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Abstract: Photosynthetic vegetation (PV) and non-photosynthetic vegetation (NPV) play significant 
roles in ecosystem functions and ecological succession. Accurate monitoring of the coverage and 
distribution of PV and NPV in the grasslands of semi-arid regions is crucial for understanding the 
environment and addressing climate change. This study examined the Hengshan grassland site in 
China's semi-arid regions using imagery from unmanned aerial vehicles (UAVs), constructing a 
semantic segmentation label database via multiscale parameter optimisation, feature indicator 
selection, and manual correction methods. Three deep learning semantic segmentation models — 
PSPNet, DeepLabV3+, and U-Net—were employed to extract and compare the PV and NPV to 
determine the optimal semantic segmentation model. The experimental results showed that the 
PSPNet model exhibited a superior performance, with an overall classification accuracy of 89.2% and 
a Kappa coefficient of 0.80. These values were 0.8% and 3.9% higher and 0.02 and 0.07 higher than 
the corresponding values for DeepLabV3+ and U-Net, respectively. Further generalisability tests 
indicated that PSPNet achieved an overall classification accuracy of 87.5%–91.5% and a Kappa 
coefficient of 0.77–0.93 in different scenarios, effectively extracting the PV and NPV in various scenes 
of Hengshan grassland. Additionally, compared to estimates based on Sentinel-2A imagery, the 
UAV-based estimates of the fractional PV (fPV) and fractional NPV (fNPV) were closer to the results of 
field surveys. The method proposed in this study effectively extracted PV and NPV in China’s 
Hengshan grassland and demonstrated high reliability and applicability for long-term grassland 
monitoring. Therefore, the proposed approach can significantly contribute to the intelligent 
protection and sustainable management of grassland ecosystems in semi-arid areas.  
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1. Introduction 
Grasslands are among the most extensively distributed types of vegetation in the world. They 

influence the flow and cycling of nutrients, carbon, water, and energy in ecosystems. They are 
important for studies on biomass estimation, carbon sources/sinks, water and soil conservation, and 
climate change [1, 2]. Photosynthetic vegetation (PV) refers to the parts of vegetation that contain 
chlorophyll capable of performing photosynthesis.  Non-photosynthetic vegetation (NPV) describes 
plant material that is unable to carry out photosynthesis, such as dead branches, fallen leaves, and 
tree trunks. [3]. In semi-arid regions, vegetation degradation occurs at an alarming rate, leading to 
significant ecological concerns. NPV is an important component of natural vegetation in these regions 
and a crucial factor for monitoring plant survival status and productivity. It plays a significant role 
in mitigating soil erosion, safeguarding biodiversity, enhancing nutrient cycling, and augmenting 
carbon sequestration [4]. Prompt and precise observation of PV and NPV coverage and distributions 
in semi-arid grasslands is crucial for comprehending grassland phenology and ecological succession. 
[5]. 

Ground-based measurements of PV cover (fPV) and NPV cover (fNPV) are highly accurate [6], but 
they are limited by spatial, temporal, and financial constraints [7]. Satellite remote sensing can 
estimate fPV and fNPV over large areas [8] but it is affected by sensor resolution and weather conditions, 
which restrict the collection and analysis of remote sensing information [9]. In recent years, the 
development of low-altitude remote sensing using unmanned aerial vehicles (UAVs) has 
compensated for the shortcomings of aerospace and aerial remote sensing in terms of image 
resolution, revisit frequency, and cloud cover [10]. Specifically, UAV remote sensing provides the 
benefit of being cost-effective. They offer user-friendly  operation, real-time imagery, and high 
resolution, providing a new data source that enables vegetation information to be rapidly and 
accurately acquired [11, 12]. When processing UAV aerial imagery, traditional pixel-based image 
interpretation techniques applied to satellite remote sensing data exhibit limitations, including 
complex feature selection, spectral confusion, low recognition accuracy, and long processing times 
[13]. To address these challenges and enhance the precision and effectiveness of estimating vegetation 
cover, there has been a growing interest in utilizing object-oriented machine learning techniques. 
Object-oriented machine learning methods, owing to their strong classification performance and non-
linear fiĴing capabilities, have been widely applied to estimations of vegetation cover and other 
vegetation parameters [14, 15]. 

For example, De Castro et al. [16] used object-based random forest (RF) algorithms to rapidly 
and accurately identify weeds in UAV imagery, demonstrating that object-based image analysis 
(OBIA) technology (integrated with digital surface models, orthophotos, and machine learning 
methods like RF algorithms) can accurately estimate crop height and classify weeds in images. In 
addition, Guo et al. [17] used machine learning techniques, such as backpropagation (BP) networks 
and RF, to model and extract fPV and fNPV using UAVs, thereby achieving a high accuracy. 
Nonetheless, conventional machine learning algorithms depend significantly on the human-
computer interaction, lack intelligence and automation, and exhibit poor transferability. 

As computer vision and artificial intelligence have become increasingly developed, deep 
learning convolutional neural networks (CNNs) have gained significant traction in remote sensing 
research and applications. By training with large amounts of data to construct deep neural networks, 
these techniques automatically identify features that are closely associated with the target task by 
utilizing loss functions, offering strong robustness and easy model transferability [18]. Unlike the 
initial approach of classifying based on the category of the image block centred on a pixel [19], fully 
convolutional neural networks (FCNs) substitute the fully connected layers of CNNs with 
deconvolutional layers, upsample the feature maps generated by the last convolutional layer of the 
CNN algorithm to restore the input size, and reduce the redundant calculations, significantly 
improving the efficiency of classifying large-scale imagery. Currently, advanced semantic 
segmentation networks based on FCNs include Pyramid Scene Parsing Network (PSPNet) [20, 21], 
U-Net [22, 23], SegNet [24], and DeepLab [25, 26]. The application of deep learning semantic 
segmentation models to UAV data for vegetation extraction is becoming increasingly common [27, 
28]. For example, Torres et al. [29] compared five advanced deep FCN architectures—U-Net, SegNet, 
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FC-DenseNet, and DeepLabV3+—using RGB UAV imagery to map birch trees in urban 
environments. They observed that FC-DenseNet achieved the best overall accuracy. In addition, He 
et al. [30] combined object-oriented and deep learning methods to compare three advanced deep FCN 
architectures utilised to extract PV and NPV cover in the arid regions of northern China, and found 
that the DeepLabV3+ model was more suitable for vegetation extraction in these regions. 

The precise and rapid extraction of vegetation cover information has become an urgent issue. 
This urgency is driven by the need for accurate ecological monitoring and management, especially in 
critical regions such as the Hengshan grassland. The Hengshan grassland in the Loess Plateau of 
China is situated in a semi-arid grassland vegetation zone characterised by a limited variety of plant 
species, low vegetation cover, a simple structure, and ecological fragility [31, 32]. Most previous 
studies that use UAV data to extract vegetation cover in semi-arid regions focus on fPV, but 
estimations of the NPV cover, which occupies a significant ecological niche, are limited [33, 34]. 

Motivated by the need to understand grassland phenology and ecological succession in semi-
arid regions through timely and accurate monitoring of fPV and fNPV, this study Used RGB aerial 
imagery of the Hengshan grassland taken by the DJI Phantom 4 Pro UAV, this study explored the 
feasibility and efficiency of extracting the PV and NPV cover in typical grassland plots in semi-arid 
regions via PSPNet, DeepLabV3+, and U-Net. 

The aims of this study are as follows: 
1. To evaluate the potential of using UAV-based deep learning semantic segmentation 

architectures to extract fPV and fNPV from high-resolution optical UAV imagery of semi-arid 
grasslands. 

2. To compare the strengths and weaknesses of three deep learning semantic segmentation 
networks (PSPNet, DeepLabV3+, and U-Net) in extracting fPV and fNPV from Hengshan grassland plots 
in semi-arid regions. 

3. To apply the optimal model to vegetation monitoring at different times and in regions of the 
same type, and to verify the model's generalisability for grassland vegetation extraction. 

4. To further investigate the correlation between UAV imagery, field surveys, and Sentinel-2A 
imagery when estimating fPV and fNPV for the long-term monitoring of the plots in the Hengshan 
grassland. 

This study lays the foundation for the application of intelligent detection technologies in the 
broader vegetation ecology field, and is expected to promote the intelligent protection and 
sustainable management of grassland ecosystems in semi-arid regions. 

2. Materials and Methods 
2.1. UAV Aerial Survey Data Acquisition 

Hengshan County is located in the central part of the Loess Plateau (Figure 1a) and is a typical 
semi-arid climatic zone. The region is characterised by harsh natural conditions and complex and 
varied terrain (Figure 1b), rendering its ecological environment relatively fragile. Hengshan County 
covers an area of approximately 4353 km2, and its geographical location ranges from 37°32'N to 
38°31'N latitude and from 108°45'E to 110°31'E longitude. 

In terms of vegetation types, Hengshan County is predominantly characterised by temperate 
grasslands and meadow steppes. The main vegetation species are long-awned grass (Stipa 
bungeana), Dahurian buckwheat (Lespedeza davurica), rigid mugwort (Artemisia sacrorum), and 
pigweed (Amaranthus spp.) (Figure 1b). These plants have adapted to the semi-arid climate and the 
soil conditions of the Loess Plateau, forming a representative grassland ecosystem that plays an 
important role in maintaining ecological balance and conserving soil and water in the region. 

This study utilised a DJI Phantom 4 Pro UAV, integrated with a CMOS digital camera to acquire 
low-altitude imagery of typical grassland plots in Hengshan County, a semi-arid region. The UAV 
remote sensing images were acquired at the beginning of March, in March 1st, March 15th, March 
30th, April 14th, May 15th, July 13th, September 14th, and at the end of October. Each flight was 
scheduled between 11:00 and 13:00, under clear weather conditions with no clouds or wind. The UAV 
flew at an altitude of approximately 50 m and a speed of 6 m/s, and both the longitudinal and lateral 
overlaps were set at 80%. The camera lens was maintained at a fixed vertical position relative to the 
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ground to achieve an optimal nadir view. Four plots were surveyed, resulting in 4608 original aerial 
images across nine time periods. These images had a spatial resolution of 0.015 m and included three 
visible light bands: red (R), green (G), and blue (B). Pix4Dmapper software was used to process and 
mosaic the images, generating DOM and DSM for the plots and providing rich data for the 
subsequent training of the model. 

 

 
Figure 1. Overview of the research region. (a) Map of the location of the research area, (b) photograph of the 
research area, and (c) orthomosaic image of the sub-areas captured by the UAV. 

2.2. Acquisition of Validation Samples and Classification of Ground Objects in Images 
In addition to the aerial photography, vegetation surveys were conducted on the ground using 

the transect method. The transect method involves first marking the centre of the plot, and then 
arranging three 100-m-long measuring tapes that proceed from the centre point, forming a star shape 
[35, 36]. Starting from the 1-m mark on each tape, vertical observations were made every 1 m, 
recording the components of the objects on the ground, such as green vegetation, dead vegetation, 
liĴer, moss, algae, and various forms of exposed soil. This process resulted in a total of 300 ground 
observations per plot [30, 37]. Finally, by merging and classifying the observations into the categories 
of PV, NPV, and BS, and dividing by the total number of observations (300), the vertical projected PV 
and NPV cover levels (i.e., fPV and fNPV) within the plot were calculated. In addition, we collected 
relevant experimental data accumulated by our research group to obtain fPV and fNPV data derived 
from a pixel-based tripartite model based on Sentinel-2A imagery for the UAV survey area. 

2.3. Construction of Semantic Segmentation Label Database 
In this study, the object-oriented classification method proposed by He et al. [30] was adopted 

to construct a label database supplemented with manual corrections. This method involved 
multiscale segmentation parameter optimisation, feature indicator selection, and manual corrections. 

2.3.1. Multiscale Segmentation Parameter Optimisation 
The multi-resolution segmentation (MRS) algorithm includes the scale parameter (SP), shape 

parameter, and compactness parameter [38]. To determine the parameter combinations that best suit 
the extraction of PV and NPV in the Hengshan grassland plots, the shape and compactness factors 
were adjusted to values of 0.1, 0.3, 0.5, 0.7, and 0.9. Through extensive experimentation and 
comparison of various parameter combinations, it was observed that these seĴings significantly 
influenced the segmentation outcomes for the Hengshan grassland. Figure 2 illustrates the 
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segmentation results for nine parameter combinations, highlighting more pronounced differences. 
Undersegmentation occurred when the compactness factor was set to 0.5 and the shape factor was 
either 0.7 or 0.9, leading to insufficient separation of PV and NPV (Figure 2 h, f). Overfragmentation 
of the segmentation results was evident shown in figure 2 a, f. Conversely, beĴer results were 
achieved when the shape factor was 0.1 and the compactness factor was 0.5, as this combination 
promoted higher object homogeneity and clearer delineation of PV and NPV edges (Figure 2 c). Based 
on these findings, a shape and compactness factor of 0.1 and 0.5 were chosen as the optimal parameter 
combination for achieving the desired homogeneity criterion. 

 

 
Figure 2. Segmentation outcomes for various combinations of shape and compactness factors in the Hengshan 
grassland. 

To determine the optimal segmentation scale parameter based on the optimal homogeneity 
criterion parameters, this study conducted multiscale segmentation experiments using the ESP2  
tool proposed by Drǎguţ et al. [39], with a step size of 10 within the scale parameter range of 1–400. 
The local variance of the image and the rate of change of the variance are ploĴed in Figure 3. 
According to prior knowledge gained by previous studies on grassland types, the segmentation 
results can be excessively fragmented when the scale parameter is less than 10, and the PV, NPV, and 
BS may not be effectively segmented when the scale parameter exceeds 300. Therefore, the scale 
parameter range was set to between 10 and 300. Based on the peaks of the rate-of-change curve 
(Figure 3), the following eight candidate optimal scale parameters were selected: 53, 62, 72, 106, 186, 
221, 256, and 278. A comparison between the segmentation results produced by these eight scale 
parameters indicated that the segmentation result with a scale parameter of 72 extracted the PV and 
NPV most effectively, without significant oversegmentation or undersegmentation. Thus, this study 
determined that 72 was the optimal segmentation scale parameter. 
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Figure 3. Local variance and rate of change of the variance in UAV images of the Hengshan grassland. 

2.3.2. Optimised Feature Indicator Set and Manual Correction 
Feature indicator selection is crucial for object-oriented classification because ideal feature 

indicators maximise the separability of the objects in segmented images [38]. This study focused on 
classifying and identifying vegetation in grassland plots. Textural, geometric, and visible-light 
vegetation indices were considered for this purpose. Initially, 24 feature indicators were extracted 
from the UAV imagery of the study area. To determine their importance in extracting PV and NPV, 
the random forest algorithm was applied. The algorithm ranked these features based on their 
significance for the Hengshan grassland UAV imagery analysis. 

Figure 4 shows the ranking of the importance of different features in the Hengshan grassland. 
Among the spectral features, the maximum spectral difference (Max.dff) was the most critical for PV 
and NPV extraction, followed by the mean values of the R-band, brightness, G-band, and B-band. 
Among the visible light vegetation indices, the excess green index (EXG) had the highest importance, 
indicating its effectiveness at reflecting vegetation cover and growth. The normalised green-blue 
difference index (NGBDI) ranked second, while the visible difference vegetation index (VDVI), 
normalised green-red difference index (NGRDI) was also highly important. These indices are 
sensitive to physiological parameters, such as leaf pigment content and leaf area index. In terms of 
textural features, the mean value (GLCM_mean) was the most important, followed by the 
homogeneity (GLCM_Homogeneity), dissimilarity (GLCM_Dissimilarity), and contrast 
(GLCM_contrast), all of which reflect the spatial relationships between pixels within different types 
of vegetation areas. In contrast, geometric features such as the density, shape, area, and perimeter 
played smaller roles in distinguishing between PV and NPV areas. 

Therefore, in the subsequent object-oriented classification and extraction process, we selected 
the top 10 most important features as the basis for classification, accounting for over 90% of the total 
contribution. This method enhanced the precision of vegetation classification in the Hengshan 
grassland, reduced the misclassification rate, enhanced the credibility of the classification results, and 
reduced the time required for classification and the computational complexity. 
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Figure 4. Ranking of the importance of the features in the UAV images. 

Misclassification and omission may occur during object-oriented classification. Therefore, 
manual visual interpretation was required to correct these errors. Upon the completion of manual 
corrections, the classification result map was transformed into an indexed map. This indexed map 
played a key role during the training phase of the semantic segmentation model. The regional images 
underwent additional processing. Specifically, they were divided into image sets with dimensions of 
512 × 512 pixels. Additionally, a cuĴing stride of 256 was applied to ensure efficient processing. To 
expand the scale of the dataset, thereby reducing the model overfiĴing and enhancing its 
generalisation ability, data augmentation operations (e.g., random flipping, translation, and rotation) 
were performed to enlarge the database. The dataset was subsequently partitioned into training, 
validation, and testing subsets, employing a ratio of 7:2:1.  

2.4. Methods 
This study utilised high-resolution visible light imagery from UAVs and deep learning semantic 

segmentation models to develop a framework for extracting the PV and NPV cover from typical 
grassland plots. As shown in Figure 5, the framework comprised four major steps. First, UAV aerial 
image acquisition and preprocessing were conducted. Second, a semantic segmentation label dataset 
for the grassland plots was constructed using multiscale segmentation parameter optimisation, 
feature indicator selection, and manual corrections. Third, three representative networks for semantic 
segmentation—PSPNet, DeepLabV3+, and U-Net—were employed in comparative experiments to 
determine the optimal deep learning semantic segmentation model. Finally, based on the optimal PV 
and NPV extraction model, the generalisability of the model was evaluated, the temporal and spatial 
variations of fPV and fNPV in the Hengshan grassland plots were analysed, and the correlations between 
the UAV, ground survey, and satellite remote sensing estimates of fPV and fNPV were compared. 
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Figure 5. PV and NPV extraction framework for a typical grassland plot in Hengshan. 

2.4.1. PSPNet 
PSPNet (Pyramid Scene Parsing Network) is a deep CNN model designed for semantic 

segmentation tasks [21]. The core principle of the method is to enhance segmentation accuracy by 
collecting contextual information at various scales. This is achieved through the use of a pyramid 
pooling module (PPM). The architecture of the PSPNet model is illustrated in Figure 6. To preserve 
the weight of global features, typical grassland plot samples from UAV remote sensing images are 
used. These samples are input into the ResNet50 backbone network for feature map extraction. 
Subsequently, the PPM module divides the feature map into subregions of different sizes, performs 
pooling operations on each subregion, and upsamples and fuses these feature maps at different 
scales. Finally, pixel-level prediction results are generated using a convolutional layer [21]. The 
advantage of PSPNet is its ability to significantly enhance the accuracy of semantic segmentation by 
integrating multiscale contextual information, particularly when handling complex scenes. 

 
Figure 6. Architecture of the PSPNet network model. 

2.4.2. DeepLabV3+ 
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DeepLabV3+ improves upon the DeepLab series of models by introducing a decoder module 
that combines the advantages of the encoder-decoder framework to further enhance the 
segmentation accuracy, particularly for fine-grained structures [25]. The architecture of the 
DeepLabV3+ model is illustrated in Figure 7. 

In DeepLabV3+, the encoder extracts semantic features from UAV remote sensing images using 
the ResNet50 network[25]. The ASPP module captures multiscale contextual information by 
employing atrous convolution layers with different dilation rates (e.g., 6, 12, and 18) in parallel. In 
the decoder, DeepLabV3+ introduces a skip connection mechanism, allowing low-level features to 
participate directly in the generation of the final prediction map. This assists in preserving additional 
edge details and improves the segmentation accuracy [26]. DeepLabV3+ performs exceptionally well 
in semantic segmentation, particularly when handling complex scenes and edge details, for which it 
demonstrates significant advantages. 

 
Figure 7. Architecture of the DeepLabV3+ network model. 

2.4.3. U-Net 
U-Net is a deep learning-based CNN specifically designed for biomedical image segmentation 

[22]. The network employs a symmetric contracting path (downsampling) and an expansive path 
(upsampling), and features rich skip connections to capture both local and global information. As 
shown in Figure 8, the encoder of the U-Net model gradually downsamples the input UAV remote 
sensing images using the convolutional and max-pooling layers to extract high-level semantic 
features[22]. Because of its simple yet powerful architecture, U-Net has become a classic model in the 
field of image segmentation. 

 
Figure 8. Architecture of the U-Net network model. 

2.5. Evaluation Metrics 
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When evaluating the classification results of the UAV aerial survey imagery, this study used the 
confusion matrix, overall classification accuracy (OA), Kappa coefficient, user’s accuracy (UA), and 
producer’s accuracy (PA) to assess the classification results [40, 41].  

The confusion matrix is an intuitive and effective method that can clearly display the 
correspondence between the predicted results of the classification model and the actual categories 
[42]. The OA is determined by the ratio of accurately classified samples to the total number of 
samples. This metric can intuitively reflect the comprehensive efficacy of the model, but is less 
sensitive to imbalanced sample categories [43]. The Kappa coefficient is a statistical metric. The UA 
is characterized as the proportion of the samples. that actually belong to a certain category to those 
predicted by the model to be in that category. Its formula is 

The formula for the OA is 

𝑂𝐴 =
∑ 𝑋௜௜

௥
௜ୀଵ

𝑁all

× 100%, (1)

 

kappa =
𝑁 ∑ 𝑋௜௜ − ∑ (𝑋௜ା𝑋ା௜)

௥
௜ୀଵ

௥
௜ୀଵ

𝑁ଶ − ∑ (𝑋௜ା𝑋ା௜)
௥
௜ୀଵ

, (2)

  

𝑈𝐴 =
𝑋௜௜

𝑋ା௜

× 100%. (3)

The PA is determined as the ratio of the samples that are correctly predicted by the model to be in a 
certain category to those that actually belong to that category. Its formula is 

𝑃𝐴 =
𝑋௜௜

𝑋௜ା

× 100%. (4)

The coefficient of determination (R²), root mean square error (RMSE), and significance tests were 
used for the analysis and evaluation [44]. We analysed the correlation between three sets of data: (1) 
the fPV and fNPV values extracted from the UAV imagery of the typical grassland plots in Hengshan, 
(2) the fPV and fNPV values obtained from concurrent ground surveys, and (3) the fPV and fNPV values 
derived from the pixel-based tripartite model based on Sentinel-2A imagery.  

3. Results 
The computer hardware configuration included a GeForce GTX 3080 Ti GPU with 128 GB of 

system memory, which enabled the semantic segmentation models to be rapidly trained and tested. 
The neural network's computational framework employed the following configuration: The 

input layer receives three-channel data streams while generating three distinct target classifications. 
During optimization cycles, training batches each containing four samples were processed through 
200 complete iterations of the dataset. An initial learning rate of 0.001 was selected with an adaptive 
polynomial adjustment strategy (decay factor: 0.9), implemented through SGD optimization for 
parameter updates. 

3.1. Comparison Between Deep Learning Semantic Segmentation Models for Hengshan Grassland 
Based on the self-constructed semantic segmentation label database, three models (PSPNet, 

DeepLabV3+, and U-Net) were trained to perform semantic segmentation of the PV and NPV in the 
UAV imagery of the Hengshan grassland. As shown in Figure 9, the extraction results demonstrated 
that all three models exhibited strong vegetation identification capabilities for this region. 

The quantitative accuracy assessment indicated significant differences in the performances of 
the three models. PSPNet achieved the highest performance among all models. It reached an overall 
classification accuracy of 89.2%. Its Kappa coefficient was 0.80. These results indicate that PSPNet is 
the optimal classification model. DeepLabV3+ came in second place. It had an OA of 88.4%. The 
Kappa coefficient for DeepLabV3+ was 0.79. This shows its performance is quite similar to PSPNet. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 March 2025 doi:10.20944/preprints202503.1748.v1

https://doi.org/10.20944/preprints202503.1748.v1


 11 of 20 

 

U-Net, however, demonstrated weaker results. Its OA was 85.3%. The Kappa coefficient for U-Net 
was 0.73. 

Comparatively, PSPNet achieved 0.8% and 3.9% improvements in the OA compared to 
DeepLabV3+ and U-Net, respectively, as well as increases in the Kappa coefficient of 0.02 and 0.07, 
respectively. These results not only validate the adaptability of the Pyramid Scene Parsing Network 
(PSPNet) for complex vegetation scenarios but also reveal the various sensitivities of different 
network architectures to the extraction of different elements in grassland ecosystems. Overall, the 
results indicate that the PSPNet model, which is based on multiscale feature fusion, is more suitable 
for handling heterogeneity when extracting vegetation cover in the Hengshan grassland. 

 
Figure 9. Results of recognition of region A in the Hengshan grassland using different semantic segmentation 
models. 

The classification accuracy for the Hengshan grassland achieved using different network models 
also varied. A comparative analysis of the classification results for the Hengshan grassland showed 
that the most accurately classified land cover type was PV, with user accuracies ranging from 85.7% 
to 92.0% across the three network models. For NPV, the PA values of the various network models 
ranged from 86.9% to 90.4%, with PSPNet achieving the highest PA. Compared to DeepLabV3+ and 
U-Net, the PA of PSPNet for NPV was 3.5% and 0.1% higher, respectively. The UAs for NPV across 
the different algorithms ranged from 80.9% to 88.6%. For BS, the PAs of the various network models 
ranged from 80.9% to 97.3%, with the UA of PSPNet being 1.8% and 5.4% higher than those of 
DeepLabV3+ and U-Net, respectively. Therefore, the PSPNet network model exhibited the best 
performance for the classification and extraction of PV and NPV in the Hengshan grassland. 

 

 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 March 2025 doi:10.20944/preprints202503.1748.v1

https://doi.org/10.20944/preprints202503.1748.v1


 12 of 20 

 

Figure 10. Recognition results of the different semantic segmentation models for region A of the Hengshan 
grassland. 

The results indicated that PSPNet outperformed DeepLabV3+ and U-Net. It not only more 
effectively preserved the detailed information of various land cover types and obtained land cover 
edges that were more regular, but it also accurately extracted the PV and NPV classes of the 
Hengshan grassland and reduced the confusion between the NPV and BS (Figure 10). Overall, the 
extraction process was complete. DeepLabV3+ exhibited a slightly inferior segmentation compared 
to PSPNet, with some NPV misclassified as BS. U-Net demonstrated weak performance in this region, 
producing a large number of misclassifications between land cover types and exhibiting poor 
differentiation between similar land cover types. The PSPNet deep learning semantic segmentation 
network was the most effective at extracting PV and NPV from the UAV imagery of the Hengshan 
grassland. 

3.2. Generalisability Evaluation of Semantic Segmentation Models for Hengshan Grassland 
Based on the optimal network model PSPNet, which was established through comparative 

experiments on region A of the Hengshan grassland, we selected regions B, C, and D (observed in 
September) to evaluate different locations during the same period; region A (observed in July) to 
evaluate the same location at different times; and regions B, C, and D (observed in July) to evaluate 
different locations at different times. The classification accuracy was verified to assess the 
transferability of the optimal network model PSPNet to other sample areas of the Hengshan 
grassland. 

Table 1. Comparison between PV and NPV extraction accuracy in different regions when the PSPNet model was 
applied to September and July. 

Date Type 
Region A Region B Region C Region D 

PA UA PA UA PA UA PA UA 

September 

PV 92.5 94.9 90.5 76.0 91.5 87.8 86.9 98.1 

NPV 90.4 86.8 93.8 97.2 91.1 91.9 94.9 89.6 

BS 85.7 85.7 70.0 77.8 88.2 93.8 76.2 76.2 

OA（%） 91.5 91.0 90.5 90.5 

Kappa 0.83 0.79 0.83 0.82 

July 

PV 86.7 92.9 88.2 78.9 91.5 87.8 86.3 93.2 

NPV 89.4 89.4 94.2 95.4 91.8 91.8 94.3 83.9 

BS 83.3 58.8 75.0 90.0 84.2 98.0 66.7 87.5 

OA（%） 88.0 92.0 91.0 87.5 

Kappa 0.78 0.79 0.84 0.77 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 March 2025 doi:10.20944/preprints202503.1748.v1

https://doi.org/10.20944/preprints202503.1748.v1


 13 of 20 

 

 
Figure 11. Comparison between PV and NPV extraction results for July and September when the optimal model 
PSPNet was applied to different regions in the Hengshan grassland. 

As shown in Figure 11 and Table 1, the PSPNet model demonstrated excellent generalisability 
in the three scenarios of the Hengshan grassland, with an OA ranging from 87.5% to 91.5% and a 
Kappa coefficient ranging from 0.77 to 0.93. The DeepLabV3+ model demonstrated superior 
performance in extracting PV and NPV classes across three scenarios. Its PA ranged from 86.3% to 
94.9%. For the BS class, the model achieved a PA of 70.0% to 88.2% in various areas during the same 
month. This was higher than the extraction accuracy for different locations at different times, where 
the PA was 66.7% to 84.2%. The PSPNet model, identified as the optimal network, effectively 
extracted PV and NPV data. It performed well across different locations during the same period, the 
same location at different times, and different locations at different times. In practice, the constructed 
PSPNet model demonstrated superior generalisability for extracting PV and NPV in the Hengshan 
grassland sample areas. 

3.3. Spatial Distribution of PV and NPV in Hengshan Grassland at Different Times 
The orthophotos of the Hengshan grassland obtained at different stages effectively reflected the 

growth dynamics of the PV and NPV in the area. Using the optimal model constructed in this study, 
we performed semi-automated extraction on the images of the Hengshan grassland to obtain clear 
distribution maps of the PV and NPV in the sample areas (Figure 12). These spatial distribution maps 
of the PV and NPV at different times reflect the dynamic changes in PV and NPV in the Hengshan 
grassland sample areas over the course of a year. 

The PV is primarily distributed in contiguous patches within the region, whereas the NPV is 
primarily found in the areas surrounding the PV. In the orthophotos of the Hengshan grassland taken 
on 1, 15, and 30 March and 14 April, almost no PV was present. The NPV primarily consisted of newly 
greened herbaceous plants and a liĴer of perennial herbaceous plants (Figure 12 A, B, C, and D). In 
the distribution maps of the PV and NPV types, the coverage area of the NPV was the largest (Figure 
12 a, b, c, and d). 
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On 15 May, the orthophotos of the Hengshan grassland (Figure 12 E) show the emergence of 
distinct green vegetation, with leaves beginning to grow near some NPV (Figure 12 e). The 
orthophotos of the Hengshan grassland for July and September indicate that this period had the 
highest coverage of PV and the lowest coverage of NPV throughout the growing season (Figure 12 F 
and G). In the distribution maps of the PV and NPV types, the coverage area of PV was the largest 
(Figure 12 f and g). 

Subsequently, the vegetation entered a declining phase, with the range of PV shrinking and the 
distribution area of NPV beginning to increase. The orthophoto of the Hengshan grassland taken on 
30 October shows that at the end of the growing season, during the period in which the vegetation 
declined, the green vegetation in the sample area had completely turned yellow and withered, with 
no green leaves remaining in the image (Figure 12 H). In the distribution map of the PV and NPV, 
the vegetation mainly consisted of branches and trunks of shrubs and trees, as well as liĴer (Figure 
12 h). 

  
Figure 12. Results of PV and NPV extraction in different periods for the long-term monitoring sample of the 
Hengshan grassland. 

3.4. Correlation Analysis of fPV and fNPV Estimation in Hengshan Grassland Using Three Methods 
The correlations between the estimated values of fPV and fNPV for the long-term monitoring plots 

in the Hengshan grassland obtained using the three methods—UAV imagery, ground surveys, and 
Sentinel-2A imagery—are shown in Figure 13. Among the three methods, the fPV and fNPV values 
derived from the UAV imagery using the framework proposed in this study showed a high 
correlation with those obtained from ground surveys. Specifically, for the fPV extraction results, the 
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R² value between the UAV-derived fPV and ground survey-derived fPV was 0.81, with an RMSE of 9.1. 
The UAV-derived fPV also correlated well with the fPV obtained from the pixel-based tripartite model 
using Sentinel-2A imagery, with an R² of 0.74 and an RMSE of 5.2. The correlation between the 
ground survey-derived fPV and Sentinel-2A-derived fPV was the highest, with an R² of 0.94 and an 
RMSE of 2.4. 

For the fNPV extraction results, the highest correlation was observed between the UAV-derived 
fNPV and ground survey-derived fNPV, with an R² of 0.79 and an RMSE of 10.0. The UAV-derived fNPV 
also showed a relatively high correlation with the fNPV obtained from the Sentinel-2A pixel-based 
tripartite model, with an R² of 0.72 and an RMSE of 6.4. However, the correlation between the ground 
survey-derived fNPV and Sentinel-2A-derived fNPV was relatively low, with an R² of 0.45 and an RMSE 
of 8.9. 

These results indicate that the UAV-derived fPV and fNPV values obtained in this study were closer 
to the ground survey results than those derived from the Sentinel-2A pixel-based tripartite model. 
The correlations were stronger for the UAV-derived estimates than for the Sentinel-2A-derived 
estimates. These results confirm that UAVs are an effective platform for estimating fPV and fNPV in the 
Hengshan grassland and that they can serve as a valuable bridge between ground surveys and 
satellite remote sensing data. Moreover, the framework proposed in this study can effectively 
estimate fPV and fNPV for Hengshan grassland plots using UAV imagery obtained across different 
periods. 

 
Figure 13. Correlations between fPV and fNPV estimated from contemporaneous UAV images, ground surveys, 
and Sentinel-2A images of the Hengshan grassland sample area (**P < 0.01,* P < 0.05). 

4. Discussion 
4.1. Superior Performance of PSPNet in Extracting PV and NPV in Semi-arid Hengshan Grassland 

The PSPNet deep learning network demonstrated the strongest applicability and optimal 
extraction performance for UAV-based PV and NPV in the semi-arid Hengshan grasslands. This can 
be ascribed to the pyramid pooling module (PPM) employed by PSPNet, which captured contextual 
information at different scales within the imagery [21]. This feature enhanced the segmentation 
accuracy, particularly in areas in which different vegetation types (e.g., grasses, shrubs, and trees) 
exhibited significant variations in the spatial scale. However, the incorporation of the PPM increased 
the computational load, resulting in slower inference speeds. 

PSPNet performed relatively poor when handling complex backgrounds and small targets. In 
contrast, U-Net exhibited a superior performance in processing smaller sample images. This implies 
that the encoder-decoder structure of U-Net may underperform when handling complex 
backgrounds and multiscale information. Thus, different deep learning semantic segmentation 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 March 2025 doi:10.20944/preprints202503.1748.v1

https://doi.org/10.20944/preprints202503.1748.v1


 16 of 20 

 

models exhibit various performance levels for different vegetation sample areas, as they exhibit 
specific strengths and weaknesses depending on the characteristics of the sample area. 

4.2. High Applicability of UAV and Deep Learning-Based Estimation of PV and NPV 
PV and NPV are crucial for studying vegetation growth, ecological environments, and 

vegetation types [36]. Long-term monitoring using UAV remote sensing imagery can capture 
spatiotemporal variations in PV and NPV across different vegetation types and at different times. 
This information helps researchers beĴer understand the dynamics of vegetation ecosystems, 
vegetation succession processes, and environmental impacts[9]. Spatial distribution maps and 
evolution data for PV and NPV can support decision-making and management in vegetation 
research, ecological monitoring, and resource management. Vegetation distribution and changes are 
influenced by multiple factors, and the reasons for seasonal variations in the spatial distributions of 
PV and NPV may differ among vegetation types owing to geographical location, climatic conditions, 
and other factors [2]. Further research and field surveys are required to explore the underlying causes 
of changes in PV and NPV cover. 

Moreover, the results showed that UAV-based estimation methods are highly reliable and 
applicable for the long-term monitoring of fPV and fNPV for semi-arid grassland vegetation types. 
Compared to ground surveys and the pixel-based tripartite model using Sentinel-2A imagery, UAV-
based methods yielded estimates that were closer to ground observations, especially for fPV. 

4.3. Future Perspectives on Deep Learning Models in Vegetation Classification 
The three deep learning semantic segmentation models examined in this study achieved high 

classification accuracies in PV and NPV segmentation tasks, enabling precise pixel-level classification 
of images. This is advantageous for fine-scale vegetation classification. Trained using large volumes 
of remote sensing imagery, these models can learn vegetation features from extensive samples, 
rendering them suitable for classifying vegetation in large areas. However, these models require 
substantial amounts of labelled data for training, which may lead to insufficient training and reduced 
classification performance in areas with limited data or complex vegetation types. Models are 
typically trained using data from specific regions and periods, resulting in limited generalisability to 
remote sensing images from different regions, seasons, or times of year. In addition, these models 
require significant computational resources and memory, which restricts their use in devices with 
limited computational capabilities. In summary, although these deep learning models showed 
excellent performance in vegetation classification tasks, their limitations should be considered and 
addressed in practical applications. 

Future research could explore the use of hyperspectral cameras in UAVs to more effectively 
identify vegetation. Subsequent studies could also focus on combining UAV imagery from different 
perspectives and altitudes with the SAM large vision model [45] to recognise PV and NPV in different 
vegetation types. This approach would further improve the accuracy and efficiency of vegetation 
extraction and expand the application of the proposed methods to larger study areas, offering 
technical assistance and a theoretical foundation for UAV remote sensing applications in PV and NPV 
research. 

5. Conclusions 
This study used UAV aerial imagery of plots in the Hengshan grassland in China's semi-arid 

regions. A semantic segmentation label database was constructed using multiscale parameter 
optimisation, feature indicator selection, and manual corrections. Subsequently, three deep learning 
models (PSPNet, DeepLabV3+, and U-Net) were employed to conduct comparative experiments on 
the extraction of PV and NPV in the study area, thereby establishing the optimal semantic 
segmentation model. Finally, the generalisability of the PV and NPV extractions was evaluated based 
on the optimal PV and NPV extraction model. This study calculated the temporal and spatial 
variations in fPV and fNPV within the Hengshan grassland plots and analysed their spatiotemporal 
changes. Additionally, the correlations between the UAV, ground survey, and satellite remote 
sensing estimates of fPV and fNPV were compared. 
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1. The PSPNet deep learning network model constructed in this study demonstrated superior 
performance across various evaluation metrics. The overall classification accuracy was 89.2%, which 
was higher than that of DeepLabV3+ and U-Net by 0.8% and 3.9%, respectively. Moreover, the Kappa 
coefficient was 0.80, which was higher than that of DeepLabV3+ and U-Net by 0.02 and 0.07, 
respectively. 

2. The optimal PSPNet model achieved overall classification accuracies ranging from 87.5% to 
91.5% and Kappa coefficients ranging from 0.77 to 0.93 in generalisability tests across different 
scenarios. The PSPNet model established through comparative experiments on region A of the 
Hengshan grassland effectively extracted PV and NPV across various scenarios, exhibiting strong 
generalisability for extracting PV and NPV. 

3. The spatial distribution maps of the PV and NPV in the Hengshan grassland at different times 
reflected the dynamic changes in the PV and NPV over the course of a year. In March and April, the 
PV was almost absent and the NPV, which primarily consisted of newly greened herbaceous plants 
and liĴer from perennial herbaceous plants, had the largest coverage area. Green vegetation appeared 
in May. From July to September, the PV coverage was the highest, whereas that of the NPV was the 
lowest. Subsequently, as vegetation entered the decline phase, the range of the PV shrank and the 
NPV coverage increased. By the end of October, all vegetation in the plots had turned yellow and 
withered, with no remaining green leaves. 

4. The UAV-based estimates of fPV and fNPV for the Hengshan grassland plots at different times 
were closer to the results obtained from ground surveys, with R² values of 0.81 and 0.79. These 
correlations were higher than those obtained from the pixel-based tripartite model using Sentinel-2A 
imagery, which had R² values of 0.74 and 0.72 for fPV and fNPV, respectively. 

The method proposed in this study can effectively extract PV and NPV from images of China’s 
Hengshan grasslands. Therefore, it is anticipated to provide intelligent support for the protection and 
sustainable management of grassland ecosystems in semi-arid areas. 
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