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Abstract: Photometric-counting analyzers of mechanical impurities in a liquid medium are widely 
used in many industries, carrying out a dispersed analysis of technological particles with low weight 
concentration. The main parameters in determining the heterogeneous system are the concentration 
and size of particles (SP) of the dispersed system (DS). The analyzer based on a photometric-counting 
(FC) method of analysis of particles, suspended in liquid technological environments, which uses the 
photometry of light pulses scattered by a single particle, is considered. The distortion of the results 
of the analysis in this device is due to the influence of various factors affecting the measured value. 
Among them are: sample preparation, the adhesion of the analyzed particles, the presence of gas 
bubbles in an analyzed environment, the particle coincidence factor in the counting zone. Based on 
the random nature of all factors of distortion of measurement results in the FC-analyzer; its 
mathematical model is designed in the form of conditional density of probability distribution with 
the specified number and sizes of the measured particles. A simulation model of the analyzer has 
also been developed and a method for optimizing the structure and parameters of the analyzer based 
on the developed models has been proposed 

Keywords: particles analyzer; mechanical impurity; particles size; photometric-counting method; 
dispersed system 

MSC: 62P30 
 

1. Introduction 

Further development of measuring technology applied to the protection of the environment 
from pollution is impossible without active use of modern mathematical methods and computational 
technology in the development of measurement tools. Microprocessor technology makes it possible 
to create qualitatively new measurement tools, distinguished not only by a more modern element 
base, but also by a fundamentally new approach to the measurement process. In particular, the 
microprocessor allows to simplify the measurement channel, to approach the verification and 
calibration of measuring instruments in a new way, to successfully deal with random fluctuations 
that occur during the measurement process, etc. [1, 2]. 

In order to develop and implement algorithms for solving the above problems in analytical 
measuring instruments using microprocessor technology, it is necessary to have their mathematical 
models. For this purpose, it is necessary to classify measuring instruments with identical 
mathematical models and develop algorithms for solving the above problems based on these models. 

The result of such work is the optimization of the structure of measuring instruments with a 
built-in microprocessor, optimally selected parameters and algorithms for processing and filtering 
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information, which should guarantee high quality of measurements. On the other hand, the presence 
of a microprocessor in measuring instruments causes new problems in their metrological support. 
There is a need to develop new methods for determining the errors of measuring instruments. The 
main methods for solving this problem are: analytical calculation, natural experiment, simulation and 
semi-natural modeling [1, 3-5]. For most modern measuring instruments, the last two are the most 
promising. 

Simulation modeling of measuring instruments opens up wide possibilities for developers. It 
should be used at the design stage to optimize the structure and parameters of the designed 
instrument in order to improve its metrological characteristics. At the same time, the funds and time 
required to develop high-quality auto-analysers are significantly reduced. 

It should also be noted that it is important to address issues related to improving the 
metrological characteristics of measuring instruments: development of algorithms for parametric 
optimization of measuring instruments based on their mathematical models; creation of generalized 
criteria for assessing the quality of measuring instruments; development of methods for calculating 
individual metrological characteristics based on natural or simulated characteristics of measuring 
instruments, etc. [6, 7]. 

Models of measuring instruments should be included in a single bank of mathematical models 
of measuring units in order to expand the possibilities of their wide use in creating optimal structures 
of information-measuring and other systems using compositional modeling methods. Below, a 
method of mathematical modeling for optimizing the structure and parameters of measuring 
instruments is considered using the example of an automatic analyzer of mechanical impurities in a 
liquid medium. 

The structure of the rest of the paper is as follows. Mathematical model of the analyzer of 
mechanical impurities in a liquid medium is developed in Section 2. Simulation model of the same 
analyzer is offered in Section 3. Optimization of the structure and parameters of the mechanical 
impurity analyzer according to the developed models are presented in Section 4. A short conclusion 
is given in Section 5. 

2. Mathematical Model of the Analyzer of Mechanical Impurities in a Liquid 
Medium 

Photometric-counting analyzers of mechanical impurities in liquid media are widely used in 
many industries, performing dispersed analysis of process particles with a low weight concentration. 
The main parameters in determining a heterogeneous system are the concentration and particle sizes 
(PS) of the dispersed system (DS). Let us consider an analyzer based on the photometric-counting 
(PC) method of analyzing particles suspended in liquid technological media, which uses photometry 
of light pulses scattered by a single particle. The analyzer consists of a light source (LS) and an optical 
circuit for forming a light flow of a certain intensity and configuration. The photodetector channel 
includes an optical circuit of registration of radiation and a photodetector. One of the most important 
units of PC analyzers is a measuring cuvette, in which a counting zone (CZ) is formed. There is a 
sample preparation and feeding unit for homogenization and introduction of the analyzed medium 
into the hydrodynamic channel of the device with the least distortions. For this purpose, the medium 
is stirred and a certain volume is dosed. Particles are counted by size channels in a given 
measurement range and displayed on a digital display. 

The distortion of the analysis results is caused by the influence of various factors affecting the 
measured value. Among them, it is necessary to note the error of sample preparation, part of the 
dispersed phase is lost when the medium flows through the supply channels and tubes. Losses are 
also caused by the adhesion of the analyzed particles to the walls of the channels under the influence 
of Stokes sedimentation and adhesion. These losses reduce the true value of the initial particle 
content, especially large fractions. An increase in the initial concentration can be caused by the 
presence of gas bubbles in the medium, which will be counted along with the DS particles. In 
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addition, the distortion of the measurement results can be facilitated by the influence of the particle 
coincidence factor in the counting zone. 

Based on the random nature of all factors of distortion of measurement results in the FC-
analyzer, its mathematical model is designed in the form of a conditional probability distribution 
density of the latter with the specified number and sizes of the measured particles [8]. In Figure 1 
schematically shows the process of forming measuring information in the FC-analyzer, taking into 
account all the noisy factors. 

 

Figure 1. The block diagram of the process of the formation of measuring information in the FC-analyzer of 
mechanical impurities with the noisy factors. 

Let the true values of the suspended particle sizes be Nrr ,...,1 , and the measured values be 

ςxx ,...,1 . Due to the merging, disappearance of true values and appearance of false values, the output 
of the measuring device will contain not N  measured values, but ς , where )( 1γγμνς −−−+= N
, ν  is the number of false measurements; μ  is the number of missing measurements; γ  is the 
number of merged measurements; 1γ  is the number of groups obtained as a result of merging. 

Let us assume that measurements located close to each other merge with probability confp , 

which depends on the number of merged points and the distance between them. After merging 
closely located measurements, one measurement remains with a mathematical expectation equal to 
the arithmetic mean of the mathematical expectations of the merged measurements. The 
disappearance of both true measurements and measurements obtained after merging occurs with the 
same probabilities q , i.e. at the output of this block, measurements appear with probability )1( q− . 
Thus, the disappearance occurs according to Bernoulli's law with probability q . The appearance of 
false measurements occurs uniformly, regardless of the merged and missing points. Such an 
assumption is made for simplicity of reasoning. In fact, the intensity of the appearance of false 
measurements depends on the location of the true measurements, as well as on their proximity, i.e. 
in the vicinity after the merger of the obtained measurement there will be a greater number of false 
measurements. 

Let k=ς  and be known the value of γγγ ~)( 1 =− . According to the multiplication theorem, it 
is true 

( ) ( ) ( )NkpNrkxpNrxp |,,|,| =⋅== ςς  (1) 
Let us calculate the probability 

( ) ( ) ( ) ==⋅====
i

NkipNrikxpNrkxp ,|,,,|,,| ςγγςς . (2) 

Based on the multiplication theorem 

( ) ( )
( )

( )
( )Nkp

NkiNip
Nkp
NikpNkip

|
|~,

|
|,,|

=
−+=+==

=
=====

ς
γμγ

ς
γςςγ . (3) 

Substituting (3) into (2), and the resulting expression into (1), we find 

( ) ( ) ×−==+==
i

NkiNipNrxp |~,,| γμν  

( )Nrikxxp k ,,,|,...,1 ==× νς  (4) 
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Let us now define the probability value ( )Nrikxxp k ,,,|,...,1 == νς , where i  is the number of 
false measurements. After the merger and disappearance, ik −  true measurements will remain, the 
total number of different combinations of which, with N  actually existing particles, is determined 
by the number of combinations ik

NC
− . Taking the disappearance of different combinations as equally 

probable events, we write 

( ) (
−

=
−===

ik
NC

j
kik

N
k xxp

C
Nrikxxp

1
11 |,...,1,,,|,..., νς  

{ } )NikrrA ikjjj ,,,,..., ),()1,( ==≡ − νςσσ , (5) 

where { }),()1,( ,..., ikjjj rrA −≡ σσ ‚ ik
NCj −= ,...,1 , is the set of all possible non-missing combinations. In 

the index ( )mj,σ  ( ikmCj ik
N −== − ,...,1,,...,1 ) j  indicates the number in all possible combinations 

of not missing particles r , and m  is the number of elements in these combinations. 
Of the total number of k  elements, i  are false; the number of all possible combinations of false 

elements is i
kC . We consider all these combinations to be equally probable. Let us assume that the 

last i  elements are false, then in i
kC  combinations the elements with numbers ik −,...,2,1  will be 

true, and with numbers kik ,...,1+−  will be false. We introduce the general index ( )lrs , , i
kCr ,...,1=

, kl ,...,1= . When ikl −= ,...,1 , the index l  corresponds to true measurements, and when 
kikl ,...,1+−= , to false ones. 

According to the above, expression (5) takes the form 

( ) === Nrikxxp k ,,,|,...,1 νς  

( ) ( ) ( ) =⋅=  
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= =
+−−−− ),(

1 1
)1,(),()1,(),()1,( ...,...,|,...,11

krs

C

j

C

r
ikrsikjjikrsrsi

k
ik

N
xgxgxxxxp

CC

ik
N

i
k

σσ  

( ) ( )  ∏
−

= = =
−−+−− 











⋅=

ik
N

i
kC

j

C

r

i

t
ikjjikrsrstikrsi

k
ik

N
xxxxpxg

CC 1 1 1
),()1,(),()1,(),( ,...,|,...,11

σσ , (6) 

where ( )),( tikrsxg +−  is the probability of the corresponding measurement being false. 

Assuming that the particles in the measuring channel follow randomly and that all possible 
permutations are equally probable, (6) can be rewritten as follows: 

( ) === Nrikxxp k ,,,|,...,1 νς  

( ) ( ) ( ) ( )( )
( )

  ∏ 
−

= = =

−

=
+−− 






−
⋅=

ik
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i
kC

j
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t
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k

ik
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rxf
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CC 1 1 1

!

1
,),,(),( |

!
111


 σπ . 

Here f  is the distribution density of a single measurement; the index ( )m,π  indicates the m
th permutation in the  th combination. 

Let us determine the probability ( )NkiNip |~, −+=+= γμν  from expression (4). According to 
the multiplication theorem 

( ) ( ) ( )NkiNpNkiNipNkiNip |~,~||~, −+=+⋅−+=+==−+=+= γμγμνγμν . (7) 

Let us assume that false points appear according to Poisson's law with intensity 1λ  over the 
time interval τ , i.e. 

( ) ( ) τλτλγμν 1

!
,~| 1 −=−+=+= e

i
NkiNip

i
. (8) 

Probability 
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( ) ( ) ( )NnpNnnkiNpNkiNp
n

|~,~||~ =⋅=−−+==−+=+  γγμγμ . (9) 

We assume that first the merging occurs, then the disappearance of points. The points obtained 
on the basis of merging may also disappear. In this case, the probability ( )NnkiNp ,~| γμ −−+=  
obeys Bernoulli's law with probability q , i.e. 

( ) ( ) 11,~| −+−−+−−+ −=−−+= nknkiNnkiN
N qqCNnkiNp γμ , (10) 

where ( )Nnp |~ =γ  is the probability that 1+n  measured values have merged. There are a total of 

such combinations equal to n
NC . Considering all these combinations to be equally probable, we 

obtain 

( ) ( ) ( )( )
=

+ℑℑ==
n
NC

z
nzzconfn

N
rrp

C
Nnp

1
1,1, ,...,1|~γ , (11) 

where ( ) ( )( )1,1, ,..., +ℑℑ≡ nzzz rrB , n
NCz ,...,1= , is the set of all possible merged combinations of 1+n

measurements; z  is the number of combinations of merged measurements; n  is the number of 
elements in these combinations. 

Let us define the summation limits in (9). The expression 0~
1 =−= γγγ  takes place only when 

no merging occurs, and 1~
1 −=−= Nγγγ  when all measurements merge and form one. 

Substituting expressions (11) and (10) into (9), taking into account the above, we obtain 

( ) ( )
−

=

−+−−+−−+ ×−=−+=+
1

0

1|~
N

n

inknkiNnkiN
N qqCNkiNp γμ  

( ) ( )( )
=
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n
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z
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N
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C 1
1,1, ,...,1 . (12) 

Substitute (12) and (8) into (7). Then 
( ) =−+=+= NkiNip |~, γμν  

( ) ( ) ×−= 
−

=
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1

0

1 1
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N

i
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=

+ℑℑ×
n
NC

z
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N
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C 1
1,1, ,...,1 . (13) 

Taking into account (13) and (8), expression (4) takes the form 
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−
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 σπ . (14) 

Let us determine the limits of change of i , i.e. the number of false points. 
It is obvious that 0≥i , Nki −≥ , ki ≤ . Therefore, the final expression (14) can be written as 

follows: 
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



⋅×

i
kC

r

i

t

ik ik

m
mjmrstikrs rxfxg

1 1

!

1 1
,,,, |
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 σπ . (15) 

The probability distribution density of measurement information (15) is obtained taking into 
account all noisy factors (measurement errors, omitted measurements, occurrence of false 
measurements, merging of close measurements) with maximum approximation to the real situation. 

Expression (15) is extremely cumbersome, and in this form it is practically impossible to use it 
to estimate the number and sizes of particles suspended in a liquid. Therefore, we formulate a set of 
conditions under which the expression for the probability distribution density has a comparatively 
simple form. These conditions cover the indicated noisy factors in a simplified form and reflect the 
real situation in some idealized form. 

The action of noisy factors is described by the following models: true measurements form a 
Poisson flow with intensity λ  over time τ , where τ  is the length of the section on the time axis 
containing all the measurements of interest to us; errors in measuring particle sizes are assumed to 
be additive normal with zero mathematical expectations and with variance 2σ ; missing 
measurements occur independently for each single measurement with probability admip ; false 
measurements form a Poisson flow with intensity 1λ  over time τ , where λλ <<1 , the non-
resolution is described by the probability of obtaining one measurement for two particles, the time 
distance tΔ  between which satisfies the inequality tt Δ≤Δ , i.e. the merging of measurements from 
two particles depends not on the moment of their passage into the working zone, but on the distance 
between them. 

Given the fact that true measurements form a Poisson flow with intensity λ , the probability of 
merging measurements from two particles is equal to the probability that two particles appear in the 
measurement zone during the time tΔ , i.e. 

( ) ( )
tePp t

tconf
Δ−Δ

=Δ== λλξ
!2

|2
2

. 
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After the merging of two measurements, the moments of appearance of the resulting 
measurement and the first particle coincide, the mathematical expectation of the unresolved signal is 
equal to ( )1, −ii rrf , and the variance is 2

cσ . 
Let us formulate the conditions under which the probability distribution density of the flow is 

sought. At the output of the measuring channel there is a set of ς  measurements ( )ςxx ,...,1  obtained 
in the presence N  of particles with sizes ( )Nrr ,...,1 . At the same time: 1) the measurements are far 

from each other, i.e. tji tt Δ>− , ji ≠ , ς,...,1, =ji  (this assumption is close to reality if the non-

resolution threshold of the measuring device is less than the interval between neighboring particles); 
2) in the vicinity of each measurement either there are no particles, i.e. the measurement is false, or 
there is one particle, then the measurement corresponds to an existing particle, or there are two 
particles, then the measurement is obtained from an unresolved group of two particles; 3) in areas 
where there are no measurements, there are no groups of two or more particles. The last condition 
means, in particular, that a measurement can be missed only for a single particle, and a group of two 
sufficiently close particles necessarily gives a measurement, which apparently corresponds to reality. 
As follows from these conditions, groups of three or more particles are not taken into account. 

Let us assume that there are 1k  situations satisfying the condition of having true measurements, 

2k  situations satisfying the condition of having merged measurements, 213 kkk −−= ς  situations 
satisfying the condition of having false measurements, 214 2kkNk −−=  situations satisfying the 
condition of having missing measurements. Then the probability distribution density of 
measurements can be approximately represented as follows 

( ) ( ) ( ) ×−≈ −λτ
ς

λτ e
k
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k
passN !
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1
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1
1  
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









 −
−×∏ ∏
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1 2
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2

2
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2
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!22
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tii terx
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λ  
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−−=

=

−−




















 +
−−×

214
1

3 2

13

1
2

212
2 !22

1exp
kkNk

s
miss

k

c
pe

k
rrx τλτλ

σ


 , (16) 

where missp  is the probability of the measured value disappearing. 
The expression (16) is also very complicated, its use to assess the number and dimensions of 

particles suspended in the liquid requires the use of a powerful computing technology. Therefore, 
we will take the next step along the path of simplifying the task. We will solve it in two stages. At the 
first stage, based on measuring information obtained in M  measuring channels, we will estimate 
the true number of particles in the time interval τ , and on the second stage, independently of each 
other, we will estimate the true size of the particles according to the registered values in the M  
channels. 

The probability distribution density of the registered number of particles in the i th 
measurement channel ( Mi ,...,1= ) for the time interval τ  is determined as follows: 

( ) ( ) ( ) ( )∏
=

Δ−− ×
Δ

−==
21

1

1

2

1 !2!
1|

k
t

k
k

passi
tee
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λλτ λλτς  
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1
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1

!
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s
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pe

k

i
τλτλ . (17) 

Suppose that measurements in each channel are carried out independently of each other and all 
the noisy factors in each channel also act independently of each other. Then the estimates for 1k , 2k
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, 3k , 4k  can be found by maximizing the probability distribution density (17), that is, by solving a 
fairly simple problem 

{ }
( )













=∏
=

M

i
i

Nkk
NNP

1
,,

|max
21

ς , 

where 11 Rk ∈ , 22 Rk ∈ , 0RN ∈ , 0R , 1R , 2R  are the given sets of positive integers. 
Let us now consider the process of registering the true measurements and assessment of the 

dimensions of particles suspended in the liquid based on M -channel meter. We accept that the 
registration of particles is carried out using M  photo-registers that receive light signals either from 
one light source through one counting zone, or from M  light sources installed along the channel of 
the course of the analyzed liquid and acting the same type. In the first case, the registration of the 
same particle in all receivers is carried out at the same time, in the second - there will be known 
temporary shifts between them, which can always be compensated and measurements from the same 
particles to perceive as received in all receivers at the same moment. 

In each measurement channel, a random number of measurements are obtained at random 
times. It is obvious that true measurements related to the same particle in all channels appear at the 
same time. Since we assume that the noise factors in each channel act independently of each other, it 
is obvious that false measurements in different channels will appear with a higher probability at 
different times, and measurements will also disappear and merge at different times. 

Based on the above, we will construct the following algorithm for registering true measurements 
and estimating particle sizes. Let measurements jς  ( Mj ≤≤ ς0 ) be registered in M  channels at a 

given time jt . It is necessary to decide whether these measurements are false and should be ignored 

or whether most of them are true and it is necessary to estimate particle sizes based on them. Since 
the probability that false measurements appear in all channels at the same time is small, and the 
probability of missing measurements in all channels at the same time is also insignificant, we choose 
the following decision rule: if 

jςγ ≤ , (18) 

then a decision is made that the measurements in the channels are obtained from a suspended 
particle, otherwise, that the measurements are false ( M<≤ γ0 ). The threshold γ  is chosen so that 

( ) αςγ −=≤ 1| rP j , (19) 

where the condition in probability indicates the presence of a suspended particle. 
To determine γ , we find the distribution density of the random variable jς . If there is a particle 

in the counting zone, we have jjj M βμς −−= , where jβ  is the number of missing measurements 

due to merging with the measurement from a neighboring particle; jμ  is the number of missing 

measurements in the absence of a particle in the counting zone. In the latter case, jj νς = , where jν  

is the number of false measurements in M  channels. 
If it is necessary not to overestimate the concentration of suspended particles in a liquid, we 

select the decision rule as follows: 

{ }
( )rP j |max ςγ

γ
≤  (20) 

given that 

( ) αςγ ≤≤ 0|jP . (21) 

Otherwise, we solve the problem 

{ }
( )0|min jP ςγ

γ
≤  (22) 
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given that 

( ) αςγ −≥≤ 1| rP j . (23) 

To solve the problem (20), (21) or (22), (23) it is necessary to find the probability distribution 
densities ( )rp j |ς  and ( )0|jp ς . Let the probability of a false measurement appearing in the i th 

channel be equal to i
falsep . Then the probability that at jt  moment of time a false measurement 

appeared in jν  channels is equal to ∏
=

j

i

i
falsep

ν

1

 and condition (21) takes the form 

( ) αςγ
γν

ν

≤=≤ ∏
= =

M

i

i
falsej

j

j

pP
1

0| . (24) 

Obviously, condition (24) is not satisfied for any values of i
falsep  and α . This means that for 

different i
falsep  the limits of the achievable quality of non-registration of false measurements are 

different. Therefore, based on the value α  in different channels of registration of suspended 
particles, it is necessary to select the thresholds for registering signals in such a way that condition 
(21) is satisfied. 

Let us assume that the loss of a measurement in the i th channel due to merging can only occur 
by merging this measurement with the closest one in time, i.e. 

( ) i
tep

i
ti

conf
Δ−Δ

= λλ
!2

2

, 

and the probability of each dimension being missing is the same and equal to missp . According to 
the multiplication theorem 

( ) ( ) ( )
−

=

===
+−

==
j

j

nM

k
jjjjjj

j
jj MkPMknP

nM
MnP

0

|,|
1

1| μμςς ; (25 

( ) ( ) jjjj

j

knM
miss

k
miss

k
nMjj ppCMkP −−

− −== 1|μ , jj nMk −≤≤0 ; (26) 

( ) ( )×−−====== MnkMknPMknP jjjjjjjjjj ,,|,| βμςμς  

( )MnkMP jjj |−−=× β ; 

( ) ( ) ∏
−−

−

=

−−

=
ℑ−−

−

=−−=

jnjkM
jnM jj

jj

j

C nkM

p
pconfnkM

nM
jjj p

C
MnkMP

1 1
,.

1|


β , (27) 

where the index ( )p,ℑ  indicates the p th permutation in the  th combination. After receiving jn  

measurements in M  channels at the moment of time jt , it is true 

( ) 1,,| =−−=== MnkMknP jjjjjj βμς . (28) 

Taking into account (26) - (28), expression (25) takes the form 

( ) { ( )
−

=

−−
− ×−

+−
==

j

j

jjjj

j

nM

k

knM
miss

k
miss

k
nM

j
jj ppC

nM
MnP

0

1
1

1|ς  
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( )








×  ∏
−−

−

=

−−

=
ℑ−−

−

jnjkM
jnM jj

jj

j

C nkM

p
pconfnkM

nM

p
C 1 1

,.
1


 , (29) 

and taking into account (29), condition (23) will be written as follows: 

( ) { ( ) 
=

−

=

−−
− ×−

+−
=≤

M

n

nM

k

knM
miss

k
miss

k
nM

j
j

j

j

j

jjjj

j
ppC

nM
rP

γ
ςγ

0

1
1

1|  

( ) α−≥








×  ∏
−−

−

=

−−

=
ℑ−−

−

11

1 1
,.

jnjkM
jnM jj

jj

j

C nkM

p
pconfnkM

nM

p
C 

 . (30) 

Similar to condition (24), inequality (30) is not satisfied for any values of missp , confp  and 

( )α−1 . This means that for given missp  and confp  it is impossible to achieve any quality of 

measurement. Therefore, it is necessary to select such characteristics of the measurement channels 
that the corresponding values of missp  and confp  satisfy (30). Expressions that allow us to calculate 

falsep , missp  and confp  for a single-channel FC-analyzer are given below. 

Thus, rule (18), where γ  is defined as stated above, makes it possible to make a decision 
regarding the presence of a particle in the counting zone at a time jt . Let us denote the measurement 

result in the i th channel at a time jt  by ( )ji tx . Two approaches are possible to estimate the true 

size of this particle: the first is averaging all the measurements obtained 

( )
=

=
j

i
ji

j
j txr

ς

ς 1

1ˆ ; (31) 

the second - under the assumption that true measurements form a compact group, and false ones are 
likely to be removed from the center of the compact group; we use formula (31) only for 
measurements from this compact group. 

Thus, for a joint assessment of the number and size of particles suspended in a liquid, several 
(more than one) measuring channels are required. Developing an optimal algorithm for such an 
assessment, taking into account all the noise factors, is a practically unsolvable problem. Constructing 
a quasi-optimal estimate of the number of true measurements in a given time interval based on 
measurement information obtained in one measuring channel is feasible, but requires the use of 
powerful computing equipment. The construction of an optimal decision rule that makes it possible, 
based on the measurement information obtained in M  ( 1>M ) channels, regardless of the 
information at other times, to detect the presence of a particle in the measurement zone and determine 
its size is not difficult. Its implementation is possible on the basis of microprocessor technology. 

3. Simulation Model of the Analyzer of Mechanical Impurities in a Liquid 
Medium 

The purpose of mathematical models of measuring instruments is to minimize the material and 
time costs of their development, as opposed to natural modeling. At the same time, achieving a global 
optimum in the task of optimizing the device in the first case is quite possible, while in the second 
case it is practically unrealizable in the foreseeable future due to the large number of decision-making 
options. Therefore, when developing mathematical models, it is necessary to strive to make them as 
simple, compact, and clear as possible, and at the same time to correspond as much as possible to the 
real processes occurring in the phenomena under study. 
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It is obvious that due to their bulkiness and complexity, expressions (15), (17) are unsuitable for 
estimating the number and size of suspended particles in a liquid. In addition, they do not include 
the technical characteristics of the device (structural, optical, electrical, etc.), so they cannot be used 
for optimal design of the device. 

To eliminate the noted shortcomings, simulation models of the analyzer under consideration 
have been developed, in which the operation of individual units and their interrelationship are 
simulated based on formalized regularities. These regularities include the technical characteristics of 
the analyzer as parameters. The latter allows one to formulate and solve the problem of optimizing 
the methodological and technical solutions implemented in the device, using the measure of 
discrepancy between the laws of particle size distribution in the analyzed medium and at the device 
output as an optimization criterion. 

Depending on the given law of probability distribution of sizes (diameters) of particles analyzed 
in a liquid medium ( )xp2 , the optimal value of the number of fractions L  and the average values 
of diameters for each fraction id  are calculated. Then, a Poisson flow of true particles is generated 
with the parameter Tλ , where T  is the duration of the analysis, λ  is the intensity of the Poisson 
flow, depending on the concentration of particles in the analyzed medium and the velocity of the 
liquid flow through the counting zone, determined on the basis of experimental data for a specific 
medium; the total number of true particles 0n , the number of particles in  that fall into the i th 
fraction, and, of course, the frequency of particles falling into the i th fraction 0/ nnk ii =  are 
calculated. 

For given maxn , mind  and probability p , according to [9], ( )anpV m
CZ /10−⋅=  is determined, 

where ( ) mann 10max ⋅= , ( ) 101 << an , ( )min7.1/ τCZVQ = . Here maxn  is the maximum possible 
number of particles registered in the CZ during time T ; mind  is the minimum possible particle 
diameter; minτ  is the minimum signal duration, which is selected from the boundary conditions 
imposed by the electronic circuit; CZV  is the volume of the CZ; Q  is the volumetric flow rate. 

Assuming that the liquid flow channel is quadratic, from the condition CZVabh ≤8 , CZSbh ≤4 , 
we calculate h2 , where a , b  and h  are the width, length, and height of the CZ of a channel, 
respectively; CZS  is the CZ area determined from the condition ( ) 001.0/minmin =≥ CZ

m SdSk ; ( )mindS  
is the area corresponding to the minimum diameter of a particle suspended in the liquid. Next, we 
calculate the “dead time” value DTτ , i.e. the time during which, after a particle passes through the 

CZ, the photodetector does not respond to the signal of the next particle, im
D

DT u
E ττ 







 −=
2

1 , where 

imτ  is the duration of the impulse, which can be recalculated from its amplitude and shape; u  is the 
impulse amplitude, ( )dSu ≡ ; DE  is the level of discrimination, ( )thrdSED ≡  ( thrd  is the threshold 

value of the diameter). The volume of the j th particle is DTj QV τ= . Taking into account ii ud ≈2 , a 
value thrd  is selected depending on the noise level in the electrical circuit based on the ratio 

( ) thrthri pddP =≤ . 

For the given value thrd , due to random fluctuations in the electrical circuit, false measurements 
may occur, i.e. 

( )( ) falsethr pduuP false => . (32) 

Assuming that in the electrical scheme there is white noise with variance 2
flσ , (32) is rewritten 

in the form 

( )

( )










Φ−==

−∞+


fl

thr

x

du fl
false

dudxep fl

thr
σσπ

σ 1
2

1 2

2

. 
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For a given flσ  by the choice of thrd , the probability value falsep  can be made arbitrarily small. 

The value thrd  must be chosen so that it holds minmiss →p  for α≤falsep , where missp  is 
calculated [9]: 

( )
×












 −
+=  

= =

L

j

L

i

thri
ij

CZ

h
dd

kkVnp
1 1

222
0

miss 2
1

4
 





























 −
+−×

h
dd

Vnk
V
Q thri

CZi
CZ

DT

2
1exp

22

0
τ . 

The probability of merging measurements from different particles in the analyzer under 
consideration is determined by the relation 21 ccconf ppp += , where 

( )
×













 −
+=  

= =

2

1 1

222
0

c1 2
1

4

L

j

L

i

thri
ij

CZ

h
dd

kkVnp  





























 −
+−×

h
dd

Vnk thri
CZi 2
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22
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( )
×

−













 −
+= 

= = h
ddk

h
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kkVnp thri
L

i

L
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22
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














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






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

 −
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h
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Vnk thri
CZi 2

1exp
22

0 ; 

merging threshold tΔ  is determined by ratio 

( ) conft1ii pttP =Δ≤− + . (33) 

Assuming that more than one particle can appear in the CZ for tΔ , which form a Poisson flow, 
we can write 

( ) ( ) ( )
=

Δ−
∞

=

Δ−
+

Δ
−=

Δ
=Δ≤−

1

0

t

2

t
t1ii

tt

!
1

! k

k

k

k
e

k
e

k
ttP λλ λλ . 

In this case, equation (33), solved with respect to tΔ , is rewritten as follows: 

( )t11 t Δ+=− Δ− λλepconf . 

The diameter of the particle that appears as a result of merging two other particles at moments 
in time it  and 1i+t  is determined by the dependence ( )1ii , +ddf . 

The intensity of false measurements is determined depending on the concentration of interfering 
components in the studied medium (gas bubbles, photodiode noise impulses, etc.). Multiple 
experimental data confirm that the distribution of photodiode noise impulses by amplitude obeys 
the normal law, and in time - the Poisson law [10]. 

The intensity of noise impulses is determined by the formula nsnsns1 / tN== λλ , where nsN  is 
the number of registered noise signal impulses; nst  is the time of measuring the intensity of noise 
impulses. The variance of the amplitudes of noise impulses is determined by experimental data [10]. 

The simulation of the process of formation of measurement information in the analyzer is carried 
out according to the following algorithm. In a given time interval [ ]T,0 , a Poisson flow with intensity 
λ  is simulated, i.e. random moments of time Ttttt ≤<<<<< N321 ...0  are determined, at which 
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particles suspended in a liquid medium are measured. The probability distribution density of the 
Poisson flow is denoted by ( )Tp ,1 λ . The sizes of suspended particles are simulated according to a 

given law ( )xp2 . For example, with the normality of this law ( ) ( )2
2 ,; σaxNxp = , where a  is the 

mathematical expectation of the sizes of suspended particles, 2σ  is the variance of these sizes. 
Particles that appear at adjacent moments of time it , 1i+t  and for which the condition 

t1ii Δ≤− +tt  is satisfied merge: instead of two particles, one is simulated at the moment of time it  
with diameter ( )1ii , +ddf . The diameters of the simulated particles jd  are compared with the 

threshold value thrd  and particles for which thrj dd ≤  disappear, i.e., the measurement disappears 

at the corresponding moment of time jt . 

In the time interval [ ]T,0 , a Poisson flow of false measurements with intensity 1λ  is modeled: 

random moments of time Tttt ≤<<<< **
2

*
1 ...0 ν  are determined at which false measurements 

appear. We denote the probability density of this flow by ( )Tp ,13 λ . Impulses from false 

measurements are modeled according to the law ( )xp4 . In cases where t
*

i Δ≤− jtt , instead of two 

measurements, one true and one false, there remains one measurement at the time it  with the value 
( )jddf ,i . 

When modeling the intensity of Poisson flows 1λ  and 2λ , the values of thresholds tΔ  and 

thrd , the distribution parameters ( )xp2  and ( )xp4 , the values of probabilities confp , missp  and 

falsep  are set as described above. 

4. Optimization of the Structure and Parameters of the Mechanical Impurity 
Analyzer According to the Developed Models 

One of the main goals of developing a simulation model of an analyzer is to optimize the 
methodological and technical solutions adopted in the device. In this case, the measure of the 
discrepancy between the probability distribution laws of particle sizes in the analyzed medium and 
at the device output can be used as an optimization criterion. Let us denote by ip  ( Li ,...,1= ) the 

probability of particles getting into the i th fraction of the analyzed medium, and by *
ip  - the 

frequency of getting the obtained (measured) values into the i th fraction at the output of the 
simulation model of the device; L  is the number of fractions. Then, as an optimization criterion for 
the device, we take 

( )












−
=

L

i
ii pp

1

*min  (34) 

when the following conditions are met: 

minmiss →p , α≤falsep , β≤confp , (35) 

where α  and β  are given probabilities. 

Probabilities *
ip , missp , falsep , confp  depend on the methodological and technical decisions 

taken in the device, such as design decisions (dimensions of the measuring cuvette, shape and 
location of the sample preparation and feeding unit), intensity of the light source, sensitivity of the 
photodetector, etc. Let us denote the set of design parameters by ω ; characteristics of the analyzed 
medium (probability distribution function of particle sizes in the analyzed medium) - by θ ; noise 
characteristics of the device (fluctuations of the light source and photodiode, auto-fluctuation of the 
measurement channels, intensity of occurrence of false measurements) - through η , methodological 
solutions (the value of the filtering threshold of the electrical signal, the shape of the measuring 
cuvette, the shape of the light source, the shape of the counting zone, etc.) - through δ , and through 

ωΩ , θΩ , ηΩ , δΩ  - the areas of permissible values, respectively, of the design characteristics of the 
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analyzed medium, the noise characteristics of the device and methodological solutions. Then 
problem (34), (35) must be solved under the following restrictions: 

ωω Ω∈ , θθ Ω∈ , ηη Ω∈ , δδ Ω∈ . (36) 

In general, the problem (33) - (36) is multidimensional and nonlinear. The development of 
convergent methods for its solution largely depends on the characteristics of existing dependencies 
between different parameters. As a rule, the development and study of such methods is a very 
complex task, requiring large material and time costs. Its solution is significantly simplified by 
simulation modeling. In this case, for admissible values of parameters ω , θ , η , δ  the frequencies 

*
ip , Li ,...,1= , are modeled and those values of the parameters that correspond to the minimum 

value of criterion (34) are selected. If there are several solutions, the more technologically advanced, 
simple to implement, economical, etc. solution is preferable. It is essential to reduce the number of 
possible enumerations of the values of the parameters under consideration. This is achieved using 
combinatorics methods and various logical considerations, taking into account the existing 
interrelations between the parameters under consideration. 

5. Conclusion 

Mathematical and simulation models of the analyzer of mechanical impurities in a liquid 
medium have been developed, which are used to optimize the structure of measuring instruments 
with a built-in microprocessor, optimal selection of parameters and algorithms for processing and 
filtering information, which guarantees high quality of measurement. These models are used at the 
design stage to optimize the structure and parameters of the designed instrument in order to improve 
its metrological characteristics. At the same time, the funds and time required to develop high-quality 
auto analyzers are significantly reduced. Algorithms for parametric optimization of measuring 
instruments based on their mathematical models, optimization of the structure and parameters of the 
analyzer of mechanical impurities according to the developed models are proposed. 
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