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Abstract

Background: Selectively targeting dopamine receptors has been a persistent
challenge in the last years for the development of new treatments to combat the
large variety of diseases evolving these receptors. Although, several drugs have
been successfully brought to market, the subtype-specific binding mode on a
molecular basis has not been fully elucidated.

Methods: Homology modeling and molecular dynamics were applied to construct
robust conformational models of all dopamine receptor subtypes (Di-like and D»-
like receptors). Fifteen structurally diverse ligands were docked to these models.
Contacts at the binding pocket were fully described in order to reveal new
structural findings responsible for DR sub-type specificity.

Results: We showed that the number of conformations for a receptor:ligand
complex was associated to unspecific interactions > 2.5 A and hydrophobic
contacts, while the decoys binding energy was influenced by specific electrostatic
interactions. Known residues such as 3.32Asp, the serine microdomain and the
aromatic microdomain were found interacting in a variety of modes (HB, SB, m-
stacking). Purposed TM2-TM3-TM7 microdomain was found to form a
hydrophobic network involving Orthosteric Binding Pocket (OBP) and Secondary
Binding Pocket (SBP). T-stacking interactions revealed as especially relevant for
some large ligands such as apomorphine, risperidone or aripiprazole.

Conclusions: This in silico approach was successful in showing known receptor-
ligand interactions as well as in determining unique combinations of interactions,
key for the design of more specific ligands.
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Receptor-Ligand Interactions
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1. Introduction

Dopamine Receptors

The dopaminergic system has been intensively studied over the past 50 years due to
the (patho)physiological role in modulating cognitive and motor behaviour [1,2].
Moreover, various severe neuropsychiatric and neurodegenerative disorders such
as Tourette’s Syndrome, schizophrenia, Parkinson’s disease and Huntington’s
disease are believed to occur as a result of imbalances and alterations in dopamine
signalling [3-5]. Dopaminergic effects are mediated by five distinct receptors (D15
receptor), grouped in two classes, Di-like and D:-like receptors, that differ in their
physiological effects and signal transduction. The Di-like receptors, D: and Ds
receptors, are principally coupled to Gs proteins and enhance the activity of adenylyl
cyclase, whereas D»-like receptors, D24 receptors, are primarily coupled to inhibitory
Gi proteins and suppress the adenylyl cyclases’ activity [1,6]. The Dopamine
Receptors (DR) belong to the G-protein-coupled receptors (GPCRs), the largest and
most diverse protein family in humans with approximately 800 members [7,8], and
a significant target of pharmacotherapeutics. Numerous therapeutics are available
on the market, foremost for the D:R subtype [6] such as haloperidole,
chlorpromazine [9], risperidone, clozapine, ziprasidone or quetiapine [10].
However, most of the commonly utilized drugs show significant side effects and
nonselective profiles [10,11]. The search for a DR subtype selective therapeutics is an
ongoing field of research. For example, it has been proposed that substituted 4-
phenylpiperazine compounds dissect between DsR and D:R selectivity [12,13]. In
addition, the aminotetraline derivative 7-OH-DPAT was identified as selective D3R
agonist [14,15], whereas it was shown that most D4R available therapeutics are not
selective [13], with only one exception, haloperidole [16]. Sampson et al. synthesized
selective D4R ligands with Ki values in the lower nanomolar range, based on the
piperazine analogue of haloperidole as pharmacophore to target erectile
dysfunction [16]. This piperazine moiety of haloperidole was further explored in
other studies, leading to the development of aripiprazole, a next-generation atypical
antipsychotic, which is highly selective for D:R and D:R/DsR heterodimers,
displaying properties of D2R agonist and antagonist [17]. For Di-like receptors, DiR
and DsR, the achievement of subtype selective ligands has been even more
challenging [18,19]. SKF83959 was the only selective agonist attained for the DiR so
tar, while DsR completely lacks a selective ligand [20,21]. SCH23390 has been
proposed to be the only Di-like DR selective antagonist [22].

In summary, finding new highly selective ligands for all DR subtypes, especially for
the Di-like subtypes, which are poorly described would be a major step forward in
the field [23].
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Computer Aided Drug Design

The strive for finding new and effective therapeutics led to a growing interest in the
use of Computer Aided Drug Design (CADD). Originally developed for High-
Throughput Screening (HTS) of compound libraries, the use of CADD nowadays
plays an important role in drug discovery [24]. Modeling three-dimensional (3D)
target proteins help to visualize, analyse and optimize known ligands and discover
new lead compounds [25]. The CADD pipeline can be classified in two general
categories: structure-based and ligand-based, dependent on the available
information about the topic of investigation [25]. A structure-based CADD is used
when the target, e.g. a receptor, is known and so compound libraries can be screened
to find suitable structures for the target. Usually protein-ligand docking studies are
performed or ligands are designed de novo and are then used for compound library
screening to test possible lead structures experimentally. Vice-versa, a ligand-based
CAAD procedure is used when ligand structure information is provided to create
pharmacophore models and to perform virtual screening [24]. All in all, CADD faces
the challenges of identifying novel targets and their ligands, for example to treat
common and rare diseases [26].

Aim

Modeling G protein-coupled receptors (GPCRs) remains challenging due to the
complex structure of these membrane proteins and the lack of structural information
about the desired receptor to target, however CADD methods have undoubtedly
shed light on the subject. The recent boom on X-ray crystallography structures
resolved, leads to a more promising application of CADD. In this work, we used
tools of structure-based CADD to investigate the receptor-ligand properties of all
DR-subtypes with marketed DR therapeutics. In particular, we applied i) homology
modeling by using the resolved X-ray crystallography structures of the dopamine
receptors D2, DsR and D4R [27-29], ii) performed Molecular Dynamics (MD) of the 5
model structures, and iii) molecular docking studies of 15 ligands targeting different
conformational rearrangements’ of DR subtypes. The binding energies, number of
conformations as well as the distances between ligands and receptor interacting
residues of the binding pocket were calculated for all complexes. The interaction
between ligands and receptors were analysed using an in-house pipeline that takes
advantage of BINding ANAlyzer (BINANA), a python implemented algorithm for
analysing ligand binding [30]. The main goal was to reveal new structural findings
to help explain DR sub-type specificity.
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2. Results

2.1. Homology modelling of Dopamine Receptors

The homology models were generated using MODELLER (version modeler 9.19,
released Jul 25%, 2017) [31] and the resolved crystal structures of the D2R (PDBid:
6CM4) [29], DsR (PDBid: 3PBL) [32] and D4R (PDBid: 5WIU) [28] retrieved from
the Protein Data Bank (PDB) [33]. The most suitable template to each DR was
selected according to the percentage of similarity obtained upon sequence alignment
by BLAST [34] in combination with ClustalOmega [35]. The D:1R was modelled with
the DsR crystal structure (PDBid: 3PBL [32]; 35.0 % identity with BLAST and 39.5 %
with ClustalOmega). The D:R model was modelled with the crystallographic
structure of the D:R complexed with risperidone (PDBid: 6CM4) [29], (total
similarity 97.0% with BLAST and 100.0 % with ClustalOmega). The DsR was
modelled using 3PBL as template with a total sequence similarity of 93.0 % by
BLAST and 99.3 % with ClustalOmega. Similar scores were obtained for the D4R and
the 5SWIU template 93.0 % (BLAST)/ 100.0 % (ClustalOmega). Lastly the DsR model
was calculated using the DsR (PDBid: 5WIU [28]) template as it displayed a total
similarity of 35.0 % (BLAST)/ 39.1 % (ClustalOmega). We also calculated the
similarity of the TMs in relation to the respective template and the results are
summarized in Table S1. All TMs of the D»-like subtypes showed almost 100 %
identity with their crystal structure templates, which is also in line with the total
similarity. Regarding the D1-like subtypes, the receptors were not modelled with
their own crystal structure template since they are not available yet. DiR was
modelled with the crystal structure of the DsR (PDBid: 3PBL) whereas DsR was
modelled with the crystal structure of the DsR (PDBid: 5WIU). For the DiR an
average TM similarity with its template was 41.0 %, compared to a total similarity
of 39.5 %, while for the DsR 36.0 % TM identity was calculated compared to the total
similarity of 39.1 %. Hence, also for the Di-like subtypes no differences between the
TM similarity and the total similarity with their template were obtained.
Furthermore, for the DiR the highest similarity between the model and its template
was observed for TM1-3, whereas for DsR was TM2, TM3 and TM7. Consequently,
the TM2 and TM3 seem to be conserved among all DR subtypes. In summary, the
results indicate that the TM definition used for calculating the DR models did not
affect the model identity towards its template.

Different metrics and scores were used to choose the most accurate models provided
by MODELLER in order to perform MD and molecular docking. DOPE (Discrete
Optimized Protein Energy) [36] scores are MODELLER's standard metrics and were
utilized in combination with visual inspection to remove models which were not
calculated correctly. DOPE is specific for a given target sequence, e.g. it accounts for
the finite and spherical shape of native protein states with the lowest free energy
[36]. It should be noted, that although DOPE is not an absolute measure, it helps to
rank the proposed models. Then, out of a small set of potential candidates (selection
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of 5-10), Pro-SA and ProQ analysis were used to determine the final models with the
best combination of scores (Table 1). While for the z-score provided by ProSA-web
analysis values around - 4 are suggested as acceptable, the ProQ analysis (LGscore
and MaxSub) provides absolute measures. Regarding the LGscore, values > 3, for
MaxSub values > 0.5 are typically considered as “good”. It was observed that if
secondary structural data was included using the PSIPRED webserver [37] the
overall scores improved. All final DR models (Table 1Error! Reference source not
found.) achieved LGscores > 4 and MaxSub scores > 0.5. The highest z-score was
obtained for the D4R model, whereas the lowest were counted for the Di-like DR
models. In summary, scores allowed us to move models forward towards MD
simulations.

Table 1 - Metrics and scores of the DR homology models.

LGscore MaxSub
DR DOPE LGscore MaxSub z-score
+PSIPRED +PSIPRED
DiR -39070.82 2.53 4.26 0.18 0.53 -2.14
D2R -39284.66 2.52 4.22 0.21 0.52 -2.22
DsR -39458.37 3.14 4.19 0.27 0.55 -3.12
D4R -36738.05 3.33 4.25 0.25 0.59 -3.90
DsR -38356.05 2.60 4.14 0.15 0.57 -1.49

2.2 Molecular Dynamics Analysis

MD simulations were briefly analysed to confirm the stability of the models. Root-
Mean-Square-Deviations (RMSD) mean values ranged from 0.3 nm and 0.5 nm
(Figure S1). Overall, the five models showed good overall stability. However, D1-
like models showed slightly higher RMSD values than D:-like models: DiR (0.48 *+
0.07 nm) and DsR (0.49 + 0.06 nm) vs D2R (0.35 + 0.09 nm), D3R (0.34 + 0.04 nm) and
DiR (0.36 + 0.09 nm). This behaviour is justified by the higher homology scores
attained for the Dz-like subfamily.

2.3. Ligand binding to Dopamine Receptors

In this work, we used the comprehensive review of Floresca and Schnetz (2004) [38],
highly used [39-41], as a base for the definition of the binding pocket of all dopamine
receptors. Furthermore, by applying Ballesteros & Weinstein numbering (B&W) [42]
the position of considered important residues was more easily comparable between
all receptors. Mutagenesis studies have shown that for dopamine binding, the
endogenous agonist of the DR, a negatively charged aspartate (3.32Asp) is believed
to form a ionic bond interaction with the protonable amine of dopamine [2,41,43].
Moreover, it was shown that this effect was crucial for ligand binding and that this
amino acid was not only conserved among the DR, but also in all biogenic amine
GPCRs [44,45]. Also, a serine microdomain on TM5 (5.42Ser, 5.43Ser, 5.46Ser) was

1
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considered as an important feature for dopaminergic binding in all DRs as it is
believed that the serines form hydrogenic bonds with the catechol hydroxyls of
dopamine, increasing the binding affinity and orienting ligands in the orthosteric
binding pocket [38,43,46—48]. While 5.42Ser seems to be critical, 5.43Ser plays a less
important role [38]. A further microdomain, the aromatic microdomain, consisting
of 6.48Trp, 6.51Phe, 6.52Phe and 6.55His/Asn has been reported to trigger the
activation of the dopamine receptor. All amino-acids in this microdomain share the
same hydrophobic face in the water-assessable binding-site crevice, indicating that
any reorientation of these residues by binding to a ligand would cause steric clashes
and therefore would force the residues to reorient themselves in a domino-like
tashion, which lastly leads to the so-called “rotamer toggle switch” [38,41,44,49]. In
addition, 6.48Trp was reported together with 6.55His to stabilize the position of the
ligand in the binding pocket via mt-rt-stacking [38,49]. Therefore, 6.48Trp and 6.55His
as well as one phenylalanine (6.51Phe) were chosen for the docking protocol to
mimic the ligand-binding on TM6. Dependent on the ligand properties other
residues of TM3 were also considered, such as 3.33Val and 3.36Cys. 3.36Cys is
believed to be part of a deeper subpocket below the Orthosteric Binding Pocket
(OBP) [29]. Additionally, Ericksen et al. reported that this cysteine was a relevant
residue for benzamide binding [40]. Regarding 3.33Val, it was reported to show
interaction with N-methylspiperdone by Moreira et al. [44] as well as with the
methoxy ring of nemonapride, determined in the crystal structure of the D4R [28].
Different authors hypothesized that DRs have a secondary binding pocket (SBP)
next to the OBP [28,32,50]. Crystal structures of D2R (PDBid: 6CM4) [29] and DsR
(PDBid: 3PBL) [32] and computational data suggest that 7.43Tyr is also a crucial
amino-acid for interaction in the SBP [10,29,32]. 2.57Val was shown to form a
hydrophobic pocket for antagonists like clozapine and haloperidole [48]. However,
since the OBP is widely explored through experimental, computational and crystal
structure data, there could be other residues important in the SBP. In order to
compare all DRs ligand-binding properties and specificity, we focussed on the
mentioned residues in the OBP. Detailed information about the literature (mostly
regarding D»-like DR) and which residues were chosen for docking can be reviewed
in the appendix: Figure S2, Table S2.

2.3.1 Ligand docking

After 100 ns MD simulations of each model, 10 conformational rearrangements plus
initial model (time 0 ns) were chosen for each receptor and subjected to molecular
docking of 15 different ligands. It is well known that GPCRs take an infinite number
of conformations over time, and this approach allows us to verify the effect of
punctual fluctuations into the overall binding arrangements of ligands. The results
of the molecular docking were evaluated by AutoDock4.2, which ranks the possible
binding positions by energy level and clusters these positions by Root-Mean-Square-
Deviation (RMSD) of 2 A. In addition, the total number of conformations (NoC) in
these clusters were counted. All results of the docking can be checked in
supplementary information: Tables S3-5S7.
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As proof of concept, redocking of the co-crystalized ligands to the crystal structure
templates of the D:R, D:R and DR (PDB-ids: 6CM4 [29], 3PBL [27], 5SWIU [51]) was
conducted (Figure S3, Table S8). Receptors and ligands coordinates were retrieved
from PDB files. Top clusters achieved a ligand pose equivalent to the pose in the
correspondent crystal, presenting very small RMSD values. Lastly, these results
were compared to the dockings of the corresponding DR-models and ligands at time
point 0 ns. The binding energies of the two sets were found to be in a similar range.
This is a further evidence of docking protocol reliability.

For a general overview, binding poses with more than 5 conformations per cluster
were considered as a valid ligand position, despite the Binding Energy (BE) of this
pose (Figure 1A). Regarding the docking of dopamine, it can be stated that the
binding energy of D2R was the most stable at different analysed MD conformations,
while for the other subtypes it oscillated more frequently. Only at 95 ns the binding
energy slightly increased up to -9.9 kcal/mol for the D2R. For DsR the highest binding
energy was observed at 70 ns (-10.4 kcal/mol), while for the DiR at 75 and 90 ns the
binding energy was the highest (-10.8 kcal/mol). However, for DiR the binding
energy largely decreased at 90 ns to -7.3 kcal/mol. Over time the average binding
energy for all DR was found to be at -9 kcal/mol.

The highest NoC during all MD conformations were obtained for D4R and DiR (up
to > 80 for D4R at 95 ns), while for D2R around, 30 conformations were counted for
all conformational arrangements (Figure 1B). Lastly, for all DRs complexed with
dopamine, the first or the second cluster with the lowest binding energy also
contained the highest NoC, indicating that the docking of dopamine is stable and
reliable (Table S3-S7).
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Figure 1 - Results of the molecular docking of dopamine for all DR subtypes at all MD time steps. For the
binding energy (A) the mean of the 3 lowest energies of dopamine was calculated. In B the number of
conformations of the three clusters with the lowest binding energies are shown for each time point and receptor.

The binding position of dopamine at all DR complexes was stable over time namely,
the protonable amine was always directed towards the aspartic acid on TM3
(3.32Asp) and the hydroxy groups were facing the serine microdomain (5.42Ser,
4.32Ser and 4.46Ser), in agreement with Floresca & Schetz [38] and Durdagi et al. [52]
(Figures S4-57). As known from literature dopamine’s interaction with the serine
microdomain only typically requires two of the serines binding to the hydroxy
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groups [38]. At 0 ns dopamine was located planar in the OBP in the above-described
position. Notably, D:R and DR hydroxyl groups were more directed towards serine
microdomain (Figure S4). At 55 ns torsions were observed for dopamine bounded
to all DR, which included a switch of interactions with the serines at TM5 for D3R,
since it is known that dopamine is only capable of interacting with two of the three
serines [38]. At 60 ns dopamine is shifted more to the serine and aromatic
microdomain (TM6) for all DRs in a different manner. However, only at D4R a strong
direction of dopamine’s protonable amine towards 3.32Asp was observed. At 65 ns
dopamine bounded to all DRs was located again planar in the OBP (Figure S5).
Small individual torsions were observed during the period of 70-90 ns (Figure S5,
§6). Interestingly, at 95 ns dopamine was strongly involved in the aromatic
microdomain (TM6) at all DR, which is then vanished especially for DsR at 100 ns.
The large decrease in DiR binding energy at 90 ns can be explained, by the
approximation of dopamine to 3.32Asp and as such far away from the serine
microdomain (Figure S6). In summary, the binding energy and 3D positions of
dopamine-docking may demonstrate the binding-mode of dopamine to DRs.
According to Floresca and Schetz, these features are crucial for dopamine’s binding
affinity and DR activation but must not necessarily be true for all dopaminergic
ligands (selective and non-selective) (Table 2) [38].

Since non-selective agonistic activity was already covered by dopamine docking,
chlorpromazine was chosen as a non-selective antagonist [53,54]. Herein, we
selected the following ligands: SKF38393 as selective DiR agonist [19,21] and
SCH23390 as D:i-like DR antagonist [22,55], apomorphine as selective D2R agonist
[52], 7-OH-DPAT as selective DsR agonist [14], nemonapride as D:R and D:R
selective antagonist [56] and lastly haloperidole, due to its affinity for D4R [16]. The
obtained binding energies and NoC in these clusters are summarized in Figure 2
(graphical output of the other ligands can be found in the appendix: Figure S8).

d0i:10.20944/preprints201902.0064.v1
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Figure 2 - Results of the molecular docking of 7-OH-DPAT, apomorphine, nemonapride, SCH23390,
SKF38393, haloperidole and chlorpromazine for all DR subtypes at time points [ns]. The mean of the 3
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lowest binding energies of dopamine were calculated in the left plots. The number of conformations of the
three clusters with the lowest binding energies were plotted for each time point and receptor (right plot).

For 7-OH-DPAT, we observed a low and stable binding energy upon binding to all
DRs. Similar to dopamine binding, the NoC decreased at all DRs from 0 to 65 ns. For
apomorphine, the lowest binding energies were obtained for D:R and D:R. A
decrease in the binding energy was determined for D:R at 65 ns (-11 kcal/mol),
whereas an increase at 85 ns was shown for DsR (-9 kcal/mol). Similar stable binding
energy around -10 kcal/mol were observed for DR:memonapride complexes,
however a massive increase was observed for the DsR at 100 ns. In addition, lesser
NoC were counted for nemonapride in total at all DRs (max. 30 at 85 ns for D2R). For
SCH23390, but not for SKF38393 the binding energy was stable over time at -9
kcal/mol for all DRs. The binding energy of SKF38393 at D:R and DR increased at
85 ns. However, the NoC for SKF38393 were the lowest over 70-85 ns period for DiR,
D:2R and DsR. Haloperidole displayed the most interesting docking-profile: while the
binding energies of DRs were stable at -10 kcal/mol, only for D4R a massive increase
was observed at 55 ns and 80-90 ns into the positive range, meaning these binding
positions were extremely unfavourable for haloperidole. In contrast, the NoC was
found to be stable over time except for DiR with up to 40 conformations at 60 ns.
Most interestingly, most conformations were counted for the D4R especially at 0-70
ns. Lastly, chlorpromazine binding energy experienced an increase only for DiR at
70 ns up to -3 kcal/mol.

For further analysis, we summarized data in order to perform comparison only
between ligands and receptors.

2.3.2. Distances between ligands and interacting residues

For additional evaluation of the docking performance and determination of ligand
interactions within the residues of the binding pocket, the distance between the
center of mass of the ligand and the alpha carbons of these residues was measured.
Assuming that the time points conformations did not have an effect on the binding
energy and the NoC of the ligands on the DR subtypes, the means of each ligand for
all time points were calculated. Overall results of all ligand-residue measurements
showed that 3.32Asp was the closest residue to all ligands for all DR subtypes, except
for DsR. In contrast the 5.42Ser was shown to be most distant at D:R and D2R, but
not at DsR where this was the case for 5.46Ser.

Subtype specific tendencies were nevertheless observed. The distances between the
ligands and 5.43Ser was smaller compared to another binding pocket serine in DiR,
D4R and DsR, while this was not the case for remaining DRs. When comparing those
residues to the set of residues used in the docking (Error! Reference source not
found.), 3.32Asp showed to have the closest ligand interaction (ligand center of mass
- residue alpha carbon < 6 A), but not for all ligands at all subtypes, while other
residues were more distant but all around 7-8 A. Particularly, the distance between
3.32Asp and SKF38393 was larger at the DsR, D4R and DsR. Moreover, we noted for
D4R an increase in the distance between 3.32Asp and several ligands. The distance
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between SCH23390 and 3.32Asp was also slightly increased, but not for DiR. This
effect might occur due to the fact, that SCH23390 and SKF38393 are reported to be
DiR-selective [21,55].

For 7-OH-DPAT, a known DsR selective agonist, distances between ligand and the
defined pocket are higher for Di-like receptors and distinctive residue between D:-
like seems to be 6.52Phe, that is closer to the ligand on DsR. The same pattern was
visible with apomorphine, a selective D2R agonist, where distances in Di-like are
higher, although distinction within D:-like family is less pronounced. Clozapine,
sulpiride and risperidone are known as “dirty drugs” because of their non-selective
profile, and for that reason none of these ligands showed distinctives differences
between DR subtypes. Likewise, residues 3.32Asp and 3.33Val/Ile were the closest
to clozapine in all five subtypes, suggesting that these residues are crucial for this
ligand’s binding. Haloperidole, categorized as D:R selective antagonist with some
activity on D4R, has distinctive differences between Di-like and D:-like family, being
closer to the second (although within D:-like family there is no great differences on
distances pattern). Spiperone and chlorpromazine have affinity for all DR subtypes,
which agrees with the lack of significant differences in the measured distances.
Finally, nemonapride and eticlopride, described as D2R/DsR selective antagonists,
were located closest to the D»-like DR residues compared to the Di-like DR, however
it seemed as these two ligands demonstrated preference for the DiR.

With reference to the conserved amino acids of the DR binding pocket: 3.32Asp,
5.425er, 5.43Ser, 5.46Ser and 6.48Ser, we observed certain ligand and receptor
specific differences in binding (measured in distance between ligand and residues).
One must take into consideration that for the docking set-up, we choose specific
residues that are believed to form meaningful interactions. Another point to
consider is the size and affinity for the ligands at these receptors. As such, ligand-
based analysis was applied to address ligand properties unbiased (which is the case
for applying flexible residues in the molecular docking approach) towards the
receptor’s structural properties.
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Figure 3 - Summary of the distances between ligands and residues used in molecular docking for all DR
subtypes. For each ligand-residue-distance [A], we calculated the mean of all time points of the
conformational models (11) of the three best docked clusters ranked by binding energy [kcal/mol]
Noteworthy is that not all ligands were set to interact with all residues shown in the x-axis in the molecular

docking. (e.g. only clozapine and aripiprazole were set to interact with 3.33Val). Distances below 6 A are
coloured red, while distances > 10 A are coloured blue-violet.
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2.3.3. Pairwise interactions

In-house scripts using the BINANA algorithm were constructed to identify the type
of interactions established between the ligands and all DRs [30]. Close contacts
between receptor and ligands were measured at 2.5 and 4.0 A. Moreover, it also
allows the determination of hydrogen bonds (HB), hydrophobic contacts
(hydrocontacts) and salt-bridges (SB) as well as m-interactions, further subdivided
into cation-mt-interactions (cat-7t), aromatic superpositions (7t-mt-stack) and
perpendicular interactions of aromatic rings also referred to as edge-face-
interactions (T-stack) [30]. For a first overview, all interactions despite their type and
ligand were summarized and compared between the DR-subtypes (Figure S9)

On average, majority of interactions were found for DsR (around 3686 + 377),
concentrated at the conformation arrangement found at time point 95 ns. Similar
trend was observed for the DiR (average of total interactions 3257 + 209), where the
maximum NoC was counted at 100 ns, while for the other DRs the interactions
slightly decreased at the end of the MD simulation conformation. Least interactions
in total were found with the DsR (2793 + 170), while the D2R counted 3037 + 210 and
the D3R 2893 + 175 total interactions, on average. We found the lowest number of
interactions at 80 ns (2903 + 295), whereas the highest were counted at 95 ns (3408 +
523).

In a more detailed look, the number of 4 A-interactions, as expected due to the
possible involvement of a higher number of atoms, and consequently hydrocontacts
are the most frequent (around 75 to more than 100) over time, when compared to all
other interactions ranging from 50 to 0 for all ligands at all DRs (Figure 4Error!
Reference source not found.). In addition, the number of contacts was found mostly
for DiR and the smallest number for D:R and DsR (4 A-contacts). Hydrocontacts
contacts were counted mostly for DiR and lastly for DsR. Per interaction type, as also
expected by comparison with other systems, the smallest number of interactions
were counted for cat-rt-interactions and hydrogen bonds, which ranged between 0
and 2 contacts. Dopamine, due to its small size, established the lowest number of
contacts when bounded to all DRs. On the contrary, bromocriptine seemed to form
the highest number. Bromocriptine was also the only ligand with hydrocontacts >
100 at Di-4R, while 97 were counted for DsR. Only DR risperidone and spiperone
showed hydrocontacts in similar ranges (59 and 62 respectively). Lastly, for each
ligand a similar pattern with slight variations was found for each DR. For
apomorphine, 10 T-stacking interactions were always formed for D2-like DR, while
only 6 were found for DiR and 12 for DsR. Bromocriptine had the most discrepancies
at 2.5 A-number of interactions: highest number found at the D4R (31) and least at
DsR (8), while it did not differ much for the other DRs. We stress out that for
clozapine, risperidone and aripiprazole, no cat-m-interactions could be identified at
the D1-like DR. In addition, for risperidone, more hydrocontacts were found at the
DiR and D4R (70, 80) compared to the other DRs (2x 54, 59). Furthermore m-7t-
stacking was favoured at the DsR (8 contacts), while for DiR and D2R 2 contacts were
found, and for DsR and DsR 4 m-m-stacking interactions were found. For
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aripiprazole, a DiR and DiR preference was found for 4 A-interactions and
hydrocontacts compared to the other DRs (lower contacts in the inner sphere), while
for spiperone a distinctly decrease in contacts for these interaction types was
observed for DsR. Lastly, for chlorpromazine, the lowest number of 4 A-interactions
was found for DsR, while in contrast most T-stacking interactions were found for
this DR-subtype. Figures S10-524 show a closer detailed of the change of interaction-

pattern over time.
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Figure 4 - Interactions types counted for each ligand at DR-subtypes. The data is summarized for each
ligand at all time points. Total numbers of the contacts for each interaction type are color-coded: Red stands
for > 100 contacts, orange 75-100, yellow 50-75, green 25-50, cyan 10-25, light-blue 8-10, dark-blue 6-8, dark
violet 4-6, violet 2-4, light violet 1-2 and pink indicates when 0 contacts were counted. White cells indicate
that these values are outside the scale.
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2.5 A interactions

2.5 A-interactions, very short (closer) contacts are especially relevant for ligand
binding. For dopamine the number of these interactions increased for D1-like DRs
at 95 ns, while for 7-OH-DPAT the highest number of interactions observed in total
only occurred for DsR (counting highest at 95 ns). For bromocriptine 2.5 A-
interactions were significantly higher for DsR. This effect was also observed for
clozapine with (counting highest at 95 ns). Also, haloperidole seemed to have a
higher number of established interactions with D4R as well as eticlopride, for which
the most interactions were observed at 65 ns. Only risperidone had a higher number
of interactions with D:2R, especially at 95 ns. Regarding the Di-like DRs,
nemonapride established the majority of DiR at 80 ns and sulpiride for DsR at 95 ns.
Chlorpromazine had the lowest number of compared to all ligands with no
preference for any DR-subtype. All in all, the 2.5 A-interactions seemed to be
particularly relevant for the ligand binding to DsR.

4 A-interactions

Contrary to 2.5 A-interactions that show higher specificity, 4 A-interactions are more
unspecific but may reveal other indirect receptor-ligand contacts. Bromocriptine
showed the highest number of 4 A-interactions (> 200) among all DRs since it was
also the most ornate ligand. In addition, less hydrocontacts were found at the D:R,
DsR and DsR compared to the other DR-subtypes. Furthermore, many interactions
were observed at the D4R at 65 ns and 95 ns which is surprising as the binding energy
decreases at these exact time points. Most 4 A-interactions were found for dopamine
binding to DiR, while for apomorphine this was the case for DsR. Nemonapride
showed a high and stable number of interactions for D:R and D4R binding over time,
yet a decrease in interaction was found for DsR at 100 ns. SCH23390 displayed a
preference for D4R, especially at 95 ns. Also, aripiprazole seemed to favour 4 A-
interactions preferably with the D4R despite a high interaction-loss at 90 ns. Once
again, 4 A-interactions are higher in DsR:ligand complexes.

Cat-m-interactions and T-m-stack

Cationic-7t and m-mt-stacking are considered as natural key non-covalent interactions
[57]. They are important as solitary effects, but also their interplay omnipresent in
many biological systems [58]. In the DR-ligand system frequent oscillations between
time points was noted for some ligands. Dopamine, for example, showed highest
cat-mt-interactions for D2R but this oscillated from 2-4 interactions/time point. 7t-mt-
stacking interactions displayed a similar pattern. 7-OH-DPAT showed a variety of
possible cat-mt-interactions and m-mt-stack at the DsR. Apomorphine demonstrated
cat-mt-interactions between 55 and 75 ns with DsR and mt-mt-stacking-interactions with
D:2R between 60 and 80 ns. Bromocriptine displayed a wide array of cat-m-
interactions per time point (0-6 interactions) with D2R and DsR. In contrast none

were found for DiR complexes. mt-rt-stackings occurred with bromocriptine and DsR
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between 85 and 100 ns. Clozapine showed also no cat-m-interactions with DiR.
Nemonapride showed oscillating m-m-stacking-interactions without preference for
one particular DR. However, a lot of cat-m-interactions were counted for DsR
between 70-80 ns. For risperidone, cat-mt-interactions were mainly formed with DR,
while mt-mt-stacking was mostly related to DsR complexes. Aripiprazole seemed to
preferably form cat-m-interactions with DuR, while increasing m-m-stacking-
interactions were observed with DiR between 65 and 80 ns. Haloperidole seemed to
prefer m-m-stacking-interactions with D:R, maybe important for its selectivity
towards this receptor. For chlorpromazine, no cat-mt-interactions were observed at
D1-like DRs (DiR and DsR), while many interactions were counted with D2R
between 65 and 75 ns, with D3R at 95 ns and with D4R at 60 ns.

T-stacking

The T-stacking-interactions were similar to cat-m- and m-m-interactions, yet more
frequent fluctuations in the number of interacts between ligands and receptor were
observed in total. Especially for risperidone, which showed the highest number of
T-stacking-contacts, preferably with D:R. Haloperidole and spiperone also seemed
to have a D:R-preference, while chlorpromazine formed a large number of
interactions with DsR. In brief, our results also pinpoint for the fact that T-stacking-
interactions seem to be relevant for large ligands, primary in antagonists binding
than in agonists case.

Salt-bridges

The following ligands did not form any salt-bridges at any time point: apomorphine,
bromocriptine, clozapine, risperidone, aripiprazole and chlorpromazine. Most
stable salt-bridge bonding at all DR-subtypes was unsurprisingly achieved by
dopamine. 7-OH-DPAT salt-bridge-bonding was found for D1R (3 in total), while for
the other subtypes, contacts ranged between 1 and 3 over time. The same trend was
observed for nemonapride and SKF38393. SCH23390 formed the highest number of
salt-bridges with DsR and with D2R between 70 and 85 ns. Haloperidole seemed to
establish a higher number of salt-bridges with D1-like DR and D2R, while none were
formed with DsR and DsR. Spiperone seemed to preferably form salt-bridges with
D1-like DRs.

Hydrogen bonds and hydrophobic contacts
Charge-reinforced hydrogen bonds are reported to be much stronger than the
neutral hydrophobic contacts [59]. Moreover, it was reported that Hydrogen Bonds
(HB) determine the specificity of receptor-ligand binding [59]. Hydrophobic contacts
(hydrocontacts) also contribute to ligand-binding, and a balance between HB and
hydrocontacts is required for drug-like molecules [59]. Therefore, it was not
surprising that a large number of hydrocontacts was observed for all ligands, while
HB were less common. Hydrocontacts were found for dopamine binding to D1-like
DRs between 60 and 70 ns; while HB were only formed with DiR during this time
period. Not more than 2 HB were found at any DR bounded to 7-OH-DPAT, while
12
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hydrocontacts were preferably formed for DiR between 60 and 70 ns. Bromocriptine
seemed to build a large hydrophobic network with the D4R at 65 ns, while this was
the case for clozapine during 85 to 100 ns. Aripiprazole was found to form steady
number of hydrocontacts at DiR while increasing hydrocontacts were found at the
D4R at 90 ns. Inversely the number of hydrocontacts with the D2R, DsR and DsR
decreased at that time point. Lastly, chlorpromazine seemed not to form any HB at
any DR complex. In brief, DiR and DR showed similar interaction-patterns,
distinguishing themselves from the rest of DRs.

Furthermore, the pairwise analysis resulted in the key receptor residues, responsible
for the establishment of these types of interactions. By assorting those for each ligand
at all DRs (time points summarized), patterns but also unique receptor-ligand
interactions were visible (Tables $9-S13). Notably for this part of analysis the 4 A-
interactions were omitted as they were found to be unspecific and occur very
frequently.
Conspicuously, residues on TM4 were not contributing to receptor-ligand
interaction except at DsR complexes. It was not surprising that the “classical” TMs,
e.g. TM3, TM5, TM6 and TM7 were involved in many different interaction types. By
comparing large ligands such as spiperone or haloperidole with rather compact
ligands such as dopamine, SCH23390 or clozapine, it was possible to point out a
larger number of TM1 and TM2 residues involved in establishing meaningful
interactions. Author’s had already hypothesized that these residues could belong to
a secondary binding pocket, only accessed by large ligands [48,60].
Undoubtedly, 3.32Asp was always involved in the establishment of salt-bridges for
all DRs. However, at DiR, 74Pro located on ECL1 appeared also to establish salt-
bridges. In addition, D3R salt-bridge-bonding for spiperone was found occur with
1.44Leu and 75Ser (ECL1) rather than with 3.32Asp. All in all, salt-bridges were
found to be highly conserved regarding the residues involved. In contrast, most
interactions in total and most unique interactions were found within hydrocontacts
(hydrophobic bonds). Especially bromocriptine displayed the most divergent
hydrophobic network at all DR ranging from conserved and non-conserved residues
involving all TMs.
Most interesting were the HB interactions. For dopamine a different set-up was
presented at each DR. While the D2-like DRs and DsR HB were formed by the serine
microdomain (5.42Ser, 5.43Ser and 5.46Ser), for D1R the serine microdomain was not
involved at all. 3.32Asp appeared as interaction partner for all DRs. At DsR, an HB
with 5.38Tyr and dopamine was unique for this interaction type for all ligands.
However, 5.38Tyr was found at the D4R to form HB with 7-OH-DPAT.
Less cat-mt-interactions were found at the DsR and not for all ligands, while most
were found at the DsR. Only bromocriptine (3.28Trp, 6.51Phe), nemonapride
(6.48Trp, 6.51Phe, 6.52Phe), sulpiride (2.61Lys, 6.48Trp, 6.51Phe) and SCH23390
(6.48Trp) showed cat-rt-contacts at the DsR. Also, at the DiR cat-mt-interactions were
less common and mainly formed by conserved residues on TM6 (6.42Gly, 6.31Thr,
6.30Glu, 6.39Val). Interestingly for dopamine at D2-like DRs most 6.55His was
13
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involved in HB interactions, moreover at the D4R this interaction type occurred only
at time point 65 ns. The same effect was found for clozapine for D2R.
T-stacking-interactions were found for almost all ligands when complexed to all
DRs, except for bromocriptine and sulpiride at D2R, haloperidole at DiR and
spiperone at DsR. It was also visible that most T-stack-contacts were counted for DsR
and less for the DsR in general. T-stack-contacts were mainly formed, despite the
ligand, by residues either from the aromatic microdomain (6.48Trp, 6.51Phe,
6.52Phe, 6.55His), but also by other conserved residues (6.39Val, 6.42Gly, 6.43Val).
Unique interactions were found for risperidone at DiR with 6.44Phe and for
chlorpromazine at DiR with 6.30Glu. However, other residues from other TMs were
also involved in forming T-stack-contacts: for example, 7-OH-DPAT unique
interaction with 2.47Ala and for SKF38393 with 35Ala (ICL1) were found at DsR. For
risperidone another unique interaction with 231Phe (ICL3) was determined at D:R.
While for spiperone 1.35Tyr and 1591le (ECL2) seemed to be relevant for D4R. For
chlorpromazine, 2.14Tyr was relevant in DsR coupling. TM7 residues were
participating in T-stack-formation, such as 7.34Thr (DiR) and 7.35Tyr (D--
like)/7.35Phe(DsR), 7.43Tyr(D:2-like), which was more frequently observed for D>-like
DR-subtypes. Residues on TM2 were also relevant for T-stack-formation (2.41Tyr,
2.43Val, 2.45Ser, 2.46Leu, 2.47Ala, 2.50Asp) but only for DsR. For D4R and DsR, only
residues from TM6 and TM7 were involved in T-stack-contacts, except for SKF38393
where 5.47Phe was relevant for binding to DsR. Lastly, for DiR and D:R TM3
(3.28Trp(D1R)/3.28Phe(D2R)) residues also established meaningful interactions with
nemonapride, sulpiride, SCH23390, aripiprazole and spiperone.
Although these residues (especially on TM2 and TM7) are more related to the SBP
than to the OBP (herein TM6 is the most relevant TM), contact formation was also
observed for smaller ligands (7OH-DPAT, SCH23390, SKF38393). It was not
expected that these ligands would access the SBP. Noteworthy is also the fact, that
dopamine exclusively formed T-stack-contacts with the conserved aromatic
microdomain at all DR. Lastly, contacts with residues from TM6 were found highly
relevant for all ligands and all DRs. Finally, it was also obvious that the variety of T-
stack-contacts was also limited by the number of aromatic rings of the ligand (e.g.
dopamine only contacted 3 different sequential residues).
The m-mt-interactions were rather rare compared to the other interaction types. Here,
the least contacts were found for D1-like DR subtypes, while most were found at the
D2-like subtypes, and in particular for DsR. Some ligands did not form m-mt-stacking
interactions with DR subtypes (e.g. none mt-mt-stacking were found for DiR binding
to dopamine, 7-OH-PAT and sulpiride; D2R was not favoured by sulpiride either).
Eticlopride and haloperidole were not attracted by residues on the DiR, while
nemonapride did not favour m-nt-stacking with DsR. It was also obvious, that similar
to T-stacking, the residues of the aromatic microdomain (6.48Trp, 6.51Phe, 6.52Phe,
6.55His) were responsible for the majority of ligands interactions to all DRs.
However, different residue partners were determined for m-m- compared to T-
stacking such as residues from TM5 (5.38Tyr, 5.47Phe). For aripiprazole, residues
7.43Tyr (D2R-D4R) and 7.34Thr (DiR) seemed also to be important for this type of
14
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interaction. Most interesting was the interaction pattern for sulpiride: while for DiR
and D:R no nt-nt-stacking was detected, for DsR and DsR only a few residues seemed
to be relevant (2.43Val, 2.44Val, 2.48Val, 38Thr, 5.38Phe, 6.51Phe, 6.52Phe for DsR;
3.28Trp and 6.48Trp for DsR) while for D4R, 27 residues from all TMs were involved
in contact network formation. This may be explained by the different possible
binding poses of sulpiride on the different DsR conformations.

3. Discussion

3.1. Homology modeling

Homology modeling of all DR subtypes showed that there were smaller structural
differences among the “classical” TMs (TM3, TM5, TM6), which are important for
ligand binding. Yet, as expected, structural differences between the subtypes were
observed in the intracellular and extracellular loops, where some are important for
ligand binding (ECL2) or for intracellular signalling (ICL2) [61]. The latter was the
case for the Di-like, due to its larger intracellular loop 3. The combination of
MODELLER [32] ClustalOmega (used for multiple sequence alignment [36]
provided suitable models for molecular docking and is a straightforward protocol
to follow. Although no crystal structure is available for the D1-like DRs, the high
sequence similarity among all DR helped to find suitable models for molecular
docking.

3.2. Model metrics

There are several approaches to validate homology models such as built-in metrics
of open-source [43] and licensed softwares [62]. In a preliminary study we
experienced [41] that the combination of different independent metrics provided
adequate models suitable for molecular docking. For instance, the combination of
MODELLER’s metrics [31], ProSA-web [63,64] and ProQ [65] revealed to be
promising and again straightforward. We could not compare our models with other
authors as metrics scores are mostly not shown [63,66]. Di-like models, which did
not have their own crystal structure template and D:-like models for which its own
crystal structure templates are available showed similar quality. In conclusion, the
homology modeling approach and evaluation using the MODELLER’s metrics,
ProSA- and ProQ-analysis is a promising and reliable protocol to create valid models
for molecular docking.

3.3. Molecular docking and definition of the binding pocket

In general, the docking performance of the DR homology models and the ligand-set
seemed to be reproducible, low binding energies, high NoC by cluster and no
significant differences were found for the 11 conformational rearrangements tested.
Certainly, ligand specific differences were observed. For example, dopamine
constantly showed the lowest binding energies combined with the highest NoC per
cluster, whereas haloperidole’s binding energies were even lower but rarely with
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over 10 conformations. Bromocriptine was an exception throughout the docking
processes as it expressed positive binding energies, indicators of an unfavorable
position of the ligand in the receptor. However, since bromocriptine acts as an
agonist for DRs, is was expected that binding properties would be similar as for
other agonists and dopamine, which was chosen in this large study. In other studies
where the active state of the D:R was investigated, lower binding energies were
measured maybe due to differences in the used templates (here we used the most
recent one, D2R itself) [52]. However, Sukalovic et al., who used DsR crystal structure
as template for DR modeling, and then docked their own synthesized dopaminergic
arylpiperazines, attained binding energies around -10 kcal/mol, in line with our
results [60]. The binding pocket was defined according to previous studies from
literature [41]. Foremost, 3.32Asp, a serine microdomain (5.42Ser, 5.43Ser, 5.46Ser)
and an aromatic domain in TM6 (6.48Trp, 6.51Phe, 6.52Phe, 6.55His) are believed to
be crucial for dopaminergic binding and receptor activation [38]. These residues
appeared to be omnipresent in all of analyses such as ligand-residue-distance- and
pairwise-analyses.

3.4. Distances

A current method to access possible receptor-ligand binding properties, is the
measurement of the distance between the alpha carbon atoms of the relevant
residues in the binding pocket and the centre of mass of the ligands [2]. Overall,
most of measured residue-ligand distances were above 5 A. By using this approach,
one can quantify the modes of interaction of these particular ligands, but otherwise
one overlooks other possible meaningful residues. Yet, the distances for the most
conserved OBP residues (3.32Asp, serine residues and 6.48Trp), distinct differences
were observed between agonists and antagonists. For example, dopamine was
constantly close to OBP, indicating it’s receptor activating properties as described by
Floresca and Schetz [38], while risperidone was found distant from these residues
according to its antagonistic properties. This was also the case for the other
antagonists such as haloperidole, nemonapride and the biased ligand aripiprazole.
In addition, it may also be possible that other residues in other TMs were involved
in binding of these ligands as described by Kalani et al. for the D2R. [48]. Therefore,
the pairwise interactions were further analysed, to gain a more detailed knowledge
about ligand-binding possibilities within the DR binding pocket

3.5. Pairwise interactions

BINANA (used in other non-GPCR studies [30,67-70]) revealed to be a helpful tool
for assessing the full binding capacity of the DRs regarding the chosen ligand set.
First of all, it was visible by considering the total number of interactions per ligand
that no clear Di- or D:-like specificity was observed, except for apomorphine
(differences of 20 interactions between D:i-like and D»2-like). In total, the highest
number of interactions was found for DiR. Moreover, the lowest number of
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interactions were formed with DsR, but not with the DiR. It was found that either
DiR together with D4R formed the highest number of interactions with dopamine,
nemonapride, eticlopride and aripiprazole. For other ligands, when this scenario
occurred, the lowest number of interactions were found for DsR and DsR (clozapine,
sulpiride, eticloride, risperidone, aripiprazole, spiperone, chlorpromazine). This
cannot be related to the type of ligand, as they are all structurally diverse. Only
chlorpromazine was reported to show a significantly different binding mode which
was already described by Kalani ef al. that concluded that this antagonist would
have “atypical-bound-system” for D:R [48,71]. However, for SCH23390 and
SKF38393 no subtype-specific differences were observed although SCH23390 is an
antagonist at the Di-like DRs and SKF38393 a selective DiR-agonist [72,73]. Lastly,
haloperidole showed a higher number of interactions with D4R while the number of
interactions was indifferent of the other DRs. The interactions are on one hand
classified unspecific in 4 or 2.5 A radiuses or specific in the following categories: salt-
bridges, hydrogen bonds, hydrophobic contacts (hydrocontacts), cation-m, rt-1t- and
T-stack-interactions. A systematic study by De Freitas and Schapira [74] showed that
the most frequent type of non-covalent interactions for protein-ligand complexes are
hydrophobic contacts, followed by hydrogen bonding, m-stacking, salt-bridges,
amide-stacking (corresponds to T-stack) and lastly cation-mt-stacking. The same
ranking of frequency of interaction type was found in our study. As also described
by Davis and Teague [59] hydrophobic contacts are the most common type of
receptor-ligand-interactions as they not only enhance binding affinity but also are
sometimes favoured over tight, charged hydrogen bonds [59]. In addition, they can
be formed with different ligand-atoms such as carbons, halogens or sulphurs [74].
As the usual cut-off for hydrophobic contacts it 4 A, it was also not surprising that
almost the same number of contacts were found in the unspecific 4 A- analysis,
whereas significantly less contacts were found within the 2.5 A-cluster. As reviewed
in Davis and Teague [59] most docking studies fail to count in the hydrophobicity
for their ligands. However, the balance between polarity (causing hydrogen bonds)
and lipophicity (causing hydrophobic contacts) is the main drive to make a ligand
“drug-like” [59]. Our study was successful to determine not only the hydrogen
bonds but also the large hydrophobic network of each “drug-like” ligand (as well as
of the marketed drugs). To what extent these hydrophobic contacts contribute to
ligand-binding should be further validated as suggested by Davis and Teague [59].
These hydrophobic networks were found to be scattered over residues of all TMs for
all DRs. Floresca and Schetz [38] also reported that conserved residues in the OBP
clustered in microdomains contribute to stabilizing ligand-binding through the
formation of a H-bond network. Moreover, HBs where mostly mediated by the
serine microdomain (5.42Ser, 5.34Ser and 5.46Ser especially at D2R and DsR).
Interestingly these residues were not relevant for DiR, although a study by Hugo et
al. mentioned 5.46Ser as key residue for activating DiR [75]. In this study, 3.37Trp
was also proposed to be mediator of the DiR-activation [75]. We were not able to
confirm these findings in our study, only bromocriptine and spiperone were
interacting 3.37Trp at DiR, while at DsR we did not observe any interaction with this
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residue. 3.37Thr D:R was found to interact with 7-OH-DPAT, indicating that these
residues may not be DiR-specific. Other residues on TM3 such as 3.35Cys, 3.36Ser,
3.33Val or 3.33lle and 3.39Ser were often found forming different interactions with
different ligands. This was also in concordance with previous studies regarding the
involvement of other conserved residues on TM2 and TM7 (and TM3) [48,60,76,77],
which was also described as part of a SBP only assessable for ligands with
piperazine-moieties [50]. Furthermore, there was a clear higher network contact
formation with DsR. Except for that fact that the DR is physiologically distant
compared to the D2R and DsR, no further explanation could be found for this trend
[76].

Frontera et al. reported that the strength of ion-m-interactions is also influenced by
the presence of weaker interactions such as hydrogen or hydrophobic bonds [58].
For instance, it is well known that H-bonding is highly contributing to the bond
strength of m-stacking [58]. But not only weaker interactions benefit m-interactions,
cat-nt and mt-mt-stacking were also found to be cooperative for each other [58]. Such
combinations where cat-m and m-m-stacking were simultaneously present, were
indisputably found at the D2-like rather than at D1-like DRs. In addition, these
residues and those of the TM6 aromatic microdomain (6.48Trp, 6.51Phe, 6.52Phe,
6.55His/Asn) were mostly involved in forming mt-interactions (cat-7t, - or T-stack).
This can be explained by the fact that especially amino-acids like Phe, Tyr and Trp
provide a surface of negative electrostatic potential that can bind to cations through
electrostatic interaction [58]. Moreover, the majority of interacting residues filtered
for these three interaction types were also found to be these three types of amino
acids. DsR m-stacking-formation always involved Phe, Tyr and Trp. Therefore, these
interactions with Phe, Tyr, Trp could be further extended in order to design a new
selective SAR for D1-like DR ligand. Since for the D1R-like DR SCH23390 and
SKF38393 are the only selective ligands so far, a closer look at the interacting
residues of these ligands revealed that cat-mt-interactions (6.30Glu, 6.39Val, 6.42Gly)
were only present at the DiR for SCH23390, the antagonist at the D1-like DR [73].
Moreover, these residues were rather not the “classical” TM6 residues usually
involved in binding, whereas this was true for the other ligands. This encouraged
the search for DsR-selective ligands which should ideally form cat-mt-interactions, as
they were found in this ligand set. From a structural basis SCH23390 and SKF38393
are more related to the benzodiazepines, compared to the other ligands which are
either small molecules or longer ligands with piperidine moieties [78]. Lastly,
another difference found between SCH23390 and SKF38393 binding to DsR were
that SKF38393 established more interactions with residues from different TMs and
a variety of neighbouring residues of the “classical” interacting residues; whereas
SCH23390-receptor-interactions were more limited to a smaller number of residues.
These observations were not found for both ligands at the D:1R. Reported by Bourne,
who discovered SCH23390, this compound is the 3-methyl, 7-chloro analogue of the
D1 agonist SKF38393, which is furthermore enantioselective [73]. In addition, it was
stated that the phenyl ring in the benzodiazepine-derivatives and the receptors was
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involved in electrostatic forces, important for binding [73,79]. Mapping the full
electrostatic potential of the DsR using ligands with benzodiazepine properties may
be useful to find DsR-selective SAR.

Conclusions

Herein, we present a comprehensive in silico approach, to inspect protein-ligand
interactions within DRs bounded to 15 ligands. One of the major research efforts in
the research of dopamine receptors is the design of DR-subtype selective ligands
[76]. However, most predictive studies have been performed on D:R ligand
specificity, as this receptor is the most crucial in neurotransmission [48,77,80]. Our
study reveals important interactions between DRs key residues and ligands in a
more detailed way when compared with available literature [46,48,50,52,60,71] Data
is also in line with experimental information, which corroborates the conceptual
framework of this analysis protocol [38]. DRs classical residues participate in
forming contacts with all ligands (e.g. 3.32Asp undoubted forms salt-bridges with
agonists, dopamine, 7-OH-DPAT, and antagonists, risperidone). Also, hydrogen-
bonds were mostly formed by the aromatic microdomain of TM6. In addition,
dependent on the ligand, these interaction types were either present at the DRs or
completely non-existent.

A clear De-like selectivity or binding preference was only found for apomorphine,
while for others either D:R and DsR seemed to form a lower number of 4 A-
interactions such as nemonapride (D:R/DsR-antagonist [81]), SCH23390 (D:-like
antagonist [73]), SKF38393 (DiR-antagonist [21]) or DiR and DiR were highly
preferred (higher number of meaningful interactions). In other cases such as for
eticlopride (D:2R/DsR antagonist [27]) and spiperone (D:R-antagonist [56]), the DsR
was the least attractive DR for interaction. It was also shown that the NoC does not
automatically result in the lowest binding energy (BE), which was most visible for
haloperidole bounded to DsR. For most ligands, a high NoC resulted in a higher
number of interactions, mostly 4 A-interactions or hydrocontacts, which points to a
higher number of interactions involving the outer residue network of the DRs
binding crevice when the ligand is involved in deeper conformational exploration.
Regarding the electrostatic interactions, it can be concluded that they mostly
contribute for a more specific binding and should therefore be closely investigated
during ligand design. T-stacking interactions for DsR were most likely to achieve the
lowest binding energies. This was also true for the Di-like DR selective ligands
SCH23390 and SKF38393[78,82]. For bromocriptine, DsR was the only DRs with
negative binding energies in average. Lastly, T-stacking interactions revealed as
especially relevant for some large ligands such as apomorphine, risperidone or
aripiprazole.

In order to find future SARs for DRs, this computational approach helped to
understand which types of interactions are major binding contributors and should
be considered. Finally, this study also showed that scores made by molecular
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docking studies such as NoC and binding energy give hints but are not able to assess
the full-scale binding properties and potential of a certain compound.

4. Materials and Methods

4.1. Homology modeling
4.1.1. General approach

The inactive DR models were generated with MODELLER 9.19 [31], using the D2R
complexed with risperidone (PDBid: 6CM4) [29], the DsR complexed with D:2R-
antagonist eticlopride, (PDBid: 3PBL) [27] or DsR complexed with D2R/D3R-
antagonist nemonapride (PDBid: 5WIU) [28] as templates. Depending on the
sequence similarity obtained with Basic Local Alignment Search Tool (BLAST) [34]
and ClustalOmega [35], either DsR or DsR was chosen as template to model the DR
(more detailed in results section). The crystal structure of D2R was chosen as
template to model this receptor. Due to the length of the IntraCellular Loop 3 (ICL3),
this was cut and substituted with four alanine residues. Water and co-crystalized
compounds were removed from the template structures. In the modeling protocol
the lengths of the TMs and the perimembrane intracellular helix (HX8) were
specified. In addition, disulphide bonds were constricted in the known pairs of
cysteines, in particular between 3.25Cys and a non-conserved cysteine in ECL2 and
between two non-conserved cysteines in the ECL3. Furthermore, loop refinement
was performed for extracellular and intracellular loops for all DR using the module
“loop refinement” of MODELLER 9.19. The number of models calculated with
MODELLER [31] was set to 100.
4.1.2 Model evaluation/ Methods of quality

We used MODELLER'’s standard metrics for model assessment, Discrete Optimized
Protein Energy (DOPE) [83] to choose the best three models for further analysis.
However, as these scores are not reliable enough for membrane proteins (they are
primarily based on the model’s free energy and spacial occupation directed to water-
soluble proteins) we took additional metrics into account. In particular, we used
Protein Structure Analysis (ProSA) web service [64] and the online Protein Quality
(ProQ) prediction server [84]. The z-score, provided by ProSA was only used for
error recognition, as it indicates overall model quality with respect to an energy
distribution derived from random conformations for globular proteins [64]. On the
other hand, ProQ provides the LGscore [85] and MaxSub [86], based on a neural
network, which were set as base for the more detailed evaluation of the models.
Additionally, ProQ allows to include secondary structure information calculated
with PSIPRED [37], which improves the prediction accuracy and increasing the
model quality up to 15%. The ProQ analysis was only carried out, if z-scores around
2-4 were achieved using the ProQ protocol. Finally, the Ballesteros and Weinstein
numbering system for class A GPCRs was applied in order to simply comparison
between different receptors and complex systems [42].
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4.2. Molecular dynamics

4.2.1. System setup

Before setting up the system, the selected DR models were subjected to the
Orientations of Proteins in Membranes (OPM) web-server [87-90] to calculate spatial
orientations respecting to the Membrane Normal defined by the z-axis. In addition,
the state of titratable residues was calculated by Propka 3.1 [91,92] within the
PDB2PQR web-server [93] at a pH of 7.0. The prepared receptor structures were
inserted into a rectangular box simulation with dimensions of 114 x 114 x 107 A. The
box was previously constructed with a lipid bilayer of POPC: Cholesterol (9:1) and
explicitly represented water and subjected to an initial equilibration of 10 ns.
Insertion of the receptors in the membrane was performed with g_membed package
of GROMACS [94]. Sodium and chloride ions were added to neutralize the system
until it reached a total concentration of 0.15 M. The final systems included
approximately 370 POPC, 40 cholesterols, 125 sodium ions, 139 chloride ions and
28500 water molecules, with small variations from receptor to receptor.

4.2.2. Molecular Dynamics simulation protocol

CHARMMB36 force field was used for ions, water (TIP3P model), lipids and protein
parameters [95]. Prior to MD simulation, the systems were relaxed to remove any
possible steric clashes by a set of 50000 steps of Steepest Descent energy
minimization. Equilibration was performed afterwards as following: the system was
heated using Nosé-Hoover thermostat from 0 to 310.15 K in the NVT ensemble over
100 ps with harmonic restraints of 10.0 kcal/mol. Then systems were subjected
through a first step of NPT ensemble of 1 ns with semi isotropic pressure coupling
and a pressure of one bar. Further equilibration was performed with sequential
release of membrane lipids and protein’s atoms with a final step of NPT ensemble
with harmonic restraints on the protein of 1.0 kcal/mol, for a total of 5 ns of
restrained equilibration.

MD simulations of all DR models were performed with the periodic boundary
condition to produce isothermical-isobaric ensembles using GROMACS 5.1.1 [94].
The Particle Mesh Ewald (PME) method [96] was used to calculate the full
electrostatic energy of a unit cell in a macroscopic lattice of repeating images.
Temperature was regulated using the Nosé-Hoover thermostat at 310.15 K. Pressure
was regulated using the Parrinello-Rahman algorithm. The equations of motion
were integrated using leapfrog algorithm with a time step of 2 fs. All bonds,
involving hydrogen atoms within protein and lipid molecules were constrained
using the LINear Constraint Solver (LINCS) algorithm [97]. Then an independent
simulation of 100 ns was initialized from the final snapshot of the restrained
equilibration from each DR, for a total of 5 simulations. Additionally, a cut-off
distance of 12 A was attributed for Coulombic and van der Waals interactions.
Trajectory snapshots were saved every 5 ns. Trajectory analysis was performed by
in-house scripting using Visual Molecular Dynamics (VMD) [98,99].

21


http://dx.doi.org/10.20944/preprints201902.0064.v1
http://dx.doi.org/10.3390/molecules24071196

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2019 d0i:10.20944/preprints201902.0064.v1

4.3. Molecular docking
4.3.1. Ligand dataset

The following ligands were docked into the receptor decoys: Dopamine, 7-hydroxy-
N,N-dipropyl-2-aminotetralin =~ (7-OH-DPAT), apomorphine, bromocriptine,
clozapine, nemonapride, sulpiride, SCH23390, SKF38393, eticlopride, risperidone,
aripiprazole, haloperidole, spiperone and chlorpromazine (Table 2). All structures
were obtained from the DrugBank database (https://www.drugbank.ca) or from
ChemSpider (http://www.chemspider.com) [100].

Table 2 - Ligands used for molecular docking and information on their function.

LIGAND FUNCTION BP REFERENCES
DOPAMINE HO NH, Endogenous ~ OBP [38,43,101]
agonist of all
DR
HO
7-OH-DPAT (\ Synthetic OBP [38,101,102]
DsR selective
HO. : i ,N\/\ agonist
APOMORPHINE D:R selective ~ OBP [38,43,101]
agonist
N ~N
HO !
HO
BROMOCRIPTINE HO DeR selective  OBP [38,101]
0 ﬁ/pN> agonist
O _N H
H N\/go
| o H
T
H
HN |
Br
CLOZAPINE Cl “Dirty OBP [38,101,103,104]
drug”,
multiple
N receptor
\ N‘ ‘NH binding
HN __/
NEMONAPRIDE 0 D2R/DsR OBP+SBP  [28,38,46,101]
cl N selectlve.
N antagonist
H
—N (6]
H I
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SULPIRIDE ~ “Dirty OBP+SBP  [38,101,102]
O O i
drug”,
N &O multiple
H receptor
N binding
O:$:O (
NH,
SCH23390 / DiR OBP [22,38,101,105]
antagonist
SKF38393 NH DiR selective ~ OBP [22,38,101,106]
agonist
HO O O
HO
ETICLOPRIDE OH O ‘/ D2R/DsR OBP+SBP  [27,102]
N selective
antagonist
N &
H
)
c |

RISPERIDONE “Dirty OBP+SBP  [29,38]
drug”,
multiple
l;l ! \ rece for
N N— b
HN \ / binding
S

ARIPIPRAZOLE Cl Partial D2R OBP+SBP  [17,102]
Cl agonist,
D2R/D3R

heterodimer
D anta ist
N gonis
\/\/\O H 0

HALOPERIDOLE Cl D2R selective  OBP+SBP  [9,38,101,103,10
antagonist, 7]
(0] D4R

OH .
/©)‘\/\/ N antagonist
F

SPIPERONE ) Affinity for OBP+SBP  [38,101,102]
NH all DR
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CHLORPROMAZINE S Antagonist OBP [38,101,108]
©i j@ on all DR
N

Abbreviations: DR-dopamine receptors, BP-binding pocket, OBP-orthosteric binding pocket, SBP-secondary
binding pocket.

4.3.2. Docking procedure

DR binding pocket was defined in several experimental and computational studies
[2,38,43,46,48,50,60]. Here, we used the comprehensive review by Floresca and
Schetz [38] as a base for exploration of the DR binding pocket, since it contains
detailed experimental data. A summary of the procedure can be better reviewed in
Bueschbell et al. [41]. AutoDock4.2 (version AutoDock 4.2.6, released in 2009) was
used to perform ligand docking [109]. DR hydrogens were added and Kollman
united atom charges were assigned. Hydrogens were also added to the ligand and
Gasteiger-Marsili was used to calculate charges. Before docking an energy, grid was
created using AutoGrid (version AutoGrid 4.2.6, released 2009) with a box-size
varying with the times step and ligand. For each docking simulation 100
independent Lamarckian genetic algorithm (LGA) runs were performed with the
number of energy evaluations set to 10.000.000, the population size set to 200 and
the maximum number of generations set to 27.000. Default settings were maintained
for the rest of the parameters. Docked conformations within a RMSD of 2 A were
clustered. The most populated and lowest energy cluster (Gibbs free energy of
binding) was used for conformational analysis. To find the local energy minimum
of the binding site with a limited search space to that region, a low-frequency local
search method was used. The 100 conformations obtained from docking were
clustered by low-energy and RMSD. The top-ranked conformations within the best
3 clusters were visually inspected. The docking parameters were not changed for
any ligand, only the residues treated as flexible in the docking protocol differed
between the ligands. The flexible residues for each DR model are summarized in
Table 3.

Table 3 - Flexible residues used in the molecular docking different ligands

LIGAND FLEXIBLE RESIDUES IN B&W NUMBERING
DOPAMINE

3.32Asp, 5.42Ser, 5.43Ser, 5.46Ser, 6.48Trp, 6.51Phe, 6.52Phe, 6.55His/Asn
7-OH-DPAT
APOMORPHINE

3.32Asp, 3.36/3.35Cys, 5.42Ser, 5.43Ser, 5.46Ser, 6.48Trp, 6.51Phe, 6.52Phe, 6.55His/Asn
BROMOCRIPTINE
CLOZAPINE 3.32Asp, 3.33Val, 3.36Cys, 5.42Ser, 5.43Ser, 5.46Ser, 6.48Trp, 6.55His/Asn
NEMONAPRIDE 2.57Val, 3.32Asp, 5.42Ser, 5.43Ser, 5.46Ser, 6.48Trp, 6.51Phe, 6.52Phe, 7.43Tyr
SULPIRIDE 3.32Asp, 6.48Trp, 5.42Ser, 5.43Ser, 5.46Ser, 6.55His/Asn, 7.43Tyr, 6.51Phe
SCH23390 3.32Asp, 6.48Trp, 5.42Ser, 5.43Ser, 5.46Ser, 6.55His/Asn, 6.51Phe, 6.52Phe
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SKF38393

ETICLOPRIDE 3.32Asp, 6.48Trp, 5.42Ser, 5.43Ser, 5.465er, 6.55His/Asn, 7.43Tyr, 6.51Phe, 6.52Phe
RISPERIDONE 3.32Asp, 6.48Trp, 3.36Cys, 6.55His/Asn, 2.57Val, 5.42Ser, 5.43Ser, 5.46Ser
ARIPIPRAZOLE 3.32Asp, 6.48Trp, 3.33Val, 5.42Ser, 5.43Ser, 5.46Ser, 7.43Tyr, 6.55His/Asn
HALOPERIDOLE 3.32Asp, 6.48Trp, 6.51Phe, 6.52Phe, 3.36Cys, 2.57Val, 5.42Ser, 5.43Ser, 5.46Ser
SPIPERONE 3.32Asp, 6.48Trp, 5.42Ser, 5.43Ser, 5.465er, 3.36Cys, 6.55His/Asn, 2.57Val

CHLORPROMAZINE 3.32Asp, 6.48Trp, 5.42Ser, 5.43Ser, 5.46Ser, 6.55His/Asn, 3.36Cys, 6.51Phe

4.3.3. Analysis of molecular docking

In this study, 15 DR ligands were docked to the homology model and to different
conformational arrangements retrieved at every 5 ns for the 55-100 ns range for each
DR simulation (825 dockings in total). All distances between the center of mass of
the ligand and the alpha-C-atom (Ca) of the residues, treated as flexible in the
docking protocol, were calculated using in-house PyMOL scripts[2,10,38,43,48,50] as
well as previously published work [41]. We also develop in-house BINANA scripts
to predict the main receptor-ligand interactions [30]. BINANA is an open-source
python-implemented algorithm which uses output files from AutoDock [109] for the
analysis of interactions and visualizes them in the free molecular-visualization
program VMD [98]. Key binding characteristics such as hydrogen bonds,
hydrophobic contacts, salt-bridges and m-interactions were calculated with
BINANA.

Supplementary Materials

Figure S1 — RMSD throughout the 100 ns of simulation for all DR models; Figure S2
— Important residues for molecular docking of Dopamine to the DR models; Figure
S3 — Redocking of ligands with their respective DR and bound ligand; Figure 54 -
Molecular docking of Dopamine at the DIR — D5R during 0 — 60 ns; Figure S5 -
Molecular docking of Dopamine at the D1R — D5R during 65 — 75 ns; Figure S6 -
Molecular docking of Dopamine at the DIR — D5R during 80 — 90 ns; Figure 57 -
Molecular docking of Dopamine at the DIR — D5R during 95 and 100 ns; Figure S8 -
Results of the molecular docking of bromocriptine, clozapine, sulpiride, eticlopride,
risperidone, aripiprazole and risperidone for all DR subtypes at time points [ns];
Figure S9 — Total interactions counted for each DR over time points [ns]; Figure 510
- Pair-wise prediction results for dopamine; Figure S11 - Pair-wise prediction
results for 7-OH-DPAT; Figure S12 — Pair-wise prediction results for apomorphine;
Figure 513 — Pair-wise prediction results for bromocriptine; Figure S14 - Pair-wise
prediction results for clozapine; Figure S15 — Pair-wise prediction results for
nemonapride; Figure S16 — Pair-wise prediction results for sulpiride; Figure 517 —
Pari-wise prediction results for SCH23390; Figure S18 — Pair-wise prediction
results for SKF38393; Figure S19 — Pair-wise prediction results for eticlopride;
Figure 520 — Pair-wise prediction results for risperidone; Figure S21 — Pair-wise
prediction results for aripiprazole; Figure S22 — Pair-wise prediction results for
haloperidole; Figure 523 — Pair-wise prediction results for spiperone; Figure 524 —
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Pair-wise prediction results for chlorpromazine. Table S1 - Comparison between
the total and transmembrane specific identity [%] of the DR model with their crystal
structure templates calculated with Clustal Omega; Table S2 - Summary of the
structures used in literature for defining the binding pocket for the D2R and source
(experimental and computational); Table S3 - Docking results for the DiR; Table S4 -
Docking results for the D2R; Table S5 -Docking results for the DsR; Table S6 - Docking
results for the D4R; Table S7 - Docking results for the DsR; Table S8 - Docking results
for the crystal structure templates of D2R (6CM4), DsR (3PBL) and DsR (5WIU)
docked with their co-crystalized ligands; Table S9 - DiR residues with Ballesteros &
Weinstein-numbering participating in different interaction types sorted by ligands;
Table 510 - D:2R residues with Ballesteros & Weinstein-numbering participating in
different interaction types sorted by ligands; Table S11 - DsR residues with
Ballesteros & Weinstein-numbering participating in different interaction types
sorted by ligands; Table S12 - D4R residues with Ballesteros & Weinstein-numbering
participating in different interaction types sorted by ligands; Table S13 - DsR
residues with Ballesteros & Weinstein-numbering participating in different
interaction types sorted by ligands.
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