Pre prints.org

Article Not peer-reviewed version

Extraction of Photosynthetic and Non-
Photosynthetic Vegetation Cover in
Typical Grasslands via Deep Learning
Applied to UAV Data

Jie He , Xiaoping_ Zhang : , Weibin Li, Du Lyu, Yi Ren, Wenlin Fu

Posted Date: 24 March 2025
doi: 10.20944/preprints202503.1748.v1

Keywords: UAV imagery; grassland; PV and NPV; deep learning semantic segmentation; PSPNet

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/2489656
https://sciprofiles.com/profile/1188211
https://sciprofiles.com/profile/3118186
https://sciprofiles.com/profile/1187210
https://sciprofiles.com/profile/3857028
https://sciprofiles.com/profile/4326672

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 March 2025 d0i:10.20944/preprints202503.1748.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Extraction of Photosynthetic and Non-Photosynthetic
Vegetation Cover in Typical Grasslands via Deep
Learning Applied to UAV Data

Jie He 23, Xiaoping Zhang **, Weibin Li 12, Du Lyu 4° Yi Ren 2 and Wenlin Fu 12

1 Lab. of Al, Hangzhou Institute of Technology, Xidian University, Hangzhou, 311231, China

2 School of Artificial Intelligence, Xidian University, Xi'an, 710071, China

3 Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China

4 Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling
712100, China

5 Shaanxi Satellite Application Center for Natural resources, Xi’An, 710002, China

Correspondence: zhangxp@ms.iswc.ac.cn

Abstract: Photosynthetic vegetation (PV) and non-photosynthetic vegetation (NPV) play significant
roles in ecosystem functions and ecological succession. Accurate monitoring of the coverage and
distribution of PV and NPV in the grasslands of semi-arid regions is crucial for understanding the
environment and addressing climate change. This study examined the Hengshan grassland site in
China's semi-arid regions using imagery from unmanned aerial vehicles (UAVs), constructing a
semantic segmentation label database via multiscale parameter optimisation, feature indicator
selection, and manual correction methods. Three deep learning semantic segmentation models —
PSPNet, DeepLabV3+, and U-Net—were employed to extract and compare the PV and NPV to
determine the optimal semantic segmentation model. The experimental results showed that the
PSPNet model exhibited a superior performance, with an overall classification accuracy of 89.2% and
a Kappa coefficient of 0.80. These values were 0.8% and 3.9% higher and 0.02 and 0.07 higher than
the corresponding values for DeepLabV3+ and U-Net, respectively. Further generalisability tests
indicated that PSPNet achieved an overall classification accuracy of 87.5%-91.5% and a Kappa
coefficient of 0.77-0.93 in different scenarios, effectively extracting the PV and NPV in various scenes
of Hengshan grassland. Additionally, compared to estimates based on Sentinel-2A imagery, the
UAV-based estimates of the fractional PV (frv) and fractional NPV (fnev) were closer to the results of
field surveys. The method proposed in this study effectively extracted PV and NPV in China’s
Hengshan grassland and demonstrated high reliability and applicability for long-term grassland
monitoring. Therefore, the proposed approach can significantly contribute to the intelligent
protection and sustainable management of grassland ecosystems in semi-arid areas.
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1. Introduction

Grasslands are among the most extensively distributed types of vegetation in the world. They
influence the flow and cycling of nutrients, carbon, water, and energy in ecosystems. They are
important for studies on biomass estimation, carbon sources/sinks, water and soil conservation, and
climate change [1, 2]. Photosynthetic vegetation (PV) refers to the parts of vegetation that contain
chlorophyll capable of performing photosynthesis. Non-photosynthetic vegetation (NPV) describes
plant material that is unable to carry out photosynthesis, such as dead branches, fallen leaves, and
tree trunks. [3]. In semi-arid regions, vegetation degradation occurs at an alarming rate, leading to
significant ecological concerns. NPV is an important component of natural vegetation in these regions
and a crucial factor for monitoring plant survival status and productivity. It plays a significant role
in mitigating soil erosion, safeguarding biodiversity, enhancing nutrient cycling, and augmenting
carbon sequestration [4]. Prompt and precise observation of PV and NPV coverage and distributions
in semi-arid grasslands is crucial for comprehending grassland phenology and ecological succession.
[5].

Ground-based measurements of PV cover (frv) and NPV cover (fxrev) are highly accurate [6], but
they are limited by spatial, temporal, and financial constraints [7]. Satellite remote sensing can
estimate fev and fnev over large areas [8] but it is affected by sensor resolution and weather conditions,
which restrict the collection and analysis of remote sensing information [9]. In recent years, the
development of low-altitude remote sensing using unmanned aerial vehicles (UAVs) has
compensated for the shortcomings of aerospace and aerial remote sensing in terms of image
resolution, revisit frequency, and cloud cover [10]. Specifically, UAV remote sensing provides the
benefit of being cost-effective. They offer user-friendly operation, real-time imagery, and high
resolution, providing a new data source that enables vegetation information to be rapidly and
accurately acquired [11, 12]. When processing UAV aerial imagery, traditional pixel-based image
interpretation techniques applied to satellite remote sensing data exhibit limitations, including
complex feature selection, spectral confusion, low recognition accuracy, and long processing times
[13]. To address these challenges and enhance the precision and effectiveness of estimating vegetation
cover, there has been a growing interest in utilizing object-oriented machine learning techniques.
Object-oriented machine learning methods, owing to their strong classification performance and non-
linear fitting capabilities, have been widely applied to estimations of vegetation cover and other
vegetation parameters [14, 15].

For example, De Castro et al. [16] used object-based random forest (RF) algorithms to rapidly
and accurately identify weeds in UAV imagery, demonstrating that object-based image analysis
(OBIA) technology (integrated with digital surface models, orthophotos, and machine learning
methods like RF algorithms) can accurately estimate crop height and classify weeds in images. In
addition, Guo et al. [17] used machine learning techniques, such as backpropagation (BP) networks
and RF, to model and extract frv and fnev using UAVs, thereby achieving a high accuracy.
Nonetheless, conventional machine learning algorithms depend significantly on the human-
computer interaction, lack intelligence and automation, and exhibit poor transferability.

As computer vision and artificial intelligence have become increasingly developed, deep
learning convolutional neural networks (CNNs) have gained significant traction in remote sensing
research and applications. By training with large amounts of data to construct deep neural networks,
these techniques automatically identify features that are closely associated with the target task by
utilizing loss functions, offering strong robustness and easy model transferability [18]. Unlike the
initial approach of classifying based on the category of the image block centred on a pixel [19], fully
convolutional neural networks (FCNs) substitute the fully connected layers of CNNs with
deconvolutional layers, upsample the feature maps generated by the last convolutional layer of the
CNN algorithm to restore the input size, and reduce the redundant calculations, significantly
improving the efficiency of classifying large-scale imagery. Currently, advanced semantic
segmentation networks based on FCNs include Pyramid Scene Parsing Network (PSPNet) [20, 21],
U-Net [22, 23], SegNet [24], and DeepLab [25, 26]. The application of deep learning semantic
segmentation models to UAV data for vegetation extraction is becoming increasingly common [27,
28]. For example, Torres et al. [29] compared five advanced deep FCN architectures—U-Net, SegNet,
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FC-DenseNet, and DeepLabV3+—using RGB UAV imagery to map birch trees in urban
environments. They observed that FC-DenseNet achieved the best overall accuracy. In addition, He
et al. [30] combined object-oriented and deep learning methods to compare three advanced deep FCN
architectures utilised to extract PV and NPV cover in the arid regions of northern China, and found
that the DeepLabV3+ model was more suitable for vegetation extraction in these regions.

The precise and rapid extraction of vegetation cover information has become an urgent issue.
This urgency is driven by the need for accurate ecological monitoring and management, especially in
critical regions such as the Hengshan grassland. The Hengshan grassland in the Loess Plateau of
China is situated in a semi-arid grassland vegetation zone characterised by a limited variety of plant
species, low vegetation cover, a simple structure, and ecological fragility [31, 32]. Most previous
studies that use UAV data to extract vegetation cover in semi-arid regions focus on fev, but
estimations of the NPV cover, which occupies a significant ecological niche, are limited [33, 34].

Motivated by the need to understand grassland phenology and ecological succession in semi-
arid regions through timely and accurate monitoring of fev and fney, this study Used RGB aerial
imagery of the Hengshan grassland taken by the DJI Phantom 4 Pro UAYV, this study explored the
feasibility and efficiency of extracting the PV and NPV cover in typical grassland plots in semi-arid
regions via PSPNet, DeepLabV3+, and U-Net.

The aims of this study are as follows:

1. To evaluate the potential of using UAV-based deep learning semantic segmentation
architectures to extract fev and fnxev from high-resolution optical UAV imagery of semi-arid
grasslands.

2. To compare the strengths and weaknesses of three deep learning semantic segmentation
networks (PSPNet, DeepLabV3+, and U-Net) in extracting fev and fnev from Hengshan grassland plots
in semi-arid regions.

3. To apply the optimal model to vegetation monitoring at different times and in regions of the
same type, and to verify the model's generalisability for grassland vegetation extraction.

4. To further investigate the correlation between UAV imagery, field surveys, and Sentinel-2A
imagery when estimating fev and fxev for the long-term monitoring of the plots in the Hengshan
grassland.

This study lays the foundation for the application of intelligent detection technologies in the
broader vegetation ecology field, and is expected to promote the intelligent protection and
sustainable management of grassland ecosystems in semi-arid regions.

2. Materials and Methods
2.1. UAV Aerial Survey Data Acquisition

Hengshan County is located in the central part of the Loess Plateau (Figure 1a) and is a typical
semi-arid climatic zone. The region is characterised by harsh natural conditions and complex and
varied terrain (Figure 1b), rendering its ecological environment relatively fragile. Hengshan County
covers an area of approximately 4353 km? and its geographical location ranges from 37°32'N to
38°31'N latitude and from 108°45'E to 110°31'E longitude.

In terms of vegetation types, Hengshan County is predominantly characterised by temperate
grasslands and meadow steppes. The main vegetation species are long-awned grass (Stipa
bungeana), Dahurian buckwheat (Lespedeza davurica), rigid mugwort (Artemisia sacrorum), and
pigweed (Amaranthus spp.) (Figure 1b). These plants have adapted to the semi-arid climate and the
soil conditions of the Loess Plateau, forming a representative grassland ecosystem that plays an
important role in maintaining ecological balance and conserving soil and water in the region.

This study utilised a DJI Phantom 4 Pro UAYV, integrated with a CMOS digital camera to acquire
low-altitude imagery of typical grassland plots in Hengshan County, a semi-arid region. The UAV
remote sensing images were acquired at the beginning of March, in March 1st, March 15th, March
30th, April 14th, May 15th, July 13th, September 14th, and at the end of October. Each flight was
scheduled between 11:00 and 13:00, under clear weather conditions with no clouds or wind. The UAV
flew at an altitude of approximately 50 m and a speed of 6 m/s, and both the longitudinal and lateral
overlaps were set at 80%. The camera lens was maintained at a fixed vertical position relative to the
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ground to achieve an optimal nadir view. Four plots were surveyed, resulting in 4608 original aerial
images across nine time periods. These images had a spatial resolution of 0.015 m and included three
visible light bands: red (R), green (G), and blue (B). Pix4Dmapper software was used to process and
mosaic the images, generating DOM and DSM for the plots and providing rich data for the
subsequent training of the model.

Figure 1. Overview of the research region. (a) Map of the location of the research area, (b) photograph of the
research area, and (c) orthomosaic image of the sub-areas captured by the UAV.

2.2. Acquisition of Validation Samples and Classification of Ground Objects in Images

In addition to the aerial photography, vegetation surveys were conducted on the ground using
the transect method. The transect method involves first marking the centre of the plot, and then
arranging three 100-m-long measuring tapes that proceed from the centre point, forming a star shape
[35, 36]. Starting from the 1-m mark on each tape, vertical observations were made every 1 m,
recording the components of the objects on the ground, such as green vegetation, dead vegetation,
litter, moss, algae, and various forms of exposed soil. This process resulted in a total of 300 ground
observations per plot [30, 37]. Finally, by merging and classifying the observations into the categories
of PV, NPV, and BS, and dividing by the total number of observations (300), the vertical projected PV
and NPV cover levels (i.e., frv and fuev) within the plot were calculated. In addition, we collected
relevant experimental data accumulated by our research group to obtain frv and fyev data derived
from a pixel-based tripartite model based on Sentinel-2A imagery for the UAV survey area.

2.3. Construction of Semantic Segmentation Label Database

In this study, the object-oriented classification method proposed by He et al. [30] was adopted
to construct a label database supplemented with manual corrections. This method involved
multiscale segmentation parameter optimisation, feature indicator selection, and manual corrections.

2.3.1. Multiscale Segmentation Parameter Optimisation

The multi-resolution segmentation (MRS) algorithm includes the scale parameter (SP), shape
parameter, and compactness parameter [38]. To determine the parameter combinations that best suit
the extraction of PV and NPV in the Hengshan grassland plots, the shape and compactness factors
were adjusted to values of 0.1, 0.3, 0.5, 0.7, and 0.9. Through extensive experimentation and
comparison of various parameter combinations, it was observed that these settings significantly
influenced the segmentation outcomes for the Hengshan grassland. Figure 2 illustrates the
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segmentation results for nine parameter combinations, highlighting more pronounced differences.
Undersegmentation occurred when the compactness factor was set to 0.5 and the shape factor was
either 0.7 or 0.9, leading to insufficient separation of PV and NPV (Figure 2 h, f). Overfragmentation
of the segmentation results was evident shown in figure 2 a, f. Conversely, better results were
achieved when the shape factor was 0.1 and the compactness factor was 0.5, as this combination
promoted higher object homogeneity and clearer delineation of PV and NPV edges (Figure 2 c). Based
on these findings, a shape and compactness factor of 0.1 and 0.5 were chosen as the optimal parameter
combination for achieving the desired homogeneity criterion.

-3 ¥

Shape =0.5 Compactess =0.5 Shape =0.7 Compactuess =0.5 Shape =0.9 Compactness =0.5

Figure 2. Segmentation outcomes for various combinations of shape and compactness factors in the Hengshan
grassland.

To determine the optimal segmentation scale parameter based on the optimal homogeneity
criterion parameters, this study conducted multiscale segmentation experiments using the ESP2
tool proposed by Dragut et al. [39], with a step size of 10 within the scale parameter range of 1-400.
The local variance of the image and the rate of change of the variance are plotted in Figure 3.
According to prior knowledge gained by previous studies on grassland types, the segmentation
results can be excessively fragmented when the scale parameter is less than 10, and the PV, NPV, and
BS may not be effectively segmented when the scale parameter exceeds 300. Therefore, the scale
parameter range was set to between 10 and 300. Based on the peaks of the rate-of-change curve
(Figure 3), the following eight candidate optimal scale parameters were selected: 53, 62, 72, 106, 186,
221, 256, and 278. A comparison between the segmentation results produced by these eight scale
parameters indicated that the segmentation result with a scale parameter of 72 extracted the PV and
NPV most effectively, without significant oversegmentation or undersegmentation. Thus, this study
determined that 72 was the optimal segmentation scale parameter.
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Figure 3. Local variance and rate of change of the variance in UAV images of the Hengshan grassland.

2.3.2. Optimised Feature Indicator Set and Manual Correction

Feature indicator selection is crucial for object-oriented classification because ideal feature
indicators maximise the separability of the objects in segmented images [38]. This study focused on
classifying and identifying vegetation in grassland plots. Textural, geometric, and visible-light
vegetation indices were considered for this purpose. Initially, 24 feature indicators were extracted
from the UAV imagery of the study area. To determine their importance in extracting PV and NPV,
the random forest algorithm was applied. The algorithm ranked these features based on their
significance for the Hengshan grassland UAV imagery analysis.

Figure 4 shows the ranking of the importance of different features in the Hengshan grassland.
Among the spectral features, the maximum spectral difference (Max.dff) was the most critical for PV
and NPV extraction, followed by the mean values of the R-band, brightness, G-band, and B-band.
Among the visible light vegetation indices, the excess green index (EXG) had the highest importance,
indicating its effectiveness at reflecting vegetation cover and growth. The normalised green-blue
difference index (NGBDI) ranked second, while the visible difference vegetation index (VDVI),
normalised green-red difference index (NGRDI) was also highly important. These indices are
sensitive to physiological parameters, such as leaf pigment content and leaf area index. In terms of
textural features, the mean value (GLCM_mean) was the most important, followed by the
homogeneity (GLCM_Homogeneity), dissimilarity = (GLCM_Dissimilarity), and contrast
(GLCM_contrast), all of which reflect the spatial relationships between pixels within different types
of vegetation areas. In contrast, geometric features such as the density, shape, area, and perimeter
played smaller roles in distinguishing between PV and NPV areas.

Therefore, in the subsequent object-oriented classification and extraction process, we selected
the top 10 most important features as the basis for classification, accounting for over 90% of the total
contribution. This method enhanced the precision of vegetation classification in the Hengshan
grassland, reduced the misclassification rate, enhanced the credibility of the classification results, and
reduced the time required for classification and the computational complexity.
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Figure 4. Ranking of the importance of the features in the UAV images.

Misclassification and omission may occur during object-oriented classification. Therefore,
manual visual interpretation was required to correct these errors. Upon the completion of manual
corrections, the classification result map was transformed into an indexed map. This indexed map
played a key role during the training phase of the semantic segmentation model. The regional images
underwent additional processing. Specifically, they were divided into image sets with dimensions of
512 x 512 pixels. Additionally, a cutting stride of 256 was applied to ensure efficient processing. To
expand the scale of the dataset, thereby reducing the model overfitting and enhancing its
generalisation ability, data augmentation operations (e.g., random flipping, translation, and rotation)
were performed to enlarge the database. The dataset was subsequently partitioned into training,
validation, and testing subsets, employing a ratio of 7:2:1.

2.4. Methods

This study utilised high-resolution visible light imagery from UAVs and deep learning semantic
segmentation models to develop a framework for extracting the PV and NPV cover from typical
grassland plots. As shown in Figure 5, the framework comprised four major steps. First, UAV aerial
image acquisition and preprocessing were conducted. Second, a semantic segmentation label dataset
for the grassland plots was constructed using multiscale segmentation parameter optimisation,
feature indicator selection, and manual corrections. Third, three representative networks for semantic
segmentation—PSPNet, DeepLabV3+, and U-Net—were employed in comparative experiments to
determine the optimal deep learning semantic segmentation model. Finally, based on the optimal PV
and NPV extraction model, the generalisability of the model was evaluated, the temporal and spatial
variations of fpv and fnev in the Hengshan grassland plots were analysed, and the correlations between
the UAV, ground survey, and satellite remote sensing estimates of frv and fnev were compared.
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Figure 5. PV and NPV extraction framework for a typical grassland plot in Hengshan.

2.4.1. PSPNet

PSPNet (Pyramid Scene Parsing Network) is a deep CNN model designed for semantic
segmentation tasks [21]. The core principle of the method is to enhance segmentation accuracy by
collecting contextual information at various scales. This is achieved through the use of a pyramid
pooling module (PPM). The architecture of the PSPNet model is illustrated in Figure 6. To preserve
the weight of global features, typical grassland plot samples from UAV remote sensing images are
used. These samples are input into the ResNet50 backbone network for feature map extraction.
Subsequently, the PPM module divides the feature map into subregions of different sizes, performs
pooling operations on each subregion, and upsamples and fuses these feature maps at different
scales. Finally, pixel-level prediction results are generated using a convolutional layer [21]. The
advantage of PSPNet is its ability to significantly enhance the accuracy of semantic segmentation by
integrating multiscale contextual information, particularly when handling complex scenes.

B sl

- mp“t image i —+[CONV |~ ’
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Feature map |

Pyramid Pco} Mochﬂe
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Figure 6. Architecture of the PSPNet network model.

2.4.2. DeepLabV3+
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DeepLabV3+ improves upon the DeepLab series of models by introducing a decoder module
that combines the advantages of the encoder-decoder framework to further enhance the
segmentation accuracy, particularly for fine-grained structures [25]. The architecture of the
DeepLabV3+ model is illustrated in Figure 7.

In DeepLabV3+, the encoder extracts semantic features from UAV remote sensing images using
the ResNet50 network[25]. The ASPP module captures multiscale contextual information by
employing atrous convolution layers with different dilation rates (e.g., 6, 12, and 18) in parallel. In
the decoder, DeepLabV3+ introduces a skip connection mechanism, allowing low-level features to
participate directly in the generation of the final prediction map. This assists in preserving additional
edge details and improves the segmentation accuracy [26]. DeepLabV3+ performs exceptionally well
in semantic segmentation, particularly when handling complex scenes and edge details, for which it
demonstrates significant advantages.
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Figure 7. Architecture of the DeepLabV3+ network model.

2.4.3. U-Net

U-Net is a deep learning-based CNN specifically designed for biomedical image segmentation
[22]. The network employs a symmetric contracting path (downsampling) and an expansive path
(upsampling), and features rich skip connections to capture both local and global information. As
shown in Figure 8, the encoder of the U-Net model gradually downsamples the input UAV remote
sensing images using the convolutional and max-pooling layers to extract high-level semantic
features[22]. Because of its simple yet powerful architecture, U-Net has become a classic model in the
field of image segmentation.
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Figure 8. Architecture of the U-Net network model.

2.5. Evaluation Metrics
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When evaluating the classification results of the UAV aerial survey imagery, this study used the
confusion matrix, overall classification accuracy (OA), Kappa coefficient, user’s accuracy (UA), and
producer’s accuracy (PA) to assess the classification results [40, 41].

The confusion matrix is an intuitive and effective method that can clearly display the
correspondence between the predicted results of the classification model and the actual categories
[42]. The OA is determined by the ratio of accurately classified samples to the total number of
samples. This metric can intuitively reflect the comprehensive efficacy of the model, but is less
sensitive to imbalanced sample categories [43]. The Kappa coefficient is a statistical metric. The UA
is characterized as the proportion of the samples. that actually belong to a certain category to those
predicted by the model to be in that category. Its formula is

The formula for the OA is
T
T X
0A = Li=1 X X 100%, 1)
all
NZ?‘l Xii - LT—1(Xi+X+i)
kappa = — — : 2
PP N2 =¥ (Xip X4) @
Xii
UA = =% x 100%. 3)

Xy

The PA is determined as the ratio of the samples that are correctly predicted by the model to be in a
certain category to those that actually belong to that category. Its formula is

Xi;
PA = — x100%. 4)
Xi+

The coefficient of determination (R?), root mean square error (RMSE), and significance tests were
used for the analysis and evaluation [44]. We analysed the correlation between three sets of data: (1)
the fpv and faev values extracted from the UAV imagery of the typical grassland plots in Hengshan,
(2) the frv and fnev values obtained from concurrent ground surveys, and (3) the fev and fnev values
derived from the pixel-based tripartite model based on Sentinel-2A imagery.

3. Results

The computer hardware configuration included a GeForce GTX 3080 Ti GPU with 128 GB of
system memory, which enabled the semantic segmentation models to be rapidly trained and tested.

The neural network's computational framework employed the following configuration: The
input layer receives three-channel data streams while generating three distinct target classifications.
During optimization cycles, training batches each containing four samples were processed through
200 complete iterations of the dataset. An initial learning rate of 0.001 was selected with an adaptive
polynomial adjustment strategy (decay factor: 0.9), implemented through SGD optimization for
parameter updates.

3.1. Comparison Between Deep Learning Semantic Segmentation Models for Hengshan Grassland

Based on the self-constructed semantic segmentation label database, three models (PSPNet,
DeepLabV3+, and U-Net) were trained to perform semantic segmentation of the PV and NPV in the
UAV imagery of the Hengshan grassland. As shown in Figure 9, the extraction results demonstrated
that all three models exhibited strong vegetation identification capabilities for this region.

The quantitative accuracy assessment indicated significant differences in the performances of
the three models. PSPNet achieved the highest performance among all models. It reached an overall
classification accuracy of 89.2%. Its Kappa coefficient was 0.80. These results indicate that PSPNet is
the optimal classification model. DeepLabV3+ came in second place. It had an OA of 88.4%. The
Kappa coefficient for DeepLabV3+ was 0.79. This shows its performance is quite similar to PSPNet.
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U-Net, however, demonstrated weaker results. Its OA was 85.3%. The Kappa coefficient for U-Net
was 0.73.

Comparatively, PSPNet achieved 0.8% and 3.9% improvements in the OA compared to
DeepLabV3+ and U-Net, respectively, as well as increases in the Kappa coefficient of 0.02 and 0.07,
respectively. These results not only validate the adaptability of the Pyramid Scene Parsing Network
(PSPNet) for complex vegetation scenarios but also reveal the various sensitivities of different
network architectures to the extraction of different elements in grassland ecosystems. Overall, the
results indicate that the PSPNet model, which is based on multiscale feature fusion, is more suitable
for handling heterogeneity when extracting vegetation cover in the Hengshan grassland.

(6) PSPNet (¢) DeepLabV3+ (d) U-Net

i 0w m i i b

Figure 9. Results of recognition of region A in the Hengshan grassland using different semantic segmentation
models.

The classification accuracy for the Hengshan grassland achieved using different network models
also varied. A comparative analysis of the classification results for the Hengshan grassland showed
that the most accurately classified land cover type was PV, with user accuracies ranging from 85.7%
to 92.0% across the three network models. For NPV, the PA values of the various network models
ranged from 86.9% to 90.4%, with PSPNet achieving the highest PA. Compared to DeepLabV3+ and
U-Net, the PA of PSPNet for NPV was 3.5% and 0.1% higher, respectively. The UAs for NPV across
the different algorithms ranged from 80.9% to 88.6%. For BS, the PAs of the various network models
ranged from 80.9% to 97.3%, with the UA of PSPNet being 1.8% and 5.4% higher than those of
DeepLabV3+ and U-Net, respectively. Therefore, the PSPNet network model exhibited the best
performance for the classification and extraction of PV and NPV in the Hengshan grassland.

Label mask PSPNet DeepLabV3+ U-Net
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Figure 10. Recognition results of the different semantic segmentation models for region A of the Hengshan
grassland.

The results indicated that PSPNet outperformed DeepLabV3+ and U-Net. It not only more
effectively preserved the detailed information of various land cover types and obtained land cover
edges that were more regular, but it also accurately extracted the PV and NPV classes of the
Hengshan grassland and reduced the confusion between the NPV and BS (Figure 10). Overall, the
extraction process was complete. DeepLabV3+ exhibited a slightly inferior segmentation compared
to PSPNet, with some NPV misclassified as BS. U-Net demonstrated weak performance in this region,
producing a large number of misclassifications between land cover types and exhibiting poor
differentiation between similar land cover types. The PSPNet deep learning semantic segmentation
network was the most effective at extracting PV and NPV from the UAV imagery of the Hengshan
grassland.

3.2. Generalisability Evaluation of Semantic Segmentation Models for Hengshan Grassland

Based on the optimal network model PSPNet, which was established through comparative
experiments on region A of the Hengshan grassland, we selected regions B, C, and D (observed in
September) to evaluate different locations during the same period; region A (observed in July) to
evaluate the same location at different times; and regions B, C, and D (observed in July) to evaluate
different locations at different times. The classification accuracy was verified to assess the
transferability of the optimal network model PSPNet to other sample areas of the Hengshan
grassland.

Table 1. Comparison between PV and NPV extraction accuracy in different regions when the PSPNet model was
applied to September and July.

Region A Region B Region C Region D

PA- UA PA UA PA UA PA UA

1Y% 925 949 905 760 915 878 869 981

NPV 904 86.8 938 972 911 919 949 89.6

September BS 867 8.7 700 778 882 938 762 762
OA (%) 91.5 91.0 90.5 90.5
Kappa 0.83 0.79 0.83 0.82

1Y% 86.7 929 882 789 915 878 863 932

NPV 89.4 894 942 954 918 918 943 839

July BS 833 588 75.0 90.0 842 980 667 875
OA (%) 88.0 92.0 91.0 87.5
Kappa 0.78 0.79 0.84 0.77

Date Type
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Figure 11. Comparison between PV and NPV extraction results for July and September when the optimal model
PSPNet was applied to different regions in the Hengshan grassland.

As shown in Figure 11 and Table 1, the PSPNet model demonstrated excellent generalisability
in the three scenarios of the Hengshan grassland, with an OA ranging from 87.5% to 91.5% and a
Kappa coefficient ranging from 0.77 to 0.93. The DeepLabV3+ model demonstrated superior
performance in extracting PV and NPV classes across three scenarios. Its PA ranged from 86.3% to
94.9%. For the BS class, the model achieved a PA of 70.0% to 88.2% in various areas during the same
month. This was higher than the extraction accuracy for different locations at different times, where
the PA was 66.7% to 84.2%. The PSPNet model, identified as the optimal network, effectively
extracted PV and NPV data. It performed well across different locations during the same period, the
same location at different times, and different locations at different times. In practice, the constructed
PSPNet model demonstrated superior generalisability for extracting PV and NPV in the Hengshan
grassland sample areas.

3.3. Spatial Distribution of PV and NPV in Hengshan Grassland at Different Times

The orthophotos of the Hengshan grassland obtained at different stages effectively reflected the
growth dynamics of the PV and NPV in the area. Using the optimal model constructed in this study,
we performed semi-automated extraction on the images of the Hengshan grassland to obtain clear
distribution maps of the PV and NPV in the sample areas (Figure 12). These spatial distribution maps
of the PV and NPV at different times reflect the dynamic changes in PV and NPV in the Hengshan
grassland sample areas over the course of a year.

The PV is primarily distributed in contiguous patches within the region, whereas the NPV is
primarily found in the areas surrounding the PV. In the orthophotos of the Hengshan grassland taken
on 1, 15, and 30 March and 14 April, almost no PV was present. The NPV primarily consisted of newly
greened herbaceous plants and a litter of perennial herbaceous plants (Figure 12 A, B, C, and D). In
the distribution maps of the PV and NPV types, the coverage area of the NPV was the largest (Figure
12 a,b, ¢, and d).
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On 15 May, the orthophotos of the Hengshan grassland (Figure 12 E) show the emergence of
distinct green vegetation, with leaves beginning to grow near some NPV (Figure 12 e). The
orthophotos of the Hengshan grassland for July and September indicate that this period had the
highest coverage of PV and the lowest coverage of NPV throughout the growing season (Figure 12 F
and G). In the distribution maps of the PV and NPV types, the coverage area of PV was the largest
(Figure 12 f and g).

Subsequently, the vegetation entered a declining phase, with the range of PV shrinking and the
distribution area of NPV beginning to increase. The orthophoto of the Hengshan grassland taken on
30 October shows that at the end of the growing season, during the period in which the vegetation
declined, the green vegetation in the sample area had completely turned yellow and withered, with
no green leaves remaining in the image (Figure 12 H). In the distribution map of the PV and NPV,
the vegetation mainly consisted of branches and trunks of shrubs and trees, as well as litter (Figure
12 h).

(C) March 30th image (D) April 14th image

(A) March 1st image

(d) Extraction results from the
April 14th image

(a) Emmm raul‘ls ﬁ'mn the
March 1at image

(c) Extraction resulis from the
March 30th image

(E] B‘lay 15th ¢ mmge (F) July 13th image (G) September 14th image {H) October 30th image
z

(g) Extraction results from the
May 15th image July 13th image September 14th image October 30th image

A e PV N xev BS

b » N Vel -
(e) Extraction results from the (f) Extraction results ﬁ'um the (k) Extraction results from the

Figure 12. Results of PV and NPV extraction in different periods for the long-term monitoring sample of the
Hengshan grassland.

3.4. Correlation Analysis of fPV and fNPV Estimation in Hengshan Grassland Using Three Methods

The correlations between the estimated values of fev and fxev for the long-term monitoring plots
in the Hengshan grassland obtained using the three methods—UAYV imagery, ground surveys, and
Sentinel-2A imagery —are shown in Figure 13. Among the three methods, the frv and fxrv values
derived from the UAV imagery using the framework proposed in this study showed a high
correlation with those obtained from ground surveys. Specifically, for the fev extraction results, the


https://doi.org/10.20944/preprints202503.1748.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 March 2025

15 of 20

R? value between the UAV-derived frv and ground survey-derived fev was 0.81, with an RMSE of 9.1.
The UAV-derived fev also correlated well with the fev obtained from the pixel-based tripartite model
using Sentinel-2A imagery, with an R? of 0.74 and an RMSE of 5.2. The correlation between the
ground survey-derived frv and Sentinel-2A-derived fev was the highest, with an R? of 0.94 and an
RMSE of 2.4.

For the fnev extraction results, the highest correlation was observed between the UAV-derived
fnev and ground survey-derived faev, with an R? of 0.79 and an RMSE of 10.0. The UAV-derived furv
also showed a relatively high correlation with the fnev obtained from the Sentinel-2A pixel-based
tripartite model, with an R? of 0.72 and an RMSE of 6.4. However, the correlation between the ground
survey-derived fnev and Sentinel-2A-derived faev was relatively low, with an R? of 0.45 and an RMSE
of 8.9.

These results indicate that the UAV-derived frv and fxev values obtained in this study were closer
to the ground survey results than those derived from the Sentinel-2A pixel-based tripartite model.
The correlations were stronger for the UAV-derived estimates than for the Sentinel-2A-derived
estimates. These results confirm that UAVs are an effective platform for estimating fev and fyrv in the
Hengshan grassland and that they can serve as a valuable bridge between ground surveys and
satellite remote sensing data. Moreover, the framework proposed in this study can effectively
estimate fpv and fnev for Hengshan grassland plots using UAV imagery obtained across different

periods.
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Figure 13. Correlations between frv and furev estimated from contemporaneous UAV images, ground surveys,
and Sentinel-2A images of the Hengshan grassland sample area (**P < 0.01,* P <0.05).

4. Discussion
4.1. Superior Performance of PSPNet in Extracting PV and NPV in Semi-arid Hengshan Grassland

The PSPNet deep learning network demonstrated the strongest applicability and optimal
extraction performance for UAV-based PV and NPV in the semi-arid Hengshan grasslands. This can
be ascribed to the pyramid pooling module (PPM) employed by PSPNet, which captured contextual
information at different scales within the imagery [21]. This feature enhanced the segmentation
accuracy, particularly in areas in which different vegetation types (e.g., grasses, shrubs, and trees)
exhibited significant variations in the spatial scale. However, the incorporation of the PPM increased
the computational load, resulting in slower inference speeds.

PSPNet performed relatively poor when handling complex backgrounds and small targets. In
contrast, U-Net exhibited a superior performance in processing smaller sample images. This implies
that the encoder-decoder structure of U-Net may underperform when handling complex
backgrounds and multiscale information. Thus, different deep learning semantic segmentation
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models exhibit various performance levels for different vegetation sample areas, as they exhibit
specific strengths and weaknesses depending on the characteristics of the sample area.

4.2. High Applicability of UAV and Deep Learning-Based Estimation of PV and NPV

PV and NPV are crucial for studying vegetation growth, ecological environments, and
vegetation types [36]. Long-term monitoring using UAV remote sensing imagery can capture
spatiotemporal variations in PV and NPV across different vegetation types and at different times.
This information helps researchers better understand the dynamics of vegetation ecosystems,
vegetation succession processes, and environmental impacts[9]. Spatial distribution maps and
evolution data for PV and NPV can support decision-making and management in vegetation
research, ecological monitoring, and resource management. Vegetation distribution and changes are
influenced by multiple factors, and the reasons for seasonal variations in the spatial distributions of
PV and NPV may differ among vegetation types owing to geographical location, climatic conditions,
and other factors [2]. Further research and field surveys are required to explore the underlying causes
of changes in PV and NPV cover.

Moreover, the results showed that UAV-based estimation methods are highly reliable and
applicable for the long-term monitoring of fev and fyev for semi-arid grassland vegetation types.
Compared to ground surveys and the pixel-based tripartite model using Sentinel-2A imagery, UAV-
based methods yielded estimates that were closer to ground observations, especially for fev.

4.3. Future Perspectives on Deep Learning Models in Vegetation Classification

The three deep learning semantic segmentation models examined in this study achieved high
classification accuracies in PV and NPV segmentation tasks, enabling precise pixel-level classification
of images. This is advantageous for fine-scale vegetation classification. Trained using large volumes
of remote sensing imagery, these models can learn vegetation features from extensive samples,
rendering them suitable for classifying vegetation in large areas. However, these models require
substantial amounts of labelled data for training, which may lead to insufficient training and reduced
classification performance in areas with limited data or complex vegetation types. Models are
typically trained using data from specific regions and periods, resulting in limited generalisability to
remote sensing images from different regions, seasons, or times of year. In addition, these models
require significant computational resources and memory, which restricts their use in devices with
limited computational capabilities. In summary, although these deep learning models showed
excellent performance in vegetation classification tasks, their limitations should be considered and
addressed in practical applications.

Future research could explore the use of hyperspectral cameras in UAVs to more effectively
identify vegetation. Subsequent studies could also focus on combining UAV imagery from different
perspectives and altitudes with the SAM large vision model [45] to recognise PV and NPV in different
vegetation types. This approach would further improve the accuracy and efficiency of vegetation
extraction and expand the application of the proposed methods to larger study areas, offering
technical assistance and a theoretical foundation for UAV remote sensing applications in PV and NPV
research.

5. Conclusions

This study used UAV aerial imagery of plots in the Hengshan grassland in China's semi-arid
regions. A semantic segmentation label database was constructed using multiscale parameter
optimisation, feature indicator selection, and manual corrections. Subsequently, three deep learning
models (PSPNet, DeepLabV3+, and U-Net) were employed to conduct comparative experiments on
the extraction of PV and NPV in the study area, thereby establishing the optimal semantic
segmentation model. Finally, the generalisability of the PV and NPV extractions was evaluated based
on the optimal PV and NPV extraction model. This study calculated the temporal and spatial
variations in frv and fnev within the Hengshan grassland plots and analysed their spatiotemporal
changes. Additionally, the correlations between the UAV, ground survey, and satellite remote
sensing estimates of frv and fnrv were compared.
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1. The PSPNet deep learning network model constructed in this study demonstrated superior
performance across various evaluation metrics. The overall classification accuracy was 89.2%, which
was higher than that of DeepLabV3+ and U-Net by 0.8% and 3.9%, respectively. Moreover, the Kappa
coefficient was 0.80, which was higher than that of DeepLabV3+ and U-Net by 0.02 and 0.07,
respectively.

2. The optimal PSPNet model achieved overall classification accuracies ranging from 87.5% to
91.5% and Kappa coefficients ranging from 0.77 to 0.93 in generalisability tests across different
scenarios. The PSPNet model established through comparative experiments on region A of the
Hengshan grassland effectively extracted PV and NPV across various scenarios, exhibiting strong
generalisability for extracting PV and NPV.

3. The spatial distribution maps of the PV and NPV in the Hengshan grassland at different times
reflected the dynamic changes in the PV and NPV over the course of a year. In March and April, the
PV was almost absent and the NPV, which primarily consisted of newly greened herbaceous plants
and litter from perennial herbaceous plants, had the largest coverage area. Green vegetation appeared
in May. From July to September, the PV coverage was the highest, whereas that of the NPV was the
lowest. Subsequently, as vegetation entered the decline phase, the range of the PV shrank and the
NPV coverage increased. By the end of October, all vegetation in the plots had turned yellow and
withered, with no remaining green leaves.

4. The UAV-based estimates of fev and fxev for the Hengshan grassland plots at different times
were closer to the results obtained from ground surveys, with R? values of 0.81 and 0.79. These
correlations were higher than those obtained from the pixel-based tripartite model using Sentinel-2A
imagery, which had R? values of 0.74 and 0.72 for fev and fxev, respectively.

The method proposed in this study can effectively extract PV and NPV from images of China’s
Hengshan grasslands. Therefore, it is anticipated to provide intelligent support for the protection and
sustainable management of grassland ecosystems in semi-arid areas.
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