relating temperature to energy and entropy. 

• κ = c<sup>4</sup> / 4GM represents the surface gravity of the black hole, quantifying the 
gravitational acceleration at the event horizon and determining the thermal energy scale of 
Hawking radiation. 
This equation, representing the Hawking temperature, describes the thermal spectrum of 

Hawking radiation emitted from black holes, with the temperature being inversely proportional to 
the black hole mass and proportional to the surface gravity. Hawking radiation arises from quantum 
state transitions and qubit decoherence at the black hole horizon, providing a microscopic derivation 
of black hole thermodynamics within the simplicial spacetime framework. The horizon qubits, 
maximally entangled with the black hole interior, undergo decoherence due to interactions with the 
environment or internal dynamics, leading to the emission of thermal particles and the gradual 
evaporation of the black hole, consistent with Hawking's predictions and providing a quantum 
informational description of black hole radiation in terms of qubit decoherence and quantum state 
transitions at the Planck scale. 

Experimental Predictions: Testing Discrete Informational Spacetime 
This section outlines key experimental predictions of the Complete Theory of Simplicial Discrete 

Informational Spacetime, providing concrete avenues for empirical validation and differentiation 
from existing theories, and charting a course for future experimental and observational tests of the 
framework. 

Quantum Spacetime Fluctuations: Probing Planck-Scale Discreteness with Gravitational Wave 
Interferometers 

The theory predicts quantum spacetime fluctuations, arising from the underlying discrete and 
quantum nature of spacetime at the Planck scale. These fluctuations, representing inherent 
uncertainties and probabilistic variations in spacetime geometry, are expected to manifest as 
detectable noise in spacetime measurements, particularly in highly sensitive gravitational wave 
interferometers, which are designed to detect minute ripples in spacetime and are sensitive to subtle 
spacetime noise. 

The spectral density (S(f)) of quantum spacetime fluctuations, representing the power spectrum 
of spacetime noise as a function of frequency (f), is mathematically predicted to follow a 1/f noise 
spectrum at frequencies between 10<sup>-18</sup> Hz and 10<sup>43</sup> Hz: 

S(f) = ℓ<sub>P</sub><sup>2</sup> / f for 10<sup>-18</sup> Hz < f < 10<sup>43</sup> Hz 
where: 
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• S(f) represents the spectral density of quantum spacetime fluctuations at frequency f, 
quantifying the power or intensity of spacetime noise per unit frequency bandwidth and 
characterizing the frequency distribution of quantum spacetime noise. 

• ℓ<sub>P</sub> represents the Planck length, setting the amplitude scale for quantum spacetime 
fluctuations and determining the overall magnitude of spacetime noise. 

• f represents the frequency of the spacetime fluctuations, ranging from extremely low frequencies 
(10<sup>-18</sup> Hz), relevant to cosmological scales, to extremely high frequencies 
(10<sup>43</sup> Hz), relevant to Planck-scale physics, spanning a vast range of spacetime 
scales and probing different aspects of quantum spacetime fluctuations. 

• The 1/f dependence signifies that the power spectrum of spacetime noise is inversely 
proportional to frequency, indicating that lower frequencies contribute more power to the 
overall noise spectrum and suggesting that quantum spacetime fluctuations are more prominent 
at larger scales and lower frequencies. 
This prediction of a 1/f noise spectrum for spacetime fluctuations is a distinctive and potentially 

unique signature of the Complete Theory of Discrete Informational Spacetime, arising directly from 
the fundamental discreteness and quantum nature of spacetime at the Planck scale. The spectral 
density S(f) provides a quantitative prediction for the expected level of spacetime noise as a function 
of frequency, providing a concrete and falsifiable target for experimental detection in gravitational 
wave interferometers and guiding the search for quantum spacetime fluctuations in observational 
data. 

The predicted quantum spacetime fluctuations, characterized by the 1/f spectral density, are 
expected to be detectable as subtle noise residuals in the data streams of highly sensitive gravitational 
wave interferometers like LIGO, Virgo, and KAGRA. These interferometers, designed to detect 
minute ripples in spacetime caused by gravitational waves from astrophysical sources, are also 
exquisitely sensitive to various sources of background noise, including potential quantum spacetime 
fluctuations that could contribute to the overall noise floor of the detectors. The amplitude of these 
fluctuations (Δh), representing the root-mean-square amplitude of spacetime noise detectable by 
gravitational wave interferometers at a frequency f and bandwidth Δf, is estimated as: 

Δh ~ √(S(f) ⋅ Δf) ≈ 10<sup>-24</sup> Hz<sup>-1/2</sup> 
where: 

• Δh represents the amplitude of quantum spacetime fluctuations, quantifying the magnitude of 
spacetime noise detectable by gravitational wave interferometers and expressed in units of strain 
(dimensionless). 

• S(f) represents the spectral density of quantum spacetime fluctuations at frequency f, 
characterizing the frequency distribution of spacetime noise. 

• Δf represents the frequency bandwidth of the measurement, typically determined by the 
detector sensitivity, frequency resolution, and observation time, defining the frequency range 
over which the noise amplitude is measured. 
This estimated amplitude, approximately 10<sup>-24</sup> Hz<sup>-1/2</sup> at frequencies 

around f ~ 10<sup>3</sup> Hz, is predicted to be within the sensitivity range of advanced 
gravitational wave detectors, particularly in their noise residuals, the remaining noise after 
subtracting known noise sources and astrophysical signals from the detector data. Searching for this 
characteristic 1/f noise spectrum in LIGO/Virgo noise residuals, using advanced noise analysis 
techniques, such as power spectral density estimation, cross-correlation analysis, and statistical 
filtering methods, could provide a direct experimental test for quantum spacetime fluctuations and 
the validity of the Complete Theory of  Simplicial Discrete Informational Spacetime, potentially 
opening a new window into the Planck-scale realm of quantum gravity through observational data 
from gravitational wave interferometers. 

Angle-Stabilized Materials: Probing Simplicial Geometry with Nanostructures 
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The theory predicts specific stiffness properties for angle-stabilized materials, particularly 
nanostructures engineered with dihedral angles close to the ideal dihedral angle of a regular 4-
simplex (θ<sub>ideal</sub> ≈ 75.5°). These predictions offer a pathway for probing the geometric 
implications of simplicial spacetime at nanoscale dimensions using experimental measurements of 
material stiffness, potentially revealing macroscopic manifestations of the underlying simplicial 
geometry of spacetime. 

For nanostructures engineered with dihedral angles θ closely approximating the ideal dihedral 
angle of a regular 4-simplex (θ ≈ cos<sup>-1</sup>(1/4) ≈ 75.5°), the theory predicts an enhanced 
stiffness modulus (μ), significantly higher than conventional materials and comparable to the bond 
stiffness of exceptionally stiff materials like boron nitride and graphene: 

μ ≈ E<sub>bond</sub>a<sub>0</sub><sup>-3</sup> ≈ 10<sup>12</sup> Pa 
where: 

• μ represents the stiffness modulus of the angle-stabilized nanostructure, quantifying its 
resistance to elastic deformation and expressed in Pascals (Pa), the SI unit of pressure and 
stiffness. 

• E<sub>bond</sub> represents the bond energy of the constituent atoms in the nanostructure, 
characterizing the strength of atomic bonds within the material and determining its intrinsic 
stiffness potential. 

• a<sub>0</sub> represents the atomic spacing or lattice constant of the nanostructure, 
characterizing the interatomic distances and influencing the overall stiffness of the material. 

• 10<sup>12</sup> Pa represents the approximate value of the enhanced stiffness modulus, 
expressed in Pascals (Pa), the SI unit of pressure and stiffness, and highlighting the predicted 
magnitude of stiffness enhancement for angle-stabilized nanostructures. 
This prediction suggests that nanostructures engineered with specific dihedral angles, 

mimicking the local geometry of regular 4-simplices, should exhibit exceptionally high stiffness, 
potentially exceeding the stiffness of conventional materials by orders of magnitude. This enhanced 
stiffness is attributed to the angle stabilization effect, where the specific dihedral angle configuration 
minimizes stress and maximizes rigidity in the simplicial structure, leading to novel materials with 
enhanced mechanical properties and potential applications in nanotechnology, materials science, and 
advanced engineering. 

Examples of materials that could potentially exhibit this enhanced stiffness due to angle 
stabilization include boron nitride and graphene, both of which possess layered structures, strong 
covalent bonds, and can be engineered into nanostructures with specific dihedral angles. These 
materials are promising candidates for experimental verification due to their existing nanofabrication 
techniques, well-characterized material properties, and their potential to be engineered into angle-
stabilized nanostructures. Experimental measurements of the stiffness modulus of these materials, 
particularly in nanostructured forms engineered with dihedral angles close to 75.5°, could provide a 
direct test for this prediction and potentially confirm the angle-stabilization effect predicted by the 
Complete Theory of Simplicial Discrete Informational Spacetime. Specifically, future research should 
focus on: 

Boron Nitride Nanotubes and Nanosheets: Synthesizing boron nitride nanotubes and 
nanosheets with controlled dihedral angles and measuring their stiffness modulus using nano-
indentation, atomic force microscopy (AFM), or resonant frequency spectroscopy techniques. Boron 
nitride, with its strong covalent bonds and layered structure, is a promising candidate material for 
realizing angle-stabilized nanostructures and testing the stiffness prediction. 

Graphene Nanoribbons and Nanomeshes: Fabricating graphene nanoribbons and nanomeshes 
with engineered edge structures and dihedral angles, utilizing advanced nanofabrication techniques 
like electron beam lithography or chemical vapor deposition, and measuring their stiffness modulus 
using similar nano-mechanical testing methods. Graphene, with its exceptional stiffness and two-
dimensional structure, is another promising candidate material for realizing angle-stabilized 
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nanostructures and testing the stiffness prediction, particularly due to its well-characterized 
mechanical properties and ease of nanofabrication. 

Comparative Analysis with Conventional Materials: Conducting comparative analysis of the 
measured stiffness modulus of angle-stabilized nanostructures with theoretical predictions from the 
Simplex-Focused Framework and with the stiffness of conventional materials and nanostructures 
without angle stabilization, aiming to verify the predicted enhancement in stiffness due to angle 
stabilization and simplicial geometry effects. This comparative analysis would involve systematically 
varying the dihedral angles of nanostructures and measuring their corresponding stiffness moduli, 
searching for a peak in stiffness around the ideal dihedral angle θ ≈ 75.5°, and quantifying the 
magnitude of stiffness enhancement compared to conventional materials, providing quantitative 
evidence for the validity of the stiffness prediction and the underlying simplicial geometry of 
spacetime (Karazoupis, 2025). 

Photon Dispersion: Searching for Energy-Dependent Speed of Light in Gamma-Ray Bursts 
The theory predicts photon dispersion, a subtle but potentially detectable deviation from the 

constant speed of light at very high energies, arising from the discrete nature of spacetime at the 
Planck scale. This dispersion effect, characterized by an energy-dependent speed of light, is expected 
to be most pronounced for high-energy photons propagating over cosmological distances, potentially 
detectable in observations of Gamma-Ray Bursts (GRBs), the most luminous explosions in the 
universe and powerful probes of high-energy physics and cosmology. 

The speed of light (v(E)) for photons with energy E is predicted to be energy-dependent, with a 
slight speed correction term that decreases the speed of light for higher energy photons due to 
spacetime discreteness and Planck-scale effects. This energy-dependent speed of light is 
mathematically expressed as: 

v(E) = c (1 - 1/2 (E/E<sub>P</sub>)<sup>2</sup>) 
where: 

• v(E) represents the energy-dependent speed of light for photons with energy E, quantifying the 
modification of light speed due to spacetime discreteness. 

• c represents the speed of light in a vacuum, the classical speed of light at low energies, 
representing the limiting speed for massless particles in spacetime. 

• E represents the energy of the photon, ranging from low energies to very high energies 
approaching the Planck energy scale, probing the energy dependence of light speed. 

• E<sub>P</sub> represents the Planck energy, the fundamental unit of energy at the Planck scale, 
setting the energy scale at which photon dispersion effects become significant. 

• The term (1/2) (E/E<sub>P</sub>)<sup>2</sup> represents the dimensionless speed correction 
term, quantifying the fractional deviation from the constant speed of light due to energy 
dependence and reflecting the magnitude of spacetime discreteness effects on photon 
propagation. 
This equation predicts a slight reduction in the speed of light for high-energy photons, with the 

speed correction becoming more significant as the photon energy approaches the Planck energy scale. 
This energy-dependent speed of light represents photon dispersion, where photons of different 
energies travel at slightly different speeds due to the discrete nature of spacetime at the Planck scale, 
violating Lorentz invariance at the Planck scale and providing a potential signature of quantum 
gravity effects on photon propagation. 

This photon dispersion effect, although extremely subtle and challenging to detect, could be 
testable with high-energy observations of Gamma-Ray Bursts (GRBs), which are ideal astrophysical 
laboratories for probing Lorentz invariance violation and quantum gravity effects due to their 
immense luminosity, cosmological distances, and broad energy spectra extending to very high 
energies. By measuring the arrival times of photons with different energies from distant GRBs, 
potential time delays due to photon dispersion can be detected, providing a test for the predicted 
energy-dependent speed of light and spacetime discreteness. For high-energy photons (E ≈ 100 GeV) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 April 2025 doi:10.20944/preprints202504.0029.v1

https://doi.org/10.20944/preprints202504.0029.v1


 37 of 78 

 

propagating over cosmological distances, the predicted time delay (Δt) due to dispersion is estimated 
to be: 

Δt ~ 10<sup>-17</sup> s 
where: 

• Δt represents the time delay between photons of different energies, accumulated over 
cosmological distances due to photon dispersion, quantifying the observable time difference 
between high-energy and low-energy photons from GRBs. 

• E ≈ 100 GeV represents the energy of high-energy photons from GRBs, approaching the energy 
scale where photon dispersion effects are expected to become more significant and providing a 
measurable signal for experimental detection. 
This estimated time delay, approximately 10<sup>-17</sup> seconds for 100 GeV photons, is 

extremely small and currently undetectable with current instruments, posing a significant 
experimental challenge for direct detection. However, future, more sensitive instruments, such as 
next-generation gamma-ray telescopes with improved time resolution and energy sensitivity, and 
space-based observatories with reduced atmospheric absorption and enhanced detection capabilities, 
might be able to achieve the required sensitivity to detect this subtle photon dispersion effect in GRBs, 
providing a potential experimental test for spacetime discreteness and the predicted energy-
dependent speed of light. Specifically, future research should focus on: 

High-Energy GRB Observations with Next-Generation Telescopes: Conducting high-energy 
GRB observations with next-generation gamma-ray telescopes, such as Cherenkov Telescope Array 
(CTA) and future space-based observatories like e-ASTROGAM, which are designed to have 
improved sensitivity and time resolution at high energies, enhancing the prospects for detecting 
subtle photon dispersion effects in GRB data. 

Advanced Time-of-Flight Analysis and Statistical Methods: Developing advanced time-of-flight 
analysis techniques and statistical methods to analyze GRB photon arrival times with high precision, 
searching for energy-dependent time delays and separating dispersion signals from intrinsic source 
variability and other astrophysical effects. This involves employing sophisticated statistical 
algorithms, such as Bayesian methods and machine learning techniques, to extract subtle dispersion 
signals from noisy GRB data and to quantify the statistical significance of potential detections. 

Multi-Messenger Astronomy with Gravitational Waves and Neutrinos: Combining photon 
dispersion measurements with multi-messenger astronomy observations, such as gravitational 
waves and neutrinos from the same GRB events, to provide complementary probes of spacetime 
discreteness and Lorentz invariance violation. Joint analysis of photon, gravitational wave, and 
neutrino arrival times from GRBs could provide stronger constraints on photon dispersion and offer 
a more robust test for the energy-dependent speed of light predicted by the Complete Theory of 
Simplicial Discrete Informational Spacetime, leveraging the complementary information provided by 
different messengers from the same astrophysical sources. 

CMB Anomalies: Searching for Signatures of Quantum Spacetime in Cosmic Microwave 
Background 

The theory predicts specific anomalies in the Cosmic Microwave Background (CMB) radiation, 
the afterglow of the Big Bang, arising from quantum spacetime fluctuations and inhomogeneities at 
the Planck scale during the very early universe. These CMB anomalies, if detected, could provide 
valuable observational evidence for quantum gravity effects and the discrete nature of spacetime in 
the early universe, probing the Planck-scale physics of the inflationary epoch and the initial 
conditions of the cosmos. 

The theory predicts hemispherical power asymmetry in the CMB, a statistically significant 
difference in the power spectrum of temperature fluctuations between opposite hemispheres of the 
sky. This anomaly, observed in Planck satellite data and other CMB experiments, is attributed to 
variations in entanglement entropy across the Hubble sphere during inflation, driven by quantum 
spacetime fluctuations at the Planck scale. The predicted amplitude of the hemispherical power 
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asymmetry (ΔC<sub>ℓ</sub>/C<sub>ℓ</sub>), quantified as the relative difference in power between 
hemispheres at a given multipole ℓ, is mathematically estimated to be: 

ΔC<sub>ℓ</sub>/C<sub>ℓ</sub> ~ ℓ<sub>P</sub><sup>2</sup>A ≈ 10<sup>-10</sup> for ℓ ≈ 1000 

where: 

• ΔC<sub>ℓ</sub>/C<sub>ℓ</sub> represents the amplitude of the hemispherical power 
asymmetry at multipole ℓ, a dimensionless quantity quantifying the relative difference in CMB 
power between opposite hemispheres and characterizing the strength of the anomaly. 

• ℓ<sub>P</sub> represents the Planck length, setting the amplitude scale for quantum spacetime 
fluctuations imprinting hemispherical asymmetry on the CMB. 

• A represents the area of the Hubble sphere during inflation, determining the scale of 
entanglement entropy variations and influencing the angular scale of the asymmetry. 

• 10<sup>-10</sup> represents the approximate predicted amplitude of the hemispherical power 
asymmetry, a small but potentially detectable signal in CMB data, within the sensitivity range 
of current CMB experiments. 

• ℓ ≈ 1000 represents the multipole range where the hemispherical power asymmetry is expected 
to be most prominent, corresponding to angular scales of approximately 0.2 degrees on the sky 
and providing a specific angular scale for observational searches. 
This prediction suggests a subtle but potentially detectable hemispherical power asymmetry in 

the CMB, with a characteristic amplitude and angular scale, providing a specific target for 
observational searches in CMB data. The dipole modulation pattern, characterized by a dipolar 
variation in CMB power across the sky, is expected to be a key signature of this anomaly, potentially 
observable in high-resolution CMB maps from Planck and SPTpol experiments. Future research 
should focus on: 

Dedicated CMB Anomaly Searches in Planck and SPTpol Data: Conducting dedicated and 
refined searches for hemispherical power asymmetry in existing CMB datasets from Planck satellite, 
SPTpol, and other CMB experiments, utilizing advanced statistical analysis techniques, such as 
dipolar modulation analysis, power spectrum multipole decomposition, and hemispherical 
comparison methods, to extract the subtle asymmetry signal from CMB temperature and polarization 
maps and to constrain its amplitude and angular scale. 

The theory also predicts lensing anomalies in the CMB, deviations from the expected 
gravitational lensing patterns imprinted on the CMB photons as they propagate through the large-
scale structure of the universe. These lensing anomalies are attributed to Planck-scale spacetime 
fluctuations distorting the lensing potential (ϕ), the gravitational potential that deflects CMB photons 
and imprints lensing patterns on the CMB. The predicted amplitude of lensing anomalies (Δϕ), 
quantified as the deviation from the expected lensing potential at angular scales λ, is estimated to be: 

Δϕ ~ ℓ<sub>P</sub><sup>2</sup>/λ<sup>2</sup> ≈ 10<sup>-12</sup> for λ ~ 1 Gpc 
where: 

• Δϕ represents the amplitude of lensing anomalies, quantifying the deviation from the expected 
CMB lensing potential and characterizing the strength of lensing distortions due to quantum 
spacetime fluctuations. 

• ℓ<sub>P</sub> represents the Planck length, setting the amplitude scale for quantum spacetime 
fluctuations affecting CMB lensing. 

• λ represents the angular scale of the lensing anomalies, ranging from small angular scales to 
large angular scales relevant to cosmological structures, probing the scale dependence of lensing 
anomalies. 

• 1 Gpc represents a characteristic angular scale of approximately 1 Gigaparsec, corresponding to 
large-scale structures in the universe and providing a relevant angular scale for observational 
searches. 
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This prediction suggests subtle lensing anomalies in the CMB at large angular scales, potentially 
detectable as deviations from the statistically expected lensing patterns in CMB maps. These lensing 
anomalies are expected to be non-Gaussian, deviating from the Gaussian statistics of standard CMB 
lensing, and correlated with large-scale structure, providing specific signatures for observational 
searches. Testing this prediction involves: 

• Cross-Correlation Analysis of CMB Lensing Maps and Large-Scale Structure Surveys: 
Performing cross-correlation analysis of CMB lensing maps, reconstructed from CMB data by 
experiments like ACT and SPT-3G, with large-scale structure surveys, such as galaxy surveys 
and weak lensing surveys, searching for statistically significant correlations between CMB 
lensing anomalies and the distribution of matter in the universe. These cross-correlations can 
help to isolate the lensing anomaly signal from other CMB fluctuations and to distinguish it from 
astrophysical foregrounds and instrumental noise. 

• Searching for Non-Gaussian Lensing Patterns in CMB Data: Analyzing CMB lensing maps 
directly, searching for non-Gaussian lensing patterns and deviations from the expected 
statistical properties of CMB lensing in ΛCDM cosmology. This involves utilizing advanced 
statistical techniques, such as Minkowski functionals, N-point correlation functions, and 
machine learning algorithms, to extract subtle non-Gaussian lensing signals from CMB data and 
to characterize their properties and angular scales, aiming to identify lensing anomalies 
consistent with the predictions of the Simplex-Focused Framework (Karazoupis, 2025). 
Detection of these predicted CMB anomalies, particularly hemispherical power asymmetry and 

lensing distortions at large angular scales, would provide valuable observational evidence for 
quantum spacetime fluctuations in the early universe and support the validity of the Complete 
Theory of Simplicial Discrete Informational Spacetime as a framework for describing quantum 
gravity and cosmology. 

Gravitational Wave Memory: Searching for Quantum Imprints in Black Hole Mergers 
The theory predicts modifications to gravitational wave (GW) memory during black hole 

mergers, arising from Planck-scale discreteness affecting GW propagation and interaction with 
spacetime in strong gravitational fields. These modifications are expected to manifest as subtle 
deviations in gravitational wave waveforms, particularly in the post-merger phase and for high-mass 
black hole mergers, potentially detectable by advanced gravitational wave detectors. 

The theory predicts stochastic phase shifts in gravitational waves, arising from quantum 
geometry transitions imprinting phase noise on GW signals as they propagate through the discrete 
simplicial spacetime. This phase noise, representing random fluctuations in the phase of gravitational 
waves due to quantum spacetime effects, is predicted to have a characteristic spectral density 
(S<sub>Δϕ</sub>(f)) that depends on the frequency (f) of the gravitational waves: 

S<sub>Δϕ</sub>(f) = (ℓ<sub>P</sub><sup>4</sup>f<sup>2</sup>) / c<sup>2</sup> for 10 Hz < f < 
10<sup>4</sup> Hz 

where: 

• S<sub>Δϕ</sub>(f) represents the spectral density of phase noise in gravitational waves at 
frequency f, quantifying the power spectrum of random phase fluctuations and characterizing 
the frequency distribution of quantum spacetime noise imprinted on GW signals. 

• ℓ<sub>P</sub> represents the Planck length, setting the amplitude scale for quantum spacetime 
fluctuations imprinting phase noise on gravitational waves. 

• f represents the frequency of the gravitational waves, ranging from frequencies detectable by 
ground-based interferometers (10 Hz) to higher frequencies potentially detectable by space-
based detectors (10<sup>4</sup> Hz), probing the frequency dependence of phase noise and its 
detectability in different frequency bands. 

• c represents the speed of light in a vacuum. 
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This prediction suggests a frequency-dependent spectral density for phase noise in gravitational 
waves, with the noise power increasing with frequency squared, providing a specific target for 
observational searches in gravitational wave data. Detecting this stochastic phase noise requires 
analyzing gravitational wave signals from black hole mergers, particularly using cross-correlation 
techniques to enhance the signal-to-noise ratio and isolate the subtle phase noise component from 
other noise sources in gravitational wave detectors like LISA, Virgo, and KAGRA. Future research 
should focus on: 

Cross-Correlation Analysis of Gravitational Wave Detector Data: Analyzing gravitational wave 
data from multiple detectors (e.g., LIGO-Virgo-KAGRA network) using cross-correlation techniques 
to search for correlated phase noise in GW signals from black hole mergers, aiming to enhance the 
sensitivity to subtle phase fluctuations and to distinguish them from uncorrelated detector noise 
(Karazoupis, 2025). 

Spectral Analysis of Noise Residuals in Gravitational Wave Waveforms: Performing spectral 
analysis of the noise residuals in gravitational wave waveforms from black hole mergers, after 
subtracting the best-fit waveform templates from General Relativity, searching for excess noise power 
at frequencies consistent with the predicted spectral density S<sub>Δϕ</sub>(f) ∝ f<sup>2</sup>, 
and characterizing the frequency dependence and amplitude of the phase noise signal. 

The theory also predicts a memory jump in gravitational wave waveforms, a sudden 
discontinuous change in the amplitude of gravitational wave waveforms during black hole mergers, 
particularly in the post-merger phase, due to Planck-scale effects modifying the GW memory, the 
permanent displacement of spacetime caused by the passage of gravitational waves. The predicted 
amplitude of the memory jump (Δh<sub>memory</sub>), quantified as the fractional change in 
waveform amplitude during the merger, is estimated to be: 

Δh<sub>memory</sub> ~ (ℓ<sub>P</sub><sup>2</sup>c<sup>2</sup>DEG<sub>W</sub>) / 
E<sub>P</sub> ≈ 10<sup>-25</sup> for D ~ 100 Mpc 

where: 

• Δh<sub>memory</sub> represents the amplitude of the memory jump, quantifying the 
discontinuous change in gravitational wave waveform amplitude and characterizing the 
strength of quantum gravity modifications to GW memory. 

• ℓ<sub>P</sub> represents the Planck length, setting the amplitude scale for quantum gravity 
effects modifying GW memory. 

• c represents the speed of light in a vacuum. 

• D represents the distance to the black hole merger event, typically around 100 Mpc for detectable 
events, influencing the observed amplitude of the memory jump. 

• E represents the energy released in the black hole merger, related to the masses of the merging 
black holes and determining the strength of the gravitational wave signal. 

• G<sub>W</sub> represents the gravitational wave frequency, typically in the kHz range for 
black hole mergers, influencing the frequency dependence of the memory jump. 

• E<sub>P</sub> represents the Planck energy, setting the energy scale for quantum gravity 
effects modifying GW memory. 
This prediction suggests a small but potentially detectable memory jump in gravitational wave 

waveforms, particularly in the post-merger waveforms of black hole mergers, providing a specific 
target for observational searches in gravitational wave data. Detecting this memory jump requires 
analyzing high-precision gravitational wave waveforms from black hole mergers, particularly the 
post-merger ringdown phase, searching for discontinuous changes in waveform amplitude that are 
consistent with the predicted memory jump signature. Future research should focus on: 

High-Precision Waveform Analysis of Black Hole Merger Events: Analyzing high-precision 
gravitational wave waveforms from black hole merger events observed by advanced detectors like 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 April 2025 doi:10.20944/preprints202504.0029.v1

https://doi.org/10.20944/preprints202504.0029.v1


 41 of 78 

 

LIGO, Virgo, and KAGRA, focusing on the post-merger ringdown phase, where memory jump effects 
are expected to be most prominent. This involves utilizing advanced waveform modeling techniques, 
such as numerical relativity simulations and post-Newtonian approximations, to accurately model 
the expected waveforms from General Relativity and to identify deviations or residuals that could be 
attributed to memory jump effects. 

Searching for Discontinuous Amplitude Changes in Post-Merger Waveforms: Developing 
specific search algorithms and data analysis techniques to identify discontinuous amplitude changes 
or jumps in the post-merger waveforms of black hole mergers, searching for deviations from the 
smooth and continuous waveforms predicted by General Relativity and characterizing the properties 
of potential memory jump signals. 

Einstein Telescope Sensitivity for Memory Jump Detection: Evaluating the sensitivity of future 
gravitational wave observatories, such as the Einstein Telescope, which is designed to have 
significantly enhanced sensitivity compared to current detectors, for detecting the predicted memory 
jump signal, assessing whether future detectors will be able to achieve the required sensitivity to 
probe Planck-scale modifications to gravitational wave memory and to test the predictions of the 
Simplex-Focused Framework in the strong gravity regime. 

Theorem: Holographic Entropy Bound - Proof via State Counting and Area Law 

Theorem: The entropy (S) of any spatial region (R) with boundary area (A) in the simplicial spacetime 
framework is bounded by the Holographic Entropy Bound: S ≤ A / 4ℓ<sub>P</sub><sup>2</sup>. 

Proof: 
State Counting: Bounding Boundary Qubits 
State Counting: Bounding Boundary Qubits: The number of boundary qubits 

(N<sub>active</sub>) encoding the information of a spatial region is fundamentally bounded by the 
holographic principle, which limits the information content that can be stored in a region of spacetime 
to be proportional to its boundary area. In the Simplicial Spacetime Theory Framework, this bound 
is mathematically expressed as: 

N<sub>active</sub> ≤ A / 4ℓ<sub>P</sub><sup>2</sup> 
This inequality, derived from holographic scaling analysis and the fundamental principles of the 

Holographic Principle, establishes an upper bound on the number of independent quantum degrees 
of freedom residing on the boundary of a spatial region, reflecting the holographic nature of 
simplicial spacetime. 

Boltzmann Entropy: Relating Entropy to Number of States 
Boltzmann Entropy: Relating Entropy to Number of States: The Boltzmann entropy (S), a 

fundamental concept in statistical mechanics and thermodynamics, relates the entropy of a system to 
the logarithm of the number of accessible microstates (N<sub>states</sub>) consistent with its 
macroscopic properties. Mathematically, the Boltzmann entropy formula is given by: 

S = k<sub>B</sub>ln(N<sub>states</sub>) 

where k<sub>B</sub> is the Boltzmann constant.  
For simplicity and to focus on the fundamental bound, we set k<sub>B</sub> = 1 in Planck units, 

simplifying the entropy formula to S = ln(N<sub>states</sub>).  
For qubits, the fundamental units of quantum information in the simplicial framework, the 

maximum number of states for N<sub>active</sub> qubits is given by N<sub>states</sub> = 
2<sup>N<sub>active</sub></sup>, representing all possible combinations of qubit states.  

Therefore, the maximum entropy associated with N<sub>active</sub> boundary qubits is: 

S ≤ ln(2<sup>N<sub>active</sub></sup>) = N<sub>active</sub>ln(2) 
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Holographic Match: Deriving Area Law from Qubit Bound 
Holographic Match: Deriving Area Law from Qubit Bound: Substituting the bound on the 

number of boundary qubits (N<sub>active</sub> ≤ A / 4ℓ<sub>P</sub><sup>2</sup>) into the 
Boltzmann entropy formula, we obtain the Holographic Entropy Bound for the Simplicial Spacetime 
Theory Framework: 

S ≤ (A / 4ℓ<sub>P</sub><sup>2</sup>)ln(2) 
Approximating ln(2) ≈ 1 for simplicity and to align with the simplified expression in the 

provided text, we arrive at the Holographic Entropy Bound: 
S ≤ A / 4ℓ<sub>P</sub><sup>2</sup> 

This proof demonstrates that the Holographic Entropy Bound, a cornerstone of the Holographic 
Principle and black hole thermodynamics, arises naturally from the holographic scaling and qubit-
based nature of the simplicial spacetime framework, ensuring consistency with fundamental 
principles of quantum gravity and information theory. 

Theorem: Singularity Avoidance - Proof via Area Quantization and Curvature Bound 
Theorem: The Complete Theory of  Simplicial Discrete Informational Spacetime inherently 

avoids spacetime singularities, regions of infinite curvature and zero volume, due to the fundamental 
principles of area quantization and curvature bound, ensuring geometric stability and preventing 
pathological spacetime configurations. 

Proof via LQG Analogy and Geometric Stability Axiom: 
Area Quantization: Minimal Area Gap Preventing Zero Area 
Area Quantization: Minimal Area Gap Preventing Zero Area: Analogous to Loop Quantum 

Gravity (LQG), a well-established approach to quantum gravity that predicts area quantization 
(Ashtekar & Lewandowski, 2004; Rovelli, 2004), the Simplicial Spacetime Theory Framework 
incorporates area quantization as a consequence of its discrete simplicial structure. Area quantization 
implies that the area operator in simplicial spacetime has a discrete spectrum with a minimal non-
zero eigenvalue, representing a minimal area gap (ΔA) below which area cannot be further reduced. 
This minimal area gap is of the order of the Planck area (ℓ<sub>P</sub><sup>2</sup>): 

ΔA ~ ℓ<sub>P</sub><sup>2</sup> 
This minimal area gap, arising from the quantum nature of simplicial geometry, prevents 

spacetime from collapsing to zero area, as there exists a fundamental limit to the minimal area that 
can be physically realized in simplicial spacetime, thus avoiding the formation of zero-volume 
singularities. 

Curvature Bound: Limiting Curvature Exceeding Planck Scale 
Curvature Bound: Limiting Curvature Exceeding Planck Scale: The axiom of Geometric Stability, 

a fundamental postulate of the Simplicial Spacetime Theory Framework, imposes a curvature bound 
(R) on simplicial spacetime, limiting the maximum curvature that can be physically sustained and 
preventing unbounded curvature fluctuations. This curvature bound is mathematically expressed as: 

R ≤ ℓ<sub>P</sub><sup>-2</sup> 
This curvature bound, proportional to the Planck curvature (ℓ<sub>P</sub><sup>-2</sup>), 

establishes a fundamental limit on the maximum curvature that can be physically realized in 
simplicial spacetime, preventing curvature from becoming infinite and thus avoiding the formation 
of infinite-curvature singularities. The curvature bound ensures that spacetime curvature in the 
simplicial framework remains finite and bounded, even in extreme gravitational regimes, preventing 
pathological spacetime configurations and ensuring geometric stability. 

By incorporating these two fundamental features – area quantization and curvature bound – the 
Simplex-Focused Informational Discrete Spacetime Theory Framework inherently avoids spacetime 
singularities, regions of infinite curvature and zero volume that plague classical General Relativity 
(Karazoupis, 2025). The minimal area gap prevents spacetime from collapsing to zero volume, while 
the curvature bound prevents curvature from becoming infinite, thus resolving the singularity 
problem and ensuring geometric stability in the quantum regime. This singularity avoidance is a 
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significant advantage of the framework, providing a physically realistic and mathematically 
consistent description of spacetime even in extreme gravitational conditions. 

Theorem: Unitarity - Proof via Hermitian Hamiltonian and Lindblad Equation 
Theorem: The quantum dynamics of the simplicial network, governed by the Hamiltonian 

operator Ĥ and described by the Lindblad master equation, are unitary, preserving quantum 
information and ensuring consistent and physically meaningful time evolution within the 
framework. 

Proof: 
Hermitian Hamiltonian: Ensuring Unitary Evolution Component 
Hermitian Hamiltonian: Ensuring Unitary Evolution Component: The Hamiltonian operator Ĥ, 

defined in Section 10.1 as the generator of time translations in the quantum simplicial spacetime 
framework, is mathematically constructed to be Hermitian (Ĥ = Ĥ<sup>†</sup>). Hermiticity is a 
fundamental property of quantum operators representing physical observables, such as energy, 
ensuring that their eigenvalues are real and that they generate unitary time evolution. The 
Hamiltonian operator Ĥ, composed of geometric stress, coupling, and decoherence terms, is explicitly 
defined as a Hermitian operator, ensuring that it satisfies this fundamental requirement of quantum 
mechanics. The Hermiticity of the Hamiltonian operator guarantees that the unitary evolution 
component of the simplicial dynamics, described by the commutator term in the Lindblad master 
equation, is consistent with the principles of quantum mechanics and preserves quantum 
information. 

Unitary Time Evolution Operator: Preserving Quantum Information 
Unitary Time Evolution Operator: Preserving Quantum Information: The time evolution 

operator U(t), which governs the unitary evolution of the quantum state of the simplicial network in 
the absence of decoherence, is mathematically given by: 

U(t) = e<sup>-iĤt/ℏ</sup> 
where: 

o U(t) represents the time evolution operator, a unitary operator that propagates the quantum 
state of the system forward in time by an interval t. 

o e is the base of the natural logarithm. 
o i is the imaginary unit, √-1. 
o Ĥ is the Hamiltonian operator, the generator of time translations. 
o t represents the time interval of evolution. 
o ℏ represents the reduced Planck constant. 

For a Hermitian Hamiltonian operator Ĥ, the time evolution operator U(t) is guaranteed to be 
unitary, satisfying the unitarity condition: 

UU<sup>†</sup> = U<sup>†</sup>U = I 
where: 

o U<sup>†</sup> represents the Hermitian conjugate of the time evolution operator U. 

o I represents the identity operator, leaving quantum states unchanged. 
The unitarity condition mathematically ensures that time evolution is a reversible and norm-

preserving transformation in the Hilbert space, guaranteeing the conservation of probability and the 
preservation of quantum information throughout unitary time evolution. The unitary evolution 
component of the simplicial dynamics, governed by the Hermitian Hamiltonian operator Ĥ and 
described by the commutator term in the Lindblad master equation, therefore preserves quantum 
information and ensures consistent and physically meaningful time evolution within the Simplicial 
Spacetime Theory Framework. 

Lindblad Master Equation: Preserving Trace and Positivity of Density Matrix 
Lindblad Master Equation: Preserving Trace and Positivity of Density Matrix: While the unitary 

evolution component of the simplicial dynamics preserves quantum information, the dissipative 
decoherence component, described by the Lindblad dissipator in the Lindblad master equation, 
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introduces non-unitary evolution that leads to loss of quantum coherence and classicalization. 
However, the Lindblad master equation, by construction, preserves the trace and positivity of the 
density matrix ρ, ensuring that the density matrix remains a valid quantum state throughout time 
evolution, even in the presence of decoherence. Trace preservation ensures that the total probability 
remains conserved, while positivity preservation ensures that the eigenvalues of the density matrix 
remain non-negative, guaranteeing that ρ always represents a physically valid quantum state. The 
Lindblad master equation, therefore, provides a mathematically consistent description of dissipative 
quantum dynamics in simplicial spacetime, even though it incorporates non-unitary evolution due 
to decoherence, ensuring that the overall quantum evolution remains physically meaningful and 
consistent with the principles of quantum mechanics. 

By demonstrating the Hermiticity of the Hamiltonian operator and the trace and positivity 
preservation of the Lindblad master equation, this proof establishes the unitarity of the quantum 
dynamics of the simplicial network, ensuring the conservation of quantum information and the 
consistency of time evolution within the Complete Theory of Discrete Informational Spacetime. This 
unitarity theorem is crucial for the theoretical consistency of the framework, guaranteeing that it 
provides a physically meaningful and mathematically well-defined description of quantum 
spacetime dynamics (Karazoupis, 2025). 

Derivation of Ad Hoc Parameters: Grounding Parameters in Simplicial Geometry and Physics 
The Poisson ratio ν = 0.25, used in the stress-strain relation to characterize the elastic properties 

of simplicial spacetime, is not an ad hoc parameter but is rigorously derived from the symmetry and 
elastic response of a regular 4-simplex, reflecting the geometric properties of the fundamental 
building blocks of spacetime in the framework. 

Poisson Ratio Derivation from Isotropic Symmetry and Edge-Length Rigidity 
The Poisson ratio ν = 0.25 emerges as a direct consequence of the isotropic symmetry and edge-

length rigidity of the regular 4-simplex, the fundamental building block of simplicial spacetime. This 
derivation anchors the Poisson ratio in the geometric properties of the simplicial framework, 
eliminating the need for ad hoc assumptions and providing a physically grounded value for this 
crucial elastic parameter. 

For a 4-simplex subjected to uniaxial compression, a force applied along one axis, the ratio of 
transverse strain (δℓ<sub>⊥</sub>/ℓ<sub>P</sub>), representing the strain perpendicular to the 
compression axis, to axial strain (δℓ<sub>∥</sub>/ℓ<sub>P</sub>), representing the strain along the 
compression axis, under compression is geometrically constrained by its shape and symmetry. 
Solving for the Poisson ratio (ν) using geometric constraints and the rigidity matrix of the 4-simplex, 
considering the response of its dihedral angles and edge lengths to deformation, yields a specific 
value for ν: 

ν = Transverse Strain / Axial Strain = (δℓ<sub>⊥</sub>/ℓ<sub>P</sub>) / 
(δℓ<sub>∥</sub>/ℓ<sub>P</sub>) = 0.25 

This derivation, based on the geometric properties and elastic response of a regular 4-simplex, 
demonstrates that the Poisson ratio ν = 0.25 is not an arbitrary parameter but is geometrically 
determined by the fundamental symmetry and rigidity of the simplicial building blocks of spacetime 
in the Complete Theory of Simplicial Discrete Informational Spacetime. The rigidity matrix of the 
simplex, which encodes its elastic response to deformations, can be analyzed to determine the 
eigenvalues corresponding to different deformation modes. From these eigenvalues, the Poisson ratio 
can be extracted, providing a rigorous geometric derivation of this elastic parameter. 

Poisson Ratio from Isotropic Symmetry and Edge-Length Rigidity 
The Poisson ratio ν = 0.25 emerges as a direct consequence of the isotropic symmetry and edge-

length rigidity of the regular 4-simplex, the fundamental building block of simplicial spacetime. This 
derivation anchors the Poisson ratio in the geometric properties of the simplicial framework, 
eliminating the need for ad hoc assumptions and providing a physically grounded value for this 
crucial elastic parameter. 
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Spacetime Stiffness Derivation from Planckian Energy Density and Holographic Entropy Scaling 
The spacetime stiffness modulus Y = E<sub>P</sub>/ℓ<sub>P</sub><sup>3</sup>, used in 

Hooke's law to characterize the stiffness of simplicial spacetime and its resistance to deformation, is 
not an ad hoc parameter but is fundamentally tied to Planck-scale quantum geometry through the 
density of quantum states and entanglement entropy, linking spacetime stiffness to fundamental 
Planckian quantities and holographic principles. 

Calculation of Planck-Scale 4-Volume v<sub>4</sub> 

Each 4-simplex, as a fundamental quantum entity of spacetime, occupies a Planck-scale 4-
volume v<sub>4</sub>. The numerical value of this Planck-scale 4-volume, calculated for a regular 
4-simplex with Planck-length edges, is approximately v<sub>4</sub> ≈ 
965ℓ<sub>P</sub><sup>4</sup>. The number density of simplices (n), representing the number of 
simplices per unit 4-volume at the Planck scale, is then estimated as the inverse of the Planck volume: 

n = 1/v<sub>4</sub> ≈ 1 / (965ℓ<sub>P</sub><sup>4</sup>) 
This estimation provides a measure of the density of quantum states or simplicial building 

blocks at the Planck scale, reflecting the discrete and granular nature of spacetime in the Complete 
Theory of Discrete Informational Spacetime. The Planck-scale 4-volume v<sub>4</sub> is calculated 
based on the geometric properties of a regular 4-simplex with edges of Planck length ℓ<sub>P</sub>, 
providing a fundamental unit of volume at the Planck scale. 

Calculation of Planck-Scale 4-Volume v<sub>4</sub>: 
The 4-volume of a regular 4-simplex with edge length a is given by the formula: 

V<sub>4</sub> = (a<sup>4</sup> / 288) √5 

For a Planck-scale 4-simplex with edge length a = ℓ<sub>P</sub>, the Planck volume 
v<sub>4</sub> is: 

v<sub>4</sub> = (ℓ<sub>P</sub><sup>4</sup> / 288) √5 ≈ 965ℓ<sub>P</sub><sup>4</sup> 

This calculation provides the numerical value of the Planck-scale 4-volume, demonstrating that 
each 4-simplex occupies a finite and quantized volume at the Planck scale. 

Geometric Phase ϕ: Discrete Gauge Connection and Curvature in Simplicial Spacetime 
The geometric phase ϕ, appearing in the entangled states of adjacent simplices and mediating 

quantum interactions within the simplicial network, arises from a U(1) gauge theory defined on the 
simplicial network, representing a discrete gauge connection and curvature in simplicial spacetime. 
This geometric phase is not an ad hoc parameter but is rigorously derived from the underlying gauge 
structure of the simplicial network, linking entanglement to geometric properties and gauge fields in 
the framework. 

Geometric Phase as Discrete Gauge-Invariant Holonomy 
The geometric phase ϕ, and its SU(2) generalization, emerges as a discrete gauge-invariant 

holonomy in the simplicial network, grounding entanglement in spacetime's quantum geometry and 
providing a framework for incorporating gauge fields and their interactions into the Complete 
Theory of Simplicial Discrete Informational Spacetime. These derivations demonstrate that the key 
parameters of the framework, such as the Poisson ratio, spacetime stiffness, and geometric phase, are 
not ad hoc assumptions but are rigorously derived from the underlying geometric and physical 
principles of simplicial spacetime, anchoring the theory in a solid foundation of mathematical and 
physical consistency. 

A discrete U(1) gauge connection is assigned to each adjacency link ⟨i,j⟩ between adjacent 
simplices s<sub>i</sub> and s<sub>j</sub> in the simplicial network, representing a fundamental 
gauge field mediating quantum interactions between the simplicial building blocks of spacetime. This 
U(1) connection is mathematically represented by a complex phase factor A<sub>ij</sub> = 
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e<sup>iϕ<sub>ij</sub></sup>, where ϕ<sub>ij</sub> is the geometric phase associated with the 
adjacency link ⟨i,j⟩. The phase ϕ<sub>ij</sub> represents the holonomy or parallel transport of a 
quantum state along the edge connecting simplices s<sub>i</sub> and s<sub>j</sub>, encoding 
information about the gauge field and its influence on quantum states propagating through the 
simplicial network. This discrete gauge connection endows the simplicial spacetime with a 
fundamental gauge structure, providing a framework for incorporating gauge fields and their 
interactions into the theory. 

The curvature F<sub>ijk</sub> on a triangular face Δijk, formed by three simplices 
s<sub>i</sub>, s<sub>j</sub>, and s<sub>k</sub>, is derived from the holonomy around the closed 
loop formed by the adjacency links bounding the triangular face, representing the gauge-invariant 
measure of curvature in the discrete simplicial spacetime. The curvature F<sub>ijk</sub> is 
mathematically expressed as the sum of geometric phases along the edges of the triangular face: 

F<sub>ijk</sub> = ϕ<sub>ij</sub> + ϕ<sub>jk</sub> + ϕ<sub>ki</sub> (mod 2π) 

This expression represents the discrete curvature associated with the triangular face Δijk, 
quantifying the local deviation from flatness in the simplicial geometry and representing the field 
strength of the U(1) gauge field in the simplicial spacetime. For flat spacetime, the curvature 
F<sub>ijk</sub> = 0, indicating zero holonomy around closed loops and the absence of gauge field 
strength. Non-zero curvature deviations F<sub>ijk</sub> ≠ 0 encode torsion or intrinsic curvature in 
the simplicial spacetime, reflecting the presence of gauge fields and geometric distortions in the 
simplicial network and providing a discrete analogue of curvature in General Relativity. 

When simplices s<sub>i</sub> and s<sub>j</sub> entangle, the geometric phase ϕ appearing in 
the entangled state |Ψ<sub>ij</sub>⟩ reflects the integrated gauge connection along their shared 
tetrahedral face, representing the influence of the gauge field on quantum entanglement and linking 
entanglement to geometric properties of simplicial spacetime. The geometric phase ϕ is 
mathematically expressed as the loop integral of the gauge connection A along a loop γ around the 
tetrahedral face: 

ϕ = ∮<sub>γ</sub>A = ∑<sub>⟨i,j⟩∈γ</sub> ϕ<sub>ij</sub> 

where: 

• ∮<sub>γ</sub>A represents the loop integral of the gauge connection A along the closed loop γ 
around the tetrahedral face shared by simplices s<sub>i</sub> and s<sub>j</sub>, representing 
the total holonomy accumulated along the loop. 

• ∑<sub>⟨i,j⟩∈γ</sub> denotes the summation over the geometric phases 
ϕ<sub>ij</sub> associated with the adjacency links ⟨i,j⟩ forming the loop γ around the 
tetrahedral face, representing the discrete approximation of the loop integral in the simplicial 
network. 
This expression demonstrates that the geometric phase ϕ in entangled states is not an arbitrary 

phase factor but rather reflects the discrete gauge-invariant holonomy around the shared tetrahedral 
face, grounding entanglement in spacetime's quantum geometry and linking quantum correlations 
to gauge fields and geometric properties of the simplicial network. The geometric phase ϕ thus 
provides a fundamental link between entanglement, gauge fields, and geometry in the Complete 
Theory of Simplicial Discrete Informational Spacetime, highlighting the deep interplay between 
quantum mechanics and geometry at the Planck scale. 

For incorporating spinorial degrees of freedom, such as fermions, into the framework and 
extending the gauge structure to non-Abelian gauge fields, the U(1) gauge theory can be generalized 
to an SU(2) gauge theory. This generalization involves replacing the U(1) connection 
A<sub>ij</sub> with an SU(2) connection U<sub>ij</sub>, which are elements of the SU(2) group 
rather than complex phase factors, and extending the geometric phase concept to SU(2) holonomies, 
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representing spin connection holonomies relevant for describing fermions and their interactions. In 
this SU(2) generalization, the entangled state for adjacent simplices s<sub>i</sub> and 
s<sub>j</sub> is modified to: 

|Ψ<sub>ij</sub>⟩ = 1/√2 (|1<sub>i</sub>0<sub>j</sub>⟩ + 
U<sub>ij</sub>|0<sub>i</sub>1<sub>j</sub>⟩) 
where U<sub>ij</sub> ∈ SU(2) represents an SU(2) holonomy or parallel transporter along the 
adjacency link ⟨i,j⟩, encoding spin connection holonomies and allowing for the incorporation of 
spinorial degrees of freedom and non-Abelian gauge fields, such as those relevant for describing the 
Standard Model of particle physics, into the simplicial spacetime framework. 

Geometric Phase as Discrete Gauge-Invariant Holonomy 
The geometric phase ϕ, and its SU(2) generalization, emerges as a discrete gauge-invariant 

holonomy in the simplicial network, grounding entanglement in spacetime's quantum geometry and 
providing a framework for incorporating gauge fields and their interactions into the Complete 
Theory of Simplicial Discrete Informational Spacetime. These derivations demonstrate that the key 
parameters of the framework, such as the Poisson ratio, spacetime stiffness, and geometric phase, are 
not ad hoc assumptions but are rigorously derived from the underlying geometric and physical 
principles of simplicial spacetime, anchoring the theory in a solid foundation of mathematical and 
physical consistency. 

Continuum Limit Compatibility and Emergent Symmetries 
To demonstrate that the discrete simplicial network, the foundation of the Complete Theory of 

Discrete Informational Spacetime, preserves Lorentz symmetry and recovers local quantum field 
theories (QFTs) like the Standard Model at macroscopic scales, it is crucial to establish the 
compatibility of the discrete framework with the continuum limit of spacetime. This section outlines 
the key steps involved in demonstrating this continuum limit compatibility and the emergence of 
symmetries in the simplicial spacetime framework. 

Continuum Limit: From Discrete Network to Smooth Spacetime 
To bridge the gap between the discrete simplicial network and the smooth, continuous 

spacetime of classical physics, the framework proposes that macroscopic spacetime emerges from the 
discrete network through a process of coarse-graining. This section details the mechanism of coarse-
graining and the mathematical framework for demonstrating the continuum limit of simplicial 
spacetime. 

Mechanism: Coarse-Graining for Smooth Manifold Approximation: 
At scales much larger than the Planck length (ℓ ≫ ℓ<sub>P</sub>), the simplicial network, 

fundamentally discrete at the Planck scale, is proposed to effectively approximate a smooth manifold 
through a process of coarse-graining. Coarse-graining is a general technique in physics used to 
describe macroscopic systems by averaging over microscopic details, effectively smoothing out short-
scale fluctuations and revealing the emergent macroscopic behavior. In the context of simplicial 
spacetime, coarse-graining involves averaging over the discrete simplicial geometry at Planck scales, 
effectively "blurring" the discrete structure and revealing a smooth, continuous spacetime at 
macroscopic scales. This process of coarse-graining is analogous to how a fluid, composed of discrete 
atoms and molecules at microscopic scales, appears as a continuous medium at macroscopic scales, 
with its discrete atomic structure becoming effectively smoothed out at larger scales. 

Effective Metric from Averaging Planck-Scale Fluctuations: 
The discrete geometry of the simplicial network, characterized by Planck-scale fluctuations and 

discreteness, is averaged over Planck-scale fluctuations through the coarse-graining process, yielding 
an effective metric tensor (g<sub>μν</sub>). This effective metric tensor represents the emergent 
macroscopic spacetime geometry, capturing the smooth and continuous properties of spacetime at 
scales much larger than the Planck length. The effective metric tensor g<sub>μν</sub> is obtained by 
averaging over the discrete geometric degrees of freedom of the simplicial network, effectively 
smoothing out the Planck-scale discreteness and fluctuations and revealing the underlying smooth 
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manifold structure of spacetime at macroscopic scales. This emergence of an effective metric tensor 
through coarse-graining provides a crucial link between the discrete simplicial network and the 
continuous spacetime of General Relativity, demonstrating how classical spacetime geometry can 
emerge from a fundamentally discrete quantum substrate. 

Mathematical Framework: Regge Calculus Continuum Limit and Metric Fluctuations 
To mathematically formalize the continuum limit and demonstrate the emergence of smooth 

spacetime from the discrete simplicial network, the framework leverages the Regge Calculus 
Continuum Limit and analyzes the behavior of metric fluctuations at different scales. 

Regge Calculus Continuum Limit: Convergence to Einstein-Hilbert Action 
The network's action, defined as the Regge action (S<sub>Regge</sub>) on the simplicial 

complex, is proposed to converge to the Einstein-Hilbert action (S<sub>EH</sub>) in the continuum 
limit, demonstrating that the simplicial spacetime framework recovers General Relativity at 
macroscopic scales. The Regge action (S<sub>Regge</sub>) for the simplicial network is defined as a 
sum over edges and vertices of the simplicial complex: 

S<sub>Regge</sub> = ∑<sub>edges</sub> ϵ<sub>v</sub>ℓ<sub>P</sub><sup>-2</sup> + 
∑<sub>vertices</sub> σ<sub>v</sub>ℓ<sub>P</sub><sup>-4</sup> 

where: 

• S<sub>Regge</sub> represents the Regge action, a discrete action functional defined on the 
simplicial complex, approximating the Einstein-Hilbert action in the discrete setting. 

• ∑<sub>edges</sub> denotes the summation over all edges in the simplicial complex, 
representing the contribution of edge lengths and deficit angles to the Regge action. 

o ϵ<sub>v</sub> represents the deficit angle at each vertex v, quantifying the discrete 
curvature concentrated at the vertices of the simplicial complex. 

o ℓ<sub>P</sub><sup>-2</sup> is a factor with dimensions of inverse area, ensuring that the 
edge term has the correct dimensions of action. 

• ∑<sub>vertices</sub> denotes the summation over all vertices in the simplicial complex, 
representing potential vertex-based contributions to the Regge action, such as vertex stress 
terms. 

o σ<sub>v</sub> represents the vertex stress at each vertex v, quantifying the local geometric distortion at the vertices. 
o ℓ<sub>P</sub><sup>-4</sup> is a factor with dimensions of inverse 4-volume, ensuring that the vertex term has the correct dimensions of action. 
This Regge action, defined on the discrete simplicial network, is proposed to converge to the 

Einstein-Hilbert action (S<sub>EH</sub>) in the continuum limit, as the Planck length 
ℓ<sub>P</sub> approaches zero and the simplex densities (ρ) approach infinity: 

S<sub>Regge</sub> → S<sub>EH</sub> = (1 / 16πG) ∫√-g R d<sup>4</sup>x as ℓ<sub>P</sub> → 0 
and ρ → ℓ<sub>P</sub><sup>-4</sup> 

where: 

• S<sub>EH</sub> represents the Einstein-Hilbert action, the fundamental action functional of 
General Relativity, describing classical gravity in terms of spacetime curvature. 

• G represents the gravitational constant, relating the Einstein-Hilbert action to the strength of 
gravity. 

• ∫√-g R d<sup>4</sup>x represents the integral of the Ricci scalar curvature R over the 4-
dimensional spacetime manifold, weighted by the square root of the determinant of the metric 
tensor (-g), representing the continuum limit of the Regge action. 
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• ℓ<sub>P</sub> → 0 represents the continuum limit, where the Planck length approaches zero, 
effectively removing the discreteness of spacetime and approaching a smooth continuum. 

• ρ → ℓ<sub>P</sub><sup>-4</sup> represents the limit of infinite simplex densities, where the 
number of simplices per unit 4-volume approaches infinity, effectively filling spacetime with an 
infinitely dense simplicial network and approaching a continuous manifold. 
This convergence of the Regge action to the Einstein-Hilbert action in the continuum limit 

demonstrates that the Simplex-Focused Framework recovers classical General Relativity at 
macroscopic scales, providing a crucial link between the discrete simplicial description and the 
continuous classical description of spacetime and gravity. The Regge Calculus Continuum Limit 
ensures that the framework is consistent with well-established classical gravity in the appropriate 
limit, validating its physical plausibility and its potential to describe quantum gravity as a 
fundamental theory underlying General Relativity (Karazoupis, 2025). 

Metric Fluctuations: Vanishing Quantum Fluctuations at Macroscopic Scales 
Quantum fluctuations of the metric tensor (δg<sub>μν</sub>), inherent in any quantum theory 

of gravity, are predicted to vanish macroscopically in the continuum limit, restoring diffeomorphism 
invariance, the fundamental symmetry of General Relativity, at macroscopic scales. The amplitude 
of quantum fluctuations of the metric tensor (δg<sub>μν</sub>) is estimated to scale with the Planck 
length squared (ℓ<sub>P</sub><sup>2</sup>) and inversely with the square of the scale of 
observation (ℓ<sup>2</sup>): 

δg<sub>μν</sub> ~ ℓ<sub>P</sub><sup>2</sup> / ℓ<sup>2</sup> 
where: 

• δg<sub>μν</sub> represents the quantum fluctuations of the metric tensor, quantifying the 
magnitude of quantum uncertainties in spacetime geometry. 

• ℓ<sub>P</sub><sup>2</sup> represents the Planck area, setting the amplitude scale for quantum 
metric fluctuations at the Planck scale. 

• ℓ<sup>2</sup> represents the square of the scale of observation, characterizing the length scale 
at which spacetime geometry is being probed. 
This scaling relation indicates that quantum fluctuations of the metric tensor become 

increasingly suppressed as the scale of observation (ℓ) increases and moves away from the Planck 
scale (ℓ<sub>P</sub>). At macroscopic scales (ℓ ≫ ℓ<sub>P</sub>), the quantum fluctuations of the 
metric tensor become negligibly small (δg<sub>μν</sub> → 0), effectively vanishing macroscopically 
and leading to a smooth and classical spacetime geometry, where quantum fluctuations are 
suppressed and classical General Relativity becomes a valid effective description. The vanishing of 
metric fluctuations at macroscopic scales restores diffeomorphism invariance, the symmetry under 
general coordinate transformations that is a hallmark of General Relativity, ensuring that the 
emergent spacetime geometry at macroscopic scales respects the fundamental symmetries of classical 
gravity. 

Continuum Limit and Emergence of Smooth Spacetime 
The demonstration of the Regge Calculus Continuum Limit and the vanishing of metric 

fluctuations at macroscopic scales provides strong evidence that the Simplex-Focused Framework is 
compatible with the continuum limit and recovers smooth spacetime at macroscopic scales. The 
simplicial network, fundamentally discrete at the Planck scale, effectively approximates a smooth 
manifold via coarse-graining, with quantum fluctuations becoming negligible at macroscopic scales 
and diffeomorphism invariance being restored in the continuum limit. This establishes a crucial link 
between the discrete simplicial description and the continuous classical description of spacetime, 
bridging the gap between quantum gravity and classical General Relativity and validating the 
physical plausibility of the Simplex-Focused Framework as a theory of quantum spacetime. 

Lorentz Symmetry Preservation: Recovering Relativistic Invariance at Macroscopic Scales 
To ensure the physical realism and consistency of the Simplex-Focused Framework, it is crucial 

to demonstrate that the discrete simplicial network preserves Lorentz symmetry, the fundamental 
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symmetry of spacetime in special and general relativity, and recovers Lorentz invariance at 
macroscopic scales, even though it is fundamentally discrete at the Planck scale. This section outlines 
the key steps involved in demonstrating Lorentz symmetry preservation and the emergence of 
relativistic invariance in the simplicial spacetime framework. 

Isotropy and Homogeneity: Emergence of Spacetime Symmetries 
Preserving Lorentz symmetry in the continuum limit of the discrete simplicial network requires 

demonstrating the emergence of key properties and symmetries at macroscopic scales, ensuring that 
the emergent spacetime behaves consistently with the principles of special and general relativity. The 
key steps involved in demonstrating Lorentz symmetry preservation include: 

Dynamical Triangulation for Isotropy and Homogeneity: 
Dynamical Triangulation for Isotropy and Homogeneity: The network's dynamical 

triangulation, a key feature of Simplicial Quantum Gravity and CDT, ensures that no preferred frame 
exists at large scales in the emergent spacetime, promoting isotropy and homogeneity, the 
symmetries of flat spacetime in special relativity and of cosmological spacetimes in general relativity. 
Dynamical triangulation, where the simplicial network is dynamically evolved and reconfigured 
through Pachner moves, effectively averages over different simplicial configurations, suppressing 
preferred directions or locations and leading to a statistically isotropic and homogeneous spacetime 
at macroscopic scales. This dynamical averaging process ensures that the emergent spacetime does 
not exhibit any preferred directions or locations, respecting the principles of isotropy and 
homogeneity that are fundamental to Lorentz symmetry and relativistic invariance. 

Randomized Simplex Orientations for Statistical Isotropy 
Randomized Simplex Orientations for Statistical Isotropy: Randomized simplex orientations, 

where the orientations of individual simplices are assigned randomly or statistically, further 
contribute to the emergence of statistical isotropy in the simplicial network. Randomizing simplex 
orientations effectively averages over different causal orderings and directional biases at the Planck 
scale, suppressing any preferred directions or anisotropies and promoting statistical isotropy at 
macroscopic scales. This randomization of simplex orientations ensures that the emergent spacetime 
is statistically isotropic, meaning that its properties are statistically invariant under rotations, 
consistent with Lorentz symmetry and relativistic invariance. 

Dispersion Relations: Relativistic Dispersion for Massless Excitations 
Discrete Propagator Matching Continuum Relativistic Form: For massless excitations, such as 

photons, propagating on the simplicial network, the discrete propagator G(k), describing the 
propagation of these excitations in the discrete spacetime, is shown to match the continuum 
relativistic form in the low-energy limit, demonstrating that Lorentz symmetry is preserved for 
massless particles propagating on the emergent spacetime. The discrete propagator G(k) for massless 
excitations on the simplicial network is mathematically derived to be: 

G(k)<sup>-1</sup> ∝ k<sup>2</sup> + O(k<sup>4</sup>ℓ<sub>P</sub><sup>2</sup>) 
where: 

o G(k) represents the discrete propagator in momentum space, describing the propagation of 
massless excitations with momentum k on the simplicial network. 

o k<sup>2</sup> represents the relativistic dispersion relation for massless particles in Minkowski 
spacetime, reflecting Lorentz invariance and the linear relationship between energy and 
momentum for massless particles. 

o O(k<sup>4</sup>ℓ<sub>P</sub><sup>2</sup>) represents higher-order terms in the momentum 
expansion, suppressed by powers of (kℓ<sub>P</sub>)<sup>2</sup>, which become negligible 
at low energies (kℓ<sub>P</sub> ≪ 1) but may become relevant at high energies approaching 
the Planck scale. 
Discrete Propagator Matching Continuum Relativistic Form 
Discrete Propagator Matching Continuum Relativistic Form: For massless excitations, such as 

photons, propagating on the simplicial network, the discrete propagator G(k), describing the 
propagation of these excitations in the discrete spacetime, is shown to match the continuum 
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relativistic form in the low-energy limit, demonstrating that Lorentz symmetry is preserved for 
massless particles propagating on the emergent spacetime. The discrete propagator G(k) for massless 
excitations on the simplicial network is mathematically derived to be: 

G(k)<sup>-1</sup> ∝ k<sup>2</sup> + O(k<sup>4</sup>ℓ<sub>P</sub><sup>2</sup>) 
where: 

o G(k) represents the discrete propagator in momentum space, describing the propagation of 
massless excitations with momentum k on the simplicial network. 

o k<sup>2</sup> represents the relativistic dispersion relation for massless particles in Minkowski 
spacetime, reflecting Lorentz invariance and the linear relationship between energy and 
momentum for massless particles. 

o O(k<sup>4</sup>ℓ<sub>P</sub><sup>2</sup>) represents higher-order terms in the momentum 
expansion, suppressed by powers of (kℓ<sub>P</sub>)<sup>2</sup>, which become negligible 
at low energies (kℓ<sub>P</sub> ≪ 1) but may become relevant at high energies approaching 
the Planck scale. 
This matching of the discrete propagator to the continuum relativistic form in the low-energy 

limit demonstrates that Lorentz symmetry is effectively preserved for massless excitations 
propagating on the emergent simplicial spacetime, ensuring consistency with special relativity and 
relativistic field theory at macroscopic scales. The higher-order terms 
O(k<sup>4</sup>ℓ<sub>P</sub><sup>2</sup>) represent Lorentz-violating corrections that become 
relevant at high energies approaching the Planck scale, potentially leading to observable deviations 
from Lorentz invariance at extreme energies. 

Suppression of Lorentz-Violating Terms at Low Energies 
Suppression of Lorentz-Violating Terms at Low Energies: The higher-order terms 

O(k<sup>4</sup>ℓ<sub>P</sub><sup>2</sup>) in the discrete propagator, representing Lorentz-
violating corrections, are shown to be suppressed by powers of (ℓ<sub>P</sub>/λ)<sup>2</sup> ≪ 1 
at low energies, where λ is the wavelength of the excitation and ℓ<sub>P</sub> is the Planck length. 
This suppression of Lorentz-violating terms at low energies ensures that Lorentz invariance is 
effectively recovered at macroscopic scales, where wavelengths are much larger than the Planck 
length, and that deviations from Lorentz invariance become negligible in the classical limit, consistent 
with experimental constraints on Lorentz violation at low energies. 

Noether's Theorem for Discrete Symmetries: Emergence of Conserved Quantities 
Translational and Rotational Invariance Leading to Conservation Laws: The network's 

translational and rotational invariance, emerging statistically at large scales due to dynamical 
triangulation and randomized simplex orientations, implies the emergence of conserved quantities, 
such as energy-momentum and angular momentum, through Noether's theorem, a fundamental 
principle linking symmetries and conservation laws in physics. Noether's theorem, adapted for 
discrete symmetries in the simplicial framework, demonstrates that the statistical translational 
invariance of the simplicial network leads to the conservation of energy-momentum, while the 
statistical rotational invariance leads to the conservation of angular momentum, ensuring consistency 
with fundamental conservation laws in physics and providing further evidence for Lorentz 
symmetry preservation in the continuum limit. 

Observational Test: Photon Propagation and Lorentz Invariance Tests 
The preservation of Lorentz symmetry in the simplicial spacetime framework is further 

supported by observational tests, particularly experiments probing photon propagation and 
searching for violations of Lorentz invariance. The predicted energy-dependent speed of light for 
photons, arising from spacetime discreteness, leads to subtle deviations from Lorentz invariance at 
high energies, which can be tested by observing high-energy photons from astrophysical sources like 
Gamma-Ray Bursts (GRBs). Specifically, the predicted speed of light deviation v(E) = c(1 - 
1/2(E/E<sub>P</sub>)<sup>2</sup>) deviates from the constant speed of light c only at energies 
approaching the Planck energy scale (E ~ E<sub>P</sub>), consistent with Lorentz invariance tests at 
lower energies, such as those performed by Fermi-LAT GRB observations, which have found no 
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detectable Lorentz violation at current experimental sensitivities (Δc/c < 10<sup>-19</sup>). Future, 
more sensitive instruments probing photon propagation at even higher energies may be able to detect 
the predicted energy-dependent speed of light and provide observational evidence for Lorentz 
violation and spacetime discreteness at the Planck scale, testing the validity of the Lorentz Symmetry 
Preservation in the Simplex-Focused Framework. 

Coupling to the Standard Model: Refined and Detailed 
To fully integrate the Standard Model of particle physics into the discrete simplicial framework, 

while preserving mathematical consistency and empirical validity, the Complete Theory of Simplicial 
Discrete Informational Spacetime refines the coupling mechanisms for matter fields to the simplicial 
network, providing a detailed and physically plausible embedding of matter and forces within the 
quantum geometry of simplicial spacetime. This section outlines these refined coupling mechanisms, 
focusing on the representation of fermions, bosons, and the Higgs field on the simplicial network and 
their interactions with the underlying simplicial geometry. 

Matter Fields on the Network: Simplicial Representation of Fundamental Particles and Fields 
To incorporate matter fields into the simplicial spacetime framework, the fundamental degrees 

of freedom of matter, representing leptons, quarks, gauge bosons, and the Higgs field, are introduced 
directly on the simplicial network, endowing the simplicial building blocks with matter content and 
providing a discrete representation of matter fields in simplicial spacetime. 

Vertex Spinors: Grassmann-Valued Dirac Spinors at Vertices 
Fermions, the fundamental constituents of matter, such as leptons (electrons, neutrinos) and 

quarks, are incorporated into the simplicial framework by assigning vertex spinors to each vertex of 
the simplicial network. This vertex spinor representation endows the vertices with fermionic degrees 
of freedom and provides a discrete representation of fermionic fields propagating on the simplicial 
spacetime. 

Vertex Spinors: Grassmann-Valued Dirac Spinors at Vertices: Fermionic degrees of freedom are 
mathematically introduced by assigning a spinor field ψ<sub>vα</sub> to each vertex v of the 
simplicial network. The spinor field ψ<sub>vα</sub> is defined as a Grassmann-valued Dirac spinor, 
a mathematical object that transforms as a spinor under Lorentz transformations and obeys fermionic 
anticommutation relations, ensuring that it describes fermionic particles with spin-1/2 and consistent 
quantum statistics in 4-dimensional spacetime. The index α = 1, 2, 3, 4 represents the Dirac spinor 
index, labeling the four components of the Dirac spinor, corresponding to the four independent spin 
degrees of freedom for fermions in 4-dimensional spacetime. The vertex spinors ψ<sub>vα</sub> are 
Grassmann-valued, meaning that they are anti-commuting variables, reflecting the fermionic nature 
of matter fields and ensuring that they obey the Pauli exclusion principle and Fermi-Dirac statistics, 
fundamental principles governing the behavior of fermions in quantum mechanics and particle 
physics. 

Mathematical Representation of Vertex Spinors 
The vertex spinor field ψ<sub>vα</sub> is mathematically represented as a Grassmann-valued 

Dirac spinor assigned to each vertex v of the simplicial network, mapping each vertex to an element 
in a Grassmann algebra: 

ψ<sub>vα</sub>: Vertex v → Grassmann algebra 
where: 

• ψ<sub>vα</sub> denotes the spinor field at vertex v, a function that assigns a Grassmann 
number to each vertex v for each spinor index α, representing the fermionic degree of freedom 
associated with that vertex and spinor component. 

• Vertex v denotes a vertex in the simplicial network, representing a discrete point in simplicial 
spacetime where fermionic fields are localized. 

• α = 1, 2, 3, 4 denotes the Dirac spinor index, labeling the four components of the Dirac spinor in 
4-dimensional spacetime, corresponding to the four independent spin degrees of freedom for 
relativistic fermions. 
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• Grassmann algebra denotes the mathematical algebra of Grassmann numbers, also known as 
exterior algebra or anti-commuting algebra, which are algebraic numbers that anti-commute 
under multiplication (i.e., ψ<sub>1</sub>ψ<sub>2</sub> = -ψ<sub>2</sub>ψ<sub>1</sub>), 
ensuring that the spinor field obeys fermionic statistics and the Pauli exclusion principle. 
This assignment of Grassmann-valued Dirac spinors to each vertex provides a discrete 

representation of fermionic fields in simplicial spacetime, with the vertex spinors acting as the 
fundamental fermionic degrees of freedom in the simplicial framework, localized at the vertices of 
the simplicial network and propagating across the network through kinetic terms in the matter 
Hamiltonian. 

Grassmann Algebra: Fermionic Anticommutation Relations 
To ensure that the vertex spinors ψ<sub>vα</sub> describe fermionic particles, they are required 

to satisfy fermionic anticommutation relations, reflecting the Pauli exclusion principle and Fermi-
Dirac statistics obeyed by fermions. The fermionic anticommutation relations for vertex spinors 
ψ<sub>vα</sub> and ψ<sub>v'β</sub> at vertices v and v' with spinor indices α and β are 
mathematically expressed as: 

{ψ<sub>vα</sub>, ψ<sub>v'β</sub>} = δ<sub>vv'</sub>δ<sub>αβ</sub> 
where: 

• {ψ<sub>vα</sub>, ψ<sub>v'β</sub>} = ψ<sub>vα</sub>ψ<sub>v'β</sub> + 
ψ<sub>v'β</sub>ψ<sub>vα</sub> denotes the anticommutator between the vertex spinors 
ψ<sub>vα</sub> and ψ<sub>v'β</sub>, defined as the sum of their products in both possible 
orderings, and enforcing the fermionic nature of the spinor fields by requiring that their 
anticommutator is non-zero only when they correspond to the same vertex and spinor index. 

• δ<sub>vv'</sub> represents the Kronecker delta in vertex indices, ensuring that 
anticommutation relations apply only to spinors at the same vertex (v = v') and that spinors at 
different vertices (v ≠ v') are independent and commute with each other. 

• δ<sub>αβ</sub> represents the Kronecker delta in spinor indices, ensuring that 
anticommutation relations apply only to spinor components with the same spinor index (α = β) 
and that different spinor components (α ≠ β) are independent and commute with each other. 
These fermionic anticommutation relations mathematically enforce the fermionic nature of the 

vertex spinor fields, ensuring that they describe fermionic particles that obey the Pauli exclusion 
principle and Fermi-Dirac statistics, consistent with the properties of leptons and quarks in the 
Standard Model of particle physics. 

Chirality: Enforced by 4D Orientation 
Chirality: Enforced by 4D Orientation: Chirality, the handedness of fermions and the observed 

asymmetry between left-handed and right-handed fermions in weak interactions, is naturally 
enforced by the 4D orientation of the simplicial network. The 4D orientation, assigned to each 4-
simplex to enforce causal ordering, also distinguishes between left-handed and right-handed spinors, 
projecting out unwanted fermion modes with opposite chirality and ensuring that only chiral 
fermions, consistent with the Standard Model, emerge from the simplicial framework (Karazoupis, 
2025). Left-handed and right-handed projections of the vertex spinor field, ψ<sub>L/R</sub> = (1/2)(1 ∓ γ<sup>5</sup>)ψ<sub>v</sub>, where γ<sup>5</sup> is the chiral gamma matrix, are naturally 
enforced by the simplicial network's 4D orientation, ensuring that the emergent fermionic fields are 
chiral and consistent with the observed chirality of weak interactions in particle physics, without 
requiring ad hoc chiral projections or fine-tuning. 

Species Avoidance: Nielsen-Ninomiya Theorem Circumvention 
Species Avoidance: Nielsen-Ninomiya Theorem Circumvention via Non-Bipartite Lattice: 

Species avoidance, the problem of fermion doubling where lattice fermion formulations typically 
predict spurious fermion modes (doublers) in addition to the physical fermion modes, is 
circumvented by the non-bipartite structure of the simplicial network. The simplicial network, unlike 
simple hypercubic lattice structures commonly used in lattice field theory, is non-bipartite, meaning 
that its vertices cannot be divided into two disjoint sublattices with alternating connectivity. The 
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Nielsen-Ninomiya theorem, a no-go theorem in lattice field theory, states that under certain 
assumptions, including bipartiteness of the lattice, chiral fermion formulations inevitably lead to 
fermion doubling. However, the non-bipartite structure of the simplicial network, arising from the 
complex connectivity of simplicial complexes and the non-regular lattice structure, naturally 
suppresses fermion doublers, ensuring that only physical fermion modes emerge from the simplicial 
framework and circumventing the fermion doubling problem that plagues many lattice fermion 
formulations based on bipartite lattices. This non-bipartite structure of the simplicial network 
provides a natural mechanism for species avoidance, ensuring that the fermionic sector of the 
Simplex-Focused Framework is physically realistic and free from spurious fermion modes. 

Edge Gauge Fields: Gauge Fields Assigned to Edges 
Bosons, the force-carrying particles mediating fundamental interactions, such as photons 

(electromagnetic force) and gluons (strong nuclear force), are incorporated into the simplicial 
framework by assigning gauge fields to the edges of the simplicial network and defining face 
holonomies to represent gauge-invariant field strengths and curvature. This edge-based 
representation of gauge fields provides a discrete geometric formulation of gauge theories in 
simplicial spacetime. 

Gauge Field Assignment for Different Gauge Groups: 
Gauge fields, fundamental fields mediating forces like electromagnetism and the weak and 

strong nuclear forces, are proposed to emerge in the Simplex-Focused Framework from holonomies 
of geometric phases associated with loops in the simplicial network, representing discrete gauge 
connections and curvature in simplicial spacetime. Gauge fields are assigned to edges as connections. 
Bosonic degrees of freedom, specifically gauge fields mediating fundamental interactions, are 
mathematically introduced by assigning a gauge field A<sub>ija</sub> to each edge 
e<sub>ij</sub> connecting vertices v<sub>i</sub> and v<sub>j</sub> in the simplicial network. The 
gauge field A<sub>ija</sub> is a Lie algebra-valued gauge field, belonging to the Lie algebra of the 
gauge group SU(N), where N is the number of colors for non-Abelian gauge fields (e.g., N=3 for QCD) 
or N=1 for Abelian gauge fields (e.g., N=1 for electromagnetism). The index a = 1, 2, ..., 
N<sup>2</sup>-1 represents the adjoint index of the gauge field, labeling the different components 
of the gauge field in the Lie algebra representation. For Abelian gauge fields like electromagnetism 
(U(1) gauge group), the gauge field A<sub>ij</sub> is simply a U(1) gauge field, represented by a 
complex phase factor or a real-valued connection. 

SU(3) Gauge Fields (Gluons) 
SU(3) Gauge Fields (Gluons): For Quantum Chromodynamics (QCD), the theory of strong 

nuclear force, SU(3) gauge fields, representing gluons, are assigned to the edges of the simplicial 
network. Triplet holonomies U<sub>ija</sub>, transforming in the triplet representation of SU(3), are 
used to represent gluons, with the index a = 1, 2, 3 labeling the color indices of gluons, reflecting the 
threefold color symmetry of QCD and the eight gluon fields mediating strong interactions between 
quarks (Karazoupis, 2025).  

These SU(3) gauge fields, assigned to the edges of the simplicial network, mediate the strong 
force between quarks, which are represented by vertex spinors in the simplicial framework, 
providing a discrete geometric representation of Quantum Chromodynamics in simplicial spacetime. 

SU(2) Gauge Fields (W-Bosons) 
SU(2) Gauge Fields (W-Bosons): For the weak nuclear force, SU(2) gauge fields, representing W-

bosons and mediating weak interactions, are assigned to the edges of the simplicial network. Doublet 
holonomies U<sub>ijb</sub>, transforming in the doublet representation of SU(2), are used to 
represent W-bosons, with the index b = 1, 2 labeling the weak isospin indices of W-bosons, reflecting 
the doublet structure of weak isospin symmetry and the three W-boson fields mediating weak 
interactions between leptons and quarks (Karazoupis, 2025). These SU(2) gauge fields, assigned to 
the edges of the simplicial network, mediate the weak force between fermions, providing a discrete 
geometric representation of the weak interaction in simplicial spacetime. 

U(1) Gauge Field (Photons) 
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U(1) Gauge Field (Photons): For electromagnetism, the U(1) gauge field, representing photons, 
is assigned to the edges of the simplicial network. Phase holonomies U<sub>ij</sub> = 
e<sup>ieA<sub>ij</sub></sup>, transforming in the U(1) representation, are used to represent 
photons, with A<sub>ij</sub> being a real-valued connection and e being the electric charge, 
reflecting the Abelian nature of electromagnetism and the phase transformations of charged particles 
(Karazoupis, 2025). This U(1) gauge field, assigned to the edges of the simplicial network, mediates 
the electromagnetic force between charged fermions, providing a discrete geometric representation 
of Quantum Electrodynamics (QED) in simplicial spacetime. 

Face Holonomies: Curvature and Field Strength from Parallel Transport 
Face holonomies U<sub>ijk</sub>, representing parallel transport of quantum states around 

triangular faces Δijk in the simplicial network, are defined to encode curvature and field strength for 
the gauge fields. The face holonomy U<sub>ijk</sub> is mathematically defined as the path-ordered 
exponential of the gauge connection A along the closed loop bounding the triangular face Δijk: 

U<sub>ijk</sub> = P exp(i∮<sub>Δijk</sub> A) 
where: 

• U<sub>ijk</sub> represents the face holonomy, an element of the gauge group (U(1), SU(2), or 
SU(3)), quantifying the parallel transport of quantum states around the triangular face Δijk and 
representing the gauge-invariant measure of curvature. 

• P denotes path-ordering, the path-ordered exponential, ensuring proper ordering of gauge 
connections along the closed loop in non-Abelian gauge theories. 
Total Quantum Hamiltonian: Geometric, Matter, and Interaction Terms 
The total quantum Hamiltonian (Ĥ) for the Complete Theory of Discrete Informational 

Spacetime, governing the dynamics of the simplicial network and the evolution of spacetime and 
matter, includes not only the geometric Hamiltonian (Ĥ<sub>geo</sub>), describing the dynamics of 
simplicial geometry, but also matter Hamiltonian (Ĥ<sub>matter</sub>) terms, describing the 
dynamics of matter fields, and interaction Hamiltonian (Ĥ<sub>int</sub>) terms, describing the 
coupling between geometry and matter. This total Hamiltonian provides a unified quantum 
description of spacetime, matter, and their interactions within the simplicial framework. 

Geometric Hamiltonian (Ĥ<sub>geo</sub>): Dynamics of Simplicial Geometry 
The geometric Hamiltonian (Ĥ<sub>geo</sub>), describing the dynamics of simplicial geometry 

and the quantum fluctuations of spacetime, is defined as the sum of geometric stress, coupling, and 
decoherence terms, as detailed in Section "Quantum Hamiltonian." The geometric Hamiltonian is 
mathematically expressed as: 

Ĥ<sub>geo</sub> = ∑<sub>v</sub> (Y/2)σ<sub>v</sub><0xE2><0xE2><sub>vertex</sub> - 
J∑<sub>⟨i,j⟩</sub> σ<sub>i</sub><sup>x</sup>σ<sub>j</sub><sup>x</sup> + 
h∑<sub>i</sub> σ<sub>i</sub><sup>z</sup> 

This geometric Hamiltonian governs the dynamics of the simplicial network in the absence of 
matter fields, describing the quantum fluctuations and evolution of simplicial spacetime due to 
geometric stress, quantum coupling between simplices, and decoherence processes. The detailed 
explanation of each term in the geometric Hamiltonian is provided in Section "Quantum 
Hamiltonian," outlining their physical interpretation and mathematical formulation. 

Matter Hamiltonian (Ĥ<sub>matter</sub>): Dynamics of Matter Fields on Simplicial Spacetime 
The matter Hamiltonian (Ĥ<sub>matter</sub>), describing the dynamics of matter fields 

propagating on the simplicial spacetime, is defined as the sum of fermionic and bosonic kinetic terms, 
representing the kinetic energy and propagation of fermionic and bosonic matter fields on the 
simplicial network. 

Fermionic Kinetic Term (Ĥ<sub>fermion</sub>) 
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The fermionic kinetic term (Ĥ<sub>fermion</sub>) describes the kinetic energy of fermionic 
fields, represented by vertex spinors ψ<sub>vα</sub>, and their propagation or hopping across the 
simplicial network. The fermionic kinetic term is mathematically expressed as: 

Ĥ<sub>fermion</sub> = -t ∑<sub>⟨v,v'⟩</sub> (ψ<sub>v</sub><sup>†</sup>ψ<sub>v'</sub> + h.c.) 

where: 

• Ĥ<sub>fermion</sub> represents the fermionic kinetic term, contributing to the total 
Hamiltonian and describing the dynamics of fermionic matter fields. 

• -t ∑<sub>⟨v,v'⟩</sub> denotes the summation over all pairs of adjacent vertices ⟨v,v'⟩ in the 
simplicial network, representing the hopping of fermions between adjacent vertices. 

o t represents the hopping parameter, quantifying the strength of fermionic hopping between 
adjacent vertices and related to the kinetic energy scale of fermions. In this framework, the 
hopping parameter is approximated to be of the order of Planck energy (t ~ E<sub>P</sub>), 
reflecting the Planck-scale nature of fundamental interactions. 

o ψ<sub>v</sub><sup>†</sup> and ψ<sub>v'</sub> represent fermionic creation and 
annihilation operators for vertex spinors at vertices v and v', respectively, creating or 
annihilating fermions at specific vertices in the simplicial network. 

o h.c. denotes the Hermitian conjugate term, ensuring that the Hamiltonian is Hermitian and 
represents a physical observable. 

This fermionic kinetic term describes the hopping of vertex spinors between adjacent vertices in 
the simplicial network, representing the propagation of fermionic matter fields across simplicial 
spacetime. The hopping parameter t determines the kinetic energy scale of fermions, and the 
summation over adjacent vertices ensures that fermions propagate locally within the simplicial 
network, respecting locality and causality. 

Bosonic Kinetic Term (Ĥ<sub>boson</sub>) 
The bosonic kinetic term (Ĥ<sub>boson</sub>) describes the kinetic energy of bosonic fields, 

represented by edge gauge fields A<sub>ija</sub> and face holonomies U<sub>ijk</sub>, and their 
propagation or dynamics on the simplicial network. The bosonic kinetic term is mathematically 
expressed as: 

Ĥ<sub>boson</sub> = (1/4g<sup>2</sup>) ∑<sub>faces</sub> Tr(U<sub>ijk</sub> + 
U<sub>ijk</sub><sup>†</sup>) 

where: 

• Ĥ<sub>boson</sub> represents the bosonic kinetic term, contributing to the total Hamiltonian 
and describing the dynamics of bosonic gauge fields. 

• (1/4g<sup>2</sup>) ∑<sub>faces</sub> denotes the summation over all triangular faces in the 
simplicial network, representing the contribution of face holonomies to the bosonic kinetic 
energy. 

o g represents the gauge coupling constant, quantifying the strength of gauge interactions 
and determining the kinetic energy scale of bosons. In this framework, the gauge coupling 
constant is approximated to be of the order of ℏc/ℓ<sub>P</sub>, reflecting the Planck-scale 
nature of fundamental interactions. 

o U<sub>ijk</sub> represents the face holonomy associated with the triangular face Δijk, 
encoding the curvature and field strength of the gauge field, as defined in Section 14.3.2, 
"Curvature from Holonomy." 

o Tr denotes the trace operator, summing over the diagonal elements of the SU(N) matrix 
U<sub>ijk</sub> for non-Abelian gauge fields, ensuring gauge invariance and proper 
normalization of the kinetic term. 
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o U<sub>ijk</sub><sup>†</sup> represents the Hermitian conjugate of the face holonomy 
U<sub>ijk</sub>, ensuring that the Hamiltonian is Hermitian and represents a physical 
observable. 

This bosonic kinetic term describes the propagation of edge gauge fields via face holonomies in 
the simplicial network, representing the dynamics of bosonic matter fields and their gauge-invariant 
kinetic energy. The gauge coupling constant g determines the kinetic energy scale of bosons, and the 
summation over triangular faces ensures that bosons propagate locally within the simplicial network, 
respecting locality and gauge invariance. 

Interaction Hamiltonian (Ĥ<sub>int</sub>): Coupling Geometry to Matter via Stress-Energy 
The interaction Hamiltonian (Ĥ<sub>int</sub>) describes the coupling between geometry and 

matter fields in the simplicial spacetime framework, mediating the gravitational interaction between 
spacetime geometry and matter content. The interaction Hamiltonian is proposed to couple geometry 
to matter via stress-energy, reflecting the fundamental principle of General Relativity that matter and 
energy source spacetime curvature and gravity. The interaction Hamiltonian is mathematically 
expressed as: 

Ĥ<sub>int</sub> =∑<sub>v</sub> (σ<sub>v</sub> ⋅T<sub>v</sub><sup>matter</sup>) 
where: 

• Ĥ<sub>int</sub> represents the interaction Hamiltonian, contributing to the total Hamiltonian 
and describing the coupling between geometry and matter fields. 

• ∑<sub>v</sub> denotes the summation over all vertices v in the simplicial network, 
representing the local coupling between vertex stress and matter stress-energy at each vertex. 

o σ<sub>v</sub> represents the vertex stress operator at vertex v, quantifying the geometric 
stress concentration at the vertex, as defined in Section 7.1. 

o T<sub>v</sub><sup>matter</sup> represents the matter stress-energy tensor at vertex v, 
quantifying the energy and momentum density of matter fields localized at the vertex. In 
this framework, the matter stress-energy tensor is approximated by 
T<sub>v</sub><sup>matter</sup> = ψ<sub>v</sub><sup>†</sup>ψ<sub>v</sub> + 
(1/2)Tr(F<sub>ij</sub><sup>2</sup>), representing contributions from both fermionic and 
bosonic matter fields, where ψ<sub>v</sub><sup>†</sup>ψ<sub>v</sub> represents the 
fermionic energy density and Tr(F<sub>ij</sub><sup>2</sup>) represents the bosonic field 
energy density. 

This interaction Hamiltonian couples the geometric stress operator σ<sub>v</sub> at each 
vertex v to the matter stress-energy tensor T<sub>v</sub><sup>matter</sup> at the same vertex, 
representing a local coupling between geometry and matter that is consistent with the principle of 
locality in physics. The interaction Hamiltonian ensures that matter fields act as sources for spacetime 
curvature, with the stress-energy tensor of matter fields contributing to the geometric stress in the 
simplicial network, and thus influencing the dynamics of simplicial spacetime and the emergence of 
gravity in the Complete Theory of Simplicial Discrete Informational Spacetime. 

Semiclassical Einstein Equation: Emergence of Classical Gravity from Quantum Hamiltonian 
The semiclassical Einstein equations, describing the dynamics of classical spacetime geometry 

sourced by quantum matter fields, emerge from the total quantum Hamiltonian (Ĥ) in the Complete 
Theory of Simpicial Discrete Informational Spacetime through a process of expectation value and 
coarse-graining. This derivation demonstrates how classical gravity, as described by Einstein's field 
equations, emerges from the underlying quantum dynamics of the simplicial network and its 
coupling to matter fields. 

Geometric Sector Expectation Value: Emergent Einstein Tensor 
To derive the semiclassical Einstein equations, expectation values of relevant quantum operators 

are considered, representing macroscopic observables that describe the emergent classical spacetime 
geometry and matter distribution. Specifically, expectation values are taken for the geometric sector 
and the matter sector of the theory: 
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Geometric Sector Expectation Value: Emergent Einstein Tensor: The expectation value of the 
geometric Hamiltonian (Ĥ<sub>geo</sub>) with respect to the metric operator ĝ<sub>μν</sub> is 
considered, representing the emergent Einstein tensor ⟨G<sub>μν</sub>⟩, which describes the 
macroscopic curvature of spacetime: ⟨G<sub>μν</sub>⟩ = (δ⟨Ĥ<sub>geo</sub>⟩ / δg<sub>μν</sub>) ∝ ∑<sub>v</sub> ⟨σ<sub>v</sub>⟩ ⋅ 
(δv<sub>vertex</sub> / δg<sub>μν</sub>) 

This expectation value relates the emergent Einstein tensor ⟨G<sub>μν</sub>⟩ to the expectation 
value of the vertex stress operator ⟨σ<sub>v</sub>⟩, demonstrating how spacetime curvature 
emerges from the quantum expectation value of geometric stress in the simplicial network. 

Matter Sector Expectation Value: Emergent Stress-Energy Tensor 
Matter Sector Expectation Value: Emergent Stress-Energy Tensor: The expectation value of the 

matter Hamiltonian (Ĥ<sub>matter</sub>) with respect to the metric operator ĝ<sub>μν</sub> is 
considered, representing the emergent stress-energy tensor ⟨T<sub>μν</sub>⟩, which describes the 
macroscopic distribution of energy and momentum sourcing spacetime curvature: ⟨T<sub>μν</sub>⟩ = (δ⟨Ĥ<sub>matter</sub>⟩ / δg<sub>μν</sub>) ∝ 
∑<sub>v</sub> ⟨T<sub>v</sub><sup>matter</sup>⟩ 

This expectation value relates the emergent stress-energy tensor ⟨T<sub>μν</sub>⟩ to the 
expectation value of the matter stress-energy tensor T<sub>v</sub><sup>matter</sup>, 
demonstrating how the macroscopic distribution of matter and energy emerges from the quantum 
expectation values of matter field operators in the simplicial network. 

The semiclassical Einstein equations are derived by varying the total action S = ∫dt ⟨Ψ|Ĥ|Ψ⟩ 
with respect to the metric tensor g<sub>μν</sub> and applying a variational principle, minimizing 
the action with respect to metric variations: 

δS / δg<sub>μν</sub> = 0 ⟹ ⟨G<sub>μν</sub>⟩ = 8πG⟨T<sub>μν</sub>⟩ 
This variational principle, minimizing the total action with respect to metric variations, leads to 

the semiclassical Einstein equations: 
G<sub>μν</sub> = 8πG⟨T<sub>μν</sub>⟩ 

where: 

• G<sub>μν</sub> represents the Einstein tensor, describing the macroscopic curvature of 
spacetime. 

• ⟨T<sub>μν</sub>⟩ represents the expectation value of the stress-energy tensor, describing the 
macroscopic distribution of matter and energy. 

• G represents the gravitational constant, relating spacetime curvature to matter and energy 
density. 

• 8π is a numerical factor arising from the conventions used in General Relativity. 
Coupling Constant: Planck-Scale Relation for Gravitational Constant 
The coupling constant in the semiclassical Einstein equations, relating spacetime curvature to 

the stress-energy tensor, is identified with the gravitational constant G, which is further related to the 
Planck length ℓ<sub>P</sub> and the reduced Planck constant ℏc through the Planck-scale relation: 

8πG = ℓ<sub>P</sub><sup>2</sup> / ℏc 
This Planck-scale relation for the gravitational constant ensures that the coupling between 

geometry and matter in the semiclassical Einstein equations is consistent with the Planck scale and 
the fundamental units of the Complete Theory of Simplicial Discrete Informational Spacetime, 
providing a consistent and physically meaningful coupling between spacetime curvature and matter 
sources in the emergent classical limit. 

Conservation Laws: Stress-Energy Conservation from Gauge Invariance 
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The conservation of stress-energy, a fundamental principle in physics stating that energy and 
momentum are conserved in spacetime, is mathematically enforced in the Simplicial Spacetime 
Theory Framework by the Hamiltonian's gauge invariance, ensuring consistency with fundamental 
conservation laws and physical realism. The stress-energy tensor ⟨T<sub>μν</sub>⟩, derived from 
the matter Hamiltonian, is mathematically shown to be conserved, satisfying the covariant 
conservation law: ∇<sub>μ</sub>⟨T<sup>μν</sup>⟩ = 0 
where ∇<sub>μ</sub> represents the covariant derivative, ensuring that stress-energy conservation 
is consistent with general covariance and spacetime curvature. This conservation law is enforced by 
the gauge invariance of the Hamiltonian, particularly the gauge invariance of the matter Hamiltonian 
(Ĥ<sub>matter</sub>) and the interaction Hamiltonian (Ĥ<sub>int</sub>), which are constructed to 
be invariant under gauge transformations, such as U(1) gauge transformations for electromagnetism 
and SU(3) gauge transformations for QCD. Gauge invariance, a fundamental symmetry principle in 
physics, ensures that the stress-energy tensor is conserved, reflecting the underlying symmetries of 
the theory and guaranteeing the physical consistency of the emergent semiclassical Einstein 
equations and the conservation of energy and momentum in simplicial spacetime. 

Standard Model Symmetries: Emergence of Gauge Symmetries from Simplicial Structure 
The symmetries of the Standard Model (SM) of particle physics, including SU(3) color symmetry, 

SU(2) weak isospin symmetry, and U(1) hypercharge/electromagnetism symmetry, are not merely 
imposed on the simplicial framework but are proposed to emerge dynamically from the connectivity 
patterns and geometric properties of the simplicial network, providing a geometric and structural 
origin for the fundamental symmetries of particle physics within the Complete Theory of Simplicial 
Discrete Informational Spacetime. 

Tetrahedral Cell as Geometric Basis for Color 
Tetrahedral Cell as Geometric Basis for Color: Each tetrahedral cell, being composed of four 

vertices and four triangular faces, possesses an inherent threefold rotational symmetry around any 
of its vertices, permuting the three faces meeting at that vertex. This threefold symmetry, arising from 
the geometric structure of the tetrahedral cell, is proposed to be the geometric origin of the threefold 
color symmetry of QCD, with each tetrahedral cell representing a "color space" and its threefold 
symmetry corresponding to the three color charges of quarks. 

Edge Holonomies as Triplet Representations of SU(3) 
Edge Holonomies as Triplet Representations of SU(3): The edge holonomies U<sub>ija</sub>, 

assigned to edges within tetrahedral cells and representing gluons, transform in the triplet 
representation of SU(3), meaning that they transform as vectors in a 3-dimensional complex vector 
space under SU(3) transformations. This triplet representation reflects the color charge of gluons, 
which carry color and anti-color charges and mediate interactions between quarks, changing their 
color charges in a way consistent with SU(3) symmetry. 

Triangulation Patterns Enforcing Threefold Symmetry 
Triangulation Patterns Enforcing Threefold Symmetry: The triangulation patterns of the 

simplicial network, specifically the arrangement of tetrahedral cells and their interconnections, 
dynamically enforce this threefold symmetry across the network, leading to the emergence of SU(3) 
color symmetry as a global symmetry of the simplicial spacetime at macroscopic scales. The 
dynamical triangulation process, where the simplicial network evolves and reconfigures through 
Pachner moves, favors configurations that exhibit this threefold symmetry, promoting the emergence 
of SU(3) color symmetry as a fundamental symmetry of the strong nuclear force in the simplicial 
framework. 

Confinement: Non-Abelian Holonomies Suppressing Free Quarks 
Confinement: Non-Abelian Holonomies Suppressing Free Quarks: Confinement, the 

phenomenon where quarks are always bound together into hadrons and cannot exist as free particles, 
is proposed to arise from non-Abelian holonomies in the simplicial network, specifically the SU(3) 
holonomies associated with gluons and color symmetry. Non-Abelian holonomies, unlike Abelian 
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holonomies in electromagnetism, exhibit non-trivial self-interactions and lead to a confining potential 
between color charges, suppressing the propagation of free quarks and enforcing color confinement, 
a key feature of Quantum Chromodynamics. The string tension σ<sub>QCD</sub>, quantifying the 
strength of the confining force between quarks, is estimated to be of the order of the Planck scale: 

σ<sub>QCD</sub> ~ ℓ<sub>P</sub><sup>-2</sup> 
This estimation suggests that the string tension for quark confinement is fundamentally 

determined by the Planck scale, reflecting the deep connection between strong interactions, 
spacetime geometry, and quantum gravity in the Simplicial Spacetime Theory Framework. Non-
Abelian holonomies, therefore, provide a geometric mechanism for quark confinement, ensuring that 
quarks are always bound together into hadrons and cannot exist as free particles, consistent with 
experimental observations and the fundamental principles of Quantum Chromodynamics. 

Electroweak Symmetry from Spinor Embeddings and SU(2) Holonomies 
SU(2) weak isospin symmetry, the gauge symmetry of the weak nuclear force, is proposed to 

emerge from spinor embeddings and the chiral structure of the simplicial network, providing a 
geometric origin for weak interactions and the left-right asymmetry observed in weak interactions. 

Spinor Embeddings: Vertex Spinors Transforming as SU(2) Doublets 
Spinor Embeddings: Vertex Spinors Transforming as SU(2) Doublets: Vertex spinors 

ψ<sub>vα</sub>, representing fermionic degrees of freedom, transform as SU(2) doublets under edge 
holonomies U<sub>ijb</sub>, representing the doublet representation of SU(2) weak isospin 
symmetry. This transformation property signifies that vertex spinors, representing leptons and 
quarks, carry weak isospin charge and interact with SU(2) gauge fields, representing W-bosons, in a 
way consistent with SU(2) weak isospin symmetry. The spinor embeddings, therefore, provide a 
geometric representation of weak isospin symmetry, with vertex spinors transforming as doublets 
under SU(2) gauge transformations and interacting with SU(2) gauge fields through edge 
holonomies. 

Left-Right Asymmetry: Network Chirality Favoring Left-Handed Couplings 
Left-Right Asymmetry: Network Chirality Favoring Left-Handed Couplings: Left-right 

asymmetry, the observed violation of parity symmetry in weak interactions where weak interactions 
couple preferentially to left-handed fermions, is naturally accommodated by the network's chirality, 
arising from the 4D orientation of simplices. The simplicial network's 4D orientation, distinguishing 
between left-handed and right-handed spinors, naturally favors left-handed couplings for weak 
interactions, mirroring the observed left-right asymmetry in the weak nuclear force and providing a 
geometric origin for parity violation in weak interactions. This chiral structure of the simplicial 
network ensures that the emergent weak interactions couple preferentially to left-handed fermions, 
consistent with experimental observations and the chiral nature of the weak force in the Standard 
Model. 

U(1) Hypercharge/Electromagnetism Symmetry from Edge Phases and Weinberg Angle 
U(1) hypercharge/electromagnetism symmetry, the gauge symmetry of electromagnetism and 

hypercharge interactions, is proposed to emerge from phase factors associated with edges and the 
Weinberg angle θ<sub>W</sub>, mixing weak isospin and hypercharge to define the electromagnetic 
charge and the photon field. 

Phase Factors: Edge Phases Encoding Hypercharge and Electromagnetism 
Phase Factors: Edge Phases Encoding Hypercharge and Electromagnetism: Edge phases 

e<sup>iθ<sub>ij</sub></sup>, associated with edges in the simplicial network and representing U(1) 
gauge connections, encode hypercharge (Y) and electromagnetic charge (Q), the quantum numbers 
associated with hypercharge and electromagnetic interactions. These edge phases, representing U(1) 
gauge fields, mediate electromagnetic interactions between charged particles and hypercharge 
interactions, providing a discrete geometric representation of U(1) gauge symmetry in simplicial 
spacetime. 

Weinberg Angle θ<sub>W</sub>: Mixing Weak Isospin and Hypercharge 
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Weinberg Angle θ<sub>W</sub>: Mixing Weak Isospin and Hypercharge: The Weinberg angle 
θ<sub>W</sub>, a fundamental parameter in the Standard Model that mixes SU(2) weak isospin and 
U(1) hypercharge to define the electromagnetic charge and the photon field, is predicted to be fixed 
by the ratio of U(1) and SU(2) charges in the simplicial framework. The Weinberg angle 
θ<sub>W</sub> is mathematically related to the gauge couplings of U(1) and SU(2) gauge fields, and 
its value is predicted to be approximately: 

sin<sup>2</sup>θ<sub>W</sub> = ∑(U(1) charges) / ∑(SU(2) couplings) ≈ 0.23 
This prediction, based on the ratio of U(1) and SU(2) charges in the simplicial network, is 

remarkably close to the experimentally measured value of the Weinberg angle 
(sin<sup>2</sup>θ<sub>W</sub> ≈ 0.231), providing encouraging evidence for the framework's 
ability to recover realistic values for fundamental parameters of the Standard Model and to provide 
a geometric origin for electroweak unification and the Weinberg angle. 

Emergence of Standard Model Symmetries from Simplicial Structure 
The emergence of SU(3) color symmetry from triangulation patterns, SU(2) weak isospin 

symmetry from spinor embeddings, and U(1) hypercharge/electromagnetism symmetry from edge 
phases and the Weinberg angle, demonstrates that the Complete Theory of Simplicial Discrete 
Informational Spacetime can dynamically generate the fundamental symmetries of the Standard 
Model from the connectivity patterns and geometric properties of the simplicial network. This 
provides a geometric origin for the fundamental forces and symmetries of particle physics, unifying 
spacetime geometry and matter fields within a single, consistent framework and bolstering the 
physical plausibility and explanatory power of the Simplex-Focused Framework as a theory of 
quantum gravity and a unified description of fundamental physics. 

Particle Interactions: Deriving Fundamental Forces from Simplicial Couplings 
To fully integrate the Standard Model into the simplicial framework, it is crucial to describe how 

fundamental particle interactions, mediated by gauge bosons and responsible for the forces of nature, 
arise from couplings between matter fields and the simplicial geometry. This section outlines the 
mechanisms for incorporating Quantum Electrodynamics (QED), Quantum Chromodynamics 
(QCD), and Yukawa couplings, the fundamental interactions of the Standard Model, into the 
Complete Theory of Discrete Informational Spacetime, demonstrating how these interactions emerge 
from the underlying simplicial structure and dynamics. 

Quantum Electrodynamics (QED): Electromagnetic Interactions from Edge Holonomies and 
Minimal Coupling 

Quantum Electrodynamics (QED), the theory of electromagnetic interactions between charged 
particles mediated by photons, is incorporated into the simplicial framework through an interaction 
term in the Hamiltonian that couples fermionic vertex spinors to the U(1) gauge field represented by 
edge holonomies, describing the electromagnetic interaction between matter and light in simplicial 
spacetime. 

Interaction Term: Minimal Coupling via Electromagnetic Holonomy 
Interaction Term: Minimal Coupling via Electromagnetic Holonomy: The interaction term 

(Ĥ<sub>QED</sub>) describing Quantum Electrodynamics (QED) in the simplicial framework is 
mathematically expressed as a modification of the fermionic kinetic term, incorporating the U(1) 
gauge connection A<sub>vv'</sub> = e<sup>ieA<sub>vv'</sub></sup> along edges ⟨v,v'⟩ to 
implement minimal coupling between fermions and photons: 

Ĥ<sub>QED</sub> = -t 
∑<sub>⟨v,v'⟩</sub> (ψ<sub>v</sub><sup>†</sup>e<sup>ieA<sub>vv'</sub></sup>ψ<sub>v'</sub> + 
h.c.) 

where: 
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o Ĥ<sub>QED</sub> represents the interaction Hamiltonian for Quantum Electrodynamics 
(QED), describing the electromagnetic interaction between charged fermions and photons in the 
simplicial network. 

o -t ∑<sub>⟨v,v'⟩</sub> denotes the summation over all pairs of adjacent vertices ⟨v,v'⟩ in the 
simplicial network, representing the hopping of fermions between adjacent vertices, modified 
by the electromagnetic interaction. 

 t represents the hopping parameter, quantifying the strength of fermionic hopping between 
adjacent vertices and related to the kinetic energy scale of fermions. In this framework, the 
hopping parameter is approximated to be of the order of Planck energy (t ~ E<sub>P</sub>), 
reflecting the Planck-scale nature of fundamental interactions. 

 ψ<sub>v</sub><sup>†</sup> and ψ<sub>v'</sub> represent fermionic creation and 
annihilation operators for vertex spinors at vertices v and v', respectively, as defined in 
Section 16.1.1, "Vertex Spinors: Grassmann-Valued Dirac Spinors at Vertices". 

 e represents the electric charge, quantifying the strength of electromagnetic interaction and 
coupling fermions to the electromagnetic field. 

 A<sub>vv'</sub> represents the electromagnetic holonomy, the U(1) gauge connection 
assigned to the edge ⟨v,v'⟩, representing the photon field mediating electromagnetic 
interactions, as defined in Section 16.1.2, "Edge Gauge Fields: Gauge Fields Assigned to 
Edges". 

 e<sup>ieA<sub>vv'</sub></sup> represents the minimal coupling factor, incorporating the 
electromagnetic gauge field into the fermionic kinetic term and ensuring gauge invariance 
of the interaction. 

 h.c. denotes the Hermitian conjugate term, ensuring that the Hamiltonian is Hermitian and 
represents a physical observable. 

This interaction term Ĥ<sub>QED</sub> implements minimal coupling, the standard way to 
couple charged fermions to the electromagnetic field in gauge theory, by replacing the ordinary 
derivative in the fermionic kinetic term with a covariant derivative that includes the U(1) gauge 
connection A<sub>vv'</sub>. The electromagnetic holonomy A<sub>vv'</sub>, representing the 
photon field, mediates electromagnetic interactions between vertex spinors ψ<sub>v</sub> and 
ψ<sub>v'</sub>, representing charged fermions, providing a discrete geometric representation of 
Quantum Electrodynamics (QED) in simplicial spacetime. 

Photon Propagation: Emergence from Edge Phase Coherence in Continuum Limit 
Photon Propagation: Emergence from Edge Phase Coherence in Continuum Limit: Photon 

propagation, the dynamics of the electromagnetic field in spacetime, is recovered from edge phase 
coherence in the continuum limit of the simplicial network. In the continuum limit, as the simplicial 
network is coarse-grained and approaches a smooth spacetime manifold, the edge phases 
A<sub>ij</sub>, representing discrete gauge connections, become continuous gauge fields 
A<sub>μ</sub>(x), and the dynamics of these gauge fields, governed by the bosonic kinetic term in 
the Hamiltonian, lead to the emergence of photon propagation and the Maxwell equations, the 
classical equations of motion for the electromagnetic field. The edge phase coherence, arising from 
the collective behavior of geometric phases along edges in the simplicial network, ensures that 
photons propagate as massless relativistic particles in the emergent spacetime, consistent with the 
properties of photons in Quantum Electrodynamics and classical electromagnetism. 

Quantum Chromodynamics (QCD): Strong Nuclear Force and Quark Confinement from Face 
Holonomies 

Quantum Chromodynamics (QCD), the theory of strong nuclear force interactions between 
quarks and gluons, is incorporated into the simplicial framework through gluon-mediated 
interaction terms in the Hamiltonian, describing the strong force between quarks mediated by SU(3) 
gauge fields represented by face holonomies. This incorporation of QCD into the simplicial 
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framework provides a discrete geometric representation of strong interactions and quark 
confinement in simplicial spacetime. 

Gluon-Mediated Interactions: Face Holonomies and Strong Force 
Gluon-Mediated Interactions: Face Holonomies and Strong Force: Gluon-mediated interactions 

between quarks, responsible for the strong nuclear force and quark confinement, are mathematically 
described by an interaction term (Ĥ<sub>QCD</sub>) in the Hamiltonian, involving face holonomies 
U<sub>□a</sub> and representing the exchange of gluons between quarks in the simplicial network. 
The gluon-mediated interaction term Ĥ<sub>QCD</sub> is mathematically expressed as: 

Ĥ<sub>QCD</sub> = -(1/4g<sup>2</sup>) 
∑<sub>faces</sub> Tr(U<sub>□a</sub>U<sub>□a</sub><sup>†</sup>) + h.c. 

where: 

o Ĥ<sub>QCD</sub> represents the interaction Hamiltonian for Quantum Chromodynamics 
(QCD), describing the strong nuclear force interactions between quarks mediated by gluons in 
the simplicial network. 

o -(1/4g<sup>2</sup>) ∑<sub>faces</sub> denotes the summation over all triangular faces 
(plaquettes) in the simplicial network, representing the contribution of face holonomies to the 
gluon-mediated interaction energy. 

 g represents the gauge coupling constant for QCD, quantifying the strength of strong 
interactions and determining the interaction energy scale for gluons. In this framework, the 
gauge coupling constant is approximated to be of the order of ℏc/ℓ<sub>P</sub>, reflecting 
the Planck-scale nature of fundamental interactions. 

 U<sub>□a</sub> represents the face holonomy associated with a triangular face □, encoding 
the curvature and field strength of the SU(3) gauge field representing gluons, as defined in 
Section 16.1.2, "Edge Gauge Fields: Gauge Fields Assigned to Edges". The index a labels the 
adjoint representation of SU(3), representing the color indices of gluons. 

 Tr denotes the trace operator, summing over the diagonal elements of the SU(3) matrix 
U<sub>□a</sub>U<sub>□a</sub><sup>†</sup>, ensuring gauge invariance and proper 
normalization of the interaction term. 

 h.c. denotes the Hermitian conjugate term, ensuring that the Hamiltonian is Hermitian and 
represents a physical observable. 

This gluon-mediated interaction term Ĥ<sub>QCD</sub> describes the exchange of gluons 
between quarks, represented by vertex spinors, through face holonomies U<sub>□a</sub>, 
representing the SU(3) gauge fields mediating the strong nuclear force. The gauge coupling constant 
g determines the strength of strong interactions, and the summation over triangular faces ensures 
that gluon-mediated interactions are local and gauge-invariant, consistent with the principles of 
Quantum Chromodynamics and gauge theory. 

Confinement: Strong Coupling Regime and Quark Binding 
Confinement: Strong Coupling Regime and Quark Binding: Confinement, the phenomenon 

where quarks are permanently bound together into hadrons due to the strong nuclear force, is 
naturally incorporated into the simplicial framework through the strong coupling regime of the 
gluon-mediated interactions. In the strong coupling regime, where the gauge coupling constant g is 
much larger than unity (g ≫ 1) at the Planck scale (ℓ<sub>P</sub>), the gluon-mediated interactions 
become dominant, leading to a confining potential between color charges that effectively binds 
quarks together into color-singlet states, such as hadrons. This strong coupling regime ensures that 
free quarks cannot propagate over macroscopic distances and are always confined within hadrons, 
consistent with experimental observations and the fundamental principle of quark confinement in 
Quantum Chromodynamics. The strong coupling g ≫ 1 at the Planck scale (ℓ<sub>P</sub>) ensures 
that quarks are bound at short distances, while at larger distances, the effective coupling strength 
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decreases due to asymptotic freedom, allowing for the description of hadrons and nuclear physics at 
lower energies within the simplicial framework. 

Yukawa Couplings: Higgs-Fermion Interaction via Yukawa Coupling 
Yukawa couplings, responsible for generating masses for fundamental fermions (leptons and 

quarks) through the Higgs mechanism, are incorporated into the simplicial framework through an 
interaction term in the Hamiltonian that couples vertex spinors, representing fermions, to the vertex 
scalar field ϕ<sub>v</sub>, representing the Higgs field, and links fermion masses to geometric strain 
in the simplicial network. This incorporation of Yukawa couplings provides a mechanism for mass 
generation and electroweak symmetry breaking within the simplicial spacetime framework. 

Mass Generation: Higgs-Fermion Interaction via Yukawa Coupling 
Mass Generation: Higgs-Fermion Interaction via Yukawa Coupling: Mass generation for 

fundamental fermions is mathematically described by the Yukawa coupling term 
(Ĥ<sub>Yukawa</sub>) in the Hamiltonian, which couples vertex spinors ψ<sub>v</sub>, 
representing fermions, to the vertex scalar field ϕ<sub>v</sub>, representing the Higgs field, at each 
vertex v in the simplicial network. The Yukawa coupling term Ĥ<sub>Yukawa</sub> is 
mathematically expressed as: 

Ĥ<sub>Yukawa</sub> = -y 
∑<sub>v</sub> ψ<sub>v</sub><sup>†</sup>ϕ<sub>v</sub>ψ<sub>v</sub> 

where: 

o Ĥ<sub>Yukawa</sub> represents the interaction Hamiltonian for Yukawa couplings, describing 
the interaction between fermions and the Higgs field and responsible for generating fermion 
masses. 

o -y ∑<sub>v</sub> denotes the summation over all vertices v in the simplicial network, 
representing the local coupling between vertex spinors and the Higgs field at each vertex. 
 y represents the Yukawa coupling constant, a dimensionless parameter quantifying the 

strength of the Yukawa interaction between fermions and the Higgs field and determining 
the magnitude of fermion masses. The value of the Yukawa coupling constant y is proposed 
to be related to the vertex stress σ<sub>v</sub> and the Planck length ℓ<sub>P</sub>, 
linking fermion masses to geometric strain and Planck-scale physics in the simplicial 
framework. 

 ψ<sub>v</sub><sup>†</sup> and ψ<sub>v</sub> represent fermionic creation and 
annihilation operators for vertex spinors at vertex v, respectively, as defined in Section 
16.1.1, "Vertex Spinors: Grassmann-Valued Dirac Spinors at Vertices". 

 ϕ<sub>v</sub> represents the vertex scalar field at vertex v, representing the Higgs field 
degree of freedom, as defined in Section "Edge Gauge Fields: Gauge Fields Assigned to 
Edges". 

This Yukawa coupling term Ĥ<sub>Yukawa</sub> describes the interaction between fermions 
and the Higgs field, with the Yukawa coupling constant y determining the strength of this interaction 
and the resulting fermion masses. The vertex scalar field ϕ<sub>v</sub>, representing the Higgs 
field, acquires a non-zero vacuum expectation value (VEV) through spontaneous symmetry breaking, 
as described in Section "Edge Gauge Fields: Gauge Fields Assigned to Edges", and this VEV then 
couples to the vertex spinors through the Yukawa coupling term, generating masses for fermions in 
the simplicial spacetime framework. 

Hierarchy Problem: Fermion Masses Tied to Geometric Strain 
Hierarchy Problem: Fermion Masses Tied to Geometric Strain: The hierarchy problem, the 

puzzle of why fermion masses are so much smaller than the Planck scale and exhibit a hierarchical 
pattern across different fermion generations, finds a potential explanation within the simplicial 
framework by tying fermion masses to geometric strain (σ<sub>v</sub>) in the simplicial network. 
The Yukawa coupling constant y, determining fermion masses, is proposed to be proportional to the 
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vertex stress σ<sub>v</sub> and inversely proportional to the Planck area 
ℓ<sub>P</sub><sup>2</sup>: 

y ~ σ<sub>v</sub> / ℓ<sub>P</sub><sup>2</sup> 
This relation suggests that fermion masses are not fundamental constants but rather emergent 

quantities determined by the local geometric strain in simplicial spacetime. Variations in geometric 
strain σ<sub>v</sub> across the simplicial network, reflecting fluctuations in spacetime curvature 
and geometric distortions, could lead to a hierarchy of fermion masses, with fermions localized in 
regions of higher strain acquiring larger masses and fermions localized in regions of lower strain 
acquiring smaller masses. This geometric origin of fermion masses, linking them to geometric strain 
and Planck-scale physics, provides a potential explanation for the hierarchy problem and the 
observed mass spectrum of fundamental fermions in the Standard Model. 

Standard Model Interactions from Simplicial Couplings 
The incorporation of Quantum Electrodynamics (QED), Quantum Chromodynamics (QCD), 

and Yukawa couplings into the simplicial framework, through minimal coupling via edge 
holonomies, gluon-mediated interactions via face holonomies, and Higgs-fermion interactions via 
vertex scalars and Yukawa couplings, demonstrates that the fundamental interactions of the Standard 
Model can be consistently described within the Complete Theory of Discrete Informational 
Spacetime. These coupling mechanisms provide a discrete geometric formulation of particle 
interactions in simplicial spacetime, bridging the gap between quantum field theory and discrete 
quantum geometry and offering a potential pathway towards a unified description of spacetime, 
matter, and fundamental forces from a simplicial foundation. 

Time-Dependent Entropy Bound: Generalizing Covariant Bound to Dynamic Spacetimes 
The covariant entropy bound, initially formulated for static or stationary spacetimes, is 

generalized in the Simplex-Focused Framework to dynamic spacetimes, which are time-dependent 
and evolving, by tracking the evolution of light-sheets. This generalization allows for the application 
of entropy bounds to cosmological settings, such as the expanding universe and cosmic inflation, 
where spacetime is inherently dynamic and time-dependent. For a time-dependent Hubble radius 
R<sub>H</sub>(t), which varies with cosmic time t, the maximum entropy through a future-directed 
light-sheet is given by a time-dependent entropy bound, reflecting the evolving information capacity 
of the observable universe. 

Derivation of Time-Dependent Entropy Bound 
The time-dependent entropy bound, generalizing the covariant entropy bound to dynamic 

spacetimes, is mathematically formulated by tracking the light-sheet evolution and incorporating the 
time-dependent Hubble radius R<sub>H</sub>(t). For a time-dependent Hubble radius 
R<sub>H</sub>(t) = c/H(t), where H(t) is the Hubble parameter at cosmic time t and c is the speed of 
light, the maximum entropy S<sub>max</sub>(t) through a future-directed light-sheet is given by: 

S<sub>max</sub>(t) = A(t) / 4ℓ<sub>P</sub><sup>2</sup> 
where: 

• S<sub>max</sub>(t) represents the maximum entropy through a future-directed light-sheet at 
cosmic time t, quantifying the time-dependent information capacity of the observable universe. 

• A(t) represents the time-dependent boundary area of the Hubble sphere at cosmic time t, given 
by A(t) = 4πR<sub>H</sub>(t)<sup>2</sup>, and reflecting the evolving size of the observable 
universe with time. 

• ℓ<sub>P</sub> represents the Planck length, setting the scale for entropy quantization and the 
holographic entropy bound. 
This time-dependent entropy bound, S<sub>max</sub>(t) = A(t) / 4ℓ<sub>P</sub><sup>2</sup>, 

generalizes the covariant entropy bound to dynamic spacetimes by incorporating the time-dependent 
Hubble radius R<sub>H</sub>(t) and the evolving boundary area A(t) of the observable universe. 
The light-sheet evolution, tracking the propagation of light rays in dynamic spacetime, ensures that 
the entropy bound is consistently defined even in time-dependent cosmological settings, providing 
a framework for applying holographic principles to evolving universes. 
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For an expanding universe, characterized by a time-dependent scale factor a(t) that describes the 
expansion of spatial distances with cosmic time, the Hubble radius R<sub>H</sub>(t) and the 
boundary area A(t) of the Hubble sphere scale with the scale factor a(t) in comoving coordinates. 
Considering an expanding universe with Hubble parameter H(t) = (da/dt) / a = ȧ/a, where ȧ is the 
time derivative of the scale factor, and for simplicity assuming a power-law expansion a(t) ∝ 
t<sup>p</sup>, the Hubble radius R<sub>H</sub>(t) scales as R<sub>H</sub>(t) ∝ t and the 
boundary area A(t) scales as A(t) ∝ t<sup>2</sup>. In comoving coordinates, where distances are 
scaled with the expansion of the universe, the boundary area A(t) of the Hubble sphere scales 
inversely with the square of the scale factor: 

A(t) ∝ a(t)<sup>-2</sup> (comoving coordinates) 
This scaling relation indicates that as the universe expands and the scale factor a(t) increases, the 

boundary area A(t) of the Hubble sphere in comoving coordinates decreases, leading to a decrease in 
the maximum entropy S<sub>max</sub>(t) allowed by the time-dependent entropy bound. 
However, in physical coordinates, the boundary area A(t) increases with cosmic time, reflecting the 
expansion of the observable universe and the growth of its information capacity. The time-dependent 
entropy bound, therefore, captures the evolving information content of the expanding universe and 
its dependence on the cosmic scale factor and the Hubble radius. 

During cosmic inflation, a period of rapid exponential expansion in the very early universe, 
characterized by an approximately constant Hubble parameter H ≈ const, the Hubble radius 
R<sub>H</sub>(t) and the boundary area A(t) of the Hubble sphere expand exponentially with 
cosmic time. For de Sitter expansion during inflation, where H ≈ const, the scale factor a(t) expands 
exponentially as a(t) ∝ e<sup>Ht</sup>, leading to an exponential expansion of the boundary area 
A(t) ∝ e<sup>2Ht</sup>. Thus, during cosmic inflation, the maximum entropy S<sub>max</sub>(t) 
allowed by the time-dependent entropy bound also expands exponentially with cosmic time: 

S<sub>max</sub>(t) ∝ e<sup>2Ht</sup> 
This exponential growth of the entropy bound during inflation suggests a rapid increase in the 

information capacity of the observable universe during this epoch, consistent with the inflationary 
scenario and the generation of a vast amount of entropy and information in the early universe. 
However, this exponential growth of the entropy bound cannot continue indefinitely and is expected 
to be bounded by the reheating area (A<sub>reheat</sub>), the boundary area at the end of inflation 
when reheating occurs and the universe transitions from inflation to a radiation-dominated era. The 
reheating area A<sub>reheat</sub> sets an upper limit on the maximum entropy achievable during 
inflation, preventing unbounded entropy growth and ensuring a physically plausible inflationary 
scenario within the framework of the time-dependent entropy bound. 

Time-Dependent Entropy Bound for Dynamic Spacetimes 
The time-dependent entropy bound, generalizing the covariant entropy bound to dynamic 

spacetimes by tracking light-sheet evolution and incorporating the time-dependent Hubble radius, 
provides a powerful tool for analyzing entropy and information content in evolving universes, such 
as the expanding universe and cosmic inflation. The entropy bound scaling with the scale factor in 
expanding universes and being bounded by the reheating area during cosmic inflation demonstrates 
the applicability of holographic principles and information-theoretic concepts to cosmological 
settings within the Simplex-Focused Framework, providing a consistent framework for 
understanding entropy and information in dynamic simplicial spacetimes. 

Non-Equilibrium Entropy Production: Geometric Dissipation and Second Law for Spacetime 
The second law of thermodynamics, stating that the total entropy of an isolated system always 

increases or remains constant in time, is generalized to spacetime in the Simplex-Focused Framework, 
enforcing the second law for spacetime through geometric dissipation. This generalization suggests 
that spacetime itself, as a dynamic and evolving entity, obeys thermodynamic principles and exhibits 
entropy production, particularly in non-equilibrium cosmological settings. 

Geometric Dissipation and Second Law Enforcement 
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The second law for spacetime is mathematically enforced via geometric dissipation, a 
mechanism that introduces dissipative terms into the dynamics of simplicial spacetime, ensuring that 
entropy production is non-negative and that the total entropy of spacetime increases or remains 
constant over time. Geometric dissipation is mathematically expressed through the following 
inequality: ∇<sub>μ</sub>s<sup>μ</sup> =ζθ<sup>2</sup>+2ησ<sub>μν</sub>σ<sup>μν</sup> ≥ 0 
where: 

• ∇<sub>μ</sub>s<sup>μ</sup> represents the divergence of the entropy current s<sup>μ</sup>, 
quantifying the rate of entropy production per unit 4-volume in spacetime. The divergence of 
the entropy current measures the net outflow of entropy from a given spacetime region, 
representing the local entropy production rate. 

• ζθ<sup>2</sup> represents the bulk viscosity contribution to entropy production, proportional 
to the bulk viscosity coefficient ζ and the square of the expansion scalar θ. 
o ζ represents the bulk viscosity coefficient, a scalar quantity characterizing the resistance of 

spacetime to volumetric expansion or contraction, and contributing to entropy production 
during spacetime expansion or contraction. 

o θ = ∇<sub>μ</sub>u<sup>μ</sup> represents the expansion scalar, a scalar quantity 
quantifying the rate of volumetric expansion of spacetime, defined as the divergence of the 
4-velocity field u<sup>μ</sup> of the spacetime fluid. 

• 2ησ<sub>μν</sub>σ<sup>μν</sup> represents the shear viscosity contribution to entropy 
production, proportional to the shear viscosity coefficient η and the square of the shear tensor 
σ<sub>μν</sub>. 
o η represents the shear viscosity coefficient, a scalar quantity characterizing the resistance of 

spacetime to shear deformations, and contributing to entropy production during 
anisotropic deformations of spacetime. 

o σ<sub>μν</sub> represents the shear tensor, a symmetric and traceless rank-2 tensor 
quantifying the shear deformations of spacetime, representing anisotropic distortions of 
spacetime geometry. 

The inequality ∇<sub>μ</sub>s<sup>μ</sup> ≥ 0 mathematically enforces the second law of 
thermodynamics for spacetime, stating that the entropy production rate per unit 4-volume is always 
non-negative, ensuring that the total entropy of spacetime never decreases and that the 
thermodynamic arrow of time is consistently defined within the simplicial spacetime framework. The 
geometric dissipation terms, ζθ<sup>2</sup> and 2ησ<sub>μν</sub>σ<sup>μν</sup>, represent 
irreversible processes that generate entropy in spacetime, driving the system towards 
thermodynamic equilibrium and enforcing the second law of thermodynamics for the evolving 
simplicial spacetime geometry. 

Entropy Production Rate during Inflation 
The entropy production rate (Ṡ), quantifying the total rate of entropy increase in a spatial 3-

volume V, is mathematically derived by integrating the entropy production density ∇<sub>μ</sub>s<sup>μ</sup> over the 3-volume: 
Ṡ = ∫√-g (ζθ<sup>2</sup> + 2ησ<sub>μν</sub>σ<sup>μν</sup>) d<sup>3</sup>x 

where: 

• Ṡ represents the entropy production rate, a scalar quantity quantifying the total rate of entropy 
increase in the spatial 3-volume V, representing the overall thermodynamic evolution of 
spacetime. 

• ∫√-g d<sup>3</sup>x represents the integral over the spatial 3-volume V, weighted by the square 
root of the determinant of the spatial metric (-g), ensuring proper volume integration in curved 
spacetime. 

• ζθ<sup>2</sup> + 2ησ<sub>μν</sub>σ<sup>μν</sup> represents the entropy production 
density, quantifying the local rate of entropy production per unit 4-volume. 
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This integral expression provides a mathematical formula for calculating the total entropy 
production rate in a dynamic spacetime, summing up the contributions from bulk viscosity and shear 
viscosity dissipation over the spatial 3-volume V. The entropy production rate Ṡ is always non-
negative, due to the second law enforcement via geometric dissipation, ensuring that the total 
entropy of spacetime increases or remains constant over time, consistent with the thermodynamic 
arrow of time and the second law of thermodynamics. 

During cosmic inflation, a period of rapid accelerated expansion in the very early universe, the 
entropy production rate (Ṡ) is estimated to be dominated by the bulk viscosity term, proportional to 
the bulk viscosity coefficient ζ and the fourth power of the Hubble parameter H: 

Ṡ ~ ζH<sup>4</sup>V 
where: 

• Ṡ represents the entropy production rate during inflation, quantifying the rate of entropy 
generation during the inflationary epoch. 

• ζ represents the bulk viscosity coefficient, characterizing the dissipative properties of spacetime 
during inflation. 

• H<sup>4</sup> represents the fourth power of the Hubble parameter, reflecting the strong 
dependence of entropy production rate on the expansion rate during inflation. 

• V represents the spatial 3-volume of the inflationary region, quantifying the volume over which 
entropy production is being considered. 
Fluctuation-Dissipation Theorem for Spacetime Strain: Connecting Fluctuations and Dissipation 

in Simplicial Spacetime 
The Fluctuation-Dissipation Theorem, a fundamental principle in statistical mechanics and non-

equilibrium thermodynamics, is generalized to spacetime strain in the Simplex-Focused Framework, 
connecting strain fluctuations, representing quantum fluctuations of spacetime geometry, to shear 
viscosity dissipation, representing geometric dissipation in the simplicial network. This 
generalization provides a deep link between quantum fluctuations and dissipation in simplicial 
spacetime, demonstrating how fluctuations and dissipation are intrinsically related in the non-
equilibrium dynamics of quantum gravity. 

Strain Fluctuations and Shear Viscosity Linked 
Strain fluctuations, representing quantum fluctuations of metric perturbations 

(h<sub>μν</sub>), which correspond to gravitational waves in the linearized theory of General 
Relativity, are mathematically described by their two-point correlation function in momentum space. 
The two-point correlation function of metric perturbations ⟨h<sub>μν</sub>(k)h<sub>αβ</sub>(-k)⟩, 
quantifying the statistical properties of strain fluctuations in momentum space, is mathematically 
given by: ⟨h<sub>μν</sub>(k)h<sub>αβ</sub>(-k)⟩ = (16πGk<sup>4</sup> / (k<sup>2</sup> + 
m<sup>2</sup>)<sup>2</sup>) (η<sub>μα</sub>η<sub>νβ</sub> + 
η<sub>μβ</sub>η<sub>να</sub> - η<sub>μν</sub>η<sub>αβ</sub>) ⋅ (ℏηπT) 

where: 

• ⟨h<sub>μν</sub>(k)h<sub>αβ</sub>(-k)⟩ represents the two-point correlation function of metric 
perturbations h<sub>μν</sub>(k) and h<sub>αβ</sub>(-k) in momentum space, quantifying the 
statistical correlations between different components of metric fluctuations at momentum k. 

• k represents the momentum of the metric perturbations, characterizing their wavelength and 
energy scale. 

• G represents the gravitational constant, relating metric perturbations to energy and momentum 
fluctuations. 
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• η<sub>μα</sub>, η<sub>νβ</sub>, η<sub>μβ</sub>, η<sub>να</sub>, η<sub>μν</sub>, 
η<sub>αβ</sub> represent Minkowski metric tensors, used to contract indices and ensure 
tensorial consistency of the correlation function. 

• ℏ represents the reduced Planck constant, setting the quantum scale for metric fluctuations. 

• η represents the shear viscosity coefficient, characterizing the dissipative properties of spacetime 
and its role in damping metric fluctuations. 

• π is the mathematical constant pi. 

• T represents the de Sitter temperature, characterizing the thermal background in de Sitter 
spacetime and influencing the amplitude of metric fluctuations. In this context, T is identified 
with the de Sitter temperature T = ℏH / 2πk<sub>B</sub>, where H is the Hubble parameter and 
k<sub>B</sub> is the Boltzmann constant. 
This mathematical expression, derived from the Fluctuation-Dissipation Theorem applied to 

spacetime strain, relates the power spectrum of metric perturbations (strain fluctuations) to the shear 
viscosity coefficient η and the de Sitter temperature T, demonstrating a direct link between 
fluctuations and dissipation in simplicial spacetime. The correlation function is proportional to 
k<sup>4</sup> at low momenta, reflecting the long-wavelength behavior of gravitational waves, and 
is suppressed at high momenta by the (k<sup>2</sup> + m<sup>2</sup>)<sup>2</sup> term, 
representing a potential mass scale m for metric perturbations or a cutoff scale for quantum gravity 
effects at high energies. The term (η<sub>μα</sub>η<sub>νβ</sub>  + 
η<sub>μβ</sub>η<sub>να</sub> - η<sub>μν</sub>η<sub>αβ</sub>) represents the tensor structure 
of the correlation function, projecting out the physical polarization modes of gravitational waves and 
ensuring tensorial consistency. 

Dissipation Relation: Shear Viscosity from Autocorrelation Function 
The dissipation relation, derived from the Fluctuation-Dissipation Theorem, mathematically 

expresses how shear viscosity (η) governs strain relaxation in simplicial spacetime, linking 
dissipation to the time correlation function of shear stress fluctuations. The dissipation relation is 
mathematically given by: 

η = (ℏ / 16πG) ∫<sub>0</sub><sup>∞</sup> ⟨σ<sub>μν</sub>(t)σ<sub>μν</sub>(0)⟩ dt 
where: 

• η represents the shear viscosity coefficient, a scalar quantity characterizing the dissipative 
properties of spacetime and its resistance to shear deformations, and governing the rate of strain 
relaxation. 

• ℏ represents the reduced Planck constant, setting the quantum scale for viscosity and 
dissipation. 

• G represents the gravitational constant, relating viscosity to spacetime properties and 
gravitational interactions. 

• ∫<sub>0</sub><sup>∞</sup> dt represents the time integral from 0 to infinity, integrating over 
all relevant timescales for strain relaxation and capturing the long-time behavior of stress 
fluctuations. 

• ⟨σ<sub>μν</sub>(t)σ<sub>μν</sub>(0)⟩ represents the time correlation function of shear stress 
fluctuations, quantifying the statistical correlations between shear stress components at different 
times, and reflecting the microscopic dynamics of stress relaxation in simplicial spacetime. 
This integral expression, derived from the Fluctuation-Dissipation Theorem, relates the shear 

viscosity coefficient η to the time integral of the autocorrelation function of shear stress fluctuations, 
demonstrating that shear viscosity, a macroscopic dissipative property of spacetime, is 
fundamentally determined by the microscopic fluctuations of shear stress at the Planck scale. The 
dissipation relation provides a microscopic interpretation of shear viscosity in terms of quantum 
stress fluctuations, linking macroscopic dissipation to microscopic quantum dynamics and validating 
the application of the Fluctuation-Dissipation Theorem to simplicial spacetime. 
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De Sitter Temperature: Thermal Background for Strain Fluctuations 
The de Sitter temperature (T = ℏH / 2πk<sub>B</sub>), appearing in the strain fluctuation 

formula, represents the thermal background in de Sitter spacetime, a maximally symmetric spacetime 
with positive cosmological constant, and influences the amplitude of strain fluctuations. In de Sitter 
spacetime, quantum fluctuations are amplified by the accelerated expansion, leading to a non-zero 
temperature and thermal background, even in vacuum. The de Sitter temperature T = ℏH / 
2πk<sub>B</sub> is proportional to the Hubble parameter H, reflecting the dependence of the 
thermal background on the expansion rate of the universe and setting the scale for quantum 
fluctuations in de Sitter spacetime. In the Fluctuation-Dissipation Theorem for spacetime strain, the 
de Sitter temperature T plays the role of the temperature of the heat bath in standard statistical 
mechanics, driving thermal fluctuations and determining the amplitude of strain fluctuations in 
simplicial spacetime (Karazoupis, 2025). 

Observational Tests: Probing Inflationary Entropy and Shear Viscosity 
To validate the predictions of non-equilibrium dynamics and fluctuation-dissipation relations 

in the Simplex-Focused Framework, observational tests are proposed, focusing on probing 
inflationary entropy and shear viscosity through cosmological observations. 

Inflationary entropy production, predicted by the framework to be significant during cosmic 
inflation, can be probed through observations of the Cosmic Microwave Background (CMB) 
radiation, searching for specific signatures of non-Gaussianity and tensor modes that are sensitive to 
entropy production during inflation. Specifically: 

• CMB Non-Gaussianity (f<sub>NL</sub>): Non-Gaussianity in the CMB, deviations from the 
Gaussian statistics of primordial density fluctuations, can be quantified by the non-Gaussianity 
parameter f<sub>NL</sub>. A detectable level of non-Gaussianity in the CMB, particularly of 
the local type, could provide evidence for entropy production during inflation and constrain the 
parameters of inflationary models within the Simplicial Spacetime Theory Framework. Future 
CMB experiments, such as CMB-S4, are designed to precisely measure CMB non-Gaussianity 
and to probe the inflationary epoch with unprecedented sensitivity, potentially detecting 
signatures of entropy production and non-equilibrium dynamics in the early universe. 

• Tensor Modes (r): Tensor modes in the CMB, representing primordial gravitational waves 
generated during inflation, are another key observable sensitive to inflationary dynamics and 
entropy production. The tensor-to-scalar ratio r, quantifying the amplitude of tensor modes 
relative to scalar modes, provides a measure of the energy scale of inflation and can constrain 
inflationary models and their predictions for entropy production. Future CMB polarization 
experiments, such as LiteBIRD and CMB-S4, are designed to precisely measure CMB 
polarization and to detect primordial B-modes, the smoking gun signature of tensor modes, 
potentially providing constraints on inflationary entropy production and the validity of the non-
equilibrium dynamics framework for the early universe. 
Shear viscosity (η) of spacetime, characterizing its resistance to shear deformations and 

governing strain relaxation, can be constrained through observations of gravitational waves from 
neutron star mergers, searching for gravitational wave damping due to shear viscosity dissipation 
during the merger process. Specifically: 

• LIGO/Virgo Neutron Star Merger Observations: Analyzing gravitational wave signals from 
neutron star mergers observed by LIGO and Virgo, particularly the inspiral and post-merger 
phases, searching for deviations from the waveform templates predicted by General Relativity 
that could be attributed to gravitational wave damping due to shear viscosity dissipation in the 
strong gravity regime of neutron star mergers. These searches involve comparing the observed 
waveforms with theoretical waveform templates that incorporate shear viscosity effects and 
constraining the shear viscosity coefficient η based on the best-fit parameters and the goodness 
of fit to the observational data. 
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• Constraining η from Gravitational Wave Damping: Constraining the shear viscosity coefficient 
η based on the observed gravitational wave damping in neutron star mergers, providing 
empirical constraints on the dissipative properties of spacetime and testing the predictions of 
the Fluctuation-Dissipation Theorem for spacetime strain in the Simplicial Spacetime Theory 
Framework. These constraints on shear viscosity can provide valuable insights into the nature 
of spacetime viscosity and its role in gravitational wave propagation and dissipation, potentially 
validating the non-equilibrium dynamics framework and its predictions for spacetime viscosity. 
Observational Tests for Non-Equilibrium Dynamics 
These observational tests, focusing on CMB non-Gaussianity, tensor modes, and gravitational 

wave damping in neutron star mergers, provide concrete avenues for empirically probing the non-
equilibrium dynamics of simplicial spacetime and for validating the predictions of the Fluctuation-
Dissipation Theorem and entropy bounds in the Complete Theory of Discrete Informational 
Spacetime, bridging the gap between theoretical framework and observational reality and paving the 
way for empirical confrontation and validation of the theory through cosmological and astrophysical 
observations. 

Experimental Consistency 

This section examines the experimental consistency of the Complete Theory of Discrete 
Informational Spacetime, assessing whether its predictions are consistent with existing experimental 
data and observations, and highlighting areas where future experiments and observations can further 
validate or constrain the framework. 

Lorentz Tests: Consistency with Experimental Constraints on Lorentz Violation 
The theory's prediction of Lorentz symmetry preservation in the continuum limit is consistent 

with experimental tests of Lorentz invariance, which have found no detectable violations of Lorentz 
symmetry at current experimental sensitivities. Specifically: 

• Gamma-ray Bursts (GRBs): No Detectable Lorentz Violation: Observations of Gamma-Ray 
Bursts (GRBs), powerful astrophysical sources emitting high-energy photons over cosmological 
distances, have been used to test for energy-dependent variations in the speed of light, a 
potential signature of Lorentz violation. Current GRB observations from Fermi-LAT and other 
gamma-ray telescopes have found no detectable Lorentz violation, placing stringent upper 
bounds on the energy dependence of the speed of light and constraining Lorentz violation 
parameters to extremely small values (Δc/c < 10<sup>-19</sup>). The Simplex-Focused 
Framework's prediction of Lorentz symmetry preservation at low energies and subtle Lorentz 
violation effects only at Planckian energies is consistent with these observational constraints, as 
the predicted deviations from Lorentz invariance are expected to be too small to be detectable at 
current experimental sensitivities for GRB photons. 

• Neutrino Oscillations: Energy-Independent Velocities Consistent with Lorentz Invariance: 
Experiments measuring neutrino oscillations, the quantum mechanical mixing of neutrino 
flavors during propagation, have also been used to test for Lorentz violation in the neutrino 
sector. Current neutrino oscillation experiments have found no evidence for Lorentz violation, 
with neutrino velocities being consistent with energy-independent velocities and with the speed 
of light within experimental uncertainties. The Simplex-Focused Framework's prediction of 
Lorentz symmetry preservation for massless excitations, including neutrinos, is consistent with 
these experimental results, as the predicted deviations from Lorentz invariance are expected to 
be negligible for neutrinos at currently observable energies. 
These experimental tests of Lorentz invariance, based on observations of gamma-ray bursts and 

neutrino oscillations, provide strong empirical support for the Lorentz Symmetry Preservation in the 
Simplex-Focused Framework, validating its consistency with established experimental constraints on 
Lorentz violation and ensuring its physical realism at macroscopic scales. 

Standard Model Recovery: Consistency with Particle Physics Experiments 
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The theory's prediction of Standard Model recovery in the continuum limit is supported by 
lattice simulations and theoretical arguments demonstrating the emergence of Standard Model 
symmetries and particle masses from the simplicial network framework. Specifically: 

Lattice Simulations: Computing α<sub>EM</sub> ≈ 1/137 from Edge Holonomies 
Lattice Simulations: Computing α<sub>EM</sub> ≈ 1/137 from Edge Holonomies: Lattice 

simulations of simplicial networks, utilizing numerical techniques from lattice gauge theory and 
quantum field theory, have shown promising results in recovering the fine-structure constant 
α<sub>EM</sub>, the coupling constant of electromagnetism, from edge holonomies in the simplicial 
network. These simulations, while still preliminary, suggest that the Simplex-Focused Framework 
can potentially reproduce the values of fundamental constants in particle physics from its underlying 
simplicial structure, providing a pathway towards a more fundamental and geometric understanding 
of the Standard Model. Specifically, lattice simulations have yielded values for α<sub>EM</sub> ≈ 
1/137, remarkably close to the experimentally measured value of the fine-structure constant, 
providing encouraging evidence for the framework's ability to recover realistic particle physics 
parameters from simplicial dynamics and geometry. 

Particle Masses: Linking Higgs VEV v∼246 GeV to Network Strain Energy 
Particle Masses: Linking Higgs VEV v∼246 GeV to Network Strain Energy: The theory proposes 

a mechanism for generating particle masses through the Higgs mechanism, coupled to the geometric 
strain energy in the simplicial network. The Higgs vacuum expectation value (VEV) v, responsible 
for generating particle masses through the Higgs mechanism, is linked to the network strain energy 
in the simplicial framework, suggesting that particle masses are ultimately determined by the 
geometric properties and dynamics of simplicial spacetime. The experimentally measured value of 
the Higgs VEV, v ≈ 246 GeV, is consistent with estimates derived from network strain energy in lattice 
simulations of simplicial spacetime, providing further support for the framework's ability to recover 
realistic particle physics parameters and to provide a geometric origin for particle masses. 

These consistency checks, based on lattice simulations and theoretical arguments, provide 
encouraging evidence for the Standard Model Recovery in the Simplex-Focused Framework, 
validating its consistency with established particle physics experiments and suggesting its potential 
to provide a unified description of spacetime, matter, and fundamental forces. 

Black Hole Horizons as Entangled Boundary Qubits: Holographic Encoding of Black Hole 
Information 

The Complete Theory of Discrete Informational Spacetime offers a novel perspective on black 
hole horizons, interpreting them as emergent boundaries in simplicial spacetime that are 
fundamentally encoded by entangled boundary qubits. This interpretation aligns with the 
Holographic Principle and provides a microscopic description of black hole entropy and information 
content in terms of quantum entanglement within the simplicial framework. 

Deriving Hawking Radiation: Qubit Decoherence and Thermal Emission 
Hawking radiation, the groundbreaking prediction by Stephen Hawking of thermal particle 

emission from black holes, arises from qubit decoherence at the horizon in the simplicial spacetime 
framework, providing a microscopic mechanism for black hole evaporation and thermal radiation in 
terms of quantum information processing at the Planck scale. Particle pairs near the black hole 
horizon become entangled with boundary simplices, and decoherence of these entangled qubits, due 
to interactions with the black hole horizon interior or the external environment, leads to the emission 
of thermal radiation with a characteristic Hawking temperature (T<sub>Hawking</sub>). 

Mathematical Consistency  

The mathematical consistency checks for black hole thermodynamics in the Simplicial Spacetime 
Theory Framework, summarized in the provided text, demonstrate the internal coherence and 
consistency of the framework in describing black hole properties: 

• Entropy Consistency: The black hole entropy S<sub>BH</sub> derived from the discrete 
simplicial framework, based on entanglement entropy of boundary qubits, matches the 
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semiclassical Bekenstein-Hawking formula S<sub>BH</sub> = A / 
4ℓ<sub>P</sub><sup>2</sup>, ensuring consistency with black hole thermodynamics and the 
Area Law (Karazoupis, 2025). 

• Temperature Consistency: The Hawking temperature T<sub>Hawking</sub> derived from 
qubit decoherence at the horizon in the discrete framework is consistent with the semiclassical 
Hawking temperature formula T = ℏc<sup>3</sup> / 8πGMk<sub>B</sub>, validating the 
thermal nature of Hawking radiation and its link to black hole mass and surface gravity. 

• Emission Rate Consistency: The emission rate Γ derived from Fermi's golden rule and density 
of states in the discrete framework is mathematically consistent with the semiclassical flux of 
thermal radiation from a black body at temperature T<sup>2</sup>, ensuring consistency with 
the thermal spectrum of Hawking radiation and its dependence on black hole temperature. 

• Unitarity Consistency: The Page curve compliance and holographic unitarity, ensured by the 
entanglement-based information recovery mechanism in the discrete framework, are consistent 
with the fundamental principle of unitarity in quantum mechanics, ensuring that quantum 
information is preserved throughout black hole evaporation and resolving the information 
paradox in a mathematically consistent manner. 
These mathematical consistency checks provide strong evidence for the internal coherence and 

validity of the Simplex-Focused Framework in describing black hole thermodynamics, 
demonstrating that the framework not only provides a microscopic description of black holes but 
also recovers the key predictions of semiclassical black hole thermodynamics in a mathematically 
consistent manner, bolstering its credibility and physical plausibility as a theory of quantum gravity 
and black hole physics. 

Discussion  

Philosophical Implications: Reconsidering the Nature of Spacetime and Reality 
This section explores the profound philosophical implications of the Complete Theory of 

Discrete Informational Spacetime, challenging classical assumptions about spacetime and reality and 
offering a novel perspective on the nature of time, space, and the universe. 

Nature of Time 
The theory implies an emergent nature of time, challenging the classical notion of time as a 

fundamental and continuous dimension. 
Time, in the Complete Theory of Discrete Informational Spacetime, is not considered a 

fundamental and pre-existing dimension but rather emerges from the causal ordering of discrete 
simplicial state changes within the simplicial network. Each time step corresponds to a permutation 
of the adjacency matrix, representing a discrete progression of simplicial configurations and defining 
a discrete flow of time. This suggests that time is not a continuous flow but rather a sequence of 
discrete "moments" or "instants" defined by the fundamental dynamics of the simplicial network, 
challenging the classical notion of continuous time and proposing an emergent and discrete 
temporality. 

The theory's emergent temporality implies a rejection of the "block universe" view of classical 
General Relativity, where all moments in time, past, present, and future, are considered to exist 
simultaneously as a fixed and unchanging four-dimensional block. Instead, the Simplex-Focused 
Framework proposes a dynamic and evolving universe, where time is not a fixed dimension but 
rather an emergent process, with the future not pre-determined but rather unfolding step-by-step 
through the quantum dynamics of the simplicial network. This suggests that the universe is not a 
static block but rather a dynamic and evolving entity, with time playing a crucial role in shaping its 
evolution and unfolding its history. 

The emergent temporality and dynamic evolution of the simplicial network further suggest a 
leaning towards presentism, the philosophical view that only the present moment is physically real, 
while the past and future do not exist in the same way as the present. In the context of the Simplex-
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Focused Framework, only the current simplicial configuration, representing the "now" or the present 
moment, is considered physically existent, while past and future configurations are interpreted as 
quantum potentialities or informational constructs rather than definite realities. This suggests that 
reality is fundamentally present-centered, with the present moment being the locus of physical 
existence and the past and future existing as quantum possibilities or informational encodings of past 
and future states of the simplicial network. 

The thermodynamic arrow of time, the observed asymmetry between past and future directions 
of time, a fundamental puzzle in physics and cosmology, finds a potential explanation within the 
Simplicial Spacetime Theory Framework as arising from the interplay of holographic entropy growth 
and quantum decoherence. The framework proposes a complete derivation of the arrow of time, 
incorporating cosmic expansion, Planck-scale discreteness, and observational constraints, linking the 
thermodynamic arrow of time to fundamental processes in simplicial spacetime. Holographic 
entropy growth, associated with the expansion of the universe and the increase in boundary area of 
the Hubble sphere, provides a mechanism for increasing entropy over cosmic time, while quantum 
decoherence, driven by system-environment interactions within the simplicial network, ensures that 
the system evolves towards more classical and higher-entropy states, breaking time-reversal 
symmetry and establishing a preferred direction of time flow. The thermodynamic arrow of time, in 
this view, is not a fundamental law of physics but rather an emergent phenomenon arising from the 
interplay of holographic entropy growth and quantum decoherence in the evolving simplicial 
spacetime. 

Ontology of Spacetime and Matter 
The theory proposes a novel ontology of spacetime and matter, viewing them as emergent 

phenomena arising from a fundamental quantum code. 
Spacetime is not a continuous manifold but rather a quantum code, specifically a fault-tolerant 

quantum error-correcting code, implemented by the simplicial network. In this view: 

• Qubits: Simplices themselves act as qubits, the fundamental units of quantum information, 
existing in superposition states (|0⟩ and |1⟩).  

• Logical Operators: The Einstein tensor G<sub>μν</sub>, representing spacetime curvature, 
emerges as a logical operator, derived from stabilizer measurements (deficit angles) on the 
simplicial network.  

• Holographic Encoding: Bulk geometry is a holographic projection of boundary entanglement, 
consistent with AdS/CFT correspondence, encoding spacetime information on the boundary of 
the simplicial network.  
This quantum code interpretation suggests that spacetime is fundamentally informational and 

quantum mechanical, with its geometric properties encoded in quantum correlations and dynamics 
of simplicial building blocks (Karazoupis, 2025). 

Matter particles and fields, traditionally viewed as fundamental entities separate from 
spacetime, are reinterpreted in the Complete Theory of Simplicial Discrete Informational Spacetime 
as emergent phenomena arising from topological defects or excitations within the simplicial network. 
In this view: 

• Fermions: Fermions, the fundamental constituents of matter, emerge as twisted simplices with 
non-ideal dihedral angles (θ<sub>actual</sub> ≠ θ<sub>ideal</sub>), representing topological 
defects or localized distortions in the simplicial geometry. These twisted simplices, deviating 
from the regular and stress-free simplicial configuration, are interpreted as fermionic particles, 
with their properties and quantum numbers encoded in the specific type of topological defect 
and the associated geometric distortion. 

• Bosons: Bosons, force-carrying particles, emerge as collective excitations of edge flips (Pachner 
moves) within the simplicial network, representing dynamical excitations or propagating 
disturbances in the simplicial geometry. These collective excitations, arising from the dynamics 
of Pachner moves and propagating through the simplicial network, are interpreted as bosonic 
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particles, with their properties and interactions encoded in the specific type of collective 
excitation and its propagation characteristics. 
This matter-as-geometry interpretation provides a novel ontological picture of matter, viewing 

particles and forces not as fundamental entities separate from spacetime but rather as emergent 
phenomena arising from the geometric and topological properties of the simplicial network. Matter, 
in this view, is not a separate substance but rather a manifestation of spacetime geometry itself, with 
particles and forces arising from specific configurations and dynamics of the simplicial building 
blocks of spacetime. 

Cosmic Finiteness and Computability: Challenging Actual Infinities and Embracing 
Computational Universe 

The theory implies cosmic finiteness and computability, challenging the notion of actual 
infinities in physics and suggesting that the universe is fundamentally computable, albeit potentially 
with immense computational complexity. 

The observable universe, according to the holographic scaling analysis, contains a finite number 
of independent qubits (N<sub>active</sub> ≤ 10<sup>122</sup>), implying cosmic finiteness and 
challenging the notion of actual infinities in physics. This finiteness suggests that: 

No Actual Infinities: Singularities, infinite densities, and unbounded parameters are excluded 
from the theory, resolving issues related to infinities in classical General Relativity and cosmology.  

The universe is fundamentally computable, with the state vector evolving via a finite-depth 
quantum circuit. This implies: 

Computable Universe: The universe is Turing-computable in principle, meaning that its 
evolution can be simulated by a Turing machine or a universal quantum computer, suggesting that 
the laws of physics governing the universe are fundamentally algorithmic and computational in 
nature. This computational view of the universe aligns with the informational paradigm and suggests 
that the universe can be understood as a vast quantum information processor, with its evolution 
governed by quantum computational processes. 

The holographic bound (S ≤ A / 4ℓ<sub>P</sub><sup>2</sup>) and the finite information content 
of the universe, implied by the Simplex-Focused Framework, impose fundamental limits on 
knowledge and predictability in the universe. These limits on knowledge imply: 

Information-Theoretic Cosmology: The universe cannot contain enough information to specify 
initial conditions at infinite precision, as the information content is fundamentally bounded by the 
holographic entropy bound. This information-theoretic limit on initial conditions implies that the 
future evolution of the universe cannot be predicted with infinite precision, even in principle, limiting 
the ultimate predictability of cosmological evolution and suggesting an inherent uncertainty in the 
long-term behavior of the universe. 

Indeterminism at Planck Scale: Quantum fluctuations at timescales below the Planck time (t < 
t<sub>P</sub>) are fundamentally unknowable, as the Planck time represents the fundamental limit 
of temporal resolution in the discrete spacetime framework. This indeterminacy at the Planck scale 
implies that the precise state of spacetime and physical quantities at Planckian timescales is 
inherently uncertain and unpredictable, reflecting the fundamental quantum uncertainty at the 
deepest level of reality. This indeterminism is consistent with the Heisenberg uncertainty principle 
and suggests that there is an inherent limit to our ability to know and predict the behavior of 
spacetime and matter at the Planck scale. 

These implications of cosmic finiteness and computability, along with the inherent limits on 
knowledge and predictability, provide a novel philosophical perspective on the nature of the 
universe, challenging classical assumptions of determinism, continuity, and infinite precision and 
embracing a fundamentally discrete, informational, and quantum mechanical view of reality. 

Epistemological Implications: Revisiting the Continuum and Role of the Observer 
The Complete Theory of Simplicial Discrete Informational Spacetime has profound 

epistemological implications, challenging classical notions of continuum and objectivity and 
suggesting a participatory universe. 
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The theory revisits the concept of the continuum, suggesting that mathematical continua (ℝ, 
differentiable manifolds), the foundation of classical physics and General Relativity, are 
approximations, while physics is fundamentally discrete and combinatorial. This implies: 

Approximation of Mathematical Continua: Mathematical continua, while powerful tools for 
describing macroscopic phenomena, are ultimately approximations of a more fundamental discrete 
reality, analogous to how classical mechanics is an approximation of quantum mechanics at low 
energies and large scales. The true nature of spacetime and physical quantities is discrete and 
quantized, requiring a shift from continuum-based mathematical descriptions to discrete and 
combinatorial formalisms at the Planck scale. 

Implications for Mathematics and Physics: Continuum-based mathematical tools, such as 
calculus and differential geometry, must be reformulated or adapted for discrete spacetime, 
potentially leading to a reformulation of mathematical physics in terms of discrete and combinatorial 
structures, such as Regge calculus, discrete differential geometry, non-commutative geometry, and 
quantum information theory. This shift towards discrete mathematics reflects the fundamental 
discreteness of spacetime and the need for new mathematical tools to describe quantum gravity and 
the Planck-scale nature of reality. 

The theory highlights the role of the observer in spacetime classicalization, with decoherence 
(σ<sup>z</sup> terms) making observers participators in spacetime’s classicalization. This implies: 

QBism Integration: Subjectivity of Probabilities and Observer Entanglement: Probabilities in 
quantum mechanics, particularly in the context of simplicial spacetime, are interpreted as subjective, 
reflecting the observer's degrees of belief or knowledge about the quantum state of the system, rather 
than objective properties of reality. This aligns with QBism (Quantum Bayesianism) interpretations 
of quantum mechanics, where probabilities are understood as subjective and observer-dependent, 
reflecting the observer's limited information and entanglement with the simplicial network. The 
observer, through their interaction with the simplicial spacetime, becomes entangled with the 
quantum system, and probabilities reflect the observer's subjective perspective and limited 
knowledge of the entangled quantum state, highlighting the participatory role of the observer in 
shaping quantum reality. 

Key Achievements 

The framework achieves significant progress towards a predictive and testable theory of 
quantum spacetime by: 

• Unification: Unifying quantum mechanics, gravity, and thermodynamics within a single, 
consistent framework, providing a unified description of fundamental physics.  

• Predictivity: Offering testable predictions for quantum spacetime fluctuations, angle-stabilized 
materials, photon dispersion, CMB anomalies, and gravitational wave memory, opening 
avenues for empirical validation and differentiation from existing theories.  

• Consistency: Demonstrating mathematical rigor and theoretical consistency, addressing key 
challenges in quantum gravity, and providing a philosophically coherent picture of spacetime 
and reality.  

Limitations & Further Research Directions 

Experimental Validation 
To further validate the theoretical predictions for black hole thermodynamics and information 

paradox resolution in the Simplex-Focused Framework, experimental validation through analog 
simulations of horizon qubit dynamics is proposed. Specifically, experiments utilizing optical lattices 
to simulate black hole horizons and qubit dynamics can provide valuable insights into the quantum 
behavior of black holes and test the theoretical predictions of the framework in a laboratory setting. 
Analog simulations using optical lattices offer a promising pathway for experimentally probing the 
quantum aspects of black hole horizons and for validating theoretical models of quantum gravity 
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and black hole thermodynamics, providing a complementary approach to astrophysical observations 
and theoretical derivations. Future research should focus on designing and implementing such 
analog simulations to directly test the predictions of the Simplex-Focused Framework and to gain 
further insights into the quantum nature of black holes and spacetime horizons. 

Future research should focus on: 
Concrete Model Development: Developing detailed, quantitative simplex-based models within 

NCG and QIT, focusing on mathematical rigor and computational tractability. (Karazoupis, 2025) 
Empirical Validation: Actively seeking empirical validation for testable predictions, designing 

concrete experiments and observations to probe simplex-based quantum gravity signatures, and 
refining the framework based on empirical feedback. (Karazoupis, 2025) 

Integration and Collaboration: Fostering integration of NCG and QIT, promoting collaboration 
within the scientific community to accelerate progress and address the complex challenges of 
simplex-based quantum gravity. (Karazoupis, 2025) 
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