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Abstract: Stem cell-derived liver cells, organoids, and lab-grown liver tissue are promising 
regenerative therapies for liver disease. However, current culture conditions are sub-optimal, 
producing end-target cells and tissue phenotypes that are immature when compared to primary liver 
cells and tissue. Biopolymers used in culture substrates and scaffolds for tissue engineering 
significantly impact the quality of end-target cells and tissue, influencing the efficacy of regenerative 
treatments. In addition, the biochemical properties of some biopolymers may even preclude the 
translation of downstream products into clinical practice. Therefore, this systematic review aims to 
evaluate the recent advances in biopolymers within liver tissue engineering, providing an overview 
of the current usage in the field and highlighting novel substrates that have the potential to be easily 
translated into clinical therapy. 
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1. Introduction 

The incidence of liver disease is increasing globally [1]. It is the second most common cause of 
premature deaths in the Europe, America, and Africa, and the third most in South-East Asia [2]. Over 
time, chronic liver disease can lead to liver cirrhosis and liver failure. At present, the only cure for 
end-stage liver failure is liver transplantation, however, the patient demand far exceeds donor 
supply. In the United Kingdom alone, patients wait an average of 3 to 4 months for a liver transplant 
for chronic liver failure [3]. Unfortunately, approximately 10% of these patients die on the waiting 
list due to complications of their liver disease, and even a greater number are turned down for 
transplantation [4,5]. Therefore, novel therapies for the treatment of liver failure are urgently needed. 

Bioengineering liver tissue from human stem cells and organoids offers excellent potential as an 
alternative to conventional liver transplantation. Vast quantities of cells and/or tissue could be 
generated in vitro, relieving the strain on the limited donor pool. In addition, hepatocytes, 
cholangiocytes, or liver organoids derived from patient-specific stem cells enable the autologous 
transplantation of end-target cells or tissue, thereby negating the need for long-term immune 
suppression and its associated side effects, which are often encountered with non-autologous liver 
transplantation. For example, Japanese researchers have successfully transplanted hepatocytes 
derived from human embryonic stem cells into an infant with urea cycle disorder, temporarily 
reversing the disease so that a liver transplant could be performed safely five months later [6]. Apart 
from cell therapy or tissue transplantation, regenerative approaches can also be used for disease 
modelling and predicting response to novel drug therapies more accurately [7–9]. It is noteworthy 
that approximately half of the drugs that have caused drug-induced liver injury in humans did not 
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have any significant liver-toxic effects in animal testing [10]. In contrast, stem cell-derived liver 
models, such as bioengineered liver tissue or liver-on-a-chip devices, have demonstrated good 
concordance between in vitro and in vivo drug toxicity, making them of strong interest to the 
pharmaceutical industry [11]. 

Despite the immense potential of stem cell-derived liver cells and tissue, it is widely recognised 
that current culture conditions are sub-optimal and yield immature end-target cells compared to 
primary cells [12,13]. A key factor attributed to this shortcoming is the lack of suitable biomaterials 
that accurately reproduce the stem cell niche during liver differentiation, both in terms of 
composition and dimensionality [14,15]. Three-dimensional (3D) systems and tissue-specific matrices 
yield better cellular phenotypes than two-dimensional (2D) culture systems and generic substrates, 
respectively [16–19]. However, substrates commonly used in 3D culture systems, like Matrigel, are 
usually xenogenic and associated with many problems. For example, growth factors such as 
epidermal growth factor, insulin growth factor-1 and fibroblast growth factor 2 concentrations are 
inconsistent between Matrigel batches [20,21]. In addition, growth-factor-reduced versions of 
Matrigel contain only 53% of the extracellular matrix (ECM) proteins found in Matrigel [22]. These 
inconsistencies cause significant biochemical and mechanical variations [23], leading to poorly 
reproducible in vitro results [20–24]. Furthermore, poor definability, immunogenicity [25,26] and 
pathogenicity [27,28] preclude its use and any downstream products from clinical therapy [29]. 

Therefore, novel and better biomaterials are urgently needed for clinical translation. The 
primary objective of this focused systematic review was to study the biomaterials used in liver 
bioengineering between 2020 and 2025, thereby understanding the direction of future practices. The 
secondary objective is to appraise novel biomaterials for their potential for clinical translation, 
focusing on definability, versatility, degradability, and biosafety. It is essential to note that different 
types of stem cells exhibit distinct responses to the various biopolymers within culture substrates and 
scaffolds based on their degree of stemness and inherent propensity to hepatic differentiation. 
Therefore, in the context of this review, we have classified the various types of stem cells broadly into 
three categories: (i) Pluripotent Stem Cells (PSCs), (ii) Liver Stem Cells (LSCs), and (iii) Non-Liver 
Stem Cells (NLSCs). PSCs refer to human induced pluripotent stem cells (iPSCs) and embryonic stem 
cells (ESCs). LSCs refer to native human hepatic or biliary human progenitor stem cells, such as 
LGR5+ hepatoblasts. NLSCs refer to all other human non-pluripotent and non-liver stem cells, e.g., 
mesenchymal stem cells (MSCs). 

Herein, we present a comprehensive summary of biomaterials usage within liver 
bioengineering, demonstrating that xenogenic matrices are still widely used. However, we have 
found that chemically defined alternatives are being increasingly explored, with recombinant human 
proteins gaining popularity as routine practice. Finally, we discuss the advantages and disadvantages 
of these alternatives and provide insights on the future direction of biomaterials research. 

2. Results and Discussion 
2.1. Summative Results of the Systematic Searches 

Four public databases were comprehensively searched for articles published between 1 April 
2020 and 1 April 2025 that reported stem differentiation into liver cells, organoids, or tissue (the 
systematic search strategy is described in the Methods section). A total of 12,205 articles were 
identified. After removing duplicates and ineligible hits (n=7,370), 4,835 articles were screened for 
eligibility. During the screening process, 4,336 articles were excluded from further analyses, and 499 
were included after meeting the inclusion criteria (see Methods section). Figure 1 illustrates the 
PRISMA systematic review flow diagram. Of these 499 articles, 282 used PSCs, 158 used LSCs, and 
59 used NLSCs for liver bioengineering. The results of each stem cell group are reported separately 
below. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 June 2025 doi:10.20944/preprints202506.1312.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1312.v1
http://creativecommons.org/licenses/by/4.0/


 3 

 

 

Figure 1. PRISM 2020 systematic review flow diagram, adapted from Page MJ et al., BMJ 2021 [30]. 

2.2. Biomaterials Used to Derive Liver Cells and Organoids from PSCs 

Of the 282 studies that used PSCs (see Supplementary Table 1), 8 reported cholangiocyte 
differentiation, 197 reported hepatocyte differentiation, 86 reported liver organoid culture, 1 reported 
differentiation of hepatic stellate cells, and 1 reported the differentiation of liver sinusoidal 
endothelial cells (LSEC). 10 studies differentiated PSCs into hepatocytes AND cholangiocytes/liver 
organoids. 75.2% (212/282) of all these studies used Matrigel or its derivatives for maintenance or 
differentiation. The other types of biopolymers used are summarised in Table 1. 

Table 1. Studies using biopolymers to bioengineer human liver from PSCs. 

Biopolymer / Substrate Maintenance Differentiation 
Matrigel 112 155 

Matrigel (GFR) 1 54 43 
Biomimesys - 1 
Collagen-1 - 13 
Cellulose - 1 

Cellartis DEF COAT-1 9 1 
Cellartis DED coating 2 - 7 
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Decellularised liver ECM - 3 
Feeder cells 26 3 
Fibronectin - 2 

Gelatin 5 13 
GelMA 3 - 1 

hE-cad-Fc 1 - 
HepMat - 1 

Hydrox TM coating - 1 
Laminin 111 - 1 
Laminin 511 20 9 

Laminin 511-Silk 6 6 
Laminin 521 16 18 

Laminin 521-Silk (Biosilk) 1 - 
PEG-coated constructs 4 - 1 

PEG-peptides - 1 
PLLA/PCL fibres 5 - 1 

PCL-Gel-HA 6 - 1 
Placenta ECM 1 2 

PAA 7 - 1 
Suspension Culture 1 11 

Synthemax II coating 1 1 
Vitronectin 35 2 

   
1 GFR = Growth Factor Reduced, 2 DED = Definitive Endoderm Differentiation, 3 GelMA = Gelatin Methacryloyl, 
4 PEG = Polyethylene Glycol, 5 PLLA/PCL = Poly-L-lactic acid/poly (ε-caprolactone), 6 PCL-Gel-HA = Poly ɛ-
caprolactone-gelatin-hyaluronic acid, 7 PAA = Polyacrylamide. 

100% (8/8) of PSC studies reporting cholangiocyte culture used Matrigel or its derivatives 
(growth factor-reduced Matrigel). 4 of 8 studies added Collagen-1 to Matrigel derivatives for 
cholangiocyte differentiation. Of the PSC studies reporting hepatocyte culture, 71.1% (140/197) used 
Matrigel or its derivatives, 13.7% (27/197) used Laminin 511 or its derivatives (Laminin 511-silk), and 
10.7% (21/197) used Laminin 521 or its derivatives (Laminin 521-silk). The remaining studies used 
cellulose, Cellartis Definitive Endoderm Differentiation coating, Cellartis DEF-COAT 1, PEG-
peptides, gelatin, fibronectin, liver scaffolds/ECM, HydroxTM coating (a peptide-functionalized 
hydrogel), Synthemax®® II coating (peptides covalently bonded to an acrylate polymer backbone), 
placental ECM, vitronectin, PAA, PLLA/PCL, PCL-Gel-HA, and suspension culture. For three-
dimensional (3D) liver and/or organoid culture, 93.4% (71/86) used Matrigel or its derivatives. The 
remaining studies used Biomimesys®® (a hyaluronic acid-based scaffold that also contains collagen, 
laminin, and fibronectin), gelatin, GelMA, decellularised animal livers, Laminin 521, or PEG. 

It is noteworthy that researchers have also used specific biopolymers that do not deliver 
chemical cues to PSCs. For example, agarose-based microfabricated hexagonal closely packed cavity 
arrays (mHCPCAs) have been explored as a suspension culture method [31,32]. The hypothesis is 
that the tightly controlled microenvironment created by mHCPCAs produces significantly less 
heterogeneity in organoid size, morphology, and maturation rate than standard Matrigel domes. 
Nonetheless, liver organoids produced by the mHCPCAs method are still noted to be immature 
[31,32]. Agarose is hydrophobic and lacks cell-binding motifs, which in turn promotes suspension 
culture, spheroid, or organoid formation [33]. The lack of mechano- and chemical cues most likely 
explains these results and highlights the importance of bioactive biopolymers within scaffolds. 

2.3. Biomaterials Used to Derive Liver Cells and Organoids from LSCs 
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Of the 158 studies that used LSCs (see Supplementary Table 2), 3 reported cholangiocyte 
differentiation, 24 reported hepatocyte differentiation, 48 reported biliary organoid culture, and 89 
reported liver organoid culture. 5 studies differentiated LSCs into hepatocytes and 
cholangiocytes/liver organoids. 76.4% (120/157) of all these studies used Matrigel or its derivatives 
for maintenance or differentiation. The other types of biopolymers used are summarised in Table 2. 

Table 2. Studies using biopolymers to bioengineer human liver from LSCs. 

Biopolymer / Substrate Maintenance Differentiation 
Matrigel 90 96 

Matrigel (GFR) 28 23 
Collagen-1 14 11 
Fibronectin 1 - 

Gelatin 1 1 
Gelatin-Alginate - 1 

GelMA - 1 
Hyaluronic Acid 1 1 

Hydrox TM - 1 
Liver ECM - 1 

Laminin 332 - 1 
Laminin 511-PIC 1 - 1 

PIC-LEC 2 - 1 
PEG - 1 
PCL - 1 

Suspension Culture 3 10 
No coating 21 15 

   
1 PIC = Polyisocyanopeptides, 2 PIC-LEC = PIC-Laminin 111-Entactin-Complex. 

66.6% (2/3) of studies reporting cholangiocyte differentiation of LSCs used Matrigel or its 
derivatives (growth factor-reduced Matrigel); the remaining study used Collagen-1. Of the studies 
reporting hepatocyte differentiation from LSCs, 18.2% (4/22) used Matrigel or its derivatives. An 
identical proportion (4/22) used Collagen-1. 63.6% (14/22) of studies did not use any substrate, as LSC 
appear to be adherent cells in two-dimensional (2D) cell culture. In contrast, 93.9% (46/49) of studies 
used Matrigel or its derivatives for 3D biliary organoid culture; the remaining used collagen-1, 
hyaluronic acid or suspension culture. For 3D hepatic organoid culture, 85.4% (76/89) used Matrigel 
or its derivatives. The remaining studies used HydroxTM, Laminin 332, GelMA, PEG, PIC-Laminin 
511, and suspension culture methods. 

2.4. Biomaterials Used to Derive Liver Cells and Organoids from NLSCs 

Of the 59 studies that used NLSCs (Supplementary Table 3), 1 reported cholangiocyte 
differentiation, 52 reported hepatocyte differentiation, 1 reported liver sinusoidal endothelial cell 
culture, and 5 reported liver organoid culture. 3.4% (2/59) of all these studies used Matrigel or its 
derivatives for maintenance or differentiation. 18.6% (11/59) used Collagen-1 as a substrate. 55.9% 
(33/29) used no substrate. The other types of biopolymers used are summarised in Table 3. Likewise, 

Table 3. Studies using biopolymers to bioengineer human liver from NLSCs. 

Biopolymer / Substrate Maintenance Differentiation 
Matrigel 1 - 

Matrigel (GFR) 1 1 
Agarose - 1 
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Collagen-1 5 11 
Fibronectin 3 2 

Fibroin - 1 
Gelatin 3 4 

Liver ECM (animal) - 4 
Lipidure coating 1 - 1 

Wharton’s Jelly 1 1 
No coating 45 33 

   
1 Phosphorylcholine-based polymer. 

The only study that reported cholangiocyte differentiation from NLSCs used collagen-1. Of the 
studies that reported hepatocyte differentiation, 63.5% (33/52) did not use any substrate, 23.1% (12/52) 
used collagen-1 or gelatin, and only one used Matrigel (growth factor reduced). Fibronectin was used 
for the only study that differentiated NLSCs into LSECs. For 3D liver organoid culture, Collagen-1 
(2/5), Agarose (1/5), Lidipure coating (1/5) and Wharton’s Jelly (1/5) were used as substrates. 

2.5. Discussion of Results 

PSCs are the most attractive cell source for bioengineering liver tissue because of their potential 
to be differentiated into all other cell types in the human liver, e.g., HSCs, immune cells, LSECs, etc. 
However, the stemness of PSCs places greater importance on the biopolymers within the in vitro 
culture conditions because these become cues for directed differentiation and maturation towards 
the intended end-targets. In addition, the versatility of a substrate is crucial for its uptake in standard 
practice and clinical therapy. Ideal substrates should support the differentiation of stem cells into all 
cell types of the target organ, facilitate the different phases of differentiation without dissociation and 
replating cells for substrate changes. Substrates should also be easily transferable into humans, e.g., 
injectable or implantable. This study has identified several fully defined biomaterials used as an 
alternative to Matrigel-derived substrates in recent years. The properties of these biomaterials are 
briefly summarised in Table 4. 

Table 4. Non-matrigel-derived biomaterials used to bioengineer human liver. 

Biopolymers / 
Synthetic substrates 

Bioactive 
Fully  

Defined 
Easily 

Transferable 
Biodegradable 

In vivo 
Biosafety 
Studies 

Collagen-1 ✔ ✔ ✔ ✔ ✔ 
Hyaluronic Acid ✔ ✔ ✔ ✔ ✔ 

Laminin 111 ✔ ✔  ✔  
Laminin 332 ✔ ✔  ✔  
Laminin 511 ✔ ✔  ✔ ✔ 
Laminin 521 ✔ ✔  ✔ ✔ 

PIC-LEC ✔ ✔ ✔   
Laminin 511-PIC ✔ ✔ ✔   

Cellartis DEF COAT-1 ✔ ✔ *    
Cellartis DED Coating ✔ ✔ *    

Fibronectin ✔ ✔    
Fibroin ✔ ✔    

hE-cad-Fc ✔ ✔    
HepMat ✔ ✔    

PEG-peptides ✔ ✔    
PCL-Gel-HA ✔ ✔    
Vitronectin ✔ ✔    

Laminin 511-Silk ✔ ✔    
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Laminin 521-Silk ✔ ✔    
Hydrox TM coating  ✔    
Lipidure ®® coating  ✔    

PCL  ✔    
PLLA/PCL fibres  ✔    

PEG-coated constructs   ✔    
PAA  ✔    

Synthemax II  ✔    
Cellulose  ✔    

      
✔ Data available,  = No or weak evidence, * = Composition undisclosed or proprietary. 

Collagen-1 is frequently used in 2D hepatocyte and cholangiocyte differentiation. Nonetheless, 
it is widely recognised that on its own, it promotes undesired spontaneous differentiation of PSC and 
is sub-optimal for hepatic organoid culture. Thus, conjugation with other biomaterials is necessary; 
Matrigel can be added to Collagen-1 to support liver organoid culture (Supplementary Table 1). The 
use of hyaluronic acid (HA) was featured in two studies: one study differentiated PSCs into 
hepatocytes using Biomimesys®® - HA conjugated to Collagen-1 and Collagen-4 via RDG binding 
sites [34]. The other study used HA conjugated with cholesterol and dexamethasone to maintain and 
differentiate LSCs into biliary organoids [35]. Since HA is widely used in medicinal products, it is an 
interesting biomaterial for liver tissue engineering. However, further research is needed to determine 
if HA-based matrices can support the multi-cell type differentiation required in liver organogenesis, 
followed by validation with in vivo trials. 

A total of four studies used fibronectin to maintain stem cells in culture [36–39]. Four studies 
used it for hepatocyte differentiation [36,38,40,41], and one study used it to derive LSECs [39]. Indeed, 
fibronectin seems promising; however, in our experience, it is highly viscous, which makes it very 
challenging to use in cell culture. In addition, only two studies have reported results of short-term 
murine experiments. Therefore, more data, including animal studies, are needed. Fibroin is 
considered a bioactive material [42]; however, it has only been used in one study with NLSCs [43], 
so its potential is still undetermined. 

Human recombinant laminins are a popular alternative to poorly defined xenogenic substrates, 
although Laminin types significantly affect stem cell biology. Laminin 511 and Laminin 521 are native 
to the developing embryo [44], and are the only two Laminins that support the long-term clonal 
expansion of PSCs in vitro [45]. Laminin 111 and Laminin 332 are associated with epithelial-to-
mesenchymal transition [46,47], especially in ESCs [46]. Therefore, on their own, they may not be 
suitable for long-term stem cell culture and/or differentiation, although the addition of either 
laminins to Laminin 511 or Laminin 521 may be a valuable strategy to achieve better end-target cells. 
Importantly, all available human recombinant laminins are only available in low-concentration 
aqueous solutions, which are unsuitable for 3D liver bioengineering. As a result, several groups have 
attempted to conjugate Laminins with various polymeric backbones to form hydrogels. Laminin 511-
PIC [48], PIC-LEC[49], Laminin 511-Silk (Supplementary Tables 1 and 2), and Laminin 521 (Biosilk) 
are recent attempts illustrated above. Nonetheless, robust in vivo data on these biomaterials are still 
outstanding. Notably, at the time of writing, only aqueous Laminin 511 (iMatrix) and Laminin 521 
(Biolamina) are available in “good manufacturing grade”. Therefore, an essential strategy for 3D liver 
bioengineering would be to develop and refine clinical-grade hydrogels (or scaffolds) incorporating 
Laminin 511 or Laminin 521 with supportive ECMs to enhance end-target phenotypes. Notably, 
Laminin 411 has previously been reported to enhance liver differentiation [50–52]. However, Laminin 
411-containing scaffolds and substrates remain unexplored. 

Our searches have also shown that synthetic alternatives such as PEG constructs have been 
increasingly explored. PEG is usually considered inert; thus, groups have conjugated PEG with 
bioactive polymers to deliver chemical cues to stem cells with some success. “HepMat” - PEG and 
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RGD conjugates [53], and other PEG-peptide constructs [54] have been shown to support hepatocyte 
differentiation, but data on liver/biliary organoids culture and animal experimentation are still 
outstanding. Similarly, issues apply to most synthetic biomaterials listed in Table 4. Synthetic 
polymers that have not been conjugated with other bioactive polymers were noted to be used as 
substrates to reduce cell adhesion and facilitate suspension culture, e.g., Lipidure, PLLA/PCL fibres, 
Hydrox fibres, etc. Nonetheless, undisclosed proprietary information and non-comprehensive 
methods significantly hinder the reproducibility and validation of novel synthetic materials. 

In summary, approximately 75% of studies that bioengineer liver from PSCs and NLSCs 
continue to use Matrigel or its derivatives. NLSCs are self-adherent cells that do not require bioactive 
substrates for liver differentiation but are limited by their lack of pluripotency. Novel techniques to 
derive other liver cell types from NLSCs can significantly improve liver tissue engineering. 
Alternatively, hydrogels and scaffolds made from recombinant human proteins are attractive 
biomaterials to enhance liver derivation from PSCs and LSCS in future research. 

3. Conclusions 

Xenogenic substrates remain predominant biomaterials in liver bioengineering, although 
human recombinant proteins and synthetic alternatives are gaining popularity. Hyaluronic acid-
based hydrogels are a promising alternative, but further research is needed. Laminin 511 and 
Laminin 521 are available as aqueous clinical-grade solutions only, and hydrogel development with 
in vivo validation is vital for future 3D liver bioengineering efforts and their clinical translation. 
Synthetic polymers are still underdeveloped and have more milestones to achieve than human 
recombinant matrices, which have been more extensively researched. 

4. Materials and Methods 

This review is reported in accordance with the recommendations from the PRISMA statement 
[55]. 

4.1. Data Sources and Searches 

Electronic searches: A search of PubMed, Medline, Cochrane and Web of Science databases was 
performed for articles in the last five years between 1 April 2020 to 1 April 2025 using the search 
terms “stem cells” and “hepatocytes”, “stem cells” and “cholangiocytes”, “liver” and “stem cells”, 
“liver organoids”, “hepatic organoids”, “biliary organoids”, and “cholangiocyte organoids”. The UK 
Access Management Federation provided access to journals via Cambridge University. 

Searching in other resources: The Cambridge University Library was checked for articles that 
were listed in online search results but not accessible. 

4.2. Study Selection 

Inclusion criteria: Only (i) articles in English, (ii) articles with abstracts and full-text links for 
screening, and (iii) primary research articles were included. 

Exclusion criteria: Articles (i) not reporting primary research (e.g., reviews, comments, etc.), (ii) 
not written in English, (iii) lacking a DOI, web-link, and not accessible by the UK Access Management 
Federation, were excluded. In addition, (iv) veterinary studies (e.g., animal cell lines and 
experimentation only) and (v) studies not reporting the differentiation of stem cells into liver cells, 
organoids, or tissue were also excluded. 

4.3. Data Extraction and Quality Assessment 

Selection of studies: Three authors (J.O., J.Z.Z. and C.S.) independently reviewed all titles and 
abstracts and then assessed articles against the inclusion criteria for analysis. A fourth reviewer 
(A.E.M.) resolved any differences. 
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Data extraction and management: Data were extracted independently by authors J.O., J.Z.Z. and 
C.S. using a standardised form. The data recorded included the biomaterials used, the stem cell type 
used, and the end-target cell or tissue type achieved. 

Risk of bias and quality assessment. All primary research articles that fulfilled the above criteria 
were screened, minimising the risk of publication bias. The risk of language bias is present but low. 

4.4. Data Synthesis and Analysis 

Statistical analysis: Articles that were successfully screened using the inclusion and exclusion 
criteria had data extracted and tabulated in Microsoft Excel. Descriptive statistics were used to report 
data between the stem cell groups. 

Dealing with missing data: Articles with missing data were omitted in the statistical analyses. 
Assessment of heterogeneity and publication bias: This was not applicable as meta-analyses 

were not performed. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 
paper posted on Preprints.org. 
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The following abbreviations are used in this manuscript: 

MDPI Multidisciplinary Digital Publishing Institute 
DOAJ Directory of open access journals 
2D Two dimensional 
3D Three dimensional 
DED Definitive Endoderm Differentiation 
ESCs Embryonic Stem Cells 
GelMA Gelatin Methacryloyl 
GFR Growth Factor Reduced 
HA Hyaluronic acid 
iPSCs Induced Pluripotent Stem Cells 
LIC-LEC PIC-Laminin 111-Entactin-Complex 
LSCs Liver Stem Cells 
LSECs Liver Sinusoidal Endothelial Cells 
MSCs Mesenchymal Stem Cells 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 June 2025 doi:10.20944/preprints202506.1312.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1312.v1
http://creativecommons.org/licenses/by/4.0/


 10 

 

NLSCs Non-Liver Stem Cells 
PSCs Pluripotent Stem Cells 
PAA Polyacrylamide 
PEG Polyethylene Glycol 
PIC Polyisocyanopeptides 
PLLA/PCL Poly-L-lactic acid/poly (ε-caprolactone) 
PCL-Gel-HA Poly ɛ-caprolactone-gelatin-hyaluronic acid 
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