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Abstract

The concentration of chlorophyll-a (chlor-a) is an important indicator of marine water quality,
as it is considered an indicator of the phytoplankton density in a specific area. Remote sensing
techniques have been developed to measure the near-surface concentration of chlor-a in water
across the correlation between spectral bands and in situ data. This algorithm applies to sensors
of varying spatial, temporal and spectral resolutions. However, in this study, chlor-a level 2
and 3 products of SNPP — VIIRS spectrometer (Equation OC3) of NASA OceanColor suite
was relied upon to study the spatial and temporal distribution of chlor-a concentration in the
Arabian Gulf (also known as the Persian Gulf) and the State of Kuwait’s water (located to the
north-eastern part of the Arabian Gulf) from 2012 to 2019. Ground truthing points (n = 192)
matched to the level 2 products have been used to build an empirical model and cross-validate
it. The correlation was positive where 2 was 0.79 and the validation RMSE was = + 0.64
mg/m=3. The derived algorithm was then applied to chlor-a level 3 seasonal products.
Additionally, the chlor-a concentration values of Kuwaiti waters have been enhanced using the
IDW algorithm to increase the spatial resolution, as it is considered as a small area compared
to the spatial resolution of level 3 chlor-a products. The model derived from IDW was tested
using the Mann Whitney test (Sig = 0.948 p <0.01). However, the result showed that the chlor-
a concentration is higher in Kuwait Bay compared to Kuwaiti water, and it is higher in Kuwaiti
water compared to the Arabian Gulf. The coasts have higher concentrations too, when
compared to the open water. Generally, the chlor-a increases in winter and makes a semi-
regular cycle during the years of study; this cycle is more regular in the Gulf’s waters than in
Kuwait’s.
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1. Introduction

The water quality of seas and oceans is determined by their physical, chemical and biological
properties, such as sea temperature, salinity, dissolved oxygen, pH and chlor-a concentration,
among others. One of the most valuable approaches in studying water quality is the analysis of
the temporal and spatial distribution of marine variables, and the measurement of the changes
in these patterns. Chlor-a concentration can be used as an indicator of the density of
phytoplankton [1], which can in turn help to monitor and assess the marine resources and water
quality [2]. Remote sensing techniques have been widely used to obtain marine quality
parameters [3-7]. Chlor-a data can be obtained systematically from remote sensing instruments
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over large geographic areas, rather than through the use of field-point observations [8].
Statistical methods have been used extensively throughout previous literature to describe and
analyse the temporal and spatial distribution of marine water quality parameters through remote
sensing methods and field surveys [9, 10]. Several methods have been used to determine chlor-
a concentrations from space. While some focus on stationary variation, such as using the
Empirical Orthogonal Function [9] which analyses the spatio-temporal variation with a set of
orthogonal functions, others focus on non-stationary variation methods [11, 12], which
highlight the sudden changes that happen due to abnormal events [13], more often than not
controlled by hydrodynamics, bathymetry, stratification, mixing processes and nutrient uptake
[14, 15]. Therefore, both stationary and non-stationary variations help increase our
understanding of the spatial and temporal distribution of chlor-a concentration [13].

Studies to extract marine environment parameters from satellites in the Arabian Gulf are few
and far between, despite their global relevance and importance. This can mainly be put down
to the dust storms that obstruct remote sensing instruments [16, 17], the lack of quality in-situ
measurements, the complex sea-river environments that occur here [2] and the limited spatial
coverage of many global remote sensing products over the marginal seas of the Arabian Gulf.
However, the general water circulation, bathymetry and hydrodynamics in the Arabian Gulf
have been discussed and analysed by numerous authors [17-20]. Nezlin et al. [21] divided the
Gulf into regions based on its oceanographic properties and water circulation [18]; here, the
chlor-a concentration was estimated to be much higher towards the north of the Gulf. Lately,
remote sensing instruments have been widely used to obtain near-surface chlor-a
concentrations, measured by moderate spatial resolution satellites provided by NASA through
the correlation of blue-to-green spectral range and in-situ data [22]. As to the benefits of remote
sensing methods, O’Reilly et al. [23] showed that remote sensing could be affected by the
bottom reflection and the high turbidity. The NASA OceanColor products were developed to
measure chlor-a in the open oceans, where the water color results mainly from the chlor-a
concentration [23]. The Arabian Gulf is classed as a marginal water, influenced by the
discharge of both the Tigris and Euphrates, which means that the chlor-a concentration is
affected by the concentrations of both the dissolved and the suspended matter [24]. In such
circumstances, regional models for the Arabian Gulf give more accurate results [21].

Nezlin et al. [17] derived the monthly chlor-a concentration, and analysed the environmental
factors related to phytoplankton distribution. The study showed that the chlor-a concentration
peaks in August and October, while it is at its minimum in February and March. The field-
based measurements of chlor-a show that the concentration ranges from 0.01 to 10 mg/m=in
the Arabian Gulf [20], while it may reach up to 55.4 to 4525 mg/m in abnormal bloom
conditions in the northwest of the Gulf [25]. Moradi and Kabiri [13] studied the spatial and
temporal variation of chlor-a from 2002 to 2013 using MODIS data. Their study showed that
the stationary level of chlor-a concentration is higher in coastal areas, while the temporal peaks
can be noticed in summer and winter in the north-western region. However, the accuracy of
VIIRS and other merged satellites sensors’ datasets in measuring chlor-a concentration were
validated positively in the Arabian Gulf by Al-Naimi et al. [2] through ground truthing points
taken in the mid-west of the Gulf. Additionally, Zhao et al. [26] developed and tested the red
tide index over the Arabian Gulf using the MODIS Aqua satellite sensor, while Polikarpov et
al. [27] discussed the phytoplankton variability over the Arabian Gulf, also using the MODIS
Aqua satellite sensor.

As for the northern reaches of the Arabian Gulf, where the territorial water of Kuwait can be
found in the west. Studies looking at the spatial and temporal distribution of chlor-a
concentration are limited to Al-Yamani et al.’s study [28]. In their comprehensive analysis of

d0i:10.20944/preprints202107.0232.v1


https://doi.org/10.20944/preprints202107.0232.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 July 2021

Kuwait’s marine environment, the authors show the spatio-temporal variation of chlor-a in
Kuwaiti waters based on field measurements from Kuwait Environmental Public Authority.
The study showed that chlor-a has a decreasing concentration from north to south, where the
concentration is much higher in the north and in Kuwait Bay during the winter and early spring.
With the small number studies of Kuwait’s waters specifically, there is a need to clarify the
spatio-temporal difference. Therefore, this study aims to increase our understanding of the
spatio-temporal chlor-a distribution based on empirical spatial enhancements of VIIRS - SNPP
data for Kuwait’s water as a part of the Arabian Gulf. The distribution and dynamics of chlor-
a concentration in Kuwaiti waters is the key indicator towards understanding the density of
phytoplankton, as well as Kuwait’s marine ecosystem environment, from both a spatial and a
temporal perspective. Additionally, VIIRS is seen as a MODIS successor in providing
geophysical data with higher spatial resolution [29, 30]. The two sensors differ slightly from
the green, blue and red spectral bands used in the final products of NASA OceanColor [31].
However, among several studies, VIIRS showed a lower average error than MODIS in
measuring chlor-a concentration, using an OC3 algorithm, across different regions of the world
(including the Gulf of Gabes, the northern South China Sea, the Red Sea, the California Current
Bed and the Arabian Gulf) [2, 32-35]. Therefore, using VIIRS on the North Arabian Gulf will
increase our understanding of the satellite response in order to obtain measurements for both
chlor-a concentration and phytoplankton density.

2. Study area
2.1.Arabian Gulf

The Arabian Gulf (also known as the Persian Gulf) is a shallow marginal sea of the Indian
Ocean (Fig. 1). It is located between the Arabian Peninsula and south-western Iran. The Gulf
is located between 23.5° and 30.05° North and 47.5° and 56.4° East, with a length and width
of approximately 56 — 338 km respectively, covering a total surface area of 240,000 km? [27,
28, 36]. The total water volume in the Gulf is estimated to be roughly 6000 km?® [13]. The Gulf
is relatively shallow, with the deepest point reaching just over 100m, while the average depth
is about 35m. The main source of fresh water is from the Shatt al-Arab deltaic system (the delta
of Tigris, Euphrates and Karun rivers) to the northern end of the Gulf. The maximum discharge
occurs during late spring and early summer [28]. The amounts that the main northern rivers
discharge to the Gulf annually is estimated to be 1.1 * 108 m3 of water and 4.8 * 10° tonnes
of sediment [18]. The Gulf is connected to the Arabian Sea and the Indian Ocean through the
Strait of Hormuz, allowing the water to exchange in a slow circulation [37]. The mean
hydrodynamic circulation is counter-clockwise cyclonic, forced with the inflowing currents to
the north and of the Gulf in summer, and weakened by the north-westerly winds along the
Iranian coast in winter [18]. The Arabian Gulf has a subtropical hyper-arid climate and is
surrounded by desert lands, where the precipitation levels are relativity limited [28], and the
evaporation rate is estimated by numerous authors to be very high (1.44 - 1.64 m year™1) [38].

The physiochemical properties of the Gulf’s water reflect the shallowness, high evaporation,
limited freshwater river runoff and low rainfall. The sea surface temperature reaches a
maximum of roughly 36 °C and a minimum of 14 °C. The Arabian Gulf is considered as one
of the most saline basins in the Earth. The salinity concentration ranges from about 35 to 40
PSU, reaching 70 PSU in some shallow south-eastern embayments [2, 18, 27]. The deeper parts
of the Gulf have an evident saline stratification, while the shallows are well mixed by both the
wind and current systems. The north-westerly winds and south-eastward coastal currents cause
the upwelling along the eastern Iranian coasts and downwelling along the western Arabian
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coasts [18]. The recent study of Al-Yamani and Naqvi [39] showed that the salinity has
increased in the northern area of the Gulf because of the reduction of river runoff. The Gulf is
one of the main sources of aeolian dust deposits in the world [40]. Belt dust storms intensify in
the summer, along the north-western winds, while these strong dust-laden winds ease in the
winter [16, 17]. The biological productivity in the Arabian Gulf is highly related to the
geographical distribution of nutrients [27]. The limited upwelling conditions in the Gulf result
in a limited nutrient concentration in most offshore Gulf waters [38]; by contrast, some coastal
river-discharge-influenced areas are much higher in concentration [41]. However, a significant
increase in nutrients has been identified, caused chiefly by the sewage discharge from the urban
coastal areas along the coasts of the Gulf. Recently, the anthropogenic stresses have been cited
as one of the biggest challenges facing the marine ecological environment of the Arabian Gulf
[39]. Nezlin et al. [21] has divided the Gulf into regional sub-basins according to their
properties, and a more recent study by Polikarpov et al. [27] sought to modify this partition
(Fig. 1). The Arabian Gulf is of great economic and international importance due to the oil
movement through the Strait of Hormuz [42], in addition to the highly productive ecosystems
that the Gulf has [27].

2.2 . Kuwait

Kuwait is a state located on the north-western corner of the Arabian Gulf, surrounded by Saudi
Avrabia to the south and west, and Iraq to the North. Kuwait is part of the Arabian desert and is
considered one of the warmest regions in the world. The temperature in the summer reaches
above 50 °C, while it drops to about 7 °C in the winter. The topography of Kuwait plays a role
in its drought, as its lands are considered flat; the elevation rises from sea level on the eastern
coasts to the highest point in the south-east of its territory, reaching up to 280 meters above sea
level [43]. The water of Kuwait is considered as a part of the submerged northern estuarine flat
of the Arabian Gulf (Fig. 1), which is mainly affected by the sea-river environment of Shatt al-
Arab [28]. The length of the State of Kuwait’s coastline extends to more than 700 km [44].
This length has, in recent years, been increased due to various development projects and the
creation of artificial beaches. Kuwait has nine islands. Physiographically, these islands can be
classified into two groups: coastal and offshore [28]. The coastal group has six islands located
in the north of the country’s territorial water. These are Warba, Bubyan, Miskan, Failaka,
Awhah and Umm Al-Namil. A narrow channel called Khor Al-Sabbiya separates Bubyan and
Warba from the mainland of the State of Kuwait. The rest of the islands are located in the
southern water of the country, including Kubber, Qaruh and Amm Al-Maradim.

Kuwait's territorial waters covering an area of about 8,000 square kilometres, contain three
main sub-regions: Kuwait Bay, the northern waters, and the southern waters. Kuwait Bay is
located in the middle of the country’s coastline. The bay is shallow, with an average depth of
about five meters; a slow counterclockwise circulation appears in Kuwait Bay throughout much
of the year while, in winter, the circulation is significantly reversed due to the south-easterly
predominate [28]. Kuwait Bay has other different sub-circulation patterns such as the net
clockwise drift in the western side and the counter-clockwise pattern in the eastern side [45].
As for the northern region, it is characterized by a narrow channel surrounding Warba and
Bubyan islands, which makes the currents the main hydrodynamic factor in the region [46].
The maximum current speeds were observed in Khor Al-Subbiya (reaching 1.2 meters s~2)
[28]. The northern water is a part of the submerged northern estuarine flat, while the southern
waters are more identical to those of the open Arabian Gulf [28]. Here, the depth increases to
a maximum of about 30 meters, making the average depth of Kuwaiti waters about 20 meters
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[28]. Kuwait’s territorial waters have an average sea surface temperature of 23.8 °C and salinity
of around 40 PSU [28].

3. Methodology
3.1.In Situ data

The field data used referred to Kuwait Environmental Public Authority (KEPA) (epa.org.kw).
KEPA has a data archive spanning back to 1983 for Kuwait’s marine environment. In 2016,
KEPA established a marine monitoring system using 15 buoys spread across Kuwaiti territorial
waters (Fig. 1). Three buoys are located in the northern waters (S1 -S3), five are in Kuwait Bay
(S4 — S8), while the rest can be found in the southern waters (S9 — S15). The buoys coordinates
can be found on KEPA website. The archive comprises data of multiple water quality
parameters such as sea surface temperature, salinity, conductivity and turbidity, dissolved
oxygen and pH. The chlor-a were measured by Turner CYCLOPS-7 (Model SEN-CHA-XAN-
06) sensor. Instruments are yearly calibrated and periodically once in 15-30 days after the field
visit. Calibration done according to NIST standard. Readings are taken every 10 minutes daily
between half meter to one meter from the water surface. There were some malfunctions at times
with the instrument, causing some gaps in readings.

The chlor-a data as monitored by the 15 buoys at 10:00 — 11:00 AM (hourly average)
throughout 2017 has been used in the study as ground truthing points (GTPs). Additionally,
turbidity data (measured by AML oceanographic sensor model XCH-TRB-A3000-02W) were
used to understand the optical properties in different studied areas of the Kuwait’s waters, and
a bathymetric layer obtained from the admiralty chart of Kuwait territorial waters referred to
the ministry of defence and ministry of communications archived by KEPA was used to show
the bathymetry of Kuwait territorial waters.

0513 20 W 4
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K - Kuwsit EPA marine stations

Fig. 1. The Arabian Gulf (with sub-basin regions): the upper coastal Northern Shatt Al-Arab
zone (UN), the northern open water (N), the southern open water (S), upper coastal western
Saudi Arabian zone (UW), and the lower shallow water between Qatar and UAE including
Bahrain’s coasts (LW). On the right are the locations of the Kuwait water and Environmental
Public Authority marine buoys. After Polikarpov et al. [27] with modifitions.
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3.2. Satellite data

The data used are downloaded from the OceanColor website (oceancolor.gsfc.nasa.gov).
NASA OceanColor is a platform supported by the Ocean Biology Processing Group (OBPG)
at NASA's Goddard Space Flight Center. Since 1996, NASA has provided the scientific society
with different products that relate to the marine environment and water quality, using satellite
data. The products are divided into levels. Generally, level 1 and 2 data contain full-resolution,
time-referenced and radiometrically- and geometrically-calibrated data and derived
geophysical variables such as sea surface temperature and chlor-a concentration. On the other
hand, level 3 data contain time-derived geophysical variables for a specific period (monthly,
annually etc.). The OceanColor website provides data for several sensors such as SeaWiFsS,
Agquarius, MODIS and VIIRS. The Visible and Infrared Imager/Radiometer Suite (VIIRS) is a
spectrometer carried by the Suomi National Polar-orbiting Partnership (S-NPP) launched in
October 2011, which is being orbited on the Joint Polar Satellite System (JPSS). VIIRS is a
moderate-resolution spectrometer that has 22 spectral bands, ranging from 412 pm to 12 pm;
16 bands have a spatial resolution of 750m at their lowest, while five image resolution bands
have a spatial resolution of 375m, and there is one day-night band (DNB) [29, 30]. The
geophysical variables of near-surface concentration of chlor-a in mg/m= of the spectrometer
are obtained using an empirical correlation between the blue to green bands ratios of spectral
reflections depending on two to four bands, ranging between 440 and 570 um, and the in-situ
measurements [31]. The band ratios algorithm of J. E. O’Reilly et al. [22] was merged with a
prior water index algorithm of C. C. Hu, Z. Lee, and B. Franz [47] to produce the final product
provided by NASA. C. Hu, Z. Lee, and B. Franz [47] clearly shown that the improvement is
limited to relativity clear water. Upon application, the algorithm differs slightly from what was
published in their paper. That happens because the transition between water color index (CI)
and band rationing algorithm (OCx) now occurs at 0.15 < CI < 0.2 mg/m to ensure a smooth
transition [31]. The current chlor-a product is based on the following algorithms:

(Agreen - Ablue)
(Ared - Ablue)

Cl = Rrs(/lgreen) - Rrs(lblue) + * (Rrs(/lred) - Rrs(/lblue))

(Equation 1)

Where R, (Ablue, Agreen and Ared) are the spectral bands in the closest wavelength to 443,
555 and 670 nm respectively, Cl is the color index.

(Rrs(lblue) i

logo(chlor —a) = ay, + X, a; (lo <— ¢

J1o0 0 i=1 @i (logro (Rrs(/lgreen) )
(Equation 2)

Where the numerator, R, (Ablue), is the greatest of several inputs R, values and the
coefficients, ao-as, are sensor-specific (0.2424 and -1.2280 for MODIS, and 0.2228 and -0.7768
for VIIRS (OC3) respectively, chlor-a is the output of chlor-a concentration in mg/m,
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The water color index algorithm is used for chlor-a concentration below 0.15 mg/m=, while
the band rationing algorithm is used for concentrations above 0.2 mg/m. between these two
values, both algorithms are combined using a weighted method [31].

In this study, 45 levels 2 VIIRS (SNPP) chlor-a concentration products were downloaded from
the OceanColor website for the Arabian Gulf region. The data cover all twelve months of 2017.
The pixel size of level 2 data is 1 square km, and the temporal resolution is daily. On the other
side, 64 seasonal level 3 VIIRS (SNPP) chlor-a concentration products for the Arabian Gulf
were ordered and used. The data cover eight years from 2012 until 2019 with one product
covering each season (4 products for each year). This means that one product constitutes the
geophysical mean values of about 30 daily images. So, the level 3 data used in this study refers
to more than 2929 analysed chlor-a daily level 2 products. The spatial resolution of the level 3
products comes in at 4 and 9 square Km. The 4 km product was used. The reason for choosing
the 2017 level 2 products is for calibration and verification using KEPA GTPs, while the spatial
and temporal differences and coverage are the reason for choosing level 3 data.

3.3. Prediction and validation

Although the chlor-a products of VIIRS - SNPP is modelled using in-situ data [29], and many
studies have demonstrated the accuracy of these data [2, 35], the products must be validated
locally. The correlation between satellite and the near-surface chlor-a concentration may be
affected by several local properties, broadly speaking controlled by the geographical and
oceanographical conditions [8]. Therefore, GTPs (n = 192) observed by 15 stations covering
all Kuwaiti water were used to build a new empirical local model and validate it. Linear
regression analysis was used to build the model regarding the correlation between GTPs and
satellite level 2 chlor-a products (OC3). The following matrix was used to compute the
regression algorithm:

[Chlor — a4 S0 + B1 Raster; | €17
Chlor — a, Bo + P1 Raster, SH
= ' +
[Chlor — a,,] LSy + B1 Raster, L€, ]
(Equation 3)

Where S, and f; are population chlor-a intercept and population slope coefficient. raster is
the chlor-a (OC3) product at specific points and € is the random error. Chlor — a is the
predicted output of Chlor-a values.

A window of 3*3 pixels was built around each GTP to extract the satellite data for matching.
This technique was applied in previous studies too [43, 48]. The satellite data that have a
standard deviation of more than 3 mg/m were avoided in the analysis regarding matching


https://doi.org/10.20944/preprints202107.0232.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 July 2021 d0i:10.20944/preprints202107.0232.v1

accuracy. The GTPs were divided into two groups: GTPs (n = 113) monitored in three seasons
(spring, summer and fall) were used to find the correlation and build the model, and those (n =
79) observed in winter were used to validate the predicted model (through a seasonal cross-
validation process). The correlation was positive where %= 0.792 (Fig. 2 and Fig. 3). To give
more credibility to the extracted model, the index of agreement (d) was calculated. The index
has been previously proposed by Willmott [49], in order to evaluate the geographical models.
The index can measure the error of predication models, ranging on a scale between 0 and 1,
where 1 indicates a perfect correlation, while 0 means no agreement at all. However, because
of the squared differences, the index is sensitive to outliers. The (d) index can be computed as
follows:

Z?zl(xi ~y)?

d=1-— :
> ((yi= % + (X + 7D)

(Equation 4)

Where x; and y; are the observation and forecast values respectively.

The accuracy of the empirical regression model was examined through the root mean square
error (RMSE) and the mean absolute error (MAE). These two indices are used to determine the
correlation between two variables quantitively. These indices were used in several similar
studies [39, 50, 51]. The RMSE and MAE are computed using the following formulas:

1
RMSE = iJEZ (= f)

(Equation 5)

1
MAE :EZ £ - f]
=1

(Equation 6)

Where f; is the value of the derived empirical model, and f; is the GTPs value.
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16 L Chlor-a =0.8225 (raster) - 0.1689 +
R?=0.792 d=0.918

14 Regression RMSE =1.141 Regression MAE = 0.847 mgfm'3
ANOVA (F) =422.6 P-value = 0.000

12

=
o
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Predicted model

GTPs

Fig. 2. The correlation between GTPs and satellite data of VIIRS — SNPP level 2 products
was estimated positively through regression analysis.
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Fig. 3. The residual plot shows that the points are randomly dispersed around the horizontal
axis, which confirmed that the linear regression model is appropriate for the data.
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3.4. Raster analysis and spatial enchantment

The level 3 chlor-a concentration products of VIIRS — SNPP have been geometrically corrected
to the WGS 84 coordinate reference system on BEAM — DIMAP format using SeaDAS 7.5.3
software. This format can be used in ArcGIS Pro software for more analysis. Following that,
the regression algorithm has been applied to seasonal products. The data of the Arabian Gulf
were directly analysed by extracting the spatial mean and standard deviation for each seasonal
plate. The spatial mean is the average of all the pixels covered by the study area, where the
standard deviation of the spatial mean describes how the chlor-a concentration values deviate
from the average. The seasonal mean values of the Arabian Gulf were used to show how the
average changed over the study period. Moreover, the geophysical values of the north-west
Arabian Gulf for each plate which covers Kuwait’s territorial waters, have been clipped for
analysing. The spatial resolution of the level 3 product data is 4 square km which means that
these data are limited for mapping a large-scale area, such as Kuwaiti water (8000 square km).
On the other hand, although the used data has acceptable spatial coverage, they falter in narrow
areas, such as the creeks and embayments found on Kuwait’s northern marine environment
around Bubyan and Warba Islands, in addition to some parts of Kuwait Bay. To solve this
issue, the values of each pixel on the North West Arabian Gulf have been extracted to build an
inverse distance weighted (IDW) model. The IDW is a way to estimate an unknown point value
from several surrounding known point values. The best results for this model are obtained when
the distribution of control points (samples) is of high density and has a wide spatial spread over
the study area concerned, in order to simulate all existing spatial differences; otherwise, the
results of the model may be affected [52]. The IDW technique provides better accuracy in the
spatial enhancement of raster model with conditions of high values of coefficient of variation,
strong anisotropy and spatial structure [53]. These conditions were relatively identical to those
in the model used. Additionally, Musashi et al. [54] showed more accuracy for this model than
other derivative models. The IDW model was created based on 2000 extracted values from the
north-western Arabian Gulf and has facilitated the increase of the spatial resolution to the
maximum resolution, as determined by the function in ArcGIS Pro 2.3 toolbox (spatial analyst
— interpolation tools) based on the number of points entered (Fig. 4). The following algorithm
is used to calculate the inverse distance weighted (IDW) model:

zxg = EfLy x; [hl; + 5y 1/ b

(Equation 7)

Where z (x,) is the output value, x; is the value of control known points, hij is the separation
distance between the interpolated value and the control points value, and B is the weighting
power, n is the total number of the control points (samples) values.
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Fig. 4. Increasing the spatial resolution by applying the inverse distance weighted (IDW)
model to the geophysical values of chlor-a concentration products over the north-west
Arabian Gulf.

Following that, the Kuwaiti water was divided into the north waters, Kuwait Bay, and the south
waters (Fig. 5). This was based on the marine properties’ similarities and differences that
mentioned in the description of the study area. Mean and SD of each region were computed
using zonal statistics. Additionally, Kuwait’s territorial waters were classified into three areas
based on their depth level in order to show the relationship of near-surface chlor-a with the
depth of Kuwaiti waters, the mean and SD for each class were calculated too.

North region

Kuwait Bay
South region

Fig. 5. The sub-regions of Kuwait water: the north region, Kuwait Bay and the south region.

Through 57 spatial mean GTPs, the IDW seasonal model was examined using the Mann
Whitney test. The Mann Whitney test is a statistical hypothesis test used to compare two
populations through their medians/means. This test can be used when the data do not follow a
normal distribution, in addition to the other non-parametric testing conditions [55], which can
be noticed by considering the histograms of chlor-a concentrations. The following formulae
were used to compute the Mann Whitney test:
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U = min (Ull Uz)

Where:
n(n,+1
U1 == n1n2+ ¥_ R1
n,(n, +1
UZ == n1n2+ ¥_ RZ
(Equation 8)

Where 71 and 72 are the sample sizes, R1 and R2 are the sums of observations rank from
sample 1 and 2 populations, respectively.

Fig. 6. shows the methodology summary, from downloading the data to the spatial analysis
through the pre-processing and GTPs.

Data
downloading ]
In Situ
Geometric Data
; Level 2 product
correction

Preduction
and validation

Level 3 product

Data spatial
subset

Apply regression
algorithm

build IDW model
(Kuwait waters)

Overlaying

Zonal statistics

Means accuracy

Geographical
&
bathymetrically

| assessment

Fig. 6. Summary of the methodology. The data have been collected, pre-processed, analyzed
and assessed through these steps.

Producing maps
& graphs
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4. Results and discussion

4.1. Accuracy assessment

The validation results of the empirical level 2 chlor-a concentration model derived from SNPP
— VIIRS spectrometer using GTPs (number = 79) monitored in the winter of 2017 and taken
through 15 marine buoys showed a significant correlation. The statistical indices confirmed the
strong correlation, where the overall RMSE and MAE were = + 0.841 and 0.638 mg/m™
respectively. Thus, the empirical model has improved the accuracy by 0.329 and 0.256 mg/m-
3 where the RMSE and MAE were = + 1.17 and 0.841 mg/m™ before applying the regression
algorithm. Additionally, to give a greater perspective, the GTPs were separated into two
different ranks according to their geographical location and the concentration level.
Geographically, they were divided into two regions, with Kuwait Bay and the northern waters
considered as one region; these showed an RMSE and MAE of + 1.11 and 0.89 mg/m=. The
northern waters were considered together with Kuwait Bay due to their relative lack of GTPs.
By contrast, the southern region showed an RMSE and MAE of + 0.53 and 0.44 mg/m™ (Fig.
7). The GTPs were also separated into two classes (< 2 and > 2). The lower concentration
values showed better accuracy (RMSE = + 0.552 and MAE = + 0.468 mg/m™) than the higher
(RMSE = + 1.09 and MAE = + 0.84 mg/m) (Fig. 8).

The regression algorithm has been applied to the derived IDW model from level 3 chlor-a
concentration data. The correlation between the seasonal averages of the IDW model and the
seasonal averages of GTPs (n = 57) taken over 15 marine buoys in 2017 was tested by Mann
Whitney test, where the null hypothesis rejected (sig = 0.948, p < 0.01 - 99% confidence).
Overall, the empirical model decreases the average values of chlor-a concentration over the
study time and area, meaning that there is overestimation on the primary chlor-a products of
SNPP -VIIRS (Table. 1 and Fig. 9).

R?=0.8324 R*=0.2707
GTPs (n=35) . GTPs (n = 44)

Fig. 7. The correlation between GTPs (n = 35) and the empirical model in Kuwait Bay and
northern waters (a), and the correlation between GTPs (n = 44) and the empirical model in
southern waters (b).

d0i:10.20944/preprints202107.0232.v1
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R?*=0.0243

R?=0.8206
GTPn (n=43)

GTPs (n =36)

Fig. 8. The correlation between GTPs (n = 43) and the empirical model with fewer
concentration values than 2 mg/m (a), and the correlation between GTPs (n = 36) and the
empirical model with higher concentration values than 2 mg/m= (b).

Table 1. The accuracy assessment by value, location and overall in Kuwait waters.

By value By location Overall
<2 >2 Kuwait Bay & North South region
RMSE () 0.552 1.09 1.113 0.533 0.841
MAE (£) 0.468 0.84 0.89 0.437 0.639

6 F (original data)  (Emprical medel) 1

Arabian Gulf —

kuwait f—

(mg m-3)

c

Su Fa Wi Sp Su Fa W S Su Fa Wi Sp Su Fa Wi Sp Su Fa Wi Sp S Fa Wi § Su Fa Wi 8p S Fa W
. n n . n n . . . n

L L L
2012 2013 2014 2015 2016 2017 2018 2019

Fig. 9. The moving average of chlor-a from 2012 to 2019 using the empirical model data of
this study and VIIRS — SNPP original product data for both Kuwait and the Arabian Gulf.
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The validation results of the empirical model showed better accuracy to monitor low-
concentration waters, while the accuracy in high-concentration waters decreases. This pattern
is inevitably affected by the degree of depth. Accordingly, the accuracy was measured
geographically where the average depth is known. The results confirmed that the accuracy rises
in deep water (southern waters of Kuwait) while it decreases in shallow and turbid water
(Kuwait Bay and northern waters) (Table. 2). By reviewing the extracted chlor-a concentration
using different equations and the NASA satellite sensors for several seas and different bays
around the world, with different numbers of GTPs (30-114), the accuracy varied in some
literature from 0.18 to 0.64 mg/m [32—35]. The accuracy was estimated at 0.23 mg/m=in the
middle of the Arabian Gulf using 29 GTPs [2], and thus the accuracy of the empirical model
developed in this study falls within a reasonable range, especially in a complex environment
such as the north-west of the Arabian Gulf.

Despite the advantages of remote sensing data and solutions, this method does have some
limitations. One of these limitations is that the accuracy of the obtained chlor-a concentration
results is affected by the depth and the high turbidity [23]; this is perhaps one of the most
important characteristics of the Arabian Gulf, especially in the north-western region [28].
Therefore, developing a new and validated local model is essential [2]. However, the northern
region of Kuwait waters is considered as one of the areas where chlor-a models rarely monitor
data according to the spatial resolution and coverage of the sensor, among other meteorological
factors such as the dust bands [16], [17]. Accordingly, the developed spatial interpolation
model for this region does have some limitations, especially with insufficient GTPs available
to calibrate the results.

Table 2. The turbidity seasonal averages and standard deviation (NTU) obtained from KEPA
buoys in 2017. The Kuwait Bay and the northern waters are characterized by higher turbidity
than the southern waters over the year seasons.

South region North region &

Kuwait Bay

mean SD mean SD

Spring 4.14 7.39 5.45 7.19
Summer 2.65 7.37 6.23 7.25
Fall 5.57 7.37 6.46 7.32
Winter 2.69 7.33 6.13 7.32

Overall 3.76 7.36 6.07 1.27
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4.2. Spatio-temporal variation

Based on the sub-division of the Arabian Gulf [27, with mediations] (Fig. 1.), by knowing the
water circulation and bathymetry of the Gulf [18], the analysis of seasonal averages from 2012
to 2019 via SNPP - VIIRS spectrometer shows that the coastal areas have higher chlor-a
concentrations compared to those in the open waters. Among the coasts, the Iranian eastern
coast has a lower concentration than those in the west. However, the northern Shatt al-Arab
coastal zone has the highest concentration of chlor-a observed in winter and late fall, especially
in its western parts, where the Kuwaiti waters are located (Fig. 10 and Fig. 11). In this area,
Kuwait Bay has the highest concentration of chlor-a as, in the southern waters, the deep-water
characteristics begin to become clear. The northern waters also have a high chlor-a
concentration compared to the southern waters, (Fig. 12 and Fig. 13). The physical,
topographical and anthropogenic factors contribute to the high level of chlor-a in the north-
western zone: shallow depths contribute to the arrival of nutrients from the deep rich layers
[41], the discharge of the rivers in the northern Arabian Gulf, the general water circulation in
the Gulf that carries nutrients to the north-western coasts of the Arabian Gulf [18], and the
human stresses on the coastal areas [39]. However, O’Reilly et al. [22] point out that an
overestimation by remote sensing instruments can happen in this area due to the high turbidity
(see Table. 2) and bottom reflection.

As for the seasonal change, chlor-a in the Arabian Gulf between 2012 and 2019 is at its lowest
concentration in spring, where the quarterly average reaches 0.57 mg/m=. The concentration
rises in summer as the average reaches 0.64 mg/m. The concentration continues to rise at the
beginning of fall, where the average hits 0.87 mg/m, and this remains fairly steady in winter
too. In this season, the high concentration is noticeable in the north-western region, and on the
western coasts, as well as at the entrance to the Arabian Gulf in the Strait of Hormuz, where
the concentration rises significantly until it reaches around 6 mg/m= (Table. 3). The sub-
regions of Kuwait’s waters follow a seasonal pattern comparable to the general seasonal cycle
of the Arabian Gulf waters. The seasonal peak can be found between fall and winter, while the
concentration reaches a low in the summer. However, the annual average concentration of
chlor-a in Kuwait Bay rises significantly, with a difference of 1.86 mg/m= over the southern
region, and 0.57 mg/m over the northern region. Fig. 14 shows the seasonal differences, while
Table. 4 looks at both the averages and the standard deviation variation. The drop in chlor-a
concentration in fall is often due to depleted nutrients by the phytoplankton bloom in winter
[2]. Nezlinet al. [21] clearly show that the seasonal cycle of chlor-a concentration in tropical
and subtropical oceans is typical. This is because the phytoplankton growth is affected by the
low nutrients because of the strong pycnocline formation, in addition to the effects of thermal
stratification in the water column, which limits the vertical mixing so that the nutrient rise to
the surface [56]. This study result is consistent with other studies regarding seasonal changes
[2, 13, 21].

d0i:10.20944/preprints202107.0232.v1
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Fig. 10. The spatial distribution of chlor-a concentration seasonal averages in the Arabian
Gulf from 2012 to 2019. The chlor-a concentration increases in winter in the Strait of
Hormuz and in the northern waters of the Arabian Gulf.
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Fig. 11. The statistical distribution of chlor-a concentration seasonal averages in the Arabian
Gulf from 2012 to 2019. The chlor-a concentration variation increases in summer and spring,
while it is more gradual in winter and autumn.
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Fig. 12. The spatial distribution of chlor-a concentration seasonal averages in Kuwait waters
and the north-western Arabian Gulf from 2012 to 2019. The chlor-a concentration increases
in winter in Kuwait Bay and the northern waters of the Arabian Gulf.
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Fig. 13. The statistical distribution of chlor-a concentration seasonal averages in Kuwaiti
waters and the north-western Arabian Gulf from 2012 to 2019. The peak of the seasonal
curves can be seen at low concentrations. A clear second smaller peak of chlor-a
concentration can be observed at 1.8 - 2 mg/m3in summer and spring.

Table 3. The seasonal means and standard deviations for both the Arabian Gulf and Kuwaiti
territorial waters.

Kuwait Arabian Gulf

mean SD mean SD

Spring 1.88 0.38 0.57 0.38
Summer 1.81 0.43 0.64 0.5
Fall 2.41 0.35 0.87 0.47
Winter 2.38 0.56 0.87 0.48

Overall 2.12 0.43 0.74 0.46
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Table 4. The seasonal means and standard deviation for the sub-regions of Kuwaiti territorial
waters from 2012 to 2019.

Kuwait Bay South region North region

mean SD mean SD mean SD
Spring 2.3 0.48 1.11 0.48 2.22 0.18
Summer  2.64 0.65 0.93 0.52 1.86 0.12
Fall 3.21 0.38 1.55 0.37 2.47 0.31
Winter 3.21 0.78 1.39 0.45 2.54 0.44
Overall 2.84 0.57 1.24 0.46 2.27 0.26

E Spring B Summer Fall Winter

LhIor-a (Mg m-3)

=

2012 2013 1014 2015 2016 2017 2018 2019

Fig. 14. The seasonal averages for Kuwait’s territorial waters from 2012 to 2019. The
seasonal pattern of chlor-a concentration appears to be erratic in Kuwait’s water.

The trend of chlor-a concentration in the Arabian Gulf and Kuwait waters during the period
from 2012 to 2019 shows that the average concentration fluctuates in semi-regular seasonal
cycles that mostly rise around winter and late fall. However, the chlor-a concentration average
fluctuated between approximately 0.5 and 1 mg/m during the study period, 2012 to 2019. The
highest average concentration was found in winter 2018 when it exceeded 1 mg/m (Fig. 15).
The chlor-a concentration in Kuwait’s waters shows that the seasonal cycles are less regular
and more severe than those of the Gulf as a whole. Kuwaiti waters lie in the Shatt al-Arab
region, which has a higher concentration overall, and a more complicated cycle affected by the
complex river-sea system. However, the highest peak was observed between winter 2018 and
fall 2019. The results indicate that the average chlor-a concentration in Kuwait waters is
increasing (Fig. 16). Fig. 17 shows the seasonal moving average of chlor-a concentration in
sub-regions of Kuwait’s water from 2012 to 2019.
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Kuwait’s waters take a quarterly concentration course similar to what is found in the Gulf as a
whole. Taking into consideration the high average concentration in the north-western region of
the Arabian Gulf, especially in Kuwait Bay, where the values are significantly higher than the
northern and southern regions. This is consistent with Al-Yamani et al.’s study [28] of spatial
changes in Kuwait’s chlor-a concentration. Additionally, the long-term results showed regular
seasonal changes at the Arabian Gulf level with peaks in certain years, while it was less regular
in Kuwait’s waters, where remarkable leaps were seen, especially those in Kuwait Bay.

Number of image

Su Fa Sp Su Fa W Sp  Su Fa Sp Su Fa Wi osp Su Fa W Sp Su Fa \ Sp Su Fa \ Sp Su Fa Wi

2012 013 2014 2015 2016 2017 2018 2019

Fig. 15. The seasonal moving average trend and pattern of chlor-a concentration in the
Arabian Gulf from 2012 to 2019. a semi-regular cycle during the years of study can be
observed.

Number of image

a {mg m-3)
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Fig. 16. The seasonal moving average of chlor-a concentration in Kuwait’s territorial waters
from 2012 to 2019. Two peaks can be seen in 2016 and 2018.
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Fig. 17. The seasonal moving average of chlor-a concentration in sub-regions of Kuwait’s
water from 2012 to 2019. The pattern in Kuwait Bay is more extreme than in the northern and
southern waters.

4.3.Chlor-a vs bathymetry

The spatial distribution of chlor-a concentration derived from the empirical model of SNPP —
VIIRS level 3 data was studied over three bathymetric classes extracted and analysed by the
spatial interpolation model derived from the depth GTPs taken over Kuwait’s waters. The
results confirmed that the chlor-a concentration is affected by the level of depth, where the
means decrease proportionally with higher depths. At shallower depths (less than 10 meters),
the average chlor-a concentration over a period of eight years (2012 to 2019) comes out at 2.34
mg/m3. However, the concentration decreases gradually to 1.5 mg/m=in the depth range of 10
to 20 meters, and continues to drop until it reaches 0.88 mg/m at 20 meters and greater. The
chlor-a concentration level decreases steadily when depth increases at 10-meter intervals. The
standard deviation decreases by about 0.2 with an increase of every ten meters in depth. This
correlation applies to all seasons, with similar degrees of decline with rising depth (Table. 5).

Although many studies have indicated that the concentration of nutrients increases to a depth
of 1000 meters in different seas of the world [57, 58], and the mixing process can raise the
nutrients from the rich near-bottom to the near-surface layer [59]; the limited upwelling process
in the Arabian Gulf causes limited nutrient concentration in the offshore and the northern open
water of the Arabian Gulf [38]. This may explain the lower chlor-a concentration in the
southern water of Kuwait. In contrast, many sources feed the submerged northern estuarine flat
where Kuwait Bay can be found. The standard deviation of the chlor-a concentration raises
slowly with decreasing depth; this explains that the chlor-a concentration is more homogenous
in deep areas, such the southern water of Kuwait, than in the shallow areas such as Kuwait Bay,
which is a shallow semi-closed water, with the river freshwater discharge bringing the nutrients
from the land. Further anthropogenic stresses and the presence of sewage pouring into the water
of the Bay [39] may be other reasons for the increase in the concentration of chlorophyll and
its relatively wide spatial variation. Fig. 18 shows a 3D bathymetric model of near-surface

d0i:10.20944/preprints202107.0232.v1
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chlor-a concentration, which clearly shows the spatial relationship between depth and chlor-a
concentration over the north-western Arabian Gulf (Kuwait’s waters). The submerged northern
estuarine flat has a higher average seasonal concentration compared to the other parts of
Kuwaiti water.

spring Summer

LW

Chlor-a (mg m=3)

<05 1 1.5 2 25 3 3.5 4> Winter

Fall

Depth (m)

Fig. 18. 3D models show the seasonal averages of chlor-a concentration from 2012 to 2019
over the north-eastern Arabian Gulf bathymetry (Kuwaiti waters). It can be noted that the
concentration increases as the depth decreases (the northern area, for example).
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Table. 5. The seasonal chlor-a concentration decreases as the water depth increases. Three
ranges of depth show the concentration values level of change by averages and standard
deviation (data 2012 — 2019).

<10 10 to 20 > 20
mean SD mean SD mean SD
Spring 2.32 0.65 1.61 0.66 0.7 0.25
Summer 1.97 0.52 1.2 0.5 0.46 0.3
Fall 2.44 0.59 1.65 0.41 1.29 0.24
Winter 2.64 0.98 1.53 0.43 1.05 0.27
Overall 2.34 0.69 1.5 0.5 0.88 0.27

5. Conclusion

In this study, the seasonal spatial and temporal distribution of near-surface chlor-a
concentration in the Arabian Gulf and Kuwait waters from 2012 to 2019 was studied and
explained using SNPP — VIIRS spectrometer data. The study included the use of a new
empirical model based on GTPs observed in 2017 and taken from the Arabian Gulf specifically
in the north-west, where Kuwait waters are located. Additionally, the relationship between
chlor-a concentration and the depth of Kuwaiti waters has been studied, where the spatial
resolution of the model was improved to clearly show the spatial dimension in this specific
area The results showed that the chlor-a concentration rises near the coasts and in the north-
western region of the Arabian Gulf (Kuwait waters), where this area was enhanced spatially.
The results also showed that the chlor-a concentration increases in Kuwait Bay while
decreasing gradually towards the south. Seasonally, the chlor-a concentration has a cycle that
peaks in winter and early fall for both Kuwait waters and the wider Arabian Gulf. However,
the trend of concentrations averages is more stable in the Arabian Gulf compared to Kuwait
waters during the period of study. Additionally, the chlor-a concentration was observed to be
decreased at a stable level, as the depth increases. The accuracy of the empirical model was
tested through GTPs and showed an overall RMSE and MAE of 0.841 and 0.638 mg/m,
respectively. Remote sensing techniques provide valuable ways to understand the marine
environment, including chlor-a concentration and phytoplankton density in seas and oceans
through the spatial modelling.

Acknowledgements

The author would like to thank the KEPA staff in the marine montoring section for collecting
and analyzing the buoys data over 2017. Acknowledgement must also go to NASA
(OceanColor) for the various geophysical products that have been provided for free. | would
also extend my thanks to Mr. llyes Allani and Mr. Wahid Moufaddal from ROPME for the
wide-ranging discussions about remote sensing of Kuwait’s marine environment.


https://doi.org/10.20944/preprints202107.0232.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 July 2021 d0i:10.20944/preprints202107.0232.v1

26

References

[1] F.E. Muller-Karger, C. Hu, S. Andréfouét, R. Varela, and R. Thunell, “The Color of the
Coastal Ocean and Applications in the Solution of Research and Management
Problems,” in Remote Sensing of Coastal Aquatic Environments: Technologies,
Techniques and Applications, R. L. Miller, C. E. Del Castillo, and B. A. Mckee, Eds.
Dordrecht: Springer Netherlands, 2005, pp. 101-127, doi: 10.1007/978-1-4020-3100-
75.

[2] N. Al-Naimi, D. E. Raitsos, R. Ben-Hamadou, and Y. Soliman, “Evaluation of Satellite
Retrievals of Chlorophyll-a in the Arabian Gulf,” vol. 301, no. 10, pp. 1-13, 2017, doi:
10.3390/rs9030301.

[3] T. B. Al-Rashidi, H. I. EI-Gamily, C. L. Amos, and K. A. Rakha, “Sea surface
temperature trends in Kuwait Bay, Arabian Gulf,” Nat. Hazards, vol. 50, no. 1, pp. 73—
82, 2009, doi: 10.1007/s11069-008-9320-9.

[4] A. B. Cahyono, H. D. Armono, and D. Saptarini, “Estimation of Sea Surface
Temperature ( SST ) Using Split Window Methods for Monitoring Industrial Activity
in Coastal Area,” Trans Tech Publ. Switz. Submitt., vol. 862, no. January, pp. 90-95,
2017, doi: 10.4028/www.scientific.net/ AMM.862.90.

[5] C. T. Mutlow, A. M. Zavody, I. J. Barton, and D. T. Llewellyn-Jones, “Sea surface
temperature measurements by the along-track scanning radiometer on the ERS 1
satellite: early results,” J. Geophys. Res., vol. 99, no. Cll, p. 22,522-575,588, 1994.

[6] A.Thomas, D. Byrne, and R. Weatherbee, “Coastal sea surface temperature variability
from Landsat infrared data,” Remote Sens. Environ., vol. 81, no. 2-3, pp. 262-272, 2002,
doi: 10.1016/S0034-4257(02)00004-4.

[71 S. Huang, J. Lin, Y. Lo, N. Kuo, and C. Ho, “The coastal sea surface temperature
changes near the nuclear power plants of northern Taiwan observed from satellite
images,” Ocean. 2014, pp. 2-6, 2014.

’

[8] J. R.Jensen, Introductory Digital Image Processing “A Remote Sensing Perspective,’
4th ed. Prentice Hall Press, 2016.

[91 G. N.Williams, A. I. Dogliotti, P. Zaidman et al., “Assessment of remotely-sensed sea-
surface temperature and chlorophyll-a concentration in San Matias Gulf (Patagonia,
Argentina),” Cont. Shelf Res., wvol. 52, pp. 159-171, 2013, doi:
https://doi.org/10.1016/j.csr.2012.08.014.

[10] J. A. Yoder, J. E. O’Reilly, A. H. Barnard, T. S. Moore, and C. M. Ruhsam, “Variability
in coastal zone color scanner (CZCS) Chlorophyll imagery of ocean margin waters off
the US East Coast,” Cont. Shelf Res., vol. 21, no. 11, pp. 1191-1218, 2001, doi:
https://doi.org/10.1016/S0278-4343(01)00009-7.

[11] A.P. Mendonga, A. M. Martins Martins, M. P. Figueiredo et al., “Evaluation of ocean
color and sea surface temperature sensors algorithms using in situ data: a case study of

temporal and spatial variability on two northeast Atlantic seamounts,” J. Appl. Remote
Sens., vol. 4, no. 1, pp. 1-26, 2010, doi: 10.1117/1.3328872.

[12] Y. Zhang, H. Jiang, C. Chen, X. Y. Zhang, and Y. Wang, “Wavelet analysis on
chlorophyll concentration change in the area around Bohai Bay area, Yangtze River
Delta Region and South China Sea,” Procedia Environ. Sci., vol. 13, pp. 1373-1382,


https://doi.org/10.20944/preprints202107.0232.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 July 2021 d0i:10.20944/preprints202107.0232.v1

27

2012, doi: https://doi.org/10.1016/j.proenv.2012.01.130.

[13] M. Moradi and K. Kabiri, “Spatio-temporal variability of SST and Chlorophyll-a from
MODIS data in the Persian Gulf,” Mar. Pollut. Bull., vol. 98, no. 1-2, pp. 14-25, 2015,
doi: 10.1016/j.marpolbul.2015.07.018.

[14] M. Moradi and K. Kabiri, “Red tide detection in the Strait of Hormuz (east of the Persian
Gulf) using MODIS fluorescence data,” Int. J. Remote Sens., vol. 33, no. 4, pp. 1015-
1028, 2012, doi: 10.1080/01431161.2010.545449.

[15] P. M. Glibert, J. H. Landsberg, J. J. Evans et al., “A fish kill of massive proportion in
Kuwait Bay, Arabian Gulf, 2001: the roles of bacterial disease, harmful algae, and
eutrophication,” Harmful Algae, vol. 1, no. 2, pp. 215-231, 2002, doi:
https://doi.org/10.1016/S1568-9883(02)00013-6.

[16] J. Zhao and H. Ghedira, “Monitoring red tide with satellite imagery and numerical
models: A case study in the Arabian Gulf,” Mar. Pollut. Bull., vol. 79, no. 1, pp. 305—
313, 2014, doi: https://doi.org/10.1016/j.marpolbul.2013.10.057.

[17] N. P. Nezlin, I. G. Polikarpov, F. Y. Al-Yamani, D. V Subba Rao, and A. M. Ignatov,
“Satellite monitoring of climatic factors regulating phytoplankton variability in the
Arabian (Persian) Gulf,” J. Mar. Syst.,, vol. 82, no. 1, pp. 47-60, 2010, doi:
https://doi.org/10.1016/j.jmarsys.2010.03.003.

[18] R.M. Reynolds, “Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of
Oman—Results from the Mt Mitchell expedition,” Mar. Pollut. Bull., vol. 27, no.
August, pp. 35-59, 1993, [Online]. Available:
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Physical+oceanography
+of+the+Gulf%2C+Strait+of+Hormuz%2C+and+the+Gulf+of+Oman+—
results+from+the+Mt.+Mitchell+expedition.+Mar+Pollut+Bull+27%3A35-
59&btnG=.

[19] P. G. Brewer and D. Dyrssen, “Chemical Oceanography of the Persian Gulf,” Prog.
Oeeanog, vol. 14, no. 5529, pp. 41-55, 1985.

[20] C. Sheppard, M. Al-husiani, F. Al-Jamali et al., “The Gulf: A young sea in decline,”
Mar. Pollut. Bull, wvol. 60, no. 1, pp. 13-38, 2010, doi:
10.1016/j.marpolbul.2009.10.017.

[21] N. P. Nezlin, I. G. Polikarpov, and F. Al-yamani, “Satellite-measured chlorophyll
distribution in the Arabian Gulf: Spatial , seasonal and inter-annual variability,” Int. J.
Ocean. Oceanogr., vol. 2, no. 1, pp. 139-156, 2007, [Online]. Available:
https://scholar.google.com/scholar_lookup?title=Satellite-measured chlorophyll
distribution in the Arabian Gulf%3A Spatial%2C seasonal and inter-annual
variability&author=N.P. Nezlin&publication_year=2007.

[22] J.E.O’Reilly, S. Maritorena, B. G. Mitchell et al., “Ocean color chlorophyll algorithms
for SeaWiFS,” J. Geophys. Res. Ocean., vol. 103, no. C11, pp. 24937-24953, 1998, doi:
10.1029/98JC02160.

[23] J. O’Reilly, S. Maritorena, D. A. Siegel et al., “SeaWiFS Postlaunch Calibration and
Validation Analyses, Part 3,” 2000.

[24] D. A. Siegel, S. Maritorena, N. B. Nelson, M. J. Behrenfeld, and C. R. McClain,
“Colored dissolved organic matter and its influence on the satellite-based


https://doi.org/10.20944/preprints202107.0232.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 July 2021 d0i:10.20944/preprints202107.0232.v1

28

characterization of the ocean biosphere,” Geophys. Res. Lett., vol. 32, no. 20, pp. 1-4,
2005, doi: 10.1029/2005GL024310.

[25] F. Al-Yamani, M. Saburova, and 1. Polikarpov, “A preliminary assessment of harmful
algal blooms in Kuwait’s marine environment,” Aquat. Ecosyst. Health Manag., vol. 15,
no. supl, pp. 64-72, 2012, doi: 10.1080/14634988.2012.679450.

[26] J. Zhao, M. Temimi, S. Al Kitbi, and N. Mezhoud, “Monitoring HABs in the shallow
Arabian Gulf using a qualitative satellite- based index,” Int. J. Remote Sens., vol. 37, no.
8, pp. 1937-1953, 2016, doi: 10.1080/01431161.2016.1165886.

[27] 1. Polikarpov, F. Al-Yamani, and M. Saburova, “Remote Sensing of Phytoplankton
Variability in the Arabian / Persian Gulf,” in Remote Sensing of the Asian Seas, V.
Barale and M. Gade, Eds. Springer, 2019, pp. 485-501, doi: 10.1007/978-3-319-94067-
0.

[28] F. Al-Yamani, J. Bishop, E. Ramadhan, M. Al-Husaini, and A. Al-Ghadban,
Oceanographic Atlas of Kuwait’s waters, 1st ed. KISR, 2004.

[29] G. C. Feldman, “Suomi-NPP/VIIRS,” Nasa, 2020. oceancolor.gsfc.nasa.gov/data/viirs-
snpp/ (accessed Sep. 30, 2020).

[30] S.C. Gallegos, M. D. Lewis, R. W. Gould et al., “Inter-Comparison between VIIRS and
MODIS Radiances and Ocean Color Data Products over the Chesapeake Bay,” Remote
Sens., vol. 7, pp. 2193-2207, 2015, doi:10.3390/rs70202193.

[31] G. C. Feldman, “Chlorophyll a (chlor_a),” Nasa, 2020.
https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/ (accessed Sep. 30, 2020).

[32] T. Hattab, C. Jamet, C. Sammari, and S. Lahbib, “Validation of chlorophyll-a
concentration maps from Aqua MODIS over the Gulf of Gabes (Tunisia): comparison
between MedOC3 and OC3M bio-optical algorithms,” Int. J. Remote Sens., vol. 34, no.
20, pp. 7163-7177, 2013, doi: 10.1080/01431161.2013.815820.

[33] S.L.Shang, Q. Dong, C. M. Hu, G. Lin, Y. H. Li, and S. P. Shang, “On the consistency
of MODIS chlorophyll-a products in the northern South China Sea,” Biogeosciences,
vol. 11, no. 2, pp. 269-280, 2014, doi: 10.5194/bg-11-269-2014.

[34] R.J. W. Brewin, D. E. Raitsos, Y. Pradhan, and I. Hoteit, “Comparison of chlorophyll
in the Red Sea derived from MODIS-Aqua and in vivo fluorescence,” Remote Sens.
Environ., vol. 136, pp. 218-224, 2013, doi: https://doi.org/10.1016/j.rse.2013.04.018.

[35] M. Kahru, R. M. Kudela, C. R. Anderson, M. Manzano-Sarabia, and B. G. Mitchell,
“Evaluation of satellite retrievals of ocean chlorophyll-a in the california current,”
Remote Sens., vol. 6, no. 9, pp. 8524-8540, 2014, doi: 10.3390/rs6098524.

[36] T. Pokavanich, Y. Alosairi, R. D. Graaff et al., “THREE-DIMENSIONAL HYDRO-
ENVIRONMENT CHARACTERIZATION AND MODELING OF THE NORTHERN
ARABIAN  GULF,” Coast. Eng. Proc., no. 2014, 2014, doi:
10.9753/icce.v34.management.41.

[37] J.R. Hunter, “The physical oceanography of the Arabian Gulfs: a review and theoretical
interpretation of previous observations,” in Marine Environment and Pollution,
Proceedings of the First Arabian Gulf Conference on Environment and Pollution, 1983,
pp. 1-23.


https://doi.org/10.20944/preprints202107.0232.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 July 2021 d0i:10.20944/preprints202107.0232.v1

29

[38] W.E. Johns, F. Yao, and D. B. Olson, “Observations of seasonal exchange through the
Straits of Hormuz and the inferred heat and freshwater budgets of the Persian Gulf,” J.
Geophys. Res., vol. 108, no. C12, p. 3391, 2003, doi: 10.1029/2003JC00188L.

[39] F.Al-YamaniandS. W. A. Naqvi, “Chemical oceanography of the Arabian Gulf,” Deep
Sea Res. Part Il Top. Stud. Oceanogr., vol. 161, pp. 72-80, 2019, doi:
https://doi.org/10.1016/j.dsr2.2018.10.003.

[40] R. B. Husar, M. Prospero, and L. L. Stowe, “Characterization of tropospheric aerosols
over the oceans with the NOAA advanced very high resolution radiometer optical
thickness operational product,” J. QF Geophys. Res., vol. 102, no. D14, pp. 16889—
16909, 1997.

[41] I. Polikarpov, M. Saburova, and F. Al-Yamani, “Diversity and distribution of winter
phytoplankton in the Arabian Gulf and the Sea of Oman,” Cont. Shelf Res., vol. 119, pp.
85-99, 2016, doi: https://doi.org/10.1016/j.csr.2016.03.0009.

[42] K. A. Kvenvolden and C. K. Cooper, “Natural seepage of crude oil into the marine
environment,” Geo-Mar Lett, no. 23, pp. 140-146, 2003, doi: 10.1007/s00367-003-
0135-0.

[43] J. A. Albanai, A GIS Science Simulation for the Expected Sea Level Rise Scenarios on
Failka Island in The State of Kuwait, 1st ed. Kuwait: Center For Research and Studies
on Kuwait, 2019.

[44] R. Misak, S. Mahfoz, and T. Alasfour, Desert Environment on The State of Kuwait.
Center For Research and Studies on Kuwait, 2003 (In Arabic).

[45] Dames and Moore, “Aquatic biology investigations. Studies for Sabiya area, Kuwait
Bay and development of electrical networks,” Kuwait, 1983.

[46] F. El-Baz and M. Al-Sarawi, Atlas of State of Kuwait From Satellite Images, 1st ed.
Kuwait Foundation for the Advancement of Sciences (KFAS), 2000.

[47] C.Hu,Z. Lee, and B. Franz, “Chlorophyll a algorithms for oligotrophic oceans : A novel
approach based on three-band reflectance difference,” J. Geophys. Res., vol. 117, no.
November 2011, pp. 1-25, 2012, doi: 10.1029/2011JC007395.

[48] D. D’Alimonte and G. Zibordi, “Phytoplankton determination in an optically complex
coastal region using a multilayer perceptron neural network,” IEEE Trans. Geosci.
Remote Sens., wvol. 41, no. 12, pp. 2861-2868, Dec. 2003, doi:
10.1109/TGRS.2003.817682.

[49] C.J. Willmott, “ON THE VALIDATION OF MODELS,” Phys. Geogr., vol. 2, no. 2,
pp. 184-194, 1981, doi: 10.1080/02723646.1981.10642213, doi:
10.1080/02723646.1981.10642213.

[50] C. Zhang, C. Hu, S. Shang et al., “Bridging between SeaWiFS and MODIS for
continuity of chlorophyll-a concentration assessments off Southeastern China,” Remote
Sens.  Environ., vol. 102, no. 3, pp. 250-263, 2006, doi:
https://doi.org/10.1016/j.rse.2006.02.015.

[51] M. Marrari, C. Hu, and K. Daly, “Validation of SeaWiFS chlorophyll a concentrations
in the Southern Ocean: A revisit,” Remote Sens. Environ., vol. 105, no. 4, pp. 367-375,
2006, doi: https://doi.org/10.1016/j.rse.2006.07.008.


https://doi.org/10.20944/preprints202107.0232.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 July 2021 d0i:10.20944/preprints202107.0232.v1

30

[52] D. F. Watson and G. M. Philip, “A Refinement of Inverse Distance Weighted
Interpolation,” Geoprocessing, vol. 2, no. 4, pp. 315-327, 1985, [Online]. Available:
https://www.semanticscholar.org/paper/A-refinement-of-inverse-distance-weighted-
Watson/05460f45dedh446b391889138aef84074986aead.

[53] V.Chaplot, F. Darboux, H. Bourennane, S. Leguedois, N. Silvera, and K. Phachomphon,
“Accuracy of interpolation techniques for the derivation of digital elevation models in
relation to landform types and data density,” Geomorphology, vol. 77, pp. 126-141,
2006, doi: 10.1016/j.geomorph.2005.12.010.

[54] J. P. Musashi, H. Pramoedyo, and R. Fitriani, “Comparison of Inverse Distance
Weighted and Natural Neighbor Interpolation Method at Air Temperature Data in
Malang Region,” CAUCHY — J. Mat. MURNI DAN Apl., vol. 5, no. 2, pp. 48-54, 2018.

[55] D. Coleman, “Mann  Whitney Testing with  Minitab,” 2015.
https://www.leansigmacorporation.com/mann-whitney-testing-with-minitab/ (accessed
May 12, 2020).

[56] S. C. Doney, “Plankton in a warmer world,” Nature, vol. 444, no. 7120, pp. 695-696,
2006, doi: 10.1038/444695a.

[57] W. Sunda, “Feedback Interactions between Trace Metal Nutrients and Phytoplankton in
the Ocean,” Front. Microbiol., vol. 3, p. 204, 2012.

[58] K. Hayase and N. Shinozuka, “Vertical distribution of fluorescent organic matter along
with AOU and nutrients in the equatorial Central Pacific,” Mar. Chem., vol. 48, no. 3,
pp. 283-290, 1995, doi: https://doi.org/10.1016/0304-4203(94)00051-E.

[59] A. Wirasatriya, Kunarso, L. Maslukah, A. Satriadi, and R. D. Armanto, “Different
responses of chlorophyll-a concentration and Sea Surface Temperature ( SST ) on
southeasterly wind blowing in the Sunda Strait,” in IOP Conf. Series: Earth and
Environmental Science 139, 2018, pp. 1-7, doi: doi :10.1088/1755-1315/139/1/012028.


https://doi.org/10.20944/preprints202107.0232.v1

