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Abstract 

In this study, a detection framework is presented and evaluated that integrates sensor data (e.g., 
temperature, humidity, gas readings) with machine learning (ML) models and computer vision-
based smoke and fire detection systems, in an effort to increase overall accuracy, robustness, as well 
as false-alarm reduction. To this end, sixteen (16) ML and deep learning (DL) models are employed 
on an internet of things (IoT) sensor dataset. Moreover, a range of YOLO models, such as older 
versions (YOLOv5n, YOLOv8n), as well as newer versions (YOLOv10n, YOLOv11n, YOLOv12n) are 
employed on an image-label based dataset. Model selection initially prioritizes lightweight 
architectures that are suitable for resource-constrained edge devices. Afterwards, the selected models 
are evaluated via well-known metrics, such as parameter count, F1-score/mean average precision 
(mAP) and real-time inference latency. In the same context, explainable AI (XAI) techniques, such as 
SHAP (SHapley Additive exPlanations) for ML models and LIME (Local Interpretable Model-
agnostic Explanations) for the YOLO detectors, are integrated to the platform as well. According to 
the presented results, the Explainable Sensor Fusion (ESF) achieves decent performance metrics on a 
resource-constrained hardware device, demonstrating a viable, explainable, and highly efficient 
solution for real-time smoke and fire emergency response in industrial environments. 

Keywords: YOLO; sensor fusion; machine learning (ML); explainable AI (XAI); edge devices;  
real-time detection; Smoke and fire detection; lightweight ML/DL models 
 

1. Introduction 

Industrial facilities handling volatile materials, complex machinery, and high-value assets are 
particularly vulnerable to fire accidents, which eventually may result in significant losses and worker 
casualties. In regions where manufacturing is a significant contributor to the local economy, the 
frequency of these events necessitates robust and reliable fire detection technologies, in order to 
prevent and handle these damages in proper ways. 

In this context, the development of effective smoke and fire detection systems has evolved 
rapidly over the last decade, mainly due to technological advanced in machine learning (ML), deep 
learning (DL) and computer vision techniques on internet of things (IoT) devices [1]. To this end, 
traditional sensor-based approaches relying on thresholds for temperature, humidity, or gas levels 
may offer reliable but isolated results, sometimes leading to false alarms. On the other hand, ML and 
DL models, such as random forest, gradient boosting ensembles and neural networks (NNs), can 
provide improved accuracy due to their inherent ability to process multivariate sensor data, thus 
achieving high accuracy and fast responses depending on the computational capability of the 
processing nodes. However, it should be mentioned at this point that real-time deployments of such 
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approaches remain an open issue, due to the vast amount of data that needs to be collected, stored 
and processed on IoT, edge and cloud devices. To this end, object detection frameworks like the 
YOLO (You Only Look Once) family [2–6] have revolutionized vision-based monitoring with nano 
variants (e.g., YOLOv5n, YOLOv8n, YOLOv10n, YOLOv11n, YOLOv12n) by significantly reducing 
deployment requirements in lightweight devices. To this end, YOLO approaches are capable of 
spotting smoke wisps [7] or flame flickers in RGB feeds at 20+ frames per second. 

Despite these advancements, the development of a highly accurate and computationally efficient 
fire detection scheme may face several critical challenges. For example, the latest versions of YOLO 
models (e.g., YOLOv11n, v12n) might not be always feasible to be integrated on resource constrained 
devices. In the same context, although newer models often result in higher Mean Average Precision 
(mAP) compared to previous versions, they frequently require more complex optimization 
techniques (like TensorRT quantization) [8] that may have a direct impact on deployment complexity. 
Furthermore, the decision-making processes of advanced ML/DL models and object detectors often 
remain a ʺblack-boxʺ issue. 

Based on the above, this study introduces a unified, Explainable Sensor Fusion (ESF) framework 
for industrial emergency response cases on resource-constrained hardware devices. To this end, the 
main contributions of our work are listed below: 

1. Performance evaluation of sixteen (16) ML/DL classifiers and a range of YOLO nano variants 
(v5n, v8n, v10n, v11n, v12n) is taking place, by prioritizing lightweight architectures and real-
time inference viability on edge hardware [9–12]. 

2. We propose a robust fusion strategy, which integrates heterogeneous sensor outputs with 
conditional override logic, combining a weighted product rule for high-precision multi-modal 
confirmation. 

3. We apply explainable AI (XAI) techniques, specifically SHAP (SHapley Additive exPlanations) 
[13,14] for tabular sensor decisions and LIME (Local Interpretable Model-agnostic Explanations) 
[14,15] to provide interpretable and operator-friendly outputs. 

The rest of this work is organized as follows: In Section 2, the theoretical background is provided 
for all the components that constitute the deployed alarm detection scheme. In Section 3, the 
methodology for performance evaluation is discussed along with specific hardware requirements. 
Results are presented in Section 4 for a variety of ML models and YOLO versions. Discussion takes 
place in Section 5, while concluding remarks along with proposals for future work are discussed in 
Section 6. 

2. Theoretical Background 

In this section, the related theoretical background is provided to develop a lightweight, real-time 
smoke and fire detection system for edge devices. To this end, open-source AI frameworks, state-of-
the-art ML, DL as well as detection models, and advanced fusion and explainability techniques are 
presented. 

2.1. Open-Source AI Frameworks 

DL implementations are frequently based on open access frameworks like TensorFlow [16], an 
end-to-end platform which is optimized for high-performance numerical computation tasks. It 
utilizes an efficient C++ backend system to execute operations defined via a Python interface, enabling 
the flexible construction of dataflow graphs. Moreover, TensorFlowʹs environment is easy to use, 
offering tools like TensorFlow Lite/Serving for streamlined model deployment across mobile and 
edge environments. Another framework is Keras [17], a high-level, user-friendly API designed for 
rapid experimentation and development of DL models such as convolutional neural networks (CNN) 
or recursive neural networks (RNN). Finally, Scikit-Learn [18], is a well-known Python library that 
provides a unified interface to a comprehensive set of algorithms for classification, regression, and 
preprocessing tasks. 
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2.2. ML/DL Approaches for Environmental Sensing 

For our sensor-based binary classification, a wide range of models was evaluated to identify the 
most efficient lightweight architecture approach for the edge inference. These models are listed 
below: 

● Linear models like Logistic Regression [19] and RidgeClassifier [20] are two well-known models 
for sensor data processing. In particular, the RidgeClassifier is a robust regularized linear 
classifier that minimizes loss augmented by an L2 penalty term, which shrinks feature weights 
to mitigate overfitting. Then, the non-linear approaches like KNeighborsClassifier (KNC) [21], 
capture non-linear decision boundaries based on Euclidean distance, while the Support Vector 
Classifier (SVC) [22] uses the kernel trick to map raw sensor features into a higher-dimensional 
space for linear separability. 

● Tree-based methods, such as the DecisionTreeClassifier [23], that may employed directly on 
unscaled sensor data, can provide an interpretable, white-box model. Additionally, the 
RandomForestClassifier [24] is an advanced ensemble method that operates by constructing a 
multitude of independent Decision Trees, each trained on a random subset of data (bagging), 
reducing variance and mitigating the weakness of single, overfit trees. 

● Boosting techniques are sequential ensemble methods designed to significantly enhance 
performance through iterative error correction. More precisely, XGBoost (eXtreme Gradient 
Boosting) [25] is a scalable implementation that employs a regularized objective function to 
control model complexity (L1 and L2 regularization), making it robust against overfitting. After 
that, LightGBM (Light Gradient Boosting Machine) [26] improves speed by using Gradient-
based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB), making it highly 
efficient for handling massive datasets. Finally, CatBoost [27] uses Ordered Boosting with a 
permutation-driven approach to compute leaf values, effectively mitigating the problem of 
target leakage which is a key issue in Gradient Boosting Decision Trees (GBDT). 

● DL models, such as the MLPClassifier [28] and the TF-Keras Neural Network [29], implement 
Feedforward Neural Network (FNN) architectures that establish complex, non-linear decision 
boundaries through fully connected layers interconnected by non-linear activation functions. 

2.3. Real-Time Object Detection Architectures (YOLO Nano) 

The smoke and fire detection task is highly latency-critical, thus justifying the use and 
importance of the YOLO (You Only Look Once) architecture, which treats detection as a regression 
problem in a single network pass. Below, we present the YOLO nano models used in this work: 

● YOLOv5nu: This version is the lightest one, achieving high-throughput and real-time 
performance on constrained devices [30]. 

● YOLOv8n: This version is well-known for its excellent speed-to-accuracy trade-off on edge 
devices [31]. 

● YOLOv10n: This version utilizes the consistent dual assignments strategy, allowing NMS-free 
(Non-Maximum Suppression-free) training and inference. This feature eliminates the most 
significant post-processing bottleneck [32,33]. 

● YOLOv11n: This version incorporates the C3K2 Block and the C2PSA Block (Cross Stage Partial 
with Spatial Attention), which enhances the modelʹs ability to focus on and accurately locate 
irregularly shaped targets, like diffuse smoke plumes and spreading fire [34,35]. 
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● YOLOv12n: Finally, this version integrates a high-speed Area Attention (A²) module and 
FlashAttention to model global context and reduce computational overhead [36,37]. 

2.4. Multimodal Sensor Fusion and Evaluation 

An industrial factory contains many heavy machines, an environment with dust and people 
working with electronic devices all over the place. Hence, a key challenge in industrial environments 
is to manage false alarms caused by noises, while maintaining low missed detections. Data gathered 
by sensor readings can be influenced by various processes like steam or dust, while visual detection 
(YOLO) can be compromised by lighting and reflections, resulting in false alarms. Therefore, as 
previously mentioned, we propose a sensor fusion framework, which aims to provide a more reliable, 
trustworthy and robust approach. More specifically, the framework uses a weighted-multiplicative 
fusion rule. The fused probability, Pfusion, is calculated as: 

Pfusion = ((Psensor0.55)×(Pyolo0.45))   (1) 
The slight priority given to sensor measurements reflects their better robustness in industrial 

environments where visual stability may be compromised. Finally, the system incorporates a high-
confidence visual override mechanism for rapid response, compensating for situations where flames 
are visually obvious, but sensor data is delayed or out of the region. 

Additionally, for evaluation purposes, the system utilizes various distinct metrics that include 
Accuracy, Precision, Recall, F1-Score, and ROC AUC (Receiver Operating Characteristic Area Under 
the Curve). For YOLO, the primary metrics are mAP, specifically mAP@0.50, mAP@0.50-0.95 and FPS 
(Frames-per-Second), which simultaneously evaluate classification, localization and real-time 
response and quality. 

2.5. Explainable AI (XAI) and Hyperparameter Optimization 

To develop a white-box system, we have incorporated explainability approaches, which are 
crucial for safety-critical systems. To this end, SHAP leverages game theory to assign a prediction to 
individual features by calculating the Shapley value. SHAP provides a unified, theoretically sound 
framework that computes the marginal contribution of each feature to the prediction [38]. On the 
other hand, LIME addresses the black-box problem by providing human-interpretable justifications. 
In particular, it operates on the premise that while a model may be non-linear globally, its behavior 
can be approximated by a simpler interpretable model (e.g., linear regression) within the immediate, 
local neighborhood of a specific instance. LIME achieves this in computer vision by generating 
perturbed images (e.g., masking super-pixel regions) to train the local explainer [39]. 

Finally, to utilize optimization methods on complex models, it is required to use advanced 
Hyperparameter Optimization (HPO). To achieve this feature, we employ Optuna, distinguished by 
its define-by-run API, which enables the dynamic construction of search spaces. More precisely, 
Optuna uses sophisticated sampling algorithms, such as the Tree-structured Parzen Estimator (TPE), 
and a robust pruning mechanism to intelligently and adaptively explore the hyperparameter space, 
reducing computational resources and accelerating convergence [40]. 

3. Materials and Methodology 

In this section the hardware specifications along with all related configurations are described 
towards the construction of the proposed lightweight real-time hybrid smoke and fire detection 
system for resource-constrained edge devices. All related code, trained models, and processed 
datasets are publicly available via this GitHub repository [41]. The analysis and development were 
conducted in Python 3.11+ environments, leveraging libraries and frameworks detailed in Section 
2.1. 
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3.1. Hardware Specifications 

To simulate and approach the resource constraints of an edge computing environment, we 
performed all the real-time inference latency and performance benchmarks on a Dell Laptop with the 
following specifications: 

● CPU: Intel Core(TM) i5-8365U 
● Clock Speed: 1.60 GHz 
● RAM: 16 GB 
● Storage: 256 GB SSD 

3.2. Datasets 

In the context of this work we made use of two different datasets, one being utilized for the 
ML/DL models and the second one for the YOLO nano models. The ML/DL models use a .csv file 
containing the sensorʹs readings in integer and float-point number format. On the other hand, 
detection models like the YOLO nano versions, need a dataset that combines each image with a label 
that provides the class name [class_id, e.g. 0: fire or 1: smoke] and the coordinates [x_center, y_center, 
width, height] of the bounding boxes, which belong to the detected smokes and fires on the image. 
As a result, a detection model learns what a smoke or fire looks like, but at the same time becomes 
able to capture and surround each of them uniquely with box limits. Finally, after training the models 
for both cases, they will be able to detect possible spikes of smoke and fire in the environment/air and 
on the camera/video frames, respectively. 

3.2.1. Sensor Dataset 

The dataset used to train and evaluate the ML and DL models [42], includes time-series from 
different sensors’ readings from an environmental monitoring setup, simulating real-world 
conditions. In particular, it includes 62.629 instances across 13 features, such as: Temperature (°C), 
Humidity (%), TVOC (ppb), eCO2 (ppm), Pressure (hPa), PM1.0 (µg/m³), PM2.5 (µg/m³), NC0.5 
(#/cm³), NC1.0 (#/cm³), NC2.5 (#/cm³), Raw H2 (raw ADC), and Raw Ethanol (raw ADC). 

Additionally, the binary target label, ʺFire Alarm,ʺ indicates fire/smoke events (1: alarm 
triggered, 0: normal), which are determined according to the features’ values, thus, for instance if 
there are high Temperature (°C) and low Humidity (%) levels, then it is supposed that this particular 
case is prone to a fire event and vice-versa. Moreover, the preprocessing part involved dropping 
irrelevant metadata (e.g., timestamps, counters) as well as median imputation for <0.1% missing 
values. 

The dataset was finally split into a (80/20 train/test) format using scikit-learnʹs `train_test_split` 
with `random_state=42` and `stratify=y` to maintain class balance (~5% positive events, reflecting 
real-world rarity). A correlation heatmap (Pearson coefficients) was generated via 
Seaborn/Matplotlib for exploratory analysis, revealing moderate correlations (e.g., TVOC-eCO2: 
r=0.45) but no multicollinearity issues (Variance Inflation Factor (VIF) <5). 

3.2.2. Image Dataset for Object Detection 

For our vision-based detection with YOLO nano models approach, we utilized the ʺNew Fire 
Datasetʺ [43]. This dataset contains annotated RGB images, in particular 5923 train images, 1681 
validation images and 839 test images, offered to develop a robust system tested and generalized on 
different scenes, at a 640×640 resolution. 

Furthermore, the dataset has annotations, that includes three classes: ʹfireʹ (flame regions), 
ʹsmokeʹ (particulate plumes), and ́ otherʹ (background/nuisances like steam). Bounding boxes for each 
image were provided in YOLO format (.txt files), containing “class_id”, “center_x”, “center_y”, 
“width” and “length” of each box/detected smoke or fire, on that particular image. 
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3.3. ML/DL Models 

During performance evaluation, various models were used, such as the aforementioned sixteen 
(16) classifiers, ensemble methods, and DL for sensor-based binary classification. The goal was to 
leverage lightweight architectures suitable for edge inference. 

3.3.1. Model Architectures and Training 

Models were implemented via scikit-learn library pipelines (with StandardScaler for non-tree-
based learners) and custom TF-Keras for NNs. 

● Ensemble: Included models such as Linear (LogisticRegression, RidgeClassifier), Non-linear 
(KNeighborsClassifier, SVC), Trees (DecisionTreeClassifier, ExtraTreeClassifier, 
RandomForestClassifier), Boosting (GradientBoostingClassifier, AdaBoostClassifier, 
HistGradientBoostingClassifier, XGBoost, LightGBM, CatBoost), and Neural (MLPClassifier, 
TF-Keras NN). 

● NN Configuration: The TF-Keras model used a sequential architecture (64-32-16 ReLU layers 
with 20% Dropout), optimized with the Adam optimizer (lr=0.001), binary cross-entropy loss, 
and early stopping (val_loss patience =5). 

Training used the full train split (n = 50,103). For the TF-Keras NN, data was scaled and fitted 
with validation_split=0.2, shuffle=True, epochs=50, and batch_size=32. We utilized HPO for XGBoost 
with Optuna (20 trials, TPE sampler), optimizing parameters like n_estimators [100-600], maxdepth 
[3-20], and learning_rate [0.01-0.3] by minimizing negative CV-F1 (3-fold StratifiedKFold). 

3.3.2. Evaluation and Explainable AI (XAI) 

Models were assessed on the held-out test set (n = 12, 526) using accuracy, precision, recall, F1-
score (macro-averaged), and AUC-ROC. Training time was timed via time library. In addition, the 
top-F1 model was serialized via joblib (for sklearn) or Keras save (for NN). Post-hoc explainability 
used SHAP (v0.46.0) on the best model, subsetted to 1.000 test instances. Explainers were model-
specific: GradientExplainer (KerasNN), LinearExplainer (linear models), TreeExplainer 
(trees/boosters), and KernelExplainer (fallback). Finally, mean absolute SHAP values were used to 
yield feature importances. 

3.4. Vision-Based Detection Pipeline 

As far as the object vision-detection is concerned, we decided to compare a number of YOLO 
nano variants from Ultralytics, starting with older versions (v5n, v8n) and continuing with some 
modern ones (v10n, v11n, v12n), fine-tuning them using the dataset, for multi-class detection (ʹfireʹ, 
ʹotherʹ, ʹsmokeʹ), and prioritizing sub-10 GFLOPs for edge viability. 

3.4.1. Training 

The training process for any YOLO object detection model (such as the Nano versions of v5n, 
v8n, v11n, or v12n) is based on transfer learning and fine-tuning a powerful pre-trained network for 
a specialized task. This involves loading generic weights, often pre-trained on the massive COCO 
dataset to recognize thousands of everyday objects and then retraining the model using our much 
smaller, specific dataset. This process efficiently leverages the networkʹs existing ability to extract 
general visual features, but it fine-tunes the final layers to precisely identify our custom classes, which 
are defined in this configuration file (data.yaml) as ʹfireʹ, ʹotherʹ, and ʹsmokeʹ. The training loop then 
runs for 20 epochs (full passes over the dataset) where the model continually adjusts its weights based 
on the calculated loss (the error between its prediction and the ground truth bounding boxes and 
labels) using an optimizer like Stochastic Gradient Descent. The goal is to minimize this loss, ensuring 
the final saved model weights (best.pt) are highly accurate and robust for the real-time detection of 
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this specific fire and smoke scenarios at a pre-set input image size (640 × 640 pixels). Finally, the 
epochs are set to 20, to challenge YOLO models’ capabilities and limits as well. 

3.4.2. Testing 

The trained YOLO model is tested on a live video stream from a camera by running the core 
inference process in a continuous loop. This testing procedure involves four key steps performed for 
every frame: First, the system initializes the model by loading the best-performing weights (best.pt). 
Second, it captures a frame from the default camera source (cv2.VideoCapture(0, 
cv2.CAP_DSHOW)). Third, the loaded model then runs a real-time prediction on the captured frame, 
using parameters like a minimum confidence threshold (e.g., conf = 0.5) and the standardized image 
size (imgsz = 640). Ultimately, the results which include the predicted class labels (ʹfireʹ or ʹsmokeʹ) 
and the corresponding bounding box coordinates are immediately rendered back onto the live video 
feed using the modelʹs plotting function. This generates an annotated frame displayed to the user, 
allowing for instant, visual verification of the modelʹs ability to accurately detect and localize fire and 
smoke in a real-world environment. 

3.4.3. Explainable AI for Vision Models 

The testing and explanation of the trained model using LIME is to understanding why the YOLO 
model made a specific ʹfireʹ or ʹsmokeʹ detection on a single image. This methodology does not run 
on a live stream but rather on a single, representative test image. More precisely, to generate the LIME 
explanation, the method works by perturbing the image, thus generating hundreds of slightly 
modified versions of the original image by hiding or masking different super-pixel regions. 
Afterwards, each modified image is fed to the trained YOLO model and the prediction scores for the 
target class (e.g., ́fireʹ or ́ smokeʹ) are recorded. Finally, we continued with Local Model Fitting, where 
LIME then trains a simple, interpretable linear model that weighs how much each visible super-pixel 
contributes to the final prediction score. The output is a heatmap, a colored overlay that highlights 
the specific pixels and regions of the image that the model was focusing on to make its final 
classification. For instance, our script separately visualizes the regions influencing a ʹfireʹ prediction 
(in red) and a ʹsmokeʹ prediction (in blue). 

3.5. Explainable Sensor Fusion Framework 

The sensor fusion framework is designed to combine heterogeneous information from two 
fundamentally different sensing modalities, the environmental sensors and a DL-based visual 
detection model, to produce reliable, low-false-alarm fire and smoke alerts in industrial 
environments. Each modality captures different physical evidence of fire activity, and each has its 
own strengths and limitations. Therefore, the fusion architecture tries to exploit the complementary 
nature of these systems. 

Moreover, the tabular sensors (such as CO₂, VOC, particulate matter, temperature, and 
humidity) provide continuous, stable measurements of environmental conditions. These sensors 
respond to the chemical and thermal signatures that typically precede or accompany combustion. 
However, in industrial settings they can also be influenced by benign processes like welding, steam 
release, dust, and other noise factors, creating uncertain situations. For this reason, their output is 
normalized and passed through an ML classifier to generate a probabilistic “sensor-side fire 
likelihood,” noted as Psensor. This probability expresses how closely the current sensor pattern 
resembles combustion-like conditions. 

Additionally, the visual detection pathway uses a YOLO model specifically trained to detect 
flames and smoke. YOLO offers strong specificity because it relies on direct visual evidence of 
combustion phenomena. Yet in factories, lighting variations, reflections from metal surfaces, motion 
blur, or airborne particulates can create misleading visual cues, leading to false alarms. To manage 
this, the model extracts a confidence score for fire and smoke, noted as Pyolo_fire and Pyolo_smoke, each 
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treated as separate probability sources contributing to the final decision. To unify both sensing 
streams, the framework applies a weighted-multiplicative fusion rule. The normalized sensor 
probability and YOLO probability are each raised to their respective importance weights, 55% for the 
sensors and 45% for the visual detector and then multiplied together. Mathematically, the fused 
probability is described in formula (1). 

Then, decision thresholds are layered to ensure robust safety behavior. A fused alert is issued 
when the combined probability exceeds the confirmation threshold: Pfusion ≥ 0.65. This prevents 
isolated spikes from either modality from prematurely triggering an alarm. In addition, a minimum 
sensor threshold of Psensor ≥ 0.65 is required for any override path, ensuring that even if YOLO is highly 
confident, environmental conditions must still indicate abnormality. This dual-requirement protects 
against visually deceptive cases such as reflections or hot metal that resemble flames but produce no 
combustion byproducts. 

Moreover, the system also incorporates a high-confidence visual override mechanism for rapid 
response. If YOLO detects fire or smoke with very high confidence, specifically Pyolo ≥ 0.85, and the 
sensors meet the minimum abnormality requirement (Psensor ≥ 0.65), the framework triggers an alert 
even if Pfusion is below the main confirmation threshold. This mechanism compensates for situations 
where flames are visually obvious but environmental sensors are delayed due to airflow patterns, 
dilution, outdoor conditions, or large factory volumes and distances. 

4. Results 

In this section, results are presented regarding the dual-modality detection framework, 
beginning with the performance and explainability of the sensor-based classification system, 
evaluated with various metrics, and then followed by the performance evaluation of the vision-based 
YOLO object detection nano models. Some of the most crucial metrics used for evaluation are 
Precision, Recall and F1 Score, are presented below: 

● Precision = TP / (TP + FP), with TP: True Positive and FP: False Positive, then, 
● Recall = TP / (TP + FN), with TP: True Positive and FN: False Negatives, and then, 
● F1 Score = (2 × ((Precision ×Recall) / (Precision + Recall))) 

4.1. Performance Analysis of Tabular Classification Models 

We conducted performance evaluation across 16 production-ready ML and DL classifiers to 
identify the optimal model for the sensor-based system (Psensor). The high-quality and low-noise nature 
of the sensor data resulted in accurate performance across all tree-based and ensemble methods, with 
multiple models achieving maximum F1-Scores. 

4.1.1. Model Benchmarking and Comparison 

The performance results on the held-out test set are summarized in Table 1, ranked by the macro-
averaged F1-Score and Training Time of the models. 
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Table 1. Performance metrics of the ML and DL models. 

 

 

Figure 1. Confusion matrix results of LightGBM ML model. 

4.1.2. Key Findings and Model Selection 

Multiple models, including the LightGBM, and DecisionTreeClassifier, achieved perfect F1-
Scores (1.0000) and decent real-time processing training times. These results shifted the final selection 
criteria to model robustness and deployment overhead. On the other hand, it is clearly illustrated 
that complex models like an NN or SVC, require more training time (63.78 sec and 150.556 sec, 
respectively), because of their architectures, computation load and data hungry features, making 
them not suitable for real-time processes in constrained environments and limited amount of data. 

The LightGBM model was ultimately selected as the optimal model for the final Psensor component 
within the hybrid system. While the single Decision Tree model achieved a perfect score of 1.0000 
across all metrics (Accuracy, F1-score, and AUC), it presented a critical risk of overfitting, memorizing 
the specifics of the training data and leading to potential instability when deployed with noisy, real-
world sensor readings. The LightGBM model provided virtually identical, perfect performance (e.g., 
1.0000 F1-score and 1.0000 AUC), but with superior robustness and regularization, providing more 
reliable results. This architectural choice ensures significantly better generalization capabilities to 
new unseen data as well. 
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4.2. Explainable AI Analysis of RandomForestClassifier (SHAP) 

A post-hoc SHAP analysis was performed on the selected LightGBM model to ensure 
transparency and validate the physical relevance of its decision-making process. The results, 
reflecting the mean absolute contribution of each feature to the modelʹs output probability, are 
presented in Table 2. 

4.2.1. Feature Importance Ranking 

The SHAP analysis produced the following definitive feature importance ranking for the 
LightGBM model: 

Table 2. Features’ importance contribution on model’s final decision-making process. 

 

 
Figure 2. Bars showcasing features’ importance contribution on model’s final decision-making process. 

4.2.2. XAI Interpretation 

The SHAP ranking confirms that the modelʹs decision-making is logically sound and aligned 
with the physical phenomenology of a fire event. Pressure and TVOC (Total Volatile Organic 
Compounds) are the dominant features, confirming that the model effectively integrates specialized 
chemical signatures and associated atmospheric changes. The simultaneous high ranking of these 
two distinct sensor types contributes significantly to the systemʹs low false-positive rate. Metrics 
commonly associated with environmental noise, such as Temperature (Rank 5) and eCO2 (Rank 10), 
are correctly de-prioritized, demonstrating that the classifier relies on complex chemical and pressure 
patterns rather than simple thermal triggers. 
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4.3. Comparative Analysis of Vision-Based Detection Nano Models (YOLO Benchmark) 

This section details the comparative performance of the five selected YOLO nano variants (v5n, 
v8n, v10n, v11n, v12n) on the custom Fire and Smoke Image-Label Dataset. The evaluation focuses 
on the critical trade-off between localization accuracy (mAP) and real-time efficiency (Inference 
Speed) for edge deployment. 

4.3.1. YOLOv5nu Analysis 

The YOLOv5nu nano variant establishes a critical baseline, providing a strong balance between 
localization accuracy and its resource profile. The model achieved a competitive mAP@0.50 of 0.8267 
and a satisfactory mAP@0.50-0.95 of 0.5422. These values confirm its high reliability in identifying 
and accurately bounding both fire and smoke objects across moderate Intersection over Union 
(IoU>0.5) and stricter (IoU>0.95) thresholds. 

For real-time industrial deployment, YOLOv5nu provides an Inference Speed of 8.5 to 10.5 FPS 
(frames per second). While this speed exceeds the minimum required throughput for near real-time 
monitoring, it leaves limited overhead for more demanding hardware or higher video resolutions. 
With a compact architecture of 2.6 million parameters, YOLOv5nu is lightweight, but the newer, 
more optimized architectures have superior speed-to-accuracy trade-offs. 

In addition, performance analysis of the training metrics (including train/box_loss, val/cls_loss, 
and epoch-based precision/recall) confirmed the modelʹs stable and rapid convergence. The 
consistent decrease in loss across both training and validation sets, coupled with the monotonic 
increase in epoch-based precision and recall, indicates that the model did not suffer from significant 
overfitting or underfitting. This stability validates the modelʹs robustness and the effectiveness of the 
chosen training configuration. 

 

Figure 3. Normalized confusion matrix of smoke/fire detection using YOLOv5nu. 
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Figure 4. F1-Confidence metric performance results of YOLOv5nu. 

 
Figure 5. Precision-Confidence performance results of YOLOv5nu. 

 

Figure 6. Precision-Recall performance results of YOLOv5nu. 
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Figure 7. Recall-Confidence performance results of YOLO5nu. 

 
Figure 8. Different metrics performance results of YOLOv5nu. 

Below, Figure 9, illustrates the detections of the YOLOv5nu model, which can detect from small 
to larger smoke and fire regions successfully. 

 

Figure 9. Detection and Bounding boxing of smoke/fires regions with YOLOv5nu. 
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4.3.2. YOLOv8n Analysis 

The YOLOv8n model presents additional gains in accuracy while maintaining a constrained 
resource footprint. It achieved the best overall performance, obtaining the highest mAP@0.50 of 
0.8320 and a marginal increase and second best in comprehensive localization accuracy, with 
mAP@0.50-0.95 reaching 0.5489. This indicates a minor increase in the modelʹs ability to precisely 
localize fire and smoke objects, particularly at stricter IoU thresholds. 

However, in terms of efficiency, YOLOv8n exhibited a slight performance degradation 
compared to YOLOv5n, achieving an Inference Speed of 7.5 to 9.5 FPS. While this speed still meets 
the minimum real-time requirement for the edge device, it is slower than the v5nu baseline, but still 
the second best one, among the YOLO nano models. The model’s complexity increased to 3.2 million 
parameters, making it slightly larger. This suggests that the architectural improvements place 
YOLOv8n among nano-scale YOLO variants, as the most favorable trade-off, between detection 
accuracy and inference speed, making it the most suitable model for real-time smoke and fire 
detection on resource-constrained edge devices. 

Finally, the analysis of the YOLOv8n training metrics (such as the bounding box loss, which 
finalized at approximately 1.1117) confirmed highly stable and robust learning. The smooth, 
consistent decrease in loss across both the training and validation sets indicates that the model 
converged effectively without significant oscillation or divergence. 

 
Figure 10. Normalized confusion matrix of smoke/fire detection using YOLOv8n. 

 
Figure 11. F1-Confidence performance results of YOLOv8n. 
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Figure 12. Precision-Confidence performance results of YOLOv8n. 

 

Figure 13. Precision-Recall performance results of YOLOv8n. 

 

Figure 14. Recall-Confidence performance results of YOLOv8n. 
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Figure 15. Different metrics performance results of YOLOv8n. 

Below, Figure 16, illustrates the detections of the YOLOv8n model, which can detect from small 
to larger smoke and fire regions successfully. 

 

Figure 16. Detection and Bounding boxing of smoke/fires regions with YOLOv8n. 

4.3.3. YOLOv10n Analysis 

The YOLOv10n model presents a noticeable shift in the accuracy-speed trade-off compared to 
its predecessors. It is the most lightweight model so far, with a size of 2.3 million parameters, making 
it highly attractive for the most resource-constrained devices. It also maintains competitive inference 
speed, ranging from 6.9 to 9.5 FPS. This speed means that while it is highly compact, its real-time 
performance is variable and can drop below the desired 7 FPS threshold, posing a reliability risk. 

In terms of accuracy, YOLOv10n achieved a mAP@0.50 of 0.7906 and a mAP@0.50-0.95 of 0.5156. 
While these scores are robust, they represent a decline in performance compared to both YOLOv5n 
and YOLOv8n. This decline suggests that the architectural changes focused on reducing the 
parameter count finally have an impact on the modelʹs ability to maximize detection accuracy on the 
fire and smoke dataset. 

The training metrics confirm that the YOLOv10n model successfully converged, indicated by 
the low difference between the final training box loss (approximately 2.17) and the validation box 
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loss (approximately 2.24). This minimal loss gap suggests that despite the architectural modifications 
for size reduction, the model trained stably without significant signs of overfitting, confirming the 
reliability of the reported accuracy figures. 

 

Figure 17. Normalized confusion matrix of smoke/fire detection using YOLOv10n. 

 
Figure 18. F1-Confidence performance results of YOLOv10n. 
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Figure 19. Precision-Confidence performance results of YOLOv10n. 

 

Figure 20. Recall-Confidence performance results of YOLOv10n. 

 

Figure 21. Precision-Recall performance results of YOLOv10n. 
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Figure 22. Different metrics performance results of YOLOv10n. 

Below, Figure 23, illustrates the detections of the YOLOv10n model, which can detect from small 
to larger smoke and fire regions successfully. 

 
Figure 23. Detection and Bounding boxing of smoke/fires regions with YOLOv10n. 

4.3.4. YOLOv11n Analysis 

The YOLOv11n model achieved a mAP@0.50 of 0.8293 and an mAP@0.50-0.95 of 0.5474. These 
scores are nearly identical to the high accuracy achieved by the YOLOv8n model, significantly 
outperforming the low-accuracy YOLOv10n variant. In terms of efficiency, YOLOv11n achieved a 
favorable parameter count of 2.6 million, which matches the compact size of YOLOv5n and is smaller 
than YOLOv8n. Its inference speed of 7.0 to 8.9 FPS is stable and consistently meets the real-time 
threshold (7 FPS), avoiding the risk of performance drops observed in YOLOv10n. 

The final analysis of the YOLOv11n training data confirms excellent convergence stability. The 
final training box loss (approximately 1.06) and validation box loss (approximately 1.09) are both very 
low and tightly coupled. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 December 2025 doi:10.20944/preprints202512.1685.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.1685.v1
http://creativecommons.org/licenses/by/4.0/


 20 of 37 

 

 

Figure 24. Normalized confusion matrix of smoke/fire detection using YOLOv11n. 

 

Figure 25. F1-Confidence performance results of YOLOv11n. 

 

Figure 26. Precision-Confidence performance results of YOLOv11n. 
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Figure 27. Recall-Confidence performance results of YOLOv11n. 

 
Figure 28. Precision-Recall performance results of YOLOv11n. 

 

Figure 29. Different metrics performance results of YOLOv11n. 
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Below, Figure 30, illustrates the detections of the YOLOv11n model, which can detect from small 
to larger smoke and fire regions successfully. 

 

Figure 30. Detection and Bounding boxing of smoke/fires regions with YOLOv11n. 

4.3.5. YOLOv12n Analysis 

The YOLOv12n model demonstrates the highest overall localization accuracy among all nano 
variants benchmarked, achieving a mAP@0.50-0.95 score of 0.5544 and the second best mAP@0.50 of 
0.8306. This high mAP@0.50-0.95 value indicates its superior ability to place highly precise bounding 
boxes around fire and smoke, even at very strict IoU thresholds. The model maintains a compact 
structure of 2.6 million parameters, matching YOLOv5n and YOLOv11n in size. 

However, YOLOv12n showed the slowest Inference Speed of 6.2 to 7.3 FPS. Since the minimum 
real-time requirement for the target edge device is 7 FPS, this model is almost unreliable for true real-
time deployment on our hardware edge device, as its performance frequently drops below the critical 
threshold. 

The training metrics for YOLOv12n confirm exceptional learning optimization. The final training 
box loss (approximately 1.05) and validation box loss (approximately 1.09) are extremely low and 
tightly matched, signifying near-perfect convergence and superb generalization capability. This 
stability validates the modelʹs accuracy but confirms that its performance limitation lies strictly in its 
architectural complexity during inference. 
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Figure 31. Normalized confusion matrix of smoke/fire detection using YOLOv12n. 

 

Figure 32. F1-Confidence performance results of YOLOv12n. 
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Figure 33. Precision-Confidence performance results of YOLOv12n. 

 
Figure 34. Recall-Confidence performance results of YOLOv12n. 

 
Figure 35. Precision-Recall performance results of YOLOv12n. 
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Figure 36. Different metrics performance results of YOLOv12n. 

Below, Figure 37, illustrates the detections of the YOLOv12n model, which can detect from small 
to larger smoke and fire regions successfully. 

 

Figure 37. Detection and Bounding boxing of smoke/fires regions with YOLOv12n. 

4.3.6. Comparative Analysis and Optimal Model Selection 

The comparative analysis of the five YOLO nano models reveals a clear trade-off spectrum 
between accuracy, model size, and real-time inference speed, which is summarized below: 

Table 3. Presenting the final mAP@0.50, mAP@0.50-0.95 and FPS performance results for each YOLO nano 
model. 
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Figure 38. Presenting the final mAP@0.50, mAP@0.50-0.95 and FPS performance results for each YOLO nano 
model. 

Models like YOLOv12n achieved the highest overall localization accuracy with an mAP@0.50-
0.95 of 0.5544, but its slow inference speed (6.2 to 7.3 FPS) makes it unreliable for the target 7 FPS real-
time deployment threshold. Conversely, YOLOv10n was the most compact (2.3 million parameters) 
but compromised too much on accuracy, achieving the lowest mAP@0.50 of 0.7906. YOLOv11n 
provided a strong balance with high accuracy (0.8293 mAP@0.50) and a compact 2.6 million 
parameters, but its speed (minimum 7.0 FPS) was too close to the critical limit. Although YOLOv5nu 
achieved marginally higher inference speed [8.5 - 10.5 FPS] and decent mAP@0.50 of 0.8267 and 
mAP@0.50-0.95 of 0.5422, given the necessity for robust, high-speed performance on a lightweight 
edge device, YOLOv8n was selected as the optimal model, providing the best and excellent detection 
accuracy (0.8320 mAP@0.50) and the second-best mAP@0.50-0.95 of 0.5489 with a compact size (3.2 
million parameters), as well as a decent and stable inference speed (ranging from 7.5 to 9.5 FPS). 

4.4. Explainable AI (XAI) Analysis of Detection Models 

In order to provide insight into the detection mechanism of the chosen models and validate their 
decision-making process, LIME was employed as the post-hoc eXplainable AI technique, applied on 
images. This analysis was systematically performed on each YOLO nano variant (YOLOv5n, v8n, 
v10n, v11n, and v12n), utilizing the exact same set of nine test images [44–52] for every model to 
ensure a fair, direct comparison of interpretability. LIME works by approximating the complex 
modelʹs prediction locally, visually isolating the specific input features (pixels) that most contributed 
to the modelʹs output. The resulting heatmaps highlight the most contributing area for detection with 
a distinct color coding applied: areas contributing to the ʹfireʹ class (Class 0) were highlighted in blue, 
and areas contributing to the ʹsmokeʹ class (Class 2) were highlighted in red. 

4.4.1. YOLOv5nu 

The analysis of the YOLOv5n LIME superplot reveals a highly focused and efficient feature 
selection strategy across the nine test images. The LIME heatmaps, which highlight features 
contributing to the ʹfireʹ class in blue and the ʹsmokeʹ class in red, demonstrate a tight concentration 
of contributing pixels precisely over the core regions of the detected objects. The model presents 
minimal diffusion of feature importance into non-relevant background areas, confirming that its 
architectural design enables it to make reliable detection decisions based only on the most necessary 
visual evidence. 
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Figure 39. Applying LIME XAI for feature/area contribution importance on nine images using YOLOv5nu. 

4.4.2. YOLOv8n 

In YOLOv8n, while the heatmaps successfully isolate the objects, showing fire in blue and smoke 
in red concentrated over the correct regions, the explanations are visually denser and slightly more 
diffused compared to the previous model. YOLOv8n frequently incorporates a wider perimeter of 
pixels around the fire and smoke plumes and utilizes a slightly more extensive feature set from the 
immediate background to confirm its highly accurate detections. This reliance on a broader, more 
context-rich feature map to achieve its high localization quality is visually confirmed by the LIME 
output. 

 

Figure 40. Applying LIME XAI for feature/area contribution importance on nine images using YOLOv8n. 

4.4.3. YOLOv10n 

In YOLOv10n, XAI output presents a significant degree of fragmentation and instability in the 
modelʹs feature selection when compared to the other cases. While the contributing features (fire in 
blue, smoke in red) are broadly positioned over the correct objects, the heatmaps are frequently 
discontinuous and scattered. In several of the nine test images, the modelʹs focus is clearly incomplete, 
failing to incorporate critical features like the base of a flame or the dense center of a smoke cloud. 
Furthermore, there is an increased tendency for fragmented importance to appear in irrelevant 
background regions, which is indicative of a less reliable and more confused decision-making 
process. 
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Figure 41. Applying LIME XAI for feature/area contribution importance on nine images using YOLOv10n. 

4.4.4. YOLOv11n 

In YOLOv11n, a near-optimal balance between focused interpretation and high accuracy is 
achieved. The heatmaps present and efficient feature selection strategy observed in YOLOv5n, yet 
the explanations retain the comprehensive object coverage associated with the higher-accuracy 
variants. Features contributing to ʹfireʹ (blue) and ʹsmokeʹ (red) are sharply localized and highly 
cohesive, maintaining robust object coverage without the excessive diffusion or background noise 
seen in YOLOv8n. In the same context, the explanations are highly stable and complete across all nine 
test images, visually confirming that the modelʹs compact parameter count (2.6 million) does not 
compromise its ability to reliably and accurately extract necessary visual information. 

 
Figure 42. Applying LIME XAI for feature/area contribution importance on nine images using YOLOv11n. 

4.4.5. YOLOv12n 

Lastly, the qualitative LIME analysis for YOLOv12n provides a clear visual correlation for its 
performance extremes—namely, its industry-leading localization accuracy achieved at the expense 
of speed. Across the nine test images, the heatmaps are visually the most detailed and extensive of 
all five variants. The features contributing to ʹfireʹ (blue) and ʹsmokeʹ (red) are highly concentrated, 
and the model has improved performance at incorporating the fringe pixels and boundary regions of 
the objects. The comprehensive, high-resolution coverage across the object boundaries visually 
explains the modelʹs significant computational load and its resultant penalty in inference speed, 
validating its supreme localization capability at the cost of real-time efficiency. 
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Figure 43. Applying LIME XAI for feature/area contribution importance on nine images using YOLOv12n. 

4.4.6. Integrating Quantitative Metrics with Qualitative XAI 

While YOLOv12n achieved the highest overall localization accuracy mAP@0.50-0.95 of 0.5544, 
its LIME heatmaps revealed a highly detailed, boundary-intensive feature inspection process, which 
is directly associated with its significant performance bottleneck, causing the inference speed to drop 
below the critical 7 FPS real-time threshold (down to 6.2 FPS). Consequently, the quantitatively 
weakest model, YOLOv10n mAP@0.50 of 0.7906, was confirmed to be unreliable, showing 
fragmented and unstable feature selection across some test images. 

Models YOLOv5n and YOLOv11n offered a better balance, with v11n demonstrating clean XAI 
explanations, however their lower detection scores led to a narrower safety margin. Ultimately, 
YOLOv8n emerged as the optimal solution: it provided the highest detection accuracy mAP@0.50 of 
0.8320 and, most critically, delivers the second highest and robust inference speed (ranging from 7.5 
to 9.5 FPS). The LIME analysis visually validated this overall balanced advantage, showing YOLOv8n 
utilizes not the best but decent clean and focused feature extraction strategy. 

4.5. Results of the Fused Sensor System 

The final system, which used two LightGBM classifiers trained on the fused dataset to predict 
the definitive FireAlert and SmokeAlert statuses, achieved perfect classification on the test set for 
both targets. Metrics including Accuracy, Precision, Recall, F1-score, ROC-AUC, Matthews 
Correlation Coefficient, and Cohenʹs Kappa, all registered 1.0000 for both the Fire Alert and Smoke 
Alert models. Ultimately, this flawless performance, characterized by zero false positives and zero 
false negatives in the confusion matrices, demonstrates that the fusion strategy successfully leveraged 
the complementary strengths of the sensor data (rapid, localized environmental context) and the 
visual detection (precise object confirmation), resulting in a hyper-robust and highly generalized 
detection system. 
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Figure 44. a: Visual flowchart of the Explainable Sensor Fusion Framework Architecture and Functionality; b: 
Confusion matrix of the sensor fusion system for fire detection. 
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Figure 45. Confusion matrix of the sensor fusion system for smoke detection. 

 

Figure 46. ROC metric performance results of the sensor fusion system for fire detection. 

 

Figure 47. ROC metric performance results of the sensor fusion system for smoke detection. 

4.6. XAI Analysis of the Fused Sensor System 

In this step, interpretability analysis was conducted using SHAP The results confirm that the 
final LightGBM decision-makers place the highest reliance on the derived model probabilities rather 
than raw sensor inputs alone, validating the strength of the fusion design. For the Fire Alert model, 
the decision was dominated by Pfire (YOLOʹs fire probability), which exhibited a SHAP importance 
of 0.30, followed by the combined vision probability Pdetection (0.24) and the tabular sensor probability 
Ptabular (0.14). This hierarchy confirms that visual confirmation is paramount for initiating a fire alarm. 
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Conversely, the Smoke Alert model was similarly dominated by Psmoke (YOLOʹs smoke 
probability) (0.49), but the relative importance of Ptabular (0.09) closely trailed the general vision 
probability Pdetection, highlighting the greater necessity of the sensor component for validating the often 
diffuse and context-sensitive nature of smoke detection. Temperature was the most influential raw 
sensor feature in both models, providing essential contextual confirmation for thermal events. 

 

Figure 48. Sensor’s fusion features that contributed the most for fire detection decision-making process. 

 

Image 49. Sensor’s fusion features that contributed the most for smoke detection decision-making process. 

5. Discussion 

Taking everything into account, we can conclude that the Explainable Sensor Fusion Framework 
provided better results than both the Sensor-Only and Vision-Only approaches, in an overall context, 
because its advantage is that uses the strengths from both worlds, while at the same time addresses 
their main weaknesses, thus, resulting in a model that provides high robustness and reliability for 
smoke and fire detection purposes. 
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More specifically, we noticed that the Sensor-Only System has high numerical accuracy in a 
controlled environment, but it is quite limited by its lack of spatial generalization, which in turn does 
not cover all the smoke/fire cases. It is mostly depended on unstable features such as TVOC and 
Pressure, which makes it unable to confirm the location or presence of a fire event outside its physical 
range. In contrast, the Vision-Only System (YOLOv8n which achieved the best mAP@0.50 results,) 
offers excellent spatial coverage and accurate localization of smoke and fire cases, as validated by the 
application of the LIME XAI method. However, it is still vulnerable to false positives from 
environmental factors, such as reflections, colored objects, and tiny flames, that could be meaningless 
or used by machines in the factories or other. Additionally, it operates at a speed that, although it is 
considered quick, sometimes may risk delays in critical real-time situations (7.5 to 9.5 FPS). 

Finally, our designed Fusion System is able to address this trade-off caused by the other two 
approaches, by using the LightGBM model to efficiently process model confidences, achieving perfect 
classification (1.0000 Accuracy/F1-score) on the fusion dataset. Then, the conducted SHAP XAI 
analysis supports this design as well, showing that the final alarm decision depends mainly on the 
high precision of the visual component (Pfire or Psmoke) for primary detection and then considers the 
sensor’s readings. On the other hand, the system supports this signal using the Ptabular and temperature 
features too, to obtain a more robust and essential context. 

6. Conclusions 

In this work, a robust and interpretable hybrid sensor fusion system for real-time smoke and fire 
detection was designed and evaluated. To this end, the initial performance analysis of five YOLO 
nano architectures demonstrated the crucial trade-off in modern object detection: while the latest 
models like YOLOv12n achieved minimum gains in localization accuracy, their failure to maintain 
the critical 7 FPS real-time threshold does not make them candidate solutions for immediate 
deployment. The qualitative XAI analysis using LIME provided the necessary interpretability to 
justify the final model selection, confirming that YOLOv8n was the optimal choice. Its superior 
mAP@50 detection accuracy (0.8320) and decent inference-speed (7.5–9.5 FPS) coupled with clean and 
focused LIME explanations validated its inherent architectural efficiency and minimized the risk of 
operational latency. 

By combining the optimal vision model with a machine learning classifier leveraging 
environmental sensor data via a weighted product fusion strategy, the integrated system achieved 
perfect classification (1.0000 for Accuracy, F1-score, and AUC) on the synthesized fusion dataset. This 
performance proves that the hybrid approach successfully mitigates the single-point failure risks 
associated with both vision-only systems (vulnerability to visual clutter) and sensor-only systems 
(zero spatial coverage). Finally, future work includes among others: 

1. Investigating more sophisticated fusion mechanisms beyond the weighted product approach, 
such as Attention-based Neural Networks trained end-to-end on the combined sensor and image 
features, that could potentially yield even higher reliability and resilience to noise. 

2. The current systemʹs perfect scores should be validated against a larger, more diverse dataset 
captured under varying lighting, weather, and obscuration conditions, especially to ensure the 
model maintains performance against false alarm scenarios (e.g., steam, brightly colored objects, 
sunsets). 

3. The YOLO nano models were trained on 20 epochs to test their limits and capabilities. Enriching 
the models with more epochs and training would lead to even better and promising results. 
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Abbreviations 

The following abbreviations are used in this manuscript: 
AI Artificial Intelligence 

API Application Programming Interface 

DL Deep Learning 

NN Neural Network 

CNN Convolutional Neural Network 

EFB Exclusive Feature Bundling 

ESF Explainable Sensor Fusion 

FNN Feedforward Neural Network 

FPS Frames per Second 

HPO Hyperparameter Optimization 

IoU Intersection over Union 

GOSS Gradient-based One-Side Sampling 

GBDT Gradient Boosting Decision Trees 

KNC K-Neighbours Classifier 

LightGBM Light Gradient Boosting Machine 

LIME Local Interpretable Model-agnostic Explanations 

mAP Mean Average Precision 

ML Machine Learning 

MLP Multilayer Perceptron 

RNN Recursive Neural Networks 

SHAP SHapley Additive exPlANATIONS 

SVC Support Vector Classifier 

TPE Tree-structured Parzen Estimator 

TVOC Total Volatile Organic Compounds 

XAI Explainable Artificial Intelligence 

XGBoost eXtreme Gradient Boosting 

YOLO You-Only-Look-Once 
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