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Article
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Abstract: A systems-oriented review of machine learning (ML) over the entire flood management
spectrum encompassing, fluvial flood control, pluvial flood management and resiliency-risk character-
ization was undertaken. Deep learners like long short-term memory (LSTM) networks perform well
in predicting reservoir inflows and outflows. Convolution neural networks (CNN) and other object
identification algorithms are being explored in assessing levee and flood wall failures. The use of ML
methods in pump station operations are limited due to lack of public-domain datasets. Reinforcement
learning (RL) has shown promise in controlling low impact development (LID) systems for pluvial
flood management. Resiliency is defined in terms of vulnerability of a community to floods. Multi-
criteria decision making (MCDM) and unsupervised ML methods are used to capture vulnerability.
Supervised learning is used to model flooding hazards. Conventional approaches perform better
than deep learners and ensemble methods for modeling flood hazards due to paucity of data and
large inter-model predictive variability. Advances in satellite-based, drone-facilitated data collection
and Internet-of-Things (IoT) based low-cost sensors offer new research avenues to explore. Transfer
learning at ungaged basins holds promise but is largely unexplored . Explainable Artificial Intelligence
(XAl is seeing increased use and helps the transition of ML models from black-box forecasters to
knowledge-enhancing predictors.

Keywords: flood resiliency; artificial intelligence; deep learning, XAlI; flood forecasting; flood life cycle;
deep learning; recurrent Learning

1. Introduction

Floods are said to occur when flows occur on an otherwise dry land or when the flow in a water
body is well above normal values. There are many types of flood defined as per when and where they
occur. Fluvial floods are known to occur when water levels in the channel flow over the banks and
spill into the floodplain. Pluvial floods are caused by water directly accumulating on land surface that
are not necessarily near a river. Coastal floods are caused when seawater is pushed onto land by high
tides, storm surges and tsunamis. Urban floods are a type of pluvial flooding where flooding occurs in
urban areas mainly due to excessive amount of impervious surfaces and insufficient drainage systems.
Flash floods occur when a large amount of rain falls over a short-period of time. The high intensity of
rainfall reduces the amount of infiltration and quickly leads to runoff. While not very common, the rise
of groundwater levels in low-lying areas can also lead to flooding and is referred to as groundwater
floods [1].

Flooding is a common natural disaster that affects every part of the Earth and causes billions of
dollars of damage and even loss of life in many parts of the world. The US Department of Homeland
Security states that 90% of the natural disasters in the US involve flooding [2]. Climate change models
indicate that floods will become more intense and also increase in frequency in many parts of the
world [3,4]. Increased urbanization to accommodate growing global population and heterogeneous
economic growth is also diminishing natural infiltration capacity and increasing runoff and flooding
in many areas [5]. In addition, improper construction of flood mitigation structures, dam breaks and
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other engineering failures can also lead to flooding [6]. Given the large-scale economic, environmental
damages and health and loss of life hazards to humans, the deleterious impacts of floods must be
prevented when possible or at least minimized to reduce damages.

It is important to ensure that flooding impacts on humans are either fully eliminated or controlled
to the extent possible. Developing such strategies to combat flooding is not easy as the main drivers of
flooding - 1) Weather and climate and 2) land use alterations cannot be predicted with a high degree of
certainty and are prone to change. The impacts of floods must be managed so that the community can
rebound back to normalcy as soon as possible. As societies continue to learn from flooding diasters -
How have flood management paradigms changed over time? and what are the current approaches
with regards to managing flooding risks?

Flood management requires decision-makers to have reliable data on various aspects. These data
include, flooding characteristics such as peak flows, flood duration, flood volume, flood inundation
depths. Factors causing flooding such as precipitation and land use alterations must be known as
well. In addition, information on population distribution, social chracteristics, economic assets that
are directly in the line of flooding hazards must also be mapped. Such data are not only useful
for immediate flooding emergency response operations, but also to guide the development of new
flooding infrastructure to absorb the shocks of flooding or at least mitigate their impacts to acceptable
tolerances. In case of riverine flooding, the impacts on aquatic and riparian habitats and ecosystems are
also of concern. Much of these data are hard to obtain and are not deterministic in nature. Therefore,
decisions regarding flooding have to be made under considerable uncertainty.

Mathematical models have been used to support flood decision making. Models can be used to
translate rainfall into runoff (for a given set of land use) and estimate the dimensions of flood such
as peak flows in rivers, the area likely to be inundated, the depth of water on urban transportation
infrastructure. These models are used not only for quantifying flooding related hazards, but also used
to design flood control and flood mitigation structures, assess risks to humans and the environment
due to flooding and develop new policies and guidelines that help in proactively combating the effects
of flooding.

A wide range of tools and techniques have been proposed using a variety of different mathematical
strategies. Mathematical models built using conservation principles of physics and at varying levels of
spatial and temporal complexity have been available for some time now and continue to be widely
used [7]. In a similar manner, a broad range of statistical tools have been used for flood estimation
and forecasting [8,9], multivariate flood risk assessment frameworks [10,11]. In recent times, the use of
machine learning (ML) methods is gaining ground [12]. ML methods are universal approximators that
can capture highly nonlinear relationships. As such, their utility for flood forecasting has garnered
much interest in recent times. The literature identified using a simple search “Flood and Machine
Learning” has more than doubled from 19000 documents retrieved in 2015 to over 40,000 documents
in 2024 by Google Scholar [13]. This change is indicative of the growing interest in using ML for flood
forecasting and management studies.

The proliferation of machine learning methods in flood prediction applications has also led to
several review papers in recent years [14,15]. However the emphasis of these reviews have largely
been on prediction aspects. While predicting floods is indeed an important task, flood management
also entails many other tasks such as ranking and prioritization of sites and susceptibility mapping.
A review of machine learning usage in the context of flood management practices has not been
undertaken to the best of the authors’ knowledge. The main goal of this paper is to fill this important
gap that currently exists in the literature.

The lack of a suitable review of machine learning methods for flood management also suggests
that there are likely several unexplored directions of research. Identifying these unexplored directions
will stimulate new avenues of research and address those aspects where machine learning methods
can offer benefits that have not yet been brought to fruition. In a similar vein, newer studies will also
make machine learning models more congruent with the needs of flood risk management.
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To achieve the above-mentioned goals, the rest of the paper is organized as follows - 1) The
methodologies adopted in this review are presented; 2) A brief review of flood management paradigms
is undertaken to help readers understand how flood management has shifted from a more command-
control approach to a more holistic resiliency paradigm that not only seeks to mitigate flooding hazards
but also help bounce back to the original (or a better) state upon the cessation of flooding. To properly
evaluate the benefits of machine learning it is also important to assess the strengths and limitations
of physics-based models which have been used in flood studies over a longer period of time. The
main physics-based modeling tools available today are briefly reviewed along with their strengths and
limitations next. This evaluation seeks to set the stage of evaluating machine learning models. For sake
of completeness, machine learning models are briefly described and their role in flood management is
explored in greater detail.

2. Methodology

While the primary focus was on machine learning applications over the entire gamut of flood
management, presenting a brief evolution of risk management frameworks from command-control
type approaches to a community-focused resiliency approach was deemed necessary to place the
review in proper context. Physics-based models provide a theoretically rigorous approach to flood
modeling and continue to be used today. Figure 1, depicts the resiliency paradigm adopted in this
study. Resiliency here is viewed as an umbrella of tools, technologies and policies that contribute
towards a common goal of withstanding flooding threats or improving the ability of communities to
quickly bounce back to normalcy or better after the flood.

— — —
—_—
— i _—

— Flood Resiliency ~

Community Impacis/

/ S iy R \

Figure 1. Resiliency Framework Adopted for Structuring the Review.

Physics-based methods and machine learning methods are not competitors and can be used in
a synergistic manner. Therefore, a brief overview of some commonly used machine learning codes
were briefly reviewed here. While machine learning methods have gained popularity and wide-
spread usage, these tools and methods are not routinely taught in water related curricula. Many
decision-makers may be unaware of different types of learning algorithms that Machine learning offers.
Therefore a brief overview of machine learning methods are also reviewed for the sake of completeness.
A narrative review approach was adopted for these topics as the goal was to summarize key concepts
and provide context and structure for a more comprehensive machine learning models across the
flooding life-cycle [16].

Having presented the conceptual life-cycle of flooding, a detailed systematic review of literature
pertaining to each topic was undertaken [17]. Major bibliographic databases - 1) Web of Science —
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Core Collecton 2) Scopus and 3) Google Scholar were utilized to identify over 5,000 references using a
suite of key words such as - ‘flood reservoir inflows+ Machine learning”” “Flood reservoir outlfows +
Machine Learning”; “Flood Resiliency - Machine learning”. The search was constrained to a custom
range of 2019 - 2025 (both inclusive) as the number of publications focused on machine learning have
increased exponentially over this period, with many new advancements. The literature was trimmed
down to those presented mostly in Q1, Q2 journals or in respectable conference proceedings such as
IEEE conferences which undergo peer-review. The inclusion of conference proceedings were deemed
necessary as some newer innovations particularly using sensors and ML appeared in such publications.
Other journals were utilized when the paper had something unique to offer. The focus largely was
on those publications that provided methodological advancements, rather than those which simply
presented newer case-studies without any significant methodological contributions.

Given the vast and growing literature in this area, no claims of completeness are being made here.
However, the review comprehensively captures major strands of research inquiry. The primary focus of
this systematic review was to identify common themes and patterns in literature. Figure 1 presents the
definition of resiliency and major themes around which the review is organized. Drawing insights with
regards to ML algorithms used and factors influencing their performance. As performance metrics tend
to be site specific and affected by the quality of data, the focus was not on quantitative evaluations but
on how the models performed overall, what challenges were faced across different aspects of the flood
management life cycle and what the unexplored directions were. The focus was on identifying themes
and creating generalization framework that will enable decision-makers, researchers and practitioners
evaluate future studies using the frameworks and insights presented here.

3. Evolution of Flood Management Practices
3.1. Fluwvial Flood Control

Early flood mitigation efforts were largely focused on controlling the harmful effects of flooding
to humans and was based on the notion that flooding, while inevitable, could be fully controlled. Flood
control projects were largely structural in nature and involved building large-scale facilities to store
flood waters and both delay and attenuate the flood wave to protect downstream communities. Even
today, riverine flood control structures provide the first line of defense against flooding waters arising
from upstream areas. These structures include reservoirs, levees, flood walls and pump stations.

Reservoirs are constructed across a river and usually have extra free-board and sluice-and-gate
mechanisms to control flooding. Levees are earthern embankments built alongside the river to prevent
water from overflowing. River walls serve the same function as levees but are often built with concrete.
Pump stations are used to pump excess water that is flowing out of the levees or flood walls and pump
that water back into the river.

Despite several flood control projects being undertaken, flooding continues to be a problem in
many parts of the world [18]. Building new or scaling up existing flood control infrastructure is cost
prohibitive and highly dependent upon the quality of hydrologic information that is available at
the site [19,20]. The increased climate variability also adds uncertainty with regards to hydrological
information and makes scale up of existing projects challenging [21].

3.2. Pluvial Flood Management

With increased urbanization, the impacts of pluvial flooding became significant. The growing
recognition that controlling fluvial flooding was alone insufficient and humans and the environment
must be protected from pluvial flooding. Flood management now sought to create an environment
where humans can learn to live with floods. Retention and detention basins, culverts and green
infrastructure such as rain gardens, bioswales, blue roofs and enhanced infiltration systems (e.g.,
permeable pavement) prevent flood water from accumulating in residential areas [22,23]. In a similar
vein, non-structural measures such as zoning laws that restrict development in flood prone areas,
increase public awareness and employ early-warning systems to evacuate people to safer areas are also
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utilized [24-26]. Rather than keeping the flood waters away from humans (as is the case with flood
control), flood management also sought to keep humans away from flooding hazards. This approach
of flood management was largely based on the notion of identifying the susceptibility of a land parcel
to flooding (e.g., 100 year floodplain) and using that information to keep people away from flooding
impacts through structural and non-structural measures[27].

While coastal and riparian areas are prone to flooding, they also offer several other significant
opportunities such as access to water-based trade routes, fishing and aquaculture operations and
enhanced recreation activities. The number of people living in coastal areas have increased substantially
over the last few decades with nearly 40% of the world’s population residing within 100 km of the coast
[28] and over 50% of the population within a few kilometers of a water body [29]. Flood insurance
programs provide safety net for people susceptible to flooding damages. These programs rely on
risk assessments to evaluate the probability of a flood hazard that a person and/or infrastructure is
exposed to in developing insurance policies and setting premiums.

While flood risks have been defined in multiple ways, using both qualitative and quantitative
measures, widely used definition views flooding as a product of hazard, value and vulnerability [30].
Hazard characterizes the threatening event including its probability of occurrence, the values or (values
at risk) denote humans, infrastructure and other assets that present at a location and vulnerability
is the lack of resistance to withstand the damaging forces of the hazard causing event. Flood risk
management uses the risks of flooding hazards as the basis for management and seeks to develop
structural and non-structural measures that mitigate the effects of hazards to acceptable levels of risks
[25].

3.3. Resiliency-Based Flood Management

While floods do cause damages to both humans and the environment, they are important for
sustaining river and floodplain ecosystems. Floods transport fine sediments and energy required for
riverine flora and fauna. In addition, the disturbances created by flood and droughts are essential for
fostering ecological biodiversity [31,32]. The ecological importance of floods is no longer a theoretical
construct but has been integrated with reservoir operations for flood control [33]. Flood management
is transitioning from human-centric approaches towards more holistic frameworks [34].

The recognition of the importance of flooding for the functioning and sustainability of vibrant
riparian ecosystems coupled with the inadequacy of flood control strategies, the movement of flood
mitigation from being a command-control type engineering endeavor to a more stakeholder-driven,
participatory community-based effort has brought to light the concept of flood resiliency. While the
definitions of flood resiliency continue to evolve [35], the synthesis of resiliency definitions from
a wide range of disciplines provided by [36] has seen widespread usage in resiliency-based flood
management studies [37,38]. In this approach, flood resiliency approaches are categorized into three
types - 1) Engineering resiliency; 2) Ecological resiliency and 3) Socio-ecological resiliency (see Figure 2).
While the words engineering, ecological and socio-ecological are used in this approach, they are not
domain-specific and have been used in diverse systems and applications [37].
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Figure 2. Common Definitions of Resiliency.

The main idea of engineering resilience is to create systems that can withstand hazards and not
fail. If and when failure does occur, these systems need to bounce back to their original (pre-flooding)
stage quickly. The traditional design of hydraulic infrastructure is based on the idea of engineering
resiliency. The concept of return period (or the average time of recurrence of a flooding event of a
certain magnitude or higher) is used for design of structures that aim to control floods (dams and
levees), mitigate their effects (detention and retention basins) or otherwise interact with floods (e.g.,
bridges) and suitable for use in single systems [39].

The ecological resilience typically is applied to a system with multiple interconnecting parts. This
allows the system to adjust and cope with flooding hazards. For example, early warning systems allow
people to procure supplies in advance, take other precautionary measures (e.g., evacuate to a higher
elevation) to cope with short-term floods. The socio-ecological resilience focuses on complex-adaptive
systems (or a system of systems). Here the system may not come back to its original state but adapts
and transforms to a better state. For example, relocation of people out of the floodplains to areas with
lesser inundation risks are undertaken after many devastating hurricanes [40].

It is important to recognize that flood resiliency is not independent of flood control and flood risk
management approaches. Rather, the resiliency paradigm subsumes both flood control and flood risk
management concepts. From this viewpoint, the resiliency provided by flood control and risk-based
structural and non-structural alternatives is evaluated and improved upon in most flood resiliency
endeavors so as to benefit from past investments in flood planning and course correct in light of new
information [38]. While the goal of any flood planning endeavor is to minimize the risks of flooding to
humans and the environment, socio-ecological resiliency based planning and management challenges
to think outside the box and evaluate if converging to a new equilibrium is better (or worse) than
trying to get back to the original state.

Regardless of the methodology adopted, flood management is a costly endeavor that requires
considerable investments in infrastructure and a time-consuming process where diverse and often
conflicting views and values have to be reconciled effectively.

4. Physics-Based Models for Flood Management

Quantitative information is paramount to flood management. Estimates of runoff, streamflows,
the nature and extent of inundation, the frequency and magnitudes of extreme rainfall are therefore
a major component of flood management endeavors. It is not only important to analyze historical
floods but also develop robust estimates for future conditions, especially given the recognition that
past climate is not necessarily a good indicator of future flooding events [41]
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Mathematical models used for flooding can be categorized as - 1) White-box models, 2) Grey-box
models and 3) Black-box models. White-box models are most rigorous and employ mass, energy and
momentum conservation principles. Grey-box models are based on the conservation of mass principle,
along with empirical laws to describe flooding. 3) Black-box models are completely empirical and
built on site-specific data.

Both white-box and grey-box models are referred to physics-based models as they are based
on physical principles. The development and application of these models dates back to at least 100
years [42]. Physics-based models can be developed for a wide range of systems such as, streams and
rivers, watersheds, reservoirs and wetlands. In addition, they can be developed to study combined
interactions like - climate-hydrology dynamics [43], human-water linkages [44] and food-energy-water
nexus [45].

Flood planning studies often employ more than one model. For example, a conceptual hydrologi-
cal model can be used to model fluvial flood discharges into a stream, while a hydraulic routing model
can be used to study fluvial flooding. When multiple models are used, they can be loosely-coupled
(meaning the two models are separtely run) or tightly-coupled (one software allows running of all the
models with seamless data transfer between them). The application of physics-based models entail
many aspects. Salient modeling considerations are presented in Table 1

Table 1. Factors Affecting the Complexity of Models used in Flood Risk Management.

Concept

Types

Remarks

Model Spatial Dimensions

0D, 1D, 2D, 3D

0D models are also called
lumped or box models

Model Spatial Discretiza-
tion

Lumped, semi-
distributed,
fully-
distributed

Semi-distributed models
define the watershed us-
ing subwatersheds. Fully
discretized models use
grids. Hundreds to thou-
sands of grid cells are
used to cover the water-
shed of interest

Time Dimensions

Steady-state;
Dynamic

Steady-state models are
time-invariant, while dy-
namic models can vary
in time (e.g., subhourly,
hourly, daily, monthly, an-
nually)

Event Type

Single Event,
Continuous

Continuous models oper-
ate during wet and dry pe-
riods, while single event
models simulate flood-
ing associated with single
rainfall event.

Process Description

Linear, nonlin-
ear

A model is nonlinear if
even one of the process is
expressed using nonlinear
equations

Solution Scheme

Analytical, Nu-
merical

Analytical models use ex-
act solutions, while nu-
merical schemes use ap-
proximate methods such
as the finite-element or
finite-difference schemes

Several software simulators have been developed by various agencies to support flood manage-
ment. Widely used software simulators are presented in Table 2. A wide range of engineered and
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natural systems pertaining to flood control can be modeled using these software at varying levels of

complexity.
Table 2. Commonly used Software for Flood Management.
Software| Type Developer | Description Major Outputs
HEC- Lumped USACE Pluvial flood fore- | Outflow  hydro-
HMS and  Semi- casting; River rout- | graphs; peak flow
Distributed ing
HEC- Fully- USACE River hydraulics, | Water elevation, in-
RAS Distributed dam breach undation mapping;
(1D/2D) velocity
SWMM | Semi- USEPA Urban drainage, | Stormwater hydro-
Distributed pluvial flooding, | graph, flood depth,
green infrastruc- | sewer overflows
ture
SWAT Semi- Texas Agril- | Watershed stream- | Streamflow, flood-
Distributed | ife/USDA | flow, sediment and | ing, long-term hy-
pollutant transport | drology and water
quality concentra-
tion
Mike 11 | Lumped/Semi- Delft Hy- | 1D River and chan- | Flood hydrograph,
Distributed | draulics nel modeling water level dis-
Institute charge
Mike 21 | Fully  Dis- | Delft Hy- | 2D model for urban | Water depth, veloc-
FM tributed (2D) | draulics flooding ity fields, flood in-
Institute undation maps
Mike Fully Dis- | Delft Hy-| 1D and 2D River | Flood Hydro-
Flood tributed draulics and channel mod- | graphs, Discharge,
(1D/2D) Institute eling. Integrates | inundation maps
Mike 11 + Mike 21
Mike Semi- Delft Hy- | Urban stormwater | Water levels, hydro-
Urban | Distributed | draulics and pluvial flood- | graph and sewer
Institute ing outflows
TUFLOW Fully  Dis- | Tuflow.com | Stormwater, plu-| Water elevations,
tributed vial flooding, | velocities, inunda-
(1D/2D/3D) drainage networks | tion extent
Flow- Fully Distr- | Flow  Sci- | Computational 3D velocity profiles,
3D buted 3D ence Inc. Fluid Dynamics | water elevations
Model for dam | and flood propaga-
break and complex | tion
urban flows

4.1. Shortcomings of Physics-based Models

While physics-based models offer great theoretical rigor, their implementation is challengng on
several fronts. Physics-based models contain model inputs that cannot be directly measured. These
parameters have to be estimated indirectly from available observations. The process of obtaining
unknown model inputs using observed outputs is called the inverse-problem in mathematics or
calibration in hydrologic literature. The inverse problem is mathematically ill-posed and therefore does
not yield unique solutions. In other words, different subsets of model inputs can result in similar output
predictions [46]. Typically available hydrologic records at most sites only allow reliable estimation of a
few parameters [47]. Efforts to improve model calibration has focused on using expert knowledge to
guide calibration [48] and /or regularization schemes that seek to restrict the number of calibration
parameters during calibration [49,50], using other surrogate information [50] to guide calibration, using
ensemble methods [51] to construct confidence bounds by employing parallel computing approaches
[52]. However, these improvements still largely remain in the theoretical regime and not widely used
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in routine flood management studies. Sensitivity and uncertainty in model outputs due to uncertainty
and variability of inputs is recommended to understand limitations of estimates like inundation
obtained from physics-based models [53].

As physics-based models require calibration, their usage in ungaged basins becomes even more
challenging due to lack of long-term output data [54]. Regionalization approaches are often employed
to overcome this limitation. Calibrated data from nearby, and/or, similar systems are scaled for use in
the ungaged basin [55,56]. Scaling of hydrological phenomena is however non-trival and the success
of regionalization depends upon the amount of informative content that is present to facilitate scaling
[57]. Nesting ungaged watersheds within gaged watersheds is beneficial if the gaging density of the
larger watershed is sufficiently high [58].

The ability of physics-based models to capture flood peaks is also of concern. This limitation
stems from several factors - 1) Most flood models operate on a time-step of days and months due to
availability of rainfall records at those scales. However, flooding is a much more dynamic phenomenon
that causes changes in flows in the order of minutes to hours. The coarse temporal discretization limits
the ability of the model to capture fine-scale changes [59]. Models make several other approximations
to simulate various hydrological processes, these simplifiations do well in capturing general trends,
but cannot adopt to sudden changes in flow regimes [60]. 2) The Root mean square error (RMSE) or its
variant, the Nash-Sutcliffe Efficiency (NSE) are widely used for model calibration. Minimization of this
metric entails a trade-off in capturing a large number of low-flow events and relatively few high-flow
events which often leads to over-estimation of low flows and under-estimation of peak flows. The use
of newer error metrics like the Kling-Gupta Efficiency (KGE) [61] can ameliorate this impact [62]. 3)
The amount of data available also impacts the abiliy capture peak flows [63]. Clearly, errors in flood
forecasts induces uncertainty in flood planning and management.

5. Machine Learning Modeling - Background

The limitations associated with physics-based formulations coupled with recent and rapid ad-
vancements in artificial intelligence (Al) and machine learning (ML) has increased the exploration of
machine learning methods in applications focused on flood management. Machine learning models
are not new, the term was coined by Arthur Samuel back in the year 1959 [64]. A timeline of major
advancements in machine learning is presented in Figure 3. Algorithms developed in the 1960s such
as K-nearest neighbors (KNN) are in use even today [65].

Artificial Neural Networks (ANN) have been around at least since mid 1980s and some of the
early application of this technique for streamflow forecasting dates back to early 1990s [66,67]. In a
similar vein, an early application of tree-based learners for flood studies can be traced all the way back
to 1992 [68]. The number of applications of machine learning models has shown steady increasing
pace through 1990s - 2010s congruent with algorithmic developments in this period.

In recent years, the number of papers has grown exponentially given the large-scale availability of
data, general purpose libraries such as Scikit Learn [69] and Tensorflow [70]. Computational power has
also increased significantly in the last decade with the availability of graphical processing units (GPU)
and Tensor Processing Units (TPU) on some platforms. Unlike conventional central processing units
(CPU), GPU support parallel floating point operations (FLOPs) that speeds up large-scale computations.
TPUs utilize a grid of parallel processing elements through which computations are processed in a
synchronous manner.
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Figure 3. Timeline of Major Breakthroughs in Machine Learning

Prior to reviewing the use of machine learning for flood management, a brief overview of major
learning strategies employed is presented to contextualize their utility in flood management studies.

5.1. Machine Learning Strategies

As shown in Figure 4, the four main types of ML are — supervised learning, semi-supervised
learning, unsupervised learning and reinforcement learning. In supervised learning, a ML model is
trained using a datasets that has both the inputs (features) and the output (labels). Outputs can be
continuous or discrete. Supervised learning methods that employ discrete labels are referred to as
classifiers, while those mapping continuous labels are called regressors. Unsupervised learning on the
other hand is trained on a dataset that has no labels and is often used to cluster data. Semi-supervised
learning uses a dataset where there are some data with labels and others without labels. This approach
can be used for both classification and regression tasks. Reinforcement learning (RL) focuses on
developing a long-term (operating) policy that maximizes long-term reward , while RL algorithms can
in theory be used for classification, regression and clustering tasks, they are not specifically designed
with these applications in mind, but are better suited for decision making and control [71].
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Humans use different approaches to learn information. Cognitive approaches focus on using
past experiences and knowledge for making decisions and solving new problems. These strategies
can range from simple memorization of facts, forming rules of thumb to guide decisions. In a similar
vein, humans also decide when to learn what information, evaluate and discern among competing
pieces of information to make a decision based on the weight of the evidence provided by them.
Human decision making is not always individualistic but involves collaboration (bagging) with peers
and partners. Humans also exhibit the ability to build and improve on their previous experiences
(boosting). Machine learning models that try and mimic the cognitive capabilities of humans can be
categorized as cognitive-inspired machine learning (CIML) approaches.

Biological adaptations modify how stimuli (data) are sent to the brain (central processing unit)
and how they are processed to create new information. Evolutionary changes happen over longer
time-scale and change the biological makeup to improve survival. On shorter timescales, humans
(living beings) also exhibit the ability to change their physical and neurological conditions to adapt to
new conditions, learn new skills or adapt to a new environment. In particular, the brain can reorganize
and form new neural connections — this phenomenon is referred to as neuroplasticity and a key
mechanism by which the brain adapts to new information and environments.

Neuroplasticity plays a key role in memory, mortar learning and helps recover from brain injuries
and is controlled by the nature of the stimuli [72] Machine learning models that mimic evolution
and/or the structure of the nervous system and the functioning of the brain can be categorized as
biologically-inspired machine learning models (BIML).

A variety of machine learning models have been developed over the last seven decades (see
Figure 4). Learning strategies provide a quick way to understand the broader ideas related to machine
learning algorithms. Table 3 provides a grouping of machine learning algorithms based on their
learning styles.
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Table 3. Learning Strategies of Machine Learning Algorithms.

Learning Descrip- | Style | Machine Example Method
Learning tion Learning
Strategy Type
Rule-based | Codifies the re-| CIML | Supervised | Classification and
learners lationship as Regression  Trees
(A type of | IF-THEN rules (CART), Multi-
associative variate Adaptive
learning) Regression Splines
(MARS)
Lazy Learn- | Memorizes data, | CIML | Supervised | K-Nearest Neigh-
ing defers  learning bor (KNN); Case-
until  prediction based Reasoning
time (CBR)
Eager Learn- | Learns general | CIML | Supervised Support Vector
ing function during | & Machines (SVM);
training BIML Naive-Bayes (NB),
Artificial Neural
Networks (ANN)
Reinforcement Learns by interact- | CIML | Reinforcement Q-Learning, Policy
Learning ing with the en- Gradients
vironment with re-
wards and penal-
ties
Evolutionary | Learns using prin- | BIML | Supervised, | Supervised -
Learning ciples of genetic unsuper- Symbolic  regres-
encoding and sur- vised and re- | sion; Unsuper-
vival of the fittest inforcement | vised - Evolu-
paradigms learning tionary  Cluster-
ing;Reinforcement
— symbolic policy
learning
Hebbian Learns by | BIML | Unsupervised| Self-organizing
Learning strengtening learning Maps (SOM);
co-activating Neural Hebbian
neurons Nets
Corrective Leans by minimiz- | BIML | Supervised | Artificial Neural
Learning ing errors of predic- & Unsu- | Networks (ANN)
(Delta rule | tions pervised using backpro-
learning) learning pogation or it
variants
Greedy Makes locally | CIML | Supervised | Approach adopted
learning optimal decisions | and Learning by CART, deep
at each step rather | BIML neural nets and
than seeking a other algorithms
globally  optimal that have a large of

solution

decision variables
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Competitive | Competition helps | CIML | Unsupervised| Self-Organizing
learning select a winner and & Su- | Maps (SOM); En-
BIML | pervised semble classifiers
learning
Active learn- | Model queries a hu- | CIML | Mostly su- | Diversity Sampling
ing man or a database | and pervised (DS)and Query-by-
for informative | BIML | learning Committee (QBC),
samples while uncertainty deter-
learning mination and min-
imization
Multi-task Model learns more | CIML | Supervised | The idea of multi-
learning than one output tasking is cognitive,
from a set of inputs but BIML models
can be wused to
achive this cog-
nition such as
multi-input-multi
output  (MIMO)
models - MIMO-
ANN
Collaborative | Multiple models | CIML | Unsupervised| CIML and BIML
Learning are developed and | and and super- | models can be com-
combined to im-| BIML | vised bined in this ap-
prove predictions proach
Bagging Trains  different | CIML | Supervised | Random  Forest,
models using boot- Bagging Trees -
strapped samples A Special form of
of data Ensemble learning
Boosting Trains sequential | CIML | Supervised | AdaBoost, Gradi-
models to correct ent Boost, XG Boost.
previous errors Another form of
Ensemble learning
Deep Learn- | Typically a neural | BIML | Supervised | Deep Belief Net-
ing network  model and Unsu- | works and many
with multiple lay- pervised variants
ers to handle big
data
Attention Focuses onmostim- | BIML | Supervised | Commonly used
Learning portant data for pre- in deep neural
diction networks
Adversarial | Generator and Dis- | BIML | Traditionally | Generative  Ad-
Learning criminator compete unsuper- versarial Network
to improve model. vised, but | (GAN); A deep
Akin to Predator- can be mod- | learning method.
Prey dynamics ified for | Conditional GAN
supervised | (cGAN) for super-

learning

vised learning
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Recurrent Remembers  pre- | BIML | Supervised | Long Short-Term
Learning vious data via learning Memory (LSTM)
memory cells or network, Elman
recurrent connec- Machines. A form
tions. Used with of deep learning
sequential  data
such as time-series
and text sequences
Convolutional| Uses moving win- | BIML | Supervised | Useful for gridded
Learning dows to sample learning data. Convolution
features, pool data Neural Networks
to retain importan (CNN). A form of
features and them deep learning.
perform nonlinear
mapping
Encoder- Encodes and de-| BIML | Supervised | Autoencoders-
Decoder codes data and and Unsu- | Decoders; Trans-
Learning useful for data pervised former models.
compression, A form of deep
generation  and learning
transformation
Self- Model creates | BIML | Unsupervised| Used to fill missing
Supervised | ‘pseudo-labels’ / Hybrid values particularly
Learning from input data for in images.
training supervised
models

More than one learning strategy presented in Table 3 can be adopted for a given task such as
mapping nonlinear input-output relationships.

5.2. Calibration of Machine Learing Models

Machine learning models are empirical in nature, therefore the model parameters are unknown
and have to be determined via calibration, particularly in the case of supervised learning. In un-
supervised learning, there is no calibration per se, but distance between points within a cluster are
minimized while the distance between two independent clusters are simultaneously optimized. While
physics-based models are often calibrated using both automatic (optimization-based) and manual
methods, machine learning models are calibrated almost exclusively using automatic optimization
based methods. In case of supervised classification, an error metric, such as the root-mean square error
(RMSE) is minimized. The objective function that is minimized is commonly referred to as the loss
function in machine learning literature. Similarly, the calibration of the supervised learning model is
referred to as training the model.

Typically, the calibration of a supervised ML is carried out by splitting the available dataset
into two parts. The first part is called the training dataset which is used to train the model and the
second part the testing dataset. The training dataset is used to obtain unknown model parameters
(e.g., weights of neural network) by minimizing a loss function. The performance of a model is then
assessed by comparing the model predictions against the testing dataset that contains data that the
model has not seen before. ML model algorithms also have a set of parameters that are necessary
to define the structure of the model or to implement the optimization routines necessary for model
calibration. These parameters are called "hyper-parameters’.
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Hyper-parameters are either set based on previous studies, but most often are estimated (opti-
mized) during the calibration process. When hyper-parameters are optimized as part of the training
process, the training dataset is further divided into two parts — Training Data and Validation dataset.
The training dataset is used to train the model, the validation data is initially used to test the perfor-
mance of the training under a given set of hyper-parameters and select their optimal values. Once the
hyper-parameter values are identified, the validation dataset is subsumed into training dataset and a
final training is performed on the model. Validation datasets are also useful for early stopping (i.e.,
when the validation error increases even when the training error is decreasing as training progresses.
Similarly, the validation dataset can be used to select the best model for a subset of models or use the
validation error metrics to weigh different models within an ensemble.

Typically, the dataset is randomly split into training and testing subsets. In case of sequential data
(e.g., time-series) the first part of the data is used for training while the latter part of the data is kept
aside for testing. Train-testing splits of 70%-30% or 80% - 20% are common. Typically, 10% - 20% of the
training data is used for validation.

Overfitting occurs when a model is able to predict the training data very well, but demonstrates a
rather poor performance on the testing (independent) dataset. Overfitting generally implies the model
has too many degrees of freedom(parameters) than necessary. Thus the model is able to learn the noise
in the data, rather than focus on generalization. Overfitting can also occur with hyper-parameters. The
validation dataset is used to avoid overfitting of hyperparameters. Regularization methods are widely
used to prevent over-fitting, a regularization function adds a penalty with increasing weights, which
causes the model to effectively drop some weights during the calibration to reduce the penalty on
model performance. Overfitting is more likely in deep neural network models due to their complexity
and more aggressive approaches such as dropout (where certain nodes are dropped from training with
a certain probability) are used to prevent over-fitting.

Training of supervised learning models typically occur by sending small batches of data through
the model to adjust weights. Each run with a model is called a training epoch. The stochastic gradient
descent algorithm (SGD) is commonly used for model calibration [73]. Automatic or Algorithmic
differentiation (AD) is widely used to compute gradients without significant numerical errors [74].
These gradients are used to identify newer estimates of parameters which reduce the loss function
to the lowest possible value. However, in deep neural networks, the gradients of weights of early
layers practically become zero (i.e., vanish) making the training using conventional gradient descent
ineffective. Greedy learning uses layer-by-layer training to eliminate the effects of vanishing gradients
and effectively training deep networks. Greedy learning approaches are also used in other ML models
such as random forests and gradient boosting methods [75].

5.3. Explainable Machine Learning

While machine learning models can provide accurate predictions and map highly nonlinear input-
output relationships, interpretability of the model is a major limitation. In this regard, physics-based
models and statistical models (e.g., linear regression) perform much better as the model equations and
parameters can be readily interpreted.

Explainable machine learning (XAI) is a rapidly emerging field of ML that seeks to improve the
understanding of the inner workings of ML models. XAI provides several benefits, most important
of which is the increased trust in using this models in mission critical applications such as flood
forecasting. XAl also helps evaluate if the model is based on biased data and help debug the models
and improve their work.

Some Al techniques such as CART, MARS and Genetic Programming (GP) encode information
in the data as rules and equations and therefore are readily interpretable. As boosting and bagging
methods create multiple models with the same dataset, the relative importance of different parameters
can be ascertained even if the model equations are not explictly known per se. Tree-based algorithms
are also used to explain other hard to interpret models [76]
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Neural network models (particularly deep learners) encode the information in terms of weights
that are hard to interpret. In such cases, the outputs obtained from the model are explained by
fitting local (explanable) models around the predictions — The Shapley Additive Explanations (SHAP)
that uses game theoretic measures to explain the importance of different features on the output and
the Local Interpretable Model-Agnostic Explanations (LIME) based on linear regression around the
predictions are commonly used to explain which inputs are important and how they affect a particular
model output [77].

Having presented a broad overview of machine learning methods, the application of these
techniques in flood risk management are explored next.

6. Machine Learning for Flood Resiliency

6.1. Machine Learning for Fluvial Flood Control
6.1.1. Machine Learning for Reservoir Operations

Reservoirs store excess water during high flow events and release them during periods of high
demands. The controlled release of flow out of the reservoir is to ensure there is minimal downstream
hazards, but also is constrained by the capacity of the reservoir and associated infrastructure. Therefore,
the outflow of the reservoir is a function of the water height in it. Reservoir operation rules (ROR)
are used to define outflows. Operation rules tend to be complex, especially when there are multiple
interconnected reservoirs, and they are only known to a few practitioners.

Machine learning models have been used to infer reservoir operating rules and predict outflows.
A wide range of machine learning approaches including artificial neural networks (ANN), Support
vector machines (SVM), random forest (RF), deep neural networks (DNN) and recurrent networks,
especially the long short-term memory (LSTM) network have been adopted for this purpose [78-85].

The main synthesis of these studies is that machine learning learning models provide better pre-
dictions than conventional tools (e.g., statistical models such as ARIMA or water balance formulations).
Deep learners, especially LSTM and GRU (gated recurrent units) provide better predictions than other
techniques in most, if not all, cases. However, there is no universal consensus on which model always
provides the best results. Different models may perform well at different sites within a river basin.
Therefore, assessment must always include multiple models to select the most optimal of those tested.

Reservoir inflows are key input to these models and the quality of the output depends upon the
quality of the inflow data. Note reservoir inputs can be natural streamflows or controlled releases
from an upstream reservoir (these reservoirs may or may not be explicitly modeled). While treating
upstream reservoir releases as inputs simplifies the outflow predictions at downstream reservoir,
explicitly modeling the releases of these upstream reservoirs is shown to improve model predictions
due to better accounting of lag-times of flows [86].

Most studies focus on modeling monthly or daily outflows although efforts are beginning to be
made to develop sub-daily streamflow time-series to improve streamflow forecasts [87]. Most models
provide 1-step ahead forecasting with many providing 2-, 3- and multi-step ahead forecasts. Real-time
forecasting is also being attempted using machine learning [88].

Statistical metrics such as the root mean square error (RMSE) are used as the objective (loss)
function to minimize the errors between observed and modeled outflows. However, recent efforts
have focused on including other information to help guide the calibration process. A mass conserving
LSTM (mc-LSTM) model has been presented as well [89]. Loss functions have been modified to include
conservation relationships as well as other information such as reservoir operation rules [85,90]

While recurrent and non-recurrent neural networks (e.g., LSTM, GRU and ANN) appear to
provide better forecasts than most other models, the derived operational rules are abstracted as
weights and thus not readily interpretable. This issue if not of concern if forecasting is the only goal
of the model. However, interpreting the model results and which inputs have bigger impact on the
output are useful to evaluate the performance of ML models (esp. those that behave like black boxes).
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Scenario-based sensitivity analysis, and XAI methods like the Shapely Additive Explanations
(SHAP) are being employed to understand how ML model inputs affect reservoir outflows[90,91].
Results from these studies suggest that while XAI results make hydrological sense in most situations,
there is no guarantee of this over the entire range of outputs [91]. An evaluation of whether ML models
trained with physics-based or operation-based loss functions explain the results better is an interesting,
but unexplored direction of research.

Reservoir inflows are critical to properly predict outflows. In forecasting applications, reservoir
inflows have to be estimated to make future predictive runs.

Therefore, considerable interest also exists in using machine learning for modeling reservoir
inflows [92-108]. These models mainly focus on daily time-step, but both monthly and sub-daily
time-steps are also predicted depending upon the needs of the problem.

The synthesis of reservoir inflows using machine learing bring about several distinct insights
- 1) These models use meteorological variables such as precipitation, temperature, wind speed and
their lags. 2) Atmospheric teleconnections such as El-Nino-Southern Oscillations (ENSO); Noth
Atlantic Oscillations (NAO), Pacific Decadal Oscillation (PDO), Indian Ocean Dipole (IOD) and Arctic
Oscillation (AO) are also being employed. These teleconnections correlate with several reservoir
inflow processes such as rainfall, evapotranspiration, and snowmelt. 3) There is a greater propensity to
combine multiple models, rather than rely on a single algorithm such as LSTM. 4) Rather than utilize
an ensemble mean (EM) most studies utilize stacking ensemble (SE) wherein different parts of the
dataset are predicted by different model subsets. This occurs because, some models provide very high
extreme values which bias the overall ensemble mean. 5) It is more common to see fused traditional
and deep machine learning algorithms as well as statistical models such as ARIMA for reservoir inflow
forecasts.

Reservoir inflow estimation is often fraught with uncertainty. These uncertainties can be random
due to changing weather pattern, land use alterations as well as climate change. The ability of the model
to capture extremely high inflows is critical in flood management applications. While ML models may
perform better than traditional physics-based models for forecasting streamflows, they are not perfect
nor without limitations. Model stacking and ensemble approaches may help with predictions, but
also can potentially average down extreme forecasts. Explicitly capturing this uncertainty alongside
point estimates adds value to the estimation process as it informs the decision maker of what is more
likely estiamates and what are all plausible values. Therefore, many studies are exploring the use of
uncertainty quantification methods such as Bayesian Deep learning, Bayesian networks, fuzzy logic
and other heuristic models [48,92,106,107,109,110].

Despite growing number of publications in this area, propagating uncertainties in reservoir
inflows through single and multi-reservoir operations is clearly a largely unexplored direction and of
considerable practical significance.

6.1.2. Levees and Floodwalls

Levees and flood walls are structures built along the river to keep flood waters from flowing into
the adjoining floodplain. While levees and flood walls serve similar purposes, the former is built using
earthen materials, while the latter is built using concrete.

While applications of machine learning algorithms to study levees have been limited (see Ta-
ble 4, they have tackled most challenging problems related to the resiliency of levees to withstand
failure. Machine learning has been used to evaluate failure risk due to overtopping, compaction and
liquifaction and piping. Cracks and other early warning signals such as the formation of sand boils
which indicate piping due to liquifaction have also been studied. Manual inspection and ground pene-
trating radar (GPR) are two common approaches to evaluate hazards in these systems. Both of them
are expensive and time-consuming, therefore automated detection using drones and use of transfer
learning algorithms to enhance the value of limited GPR based surveys have also been explored using
machine learning methods. Deep neural networks such as Convolution Neural Networks (CNN) and
Viola-Jones object detection method which is based on the boosting technique have shown promise for
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evaluating drone-based surveys. Conventional neural networks such as ANN, SVM, Naive Bayes and
others have been useful to predict risk of failures.

Table 4. Machine Learning Modeling focused on Levees.

Focus Method Data Reference
Levee Over- | Logistic Regression | Geometric, Hy- | [111]
topping draulic Geotechni-
cal
Levee AdaBoost ; Viola- | Field Inspection | [112]
Anoma- Jones Detector Data
lies
Failure Haz- | Deep Learner Electrical Resistiv- | [113]
ards ity Data
Hazard Clas- | Clustering UAYV, Geophysical | [114]
sification (shear velocity,
EMI, Apparent
Resistivity)
Levee Com- | Deep transfer learn- | Transfer Learning | [115]
paction ing, ANN, KNN, | for Feature Dataset
NB, LR for predic-
tion
Sand Boils Stack of ML Algo- | Field Surveys (Im- | [116]
rithms (SVM. ANN, | ages)
CNN)

The United States alone has over 24,000 miles of Levees and the average age of these levees is
51 years [117]. As such, many of the levees are in need of rehabilitation and most levees were not
designed for modern climatic conditions. The review of literature indicates that while attempts have
been made to evaluate levee failure risks using machine learning, this is another largely unexplored
area as far as flood resiliency is concerned.

The National Levee Database (NLD, 2025) [117] provides the best publicly available information
to understand levee performance. Efforts to compile a larger dataset of images pertaining to levee
failures, along with hydraulic, geotechnical and geophysical characteristics would be a useful addition
to facilitate further research in this area.

6.1.3. Pumping Stations for Flood Control

Pumping stations offer the third line of defense in flood control. Pumps are used to remove any
excessive water and pump it back into the river. Machine learning has been utilized to model this
system. Lee and Lee (2022) utilized multi-layer perceptrons (ANN) to simulate the discharge from
pumping stations using previous rainfall and discharges [118]. They conclude that while the method
was useful, the study could have benefited from having inflow data into the pump stations as one of
the inputs. Wang et al.,(2023) applied ANN, SVM with different evolutionary optimization techniques
to study inflows into a pumping station along different time periods. They made use of water levels
at other pumping stations, rainfall and human factors to develop different models that showed a
high degree of accuracy in their study area [119]. Kow et al., (2024) [120] utilized transformer based
LSTM (T-LSTM) to abstract pump station operating rules using rainfall and flows from upstream
stations. The use of transformers assisted in capturing the seasonality in the operations and provided
excellent results both for typhoon and convective storm events. Joo et al., (2024) [121] combine gated
recurrent units (GRU) with deep-Q reinforcement learning to simultaneously minimize water levels in
the retention basin and the number of pump switches over the entire storm duration. Their results
indicate that this combination is useful to improve operations of pump networks used in flood control.

While traditional methods for operating pump stations using physics-informed models and
traditional optimization routines continue to be in use [122], efforts have started on exploring the use
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of machine learning models for predicting inflows, outflows and operation of these pumping stations.
Pump stations help reduce flooding risks to humans and the environment but can also cause changes
to local hydrology as well as affect riparian and riverine habitats due to changes in dissolved oxygen
[123]. Therefore proper operations of these systems is critical. While the use of machine learning shows
great promise, the lack of open-source datasets, limits the number of researchers who have access to
such data, which in turn hinders a deeper exploration of this topic.

6.2. Maching Learning for Pluvial Flood Management
6.2.1. Pluvial Flood Estimation

Machine learning methods have been widely used in pluvial flooding studies [124-145]. Figure
5 explains the primary goals of these machine learning models in pluvial flooding studies. These
studies either focus on predictions of flood characteristics or susceptibility mapping of flood prone
areas, mostly in urban environments.

Pluvial Flooding 1
iz :
n Prediction Susceptibility
J

 —

Flood Inundation | ‘

v

Other Parameters |
ﬂ ‘
(A J J L___J

Ranking Clustering

Supervised
Classification

Figure 5. Classification of Pluvial Flooding Studies

The analysis of the literature pertaining to the use of machine learning for pluvial flooding
demonstrates that a wide range of machine learning methods have been used in various applications.
Among the traditional machine learning methods logistic regression (LR), artificial neural networks
(ANN), support vector machines (SVM) and k-nearest neighbor (KNN) algorithms show greater use.
Ensemble methods such as random forest (RF) and XGBoost have also been used extensively. Among
the deep learning algorithms, convolution neural networks (CNN) stands out prominently. While all
these models provide good results, there is no clear identification of which one is best.

The use of supervised ML methods in pluvial flood forecasting can be broadly categorized into
two groups - 1) Classification methods are used to predict flood /no-flood zones using a suite of inputs
such as precipitation, land use type, elevation and others. The labels (output) is obtained either from
observed data within an urban area that is either collected by municipalities and/or those reported by
citizens through navigation apps such as WAZE. The latter is useful for understanding flood prone
roads and other transportation infrastructure.

Unsupervised methods, such as fuzzy clustering, have been used to categorize an area’s sus-
ceptibility to flooding. Such classifications can help data collection activities to develop supervised
classifiers in the future. The depth of the water level in urban areas following a rainfall event as well as
the extent of inundation in floodplains are also important aspects of pluvial flooding. As urban areas
are typically ungaged, this information has to be obtained via simulation or using satellite remote
sensing [146-148].

Machine learning methods have been widely used to abstract the results from physics-based
models (i.e., flooding depth, inundation extent) using surrogate measures such as rainfall intensity,
land elevation and other characteristics. Again, a suite of conventional and deep learners have
been employed for this purpose that have yielded good results. Once trained, machine learning
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models are easier to run and different scenarios can be evaluated to guide flooding planning and
emergency management efforts. However, as ML models depend upon data from physics-based
models, their accuracy cannot be greater than those obtained via physics-based simulators. Therefore,
integrating physics-based simulations with satellite data can improve prediction methods, especially
using interferometric synthetic aperture radar (InNSAR) and other remote-sensing products. A case-
study of such integration is presented in [148].

One important aspect of pluvial flooding is the heterogeneity of datasets. For example, rainfall
hyetographs are 1D temporal data, while digital elevation models are 2D (raster data), high water
marks are points in 2D space (vector data). Simulation models can produce data in 1D or 2D in space
and over time. Transportation infrastructure is usually multi-line data (line vectors). Assimilation
of such data from diverse sources is an important ancillary topic that is beginning to be explored
[149,150].

Estimation of pluvial flooding characteristics, particularly inundation depth and extent using
physically-based tools is rather difficult to paucity of data for model validation. While several studies
have demonstrated that the output of such models can be captured using machine learning methods,
the ability to transfer such learning to other sites via transfer learning approaches is another interesting
area that has received little attention [151] and offers significant opportunities to improve flood risk
management in other areas. In a similar vein, while the use of explainable artificial intelligence (XAI)
methods such as SHAP have been demonstrated in the literature [134], their usage is still limited and
offers a significant potential to eludicate factors affecting pluvial flood risks.

6.2.2. Machine Learning Approaches for Low Impact Development

Low impact development (LID) aims to develop stormwater infrastructure within urban areas
that largely mimic natural hydrology by enhancing infiltration, supporting vegetation and enhancing
water quality. In many US cities, they are part of the Municipal Separate Storm Water Systems (MS4)
and permitted to discharge water from urban areas to natural water bodies. Environmental permits
not only emphasize the rate and volume of discharges but also place restrictions on the quality of the
discharging water. Therefore, contaminants of concern (CoC) often control their design and operation
even if their primary goal is to remove flood waters from roads, residential neighborhoods and other
business districts and keep pluvial flood waters away from humans.

Machine learning models are being used to design and operate many LID features and understand
their functioning. Complex physics-based formulation can be approximated using machine learning
and used with multi-objective optimization for sizing LID practices[152]. This approach greatly reduces
the computational time to obtain good optimal solutions.

Deep reinforcement learning are widely being used to operate (control) stormwater treatment
systems to mitigate flood flowrates and associated contaminant movement. Reinforcement learning is
noted to help achieve real-time control under uncertainty [153-155].

Integration of machine learning with other ancillary technologies such as the Internet of Things
(IoT), physical-model simulations and remotely-sensed datasets open new avenues to model the
performance of stormwater systems, develop better designs and monitor LID systems [156,157].
Emerging studies indicate the promise of such integrations and this is another fertile area for further
exploring the role of machine learning.

Predictions of water quality outflows from LID stormwater systems is of interest to decision
makers to ensure they are within compliance. Machine learning models have found uses in capturing
and correlating highly complex water quality transformations occurring within LID to easily measured
surrogate data such as rainfall, temperature, sunlight and others. A variety of modeling algorithms
have been evaluated and demonstrated to provide good results. Algorithms tested include, but are not
limited to, ANN, SVM, KNN, Random Forest, Generalized linear models (GLM), Partial least squares
(PLS) and deep learners [158-162]

While ML models show high potential to predict water quantity and quality parameters in
stormwater control and treatment systems, there is no single approach that stands out. The quality of


https://doi.org/10.20944/preprints202504.1887.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 April 2025 d0i:10.20944/preprints202504.1887.v1

21 of 34

predictions varies among models so experimentation with a candidate set of models is often required.
Conventional machine learning models (ANN, SVM) do better than deep learners in some cases,
especially when the amount of data available for calibration and testing is small. In addition to
variability across models, a particular algorithm my be better suited for one water quality parameter
but not another. This result indicates that some ML schemes are able to better assimilate certain
fate processes than others that affect the quality of stormwater. However, the success of ML models
to predict emerging contaminants such as microplastics, indicates their high potential to predict
contaminant concentrations whose mechanisms of biochemical transformations are not completely
known [162].

While ML algorithms show promise for modeling urban stormwater infrastructure, there are
many unexplored research directions. The use of explainable machine learning (XAI) to understand the
predictions of ML models, especially to understand fate and transport of emerging contaminants has
potential to develop fundamental insights on pollutant behavior using machine learning. Evaluating
the use of stacked and ensemble learning methods, and integrating physics-informed loss functions
are some easier implementations that have not been undertaken to-date to the best of the authors
knowledge and offer some useful avenues to explore.

6.3. Machine Learning and Flood Resiliency

A significant amount of research focused on the resiliency of communities to flooding risks is
beginning to emerge in the last few years and a large sampling of such studies, particularly those
using machine learning approaches are summarized in Table 5. A synthesis of these studies depicts a
common theme which is presented in Figure 6.
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Figure 6. Overview of Resiliency-Risk Modeling Framework

Resiliency is measured as the extent of vulnerability of the community to withstand flooding
hazard. Higher the vulnerability, the lower the resiliency of the community. Vulnerability captures the
demographic, economic, geographic and engineering factors such as the population density, the nature
and extent of economic activity, land elevation and distance from flooding features such as streams
and engineering measures such as distance to pumping stations and other stormwater conveyance
features.
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Table 5. Summary of Studies Focused on Flooding Risk and Resilience

Citation | Methods Used Focus / Findings
[163] AHP, GIS, RS and ML (Random | Community resilience of floods; ML for
Forest and SVM) susceptibility analysis
[164] CNN to extract features for flood | Resistance, Functional and Economic
resilience + Fuzzy logic for Re- | resilience explicitly modeled
silience Index
[165] SOM compared with PCA Economic, Physical, Social dimensions
of vulnerability considered.
[166] SVM, ANN, RE GBDT; Stacking | Meteorological, Geographic and Hu-
and Ensemble not superior man Resilience explicitly considered.
[167] Unsupervised, Supervised Categorize resilience and predict using
rainfall
[168] Different clustering; Resilience defined in terms of - Robust-
ness and Rapidity
[169] NB, LR, RF, Lazy Tree, ANN (RF | Predict 4 classes - Flood, Flash Flood,
provided the best results) Coastal Flood and Lakeshore Flood
[170] Ensemble methods, Random For- | Flood risk is Product Flood susceptibil-
est ity based on weights of evidence and
flood hazard maps
[171] SVM, XGBoost, RE, MLP GBDT, | Disaster inducing factor, disaster breed-
1DCNN ing element, disaster bearing bodies (In-
put); Deeper models not as useful as
shallower models.
[172] SVM + MCDM SVM for flood susceptibility; MCDM
for flood vulnerability
[173] Random forest was the best; | TOPSIS for Vulnerability; ML for haz-
SVM and Boosted Regression | ard; Output - Various levels of risk
Trees
[174] Tree-based approaches with | DEA for Integrating Socio-Economic
DEA and Adaptive Capacity indicators (Vul-
nerability); ML with Geomorphology
for Susceptibility
[175] XGB, RF, CatBoost - RF was the | Susceptibility in riverbeds; Geomor-
best model phology for mapping susceptibility.
[176] GARP and MaxEnt Hazard (Flood, Economic, Social) x
Hazard (Flood hazard - Based on Field
Survey and ML)
[177] ANN and linear Regression Landscape factors affecting Flood Sus-
ceptibility (Satellite for flood hazard;
Role of LULC via Regression)
[178] Text Mining; Clustering and Pre- | Role of Big Data, IoT and Social Media
diction data - Flood risk mapping; Rapid Im-
pact Assessment on Infrastructure fail-
ure; Smart Situational Awareness; More
conceptual study with an application to
Harris County.
[179] Random Forest and SVM; Multi- | Ensemble of MCDM and ML models
ple MCDM methods for an aggregated Flood Susceptibility
Index
[180] MCDM +Deep Neural Networks; | National Flood Risk Insurance Data;
SHAP based XAI Flood Risk Map. Improved risk at finer
spatial levels
[181] CART,MARS, BRT, SVM and lin- | Vulnerability using AHP (MCDM);
ear Discriminant Analysis Flood Hazards via ML. Different crite-
ria used for vulnerability and hazards.
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Multi-Criteria Decision Making (MCDM) approaches are used to aggregate such factors into
a composite index. A suite of MCDM approaches such as the Simple Additive Weighting (SAW),
Analytic Hierarchy Process (AHP), VIKOR, ELECTRE and others have been utilized for this purpose
(see [182,183] for an overview of these techniques). Briefly, MCDM, aggregates ratings which describe
an alternative’s concordance with a criterion and criteria weights which denote the relative importance
of the criterion and aggegates the scores over all selected criteria to rank and prioritize alternatives.
Uncertainty is an integral component of such analysis and therefore some studies have attempted to
use fuzzy set theory to capture differences among decision-makers with regards to different criteria
and ratings of alternatives.

Note that MCDM is an unsupervised approach where in each alternative is ranked (so the number
of initial clusters equals the number of alternatives. Once ranked, the grouping of these alternatives
can be carried out subjectively or using unsupervised classification methods such as clustering and
self-organizing maps (SOM).

While vulnerability captures the likely impact (or lack thereof) of floods at a given location. The
hazard posed by the flood also varies geographically. This risk arises because of hydrologic conditions
such as rainfall intensity and also land use land cover (LULC) conditions that lead to runoff (flood)
generation. Risk of flooding of a land parcel depends upon several factors including but not limited to
rainfall intensity, duration, LULC, soil types, antecedent moisture conditions and topographic slopes.
Supervised machine learning models are used to develop relationships between flooded areas and
other surrogate measures to model flooding hazard. A variety of approaches have been used to obtain
flooded areas including but not limited to, use of satellite-imagery, household surveys, topography
based wetness indices, and subjective or anecdotal information of decision makers. Clearly, the more
direct the measurement, the more reliable is the result. A suite of machine learning modeling including
but not limited to ANN, SVM, CART, MARS, Random Forest, Boosting Methods (GBT, XGBoost,
AdaBoost) and deep learning have been employed for this purposes and demonstrated to model flood
hazards with a high degree of accuracy.

The data volume available for modeling is often limited, which in turn favors conventional ML
methods over deep learning paradigms. Some researchers have also utilized ensemble and stacking
of algorithms with varying degree of success. The suitability of ensemble methods are hampered by
the large predictive variability across different models. While most of the explanations of the ML
modeling results is provided using tree-based approaches, the Shapely Additive Explanatins (SHAP)
has also been used with deep learning models. While most models have focused on binary (Flood/No
Flood) classification, multinomial models to capture varying levels of hazard have been explored to a
limited extent.

Copula based approaches are widely used to estimate joint and conditional risks of flood intensity,
volume and duration [184,185]. However, the integration of these approaches with machine learning
is another poorly explored area of research. The coupling of ML and copula approaches to study
droughts is demonstrated in [186], indicating the possibility of such an effort for flooding as well.
Unlike droughts which depend upon atmospheric variables (rainfall and temperature), estimation of
flood duration, volume and intensity is only possible in gaged catchments and the flood indicators
also depend on soil type, antecedent moisture, land use and other factors whose temporal variability
is not known in many locations.

Flood hazard assessment in many areas is hampered by paucity of data. This is particularly true
not only in developing countries but also in rural and peri-urban areas of developed nations. Transfer
learning provides one way to overcome this limitation where a model trained over a larger dataset in a
similar region is used to make predictions in another. In addition, several other emerging technologies
provide useful information to understand flooding hazards and vulnerability. The Internet of Things
(IoT) is bringing about new, low-cost technologies for monitoring both fluvial and pluvial floods
[187-189]. Low-cost sensors have the potential to significantly increase that data that are available for
flood mapping. While such sensors also increase the data availability, they generally have poorer data
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quality and prone to giving erratic results. Therefore, data cleaning becomes necessary and machine
learning algorithms for detecting and removing outliers can be useful [190]. In addition, several
machine learning models both conventional and deep, can be used to make real-time forecasting and
enhance the early flood warning capabilities of downstream communities. While the integration of IoT
and machine learning or early warning systems has been demonstrated in some areas [191], there is
still considerable opportunity to explore this area particularly in terms of data retrieval (using drones)
when internet infrastructure may become non-functional due to floods.

7. Summary and Conclusions

Flooding is a complex problem that causes widespread damage across the world. It is now clear
that flooding hazards cannot be completely eliminated using engineering measures alone. People
have to live with floods. Flood control measures must not only focus on in-stream controls but also
utilize structural and non-structural alternatives within an urban area to mitigate pluvial flooding to
protect humans and also help mitigate downstream fluvial impacts. Despite keeping humans away
from flood waters and managing them as necessary, the threats of flooding continue to grow unabated
due to changes in climate, population growth and concomitant urbanization. Therefore, the current
thinking goes a step further and evaluates how humans and the environment of a region are at risk of
flooding and what are the best strategies to absorb the shocks of flooding and rebound to a better (or
at least to the pre-flooding) state. The idea of withstanding the harmful effects of flooding to the best
possible extent (robustness) and rebounding back to a better state as quickly as possible (rapidity) is
called resiliency based flood management.

Resiliency-based flood management is not independent of flood control measures for minimizing
fluvial and pluvial flooding, rather it takes a more holistic point of view to identify the risks that exist
within a region and use it to guide future growth that is flood informed and also identify vulnerable
targets that need immediate attention to bring the system back to normalcy. Thus, resiliency is not
simply an engineering or land-planning and zoning endeavor but involves every one in the community
to contribute towards flood-proofing.

Artificial intelligence (Al) in general and machine learning (ML) in particular can assist with
resiliency based flood mitigation efforts. Machine learning models are universal approximators capable
of capturing highly nonlinear phenomenon like floods. They overcome many deficiencies of physics-
based models and are capable of providing better results with more easily available data in many cases.
Machine learning is not a single technique but encompasses a wide range of algorithms that can be
combined in more than one way to create solutions that are many times better than any individual
algorithm that it is based on. These algorithms, especially newer deep learning based methods are
quickly being adopted for flood studies. While discipline-specific of machine learning models have
been reviewed in many articles on a regular pace, a holistic evaluation of machine learning in the
context of flood studies is missing and a prime focus of this study.

The review not only restricts to evaluating machine learning models, but providing a context of
flood management from command and control approaches to stakeholder-driven resiliency-risk based
methods. The review also provides an overview of physics-based models that continue to be used
today. These models often provide critical information such as inundation depth and extent that can
be abstracted using machine learning schemes.

A review of literature indicates that many articles focus on a few ML techniques and identify a
best predictor or classifier among them. As ML approaches are generally not taught in traditional
hydrology classes, a review of various algorithms are presented to help understand their broad
functioning. More in-depth reviews of the use of Machine learning for reservoir inflow and reservoir
outflow and reservoir abstraction rules are presented. The LSTM model is widely used in both cases,
but conventional methods are also in use. Levees and floodwalls are used to protect floodplains from
inundation. Cracks in levees, piping and liquefaction are major causes of levee failure along with
overtopping and compaction. CNN models and other object detection methods are being used to
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identify these zones of failures. Pump stations are operated to control flood waters from leaving
riparian areas. Machine learning models are being explored to optimize the operation of these pump
stations, the relatively small number of studies in this area directly corresponds to lack of suitable
datasets.

A wide variety of machine learning models are being used to identify (unmapped) flooded areas
based on a few known points (high water marks). In a similar vein, the results of the physics-based
models are being abstracted by machine learning models to quickly compute flooding depths and the
extent of inundation. Deep neural networks have shown considerable promise in this area. Machine
learning models are also used to explain water quality transformations in a flood detention basins.
Reinforcement learning in particular has been useful to control the releases from flood detention
basins based on both quality and volume constraints. Flood resiliency planning studies often combine
multi-criteria decision making (MCDM) modeling approaches to quantify vulnerability. Vulnerability
is inversely related to resiliency and is a combination of disaster enhancing and disaster diminishing
factors. In addition to MCDM, unsupervised learning approaches such as clustering have also been
utilized. The flood hazard denotes the impact of the flood. Supervised learning methods are used to
model flooding hazards. While many ML algorithms have been used, traditional approaches like SVM
are seen to be better. The use of deep learning methods is constrained by the lack of availability of
large volumes of data. In a similar vein, ensemble methods have also had limited success because of
extreme variability in predictions.

The review also identified several unexplored or poorly explored directions in flood resiliency
studies. In particular, capturing large-scale uncertainty in reservoir inflow predictions due to climate
change is one such area. The use of ML for assessing risks to levees and floodwalls by integrating drone-
based survey with computer vision and machine learning is another area. Similarly, the paucity of
models for modeling pump station operations is limited by lack of suitable datasets. The development
of such a dataset and providing in the public-domain will improve the number of applications in this
area. In a similar vein, identification of pluvial flooding locations often relies on the use of physics-
based model for quantifying the extent and nature of inundation. Therefore, the accuracy of ML
models using this data cannot be higher than the physical-models they are based on. Remote-sensing
methods particularly using Interferometric Synthetic Aperture Radar (InSAR) can be valuable along
with improved field data collection to better capture inundation risks.

The use of deep learning and ensemble based methods for flood hazard identification has also
seen limited success in flood risk assessment studies, especially for capturing fluvial flood risks.
This limitation largely occurs due to paucity of data. Deep learning algorithms require considerable
amounts of data and when such data are available (e.g., reservoir outflow in a stream) their predictive
superiority becomes evident. Coupling of ML models with other statistical risk assessment methods
such as copula theory has also been hindered by the lack of suitable data and presents another avenue
to explore to move flood risk from a largely binary (flood/no flood) univariate calculation to its
assessment over multiple dimensions.

In closing, machine learning models are widely being used in flood studies ranging from flood
control to resiliency-based management. The usage is higher in those applications where data are
readily available. Advances in remote-sensing, drone based data collection and proliferation of low-
cost sensors using the Internet-of-Things (IoT) will further expand its role in many other aspects of
floods that are currently hampered by data limitations. While machine learning offers great prediction
and forecasting abilities, there is no single universally acceptable method, so empirical experimentation
with multiple models becomes necessary. This aspect should not be viewed as a weakness but exploited
to learn more about the functioning of the models and what is making them better predictors (or not).
Explainable AI (XAI) methods come in handy in this regard and should be adopted to transition ML
models for black-box forecasters to better informed and knowledge-based predictors.
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