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Abstract 

Background: Selectively targeting dopamine receptors has been a persistent 
challenge in the last years for the development of new treatments to combat the 
large variety of diseases evolving these receptors. Although, several drugs have 
been successfully brought to market, the subtype-specific binding mode on a 
molecular basis has not been fully elucidated. 

Methods: Homology modeling and molecular dynamics were applied to construct 
robust conformational models of all dopamine receptor subtypes (D1-like and D2-
like receptors). Fifteen structurally diverse ligands were docked to these models. 
Contacts at the binding pocket were fully described in order to reveal new 
structural findings responsible for DR sub-type specificity. 

Results: We showed that the number of conformations for a receptor:ligand 
complex was associated to unspecific interactions > 2.5 Å and hydrophobic 
contacts, while the decoys binding energy was influenced by specific electrostatic 
interactions. Known residues such as 3.32Asp, the serine microdomain and the 
aromatic microdomain were found interacting in a variety of modes (HB, SB, π-
stacking). Purposed TM2-TM3-TM7 microdomain was found to form a 
hydrophobic network involving Orthosteric Binding Pocket (OBP) and Secondary 
Binding Pocket (SBP). T-stacking interactions revealed as especially relevant for 
some large ligands such as apomorphine, risperidone or aripiprazole.  

Conclusions: This in silico approach was successful in showing known receptor-
ligand interactions as well as in determining unique combinations of interactions, 
key for the design of more specific ligands.    
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1. Introduction 

Dopamine Receptors 

The dopaminergic system has been intensively studied over the past 50 years due to 
the (patho)physiological role in modulating cognitive and motor behaviour [1,2]. 
Moreover, various severe neuropsychiatric and neurodegenerative disorders such 
as Tourette’s Syndrome, schizophrenia, Parkinson’s disease and Huntington’s 
disease are believed to occur as a result of imbalances and alterations in dopamine 
signalling [3–5]. Dopaminergic effects are mediated by five distinct receptors (D1-5 
receptor), grouped in two classes, D1-like and D2-like receptors, that differ in their 
physiological effects and signal transduction. The D1-like receptors, D1 and D5 
receptors, are principally coupled to Gs proteins and enhance the activity of adenylyl 
cyclase, whereas D2-like receptors, D2-4 receptors, are primarily coupled to inhibitory 
Gi proteins and suppress the adenylyl cyclases’ activity [1,6]. The Dopamine 
Receptors (DR) belong to the G-protein-coupled receptors (GPCRs), the largest and 
most diverse protein family in humans with approximately 800 members [7,8], and 
a significant target of pharmacotherapeutics. Numerous therapeutics are available 
on the market, foremost for the D2R subtype [6] such as haloperidole, 
chlorpromazine [9], risperidone, clozapine, ziprasidone or quetiapine [10]. 
However, most of the commonly utilized drugs show significant side effects and 
nonselective profiles [10,11]. The search for a DR subtype selective therapeutics is an 
ongoing field of research. For example, it has been proposed that substituted 4-
phenylpiperazine compounds dissect between D3R and D2R selectivity [12,13]. In 
addition, the aminotetraline derivative 7-OH-DPAT was identified as selective D3R 
agonist [14,15], whereas it was shown that most D4R available therapeutics are not 
selective [13], with only one exception, haloperidole [16]. Sampson et al. synthesized 
selective D4R ligands with Ki values in the lower nanomolar range, based on the 
piperazine analogue of haloperidole as pharmacophore to target erectile 
dysfunction [16]. This piperazine moiety of haloperidole was further explored in 
other studies, leading to the development of aripiprazole, a next-generation atypical 
antipsychotic, which is highly selective for D2R and D2R/D3R heterodimers, 
displaying properties of D2R agonist and antagonist [17]. For D1-like receptors, D1R 
and D5R, the achievement of subtype selective ligands has been even more 
challenging [18,19]. SKF83959 was the only selective agonist attained for the D1R so 
far, while D5R completely lacks a selective ligand [20,21]. SCH23390 has been 
proposed to be the only D1-like DR selective antagonist [22].  
In summary, finding new highly selective ligands for all DR subtypes, especially for 
the D1-like subtypes, which are poorly described would be a major step forward in 
the field [23]. 
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Computer Aided Drug Design  

The strive for finding new and effective therapeutics led to a growing interest in the 
use of Computer Aided Drug Design (CADD). Originally developed for High-
Throughput Screening (HTS) of compound libraries, the use of CADD nowadays 
plays an important role in drug discovery [24]. Modeling three-dimensional (3D) 
target proteins help to visualize, analyse and optimize known ligands and discover 
new lead compounds [25]. The CADD pipeline can be classified in two general 
categories: structure-based and ligand-based, dependent on the available 
information about the topic of investigation [25]. A structure-based CADD is used 
when the target, e.g. a receptor, is known and so compound libraries can be screened 
to find suitable structures for the target. Usually protein-ligand docking studies are 
performed or ligands are designed de novo and are then used for compound library 
screening to test possible lead structures experimentally. Vice-versa, a ligand-based 
CAAD procedure is used when ligand structure information is provided to create 
pharmacophore models and to perform virtual screening [24]. All in all, CADD faces 
the challenges of identifying novel targets and their ligands, for example to treat 
common and rare diseases [26].  

Aim  

Modeling G protein-coupled receptors (GPCRs) remains challenging due to the 
complex structure of these membrane proteins and the lack of structural information 
about the desired receptor to target, however CADD methods have undoubtedly 
shed light on the subject. The recent boom on X-ray crystallography structures 
resolved, leads to a more promising application of CADD. In this work, we used 
tools of structure-based CADD to investigate the receptor-ligand properties of all 
DR-subtypes with marketed DR therapeutics. In particular, we applied i) homology 
modeling by using the resolved X-ray crystallography structures of the dopamine 
receptors D2, D3R and D4R [27–29], ii) performed Molecular Dynamics (MD) of the 5 
model structures, and iii) molecular docking studies of 15 ligands targeting different 
conformational rearrangements’ of DR subtypes. The binding energies, number of 
conformations as well as the distances between ligands and receptor interacting 
residues of the binding pocket were calculated for all complexes. The interaction 
between ligands and receptors were analysed using an in-house pipeline that takes 
advantage of BINding ANAlyzer (BINANA), a python implemented algorithm for 
analysing ligand binding [30]. The main goal was to reveal new structural findings 
to help explain DR sub-type specificity. 
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2. Results  

2.1. Homology modelling of Dopamine Receptors 

The homology models were generated using MODELLER (version modeler 9.19, 
released Jul 25th, 2017) [31] and the resolved crystal structures of the D2R (PDBid:  
6CM4)  [29], D3R (PDBid: 3PBL) [32] and D4R (PDBid: 5WIU) [28] retrieved from 
the Protein Data Bank (PDB) [33]. The most suitable template to each DR was 
selected according to the percentage of similarity obtained upon sequence alignment 
by BLAST [34] in combination with ClustalOmega [35]. The D1R was modelled with 
the D3R crystal structure (PDBid: 3PBL [32]; 35.0 % identity with BLAST and 39.5 % 
with ClustalOmega). The D2R model was modelled with the crystallographic 
structure of the D2R complexed with risperidone (PDBid: 6CM4) [29], (total 
similarity 97.0% with BLAST and 100.0 % with ClustalOmega). The D3R was 
modelled using 3PBL as template with a total sequence similarity of 93.0 % by 
BLAST and 99.3 % with ClustalOmega. Similar scores were obtained for the D4R and 
the 5WIU template 93.0 % (BLAST)/ 100.0 % (ClustalOmega). Lastly the D5R model 
was calculated using the D4R (PDBid: 5WIU [28]) template as it displayed a total 
similarity of 35.0 % (BLAST)/ 39.1 % (ClustalOmega). We also calculated the 
similarity of the TMs in relation to the respective template and the results are 
summarized in Table S1. All TMs of the D2-like subtypes showed almost 100 % 
identity with their crystal structure templates, which is also in line with the total 
similarity. Regarding the D1-like subtypes, the receptors were not modelled with 
their own crystal structure template since they are not available yet. D1R was 
modelled with the crystal structure of the D3R (PDBid: 3PBL) whereas D5R was 
modelled with the crystal structure of the D4R (PDBid: 5WIU). For the D1R an 
average TM similarity with its template was 41.0 %, compared to a total similarity 
of 39.5 %, while for the D5R 36.0 % TM identity was calculated compared to the total 
similarity of 39.1 %. Hence, also for the D1-like subtypes no differences between the 
TM similarity and the total similarity with their template were obtained. 
Furthermore, for the D1R the highest similarity between the model and its template 
was observed for TM1-3, whereas for D5R was TM2, TM3 and TM7. Consequently, 
the TM2 and TM3 seem to be conserved among all DR subtypes. In summary, the 
results indicate that the TM definition used for calculating the DR models did not 
affect the model identity towards its template.  
Different metrics and scores were used to choose the most accurate models provided 
by MODELLER in order to perform MD and molecular docking. DOPE (Discrete 
Optimized Protein Energy) [36] scores are MODELLER’s standard metrics and were 
utilized in combination with visual inspection to remove models which were not 
calculated correctly. DOPE is specific for a given target sequence, e.g. it accounts for 
the finite and spherical shape of native protein states with the lowest free energy 
[36]. It should be noted, that although DOPE is not an absolute measure, it helps to 
rank the proposed models. Then, out of a small set of potential candidates (selection 
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of 5-10), Pro-SA and ProQ analysis were used to determine the final models with the 
best combination of scores (Table 1). While for the z-score provided by ProSA-web 
analysis values around - 4 are suggested as acceptable, the ProQ analysis (LGscore 
and MaxSub) provides absolute measures. Regarding the LGscore, values > 3, for 
MaxSub values > 0.5 are typically considered as “good”. It was observed that if 
secondary structural data was included using the PSIPRED webserver [37] the 
overall scores improved. All final DR models (Table 1Error! Reference source not 
found.) achieved LGscores > 4 and MaxSub scores > 0.5. The highest z-score was 
obtained for the D4R model, whereas the lowest were counted for the D1-like DR 
models. In summary, scores allowed us to move models forward towards MD 
simulations.  
 

Table 1 - Metrics and scores of the DR homology models. 

DR  DOPE LGscore 
LGscore 

+PSIPRED 
MaxSub 

MaxSub 

+PSIPRED 
z-score 

D1R  -39070.82 2.53 4.26 0.18 0.53 -2.14 

D2R  -39284.66 2.52 4.22 0.21 0.52 -2.22 

D3R  -39458.37 3.14 4.19 0.27 0.55 -3.12 

D4R  -36738.05 3.33 4.25 0.25 0.59 -3.90 

D5R  -38356.05 2.60 4.14 0.15 0.57 -1.49 

 

2.2 Molecular Dynamics Analysis 

MD simulations were briefly analysed to confirm the stability of the models. Root- 
Mean-Square-Deviations (RMSD) mean values ranged from 0.3 nm and 0.5 nm 
(Figure S1). Overall, the five models showed good overall stability. However, D1-
like models showed slightly higher RMSD values than D2-like models: D1R (0.48 ± 
0.07 nm) and D5R (0.49 ± 0.06 nm) vs D2R (0.35 ± 0.09 nm), D3R (0.34 ± 0.04 nm) and 
D4R (0.36 ± 0.09 nm). This behaviour is justified by the higher homology scores 
attained for the D2-like subfamily.  

2.3. Ligand binding to Dopamine Receptors 

In this work, we used the comprehensive review of Floresca and Schnetz (2004) [38], 
highly used [39–41], as a base for the definition of the binding pocket of all dopamine 
receptors. Furthermore, by applying Ballesteros & Weinstein numbering (B&W) [42] 
the position of considered important residues was more easily comparable between 
all receptors. Mutagenesis studies have shown that for dopamine binding, the 
endogenous agonist of the DR, a negatively charged aspartate (3.32Asp) is believed 
to form a ionic bond interaction with the protonable amine of dopamine [2,41,43]. 
Moreover, it was shown that this effect was crucial for ligand binding and that this 
amino acid was not only conserved among the DR, but also in all biogenic amine 
GPCRs [44,45]. Also, a serine microdomain on TM5 (5.42Ser, 5.43Ser, 5.46Ser) was 
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considered as an important feature for dopaminergic binding in all DRs as it is 
believed that the serines form hydrogenic bonds with the catechol hydroxyls of 
dopamine, increasing the binding affinity and orienting ligands in the orthosteric 
binding pocket [38,43,46–48]. While 5.42Ser seems to be critical, 5.43Ser plays a less 
important role [38]. A further microdomain, the aromatic microdomain, consisting 
of 6.48Trp, 6.51Phe, 6.52Phe and 6.55His/Asn has been reported to trigger the 
activation of the dopamine receptor. All amino-acids in this microdomain share the 
same hydrophobic face in the water-assessable binding-site crevice, indicating that 
any reorientation of these residues by binding to a ligand would cause steric clashes 
and therefore would force the residues to reorient themselves in a domino-like 
fashion, which lastly leads to the so-called “rotamer toggle switch” [38,41,44,49]. In 
addition, 6.48Trp was reported together with 6.55His to stabilize the position of the 
ligand in the binding pocket via π-π-stacking [38,49]. Therefore, 6.48Trp and 6.55His 
as well as one phenylalanine (6.51Phe) were chosen for the docking protocol to 
mimic the ligand-binding on TM6. Dependent on the ligand properties other 
residues of TM3 were also considered, such as 3.33Val and 3.36Cys. 3.36Cys is 
believed to be part of a deeper subpocket below the Orthosteric Binding Pocket 
(OBP) [29]. Additionally, Ericksen et al. reported that this cysteine was a relevant 
residue for benzamide binding [40]. Regarding 3.33Val, it was reported to show 
interaction with N-methylspiperdone by Moreira et al. [44] as well as with the 
methoxy ring of nemonapride, determined in the crystal structure of the D4R [28]. 
Different authors hypothesized that DRs have a secondary binding pocket (SBP) 
next to the OBP [28,32,50]. Crystal structures of D2R (PDBid: 6CM4) [29] and D3R 
(PDBid: 3PBL) [32] and computational data suggest that 7.43Tyr is also a crucial 
amino-acid for interaction in the SBP [10,29,32]. 2.57Val was shown to form a 
hydrophobic pocket for antagonists like clozapine and haloperidole [48]. However, 
since the OBP is widely explored through experimental, computational and crystal 
structure data, there could be other residues important in the SBP. In order to 
compare all DRs ligand-binding properties and specificity, we focussed on the 
mentioned residues in the OBP. Detailed information about the literature (mostly 
regarding D2-like DR) and which residues were chosen for docking can be reviewed 
in the appendix: Figure S2, Table S2.  
 
2.3.1 Ligand docking 
After 100 ns MD simulations of each model, 10 conformational rearrangements plus 
initial model (time 0 ns) were chosen for each receptor and subjected to molecular 
docking of 15 different ligands. It is well known that GPCRs take an infinite number 
of conformations over time, and this approach allows us to verify the effect of 
punctual fluctuations into the overall binding arrangements of ligands. The results 
of the molecular docking were evaluated by AutoDock4.2, which ranks the possible 
binding positions by energy level and clusters these positions by Root-Mean-Square-
Deviation (RMSD) of 2 Å. In addition, the total number of conformations (NoC) in 
these clusters were counted. All results of the docking can be checked in 
supplementary information: Tables S3-S7. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 February 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 February 2019                   doi:10.20944/preprints201902.0064.v1

Peer-reviewed version available at Molecules 2019, 24, 1196; doi:10.3390/molecules24071196

http://dx.doi.org/10.20944/preprints201902.0064.v1
http://dx.doi.org/10.3390/molecules24071196


 

 3

As proof of concept, redocking of the co-crystalized ligands to the crystal structure 
templates of the D2R, D3R and D4R (PDB-ids: 6CM4 [29], 3PBL [27], 5WIU [51]) was 
conducted (Figure S3, Table S8). Receptors and ligands coordinates were retrieved 
from PDB files. Top clusters achieved a ligand pose equivalent to the pose in the 
correspondent crystal, presenting very small RMSD values. Lastly, these results 
were compared to the dockings of the corresponding DR-models and ligands at time 
point 0 ns. The binding energies of the two sets were found to be in a similar range. 
This is a further evidence of docking protocol reliability. 
For a general overview, binding poses with more than 5 conformations per cluster 
were considered as a valid ligand position, despite the Binding Energy (BE) of this 
pose (Figure 1A). Regarding the docking of dopamine, it can be stated that the 
binding energy of D2R was the most stable at different analysed MD conformations, 
while for the other subtypes it oscillated more frequently. Only at 95 ns the binding 
energy slightly increased up to -9.9 kcal/mol for the D2R. For D5R the highest binding 
energy was observed at 70 ns (-10.4 kcal/mol), while for the D1R at 75 and 90 ns the 
binding energy was the highest (-10.8 kcal/mol). However, for D4R the binding 
energy largely decreased at 90 ns to -7.3 kcal/mol. Over time the average binding 
energy for all DR was found to be at -9 kcal/mol. 
The highest NoC during all MD conformations were obtained for D4R and D1R (up 
to > 80 for D4R at 95 ns), while for D2R around, 30 conformations were counted for 
all conformational arrangements (Figure 1B). Lastly, for all DRs complexed with 
dopamine, the first or the second cluster with the lowest binding energy also 
contained the highest NoC, indicating that the docking of dopamine is stable and 
reliable (Table S3-S7).  
 

The binding position of dopamine at all DR complexes was stable over time namely, 
the protonable amine was always directed towards the aspartic acid on TM3 
(3.32Asp) and the hydroxy groups were facing the serine microdomain (5.42Ser, 
4.32Ser and 4.46Ser), in agreement with Floresca & Schetz [38] and Durdagi et al. [52] 
(Figures S4-S7). As known from literature dopamine’s interaction with the serine 
microdomain only typically requires two of the serines binding to the hydroxy 
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Figure 1 - Results of the molecular docking of dopamine for all DR subtypes at all MD time steps. For the 
binding energy (A) the mean of the 3 lowest energies of dopamine was calculated. In B the number of 
conformations of the three clusters with the lowest binding energies are shown for each time point and receptor. 
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groups [38]. At 0 ns dopamine was located planar in the OBP in the above-described 
position. Notably, D2R and D4R hydroxyl groups were more directed towards serine 
microdomain (Figure S4). At 55 ns torsions were observed for dopamine bounded 
to all DR, which included a switch of interactions with the serines at TM5 for D3R, 
since it is known that dopamine is only capable of interacting with two of the three 
serines [38]. At 60 ns dopamine is shifted more to the serine and aromatic 
microdomain (TM6) for all DRs in a different manner. However, only at D4R a strong 
direction of dopamine’s protonable amine towards 3.32Asp was observed. At 65 ns 
dopamine bounded to all DRs was located again planar in the OBP (Figure S5). 
Small individual torsions were observed during the period of 70-90 ns (Figure S5, 
S6). Interestingly, at 95 ns dopamine was strongly involved in the aromatic 
microdomain (TM6) at all DR, which is then vanished especially for D3R at 100 ns. 
The large decrease in D4R binding energy at 90 ns can be explained, by the 
approximation of dopamine to 3.32Asp and as such far away from the serine 
microdomain (Figure S6). In summary, the binding energy and 3D positions of 
dopamine-docking may demonstrate the binding-mode of dopamine to DRs. 
According to Floresca and Schetz, these features are crucial for dopamine’s binding 
affinity and DR activation but must not necessarily be true for all dopaminergic 
ligands (selective and non-selective) (Table 2) [38]. 
Since non-selective agonistic activity was already covered by dopamine docking, 
chlorpromazine was chosen as a non-selective antagonist [53,54]. Herein, we 
selected the following ligands: SKF38393 as selective D1R agonist [19,21] and 
SCH23390 as D1-like DR antagonist [22,55], apomorphine as selective D2R agonist 
[52], 7-OH-DPAT as selective D3R agonist [14], nemonapride as D2R and D3R 
selective antagonist [56] and lastly haloperidole, due to its affinity for D4R [16]. The 
obtained binding energies and NoC in these clusters are summarized in Figure 2 
(graphical output of the other ligands can be found in the appendix: Figure S8).  
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Figure 2 - Results of the molecular docking of 7-OH-DPAT, apomorphine, nemonapride, SCH23390, 
SKF38393, haloperidole and chlorpromazine for all DR subtypes at time points [ns]. The mean of the 3 
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lowest binding energies of dopamine were calculated in the left plots. The number of conformations of the 
three clusters with the lowest binding energies were plotted for each time point and receptor (right plot). 

For 7-OH-DPAT, we observed a low and stable binding energy upon binding to all 
DRs. Similar to dopamine binding, the NoC decreased at all DRs from 0 to 65 ns. For 
apomorphine, the lowest binding energies were obtained for D1R and D2R. A 
decrease in the binding energy was determined for D2R at 65 ns (-11 kcal/mol), 
whereas an increase at 85 ns was shown for D4R (-9 kcal/mol). Similar stable binding 
energy around -10 kcal/mol were observed for DR:nemonapride complexes, 
however a massive increase was observed for the D5R at 100 ns. In addition, lesser 
NoC were counted for nemonapride in total at all DRs (max. 30 at 85 ns for D2R). For 
SCH23390, but not for SKF38393 the binding energy was stable over time at -9 
kcal/mol for all DRs. The binding energy of SKF38393 at D2R and D4R increased at 
85 ns. However, the NoC for SKF38393 were the lowest over 70-85 ns period for D1R, 
D2R and D3R. Haloperidole displayed the most interesting docking-profile: while the 
binding energies of DRs were stable at -10 kcal/mol, only for D4R a massive increase 
was observed at 55 ns and 80-90 ns into the positive range, meaning these binding 
positions were extremely unfavourable for haloperidole. In contrast, the NoC was 
found to be stable over time except for D1R with up to 40 conformations at 60 ns. 
Most interestingly, most conformations were counted for the D4R especially at 0-70 
ns. Lastly, chlorpromazine binding energy experienced an increase only for D1R at 
70 ns up to -3 kcal/mol.   
For further analysis, we summarized data in order to perform comparison only 
between ligands and receptors.   

2.3.2. Distances between ligands and interacting residues 

For additional evaluation of the docking performance and determination of ligand 
interactions within the residues of the binding pocket, the distance between the 
center of mass of the ligand and the alpha carbons of these residues was measured. 
Assuming that the time points conformations did not have an effect on the binding 
energy and the NoC of the ligands on the DR subtypes, the means of each ligand for 
all time points were calculated. Overall results of all ligand-residue measurements 
showed that 3.32Asp was the closest residue to all ligands for all DR subtypes, except 
for D4R. In contrast the 5.42Ser was shown to be most distant at D1R and D2R, but 
not at D5R where this was the case for 5.46Ser.  
Subtype specific tendencies were nevertheless observed. The distances between the 
ligands and 5.43Ser was smaller compared to another binding pocket serine in D1R, 
D4R and D5R, while this was not the case for remaining DRs. When comparing those 
residues to the set of residues used in the docking (Error! Reference source not 
found.), 3.32Asp showed to have the closest ligand interaction (ligand center of mass 
- residue alpha carbon < 6 Å), but not for all ligands at all subtypes, while other 
residues were more distant but all around 7-8 Å. Particularly, the distance between 
3.32Asp and SKF38393 was larger at the D3R, D4R and D5R. Moreover, we noted for 
D4R an increase in the distance between 3.32Asp and several ligands. The distance 
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between SCH23390 and 3.32Asp was also slightly increased, but not for D1R. This 
effect might occur due to the fact, that SCH23390 and SKF38393 are reported to be 
D1R-selective [21,55].   
For 7-OH-DPAT, a known D3R selective agonist, distances between ligand and the 
defined pocket are higher for D1-like receptors and distinctive residue between D2-
like seems to be 6.52Phe, that is closer to the ligand on D3R. The same pattern was 
visible with apomorphine, a selective D2R agonist, where distances in D1-like are 
higher, although distinction within D2-like family is less pronounced. Clozapine, 
sulpiride and risperidone are known as “dirty drugs” because of their non-selective 
profile, and for that reason none of these ligands showed distinctives differences 
between DR subtypes. Likewise, residues 3.32Asp and 3.33Val/Ile were the closest 
to clozapine in all five subtypes, suggesting that these residues are crucial for this 
ligand’s binding. Haloperidole, categorized as D2R selective antagonist with some 
activity on D4R, has distinctive differences between D1-like and D2-like family, being 
closer to the second (although within D2-like family there is no great differences on 
distances pattern). Spiperone and chlorpromazine have affinity for all DR subtypes, 
which agrees with the lack of significant differences in the measured distances. 
Finally, nemonapride and eticlopride, described as D2R/D3R selective antagonists, 
were located closest to the D2-like DR residues compared to the D1-like DR, however 
it seemed as these two ligands demonstrated preference for the D4R.  
With reference to the conserved amino acids of the DR binding pocket: 3.32Asp, 
5.42Ser, 5.43Ser, 5.46Ser and 6.48Ser, we observed certain ligand and receptor 
specific differences in binding (measured in distance between ligand and residues). 
One must take into consideration that for the docking set-up, we choose specific 
residues that are believed to form meaningful interactions. Another point to 
consider is the size and affinity for the ligands at these receptors. As such, ligand-
based analysis was applied to address ligand properties unbiased (which is the case 
for applying flexible residues in the molecular docking approach) towards the 
receptor’s structural properties.  
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Figure 3 - Summary of the distances between ligands and residues used in molecular docking for all DR 
subtypes. For each ligand-residue-distance [Å], we calculated the mean of all time points of the 
conformational models (11) of the three best docked clusters ranked by binding energy [kcal/mol] 
Noteworthy is that not all ligands were set to interact with all residues shown in the x-axis in the molecular 
docking. (e.g. only clozapine and aripiprazole were set to interact with 3.33Val). Distances below 6 Å are 
coloured red, while distances > 10 Å are coloured blue-violet. 
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2.3.3. Pairwise interactions  

In-house scripts using the BINANA algorithm were constructed to identify the type 
of interactions established between the ligands and all DRs [30]. Close contacts 
between receptor and ligands were measured at 2.5 and 4.0 Å. Moreover, it also 
allows the determination of hydrogen bonds (HB), hydrophobic contacts 
(hydrocontacts) and salt-bridges (SB) as well as π-interactions, further subdivided 
into cation-π-interactions (cat-π), aromatic superpositions (π-π-stack) and 
perpendicular interactions of aromatic rings also referred to as edge-face-
interactions (T-stack) [30]. For a first overview, all interactions despite their type and 
ligand were summarized and compared between the DR-subtypes (Figure S9)  
On average, majority of interactions were found for D4R (around 3686 ± 377), 
concentrated at the conformation arrangement found at time point 95 ns. Similar 
trend was observed for the D1R (average of total interactions 3257 ± 209), where the 
maximum NoC was counted at 100 ns, while for the other DRs the interactions 
slightly decreased at the end of the MD simulation conformation. Least interactions 
in total were found with the D5R (2793 ± 170), while the D2R counted 3037 ± 210 and 
the D3R 2893 ± 175 total interactions, on average. We found the lowest number of 
interactions at 80 ns (2903 ± 295), whereas the highest were counted at 95 ns (3408 ± 
523).   
In a more detailed look, the number of 4 Å-interactions, as expected due to the 
possible involvement of a higher number of atoms, and consequently hydrocontacts 
are the most frequent (around 75 to more than 100) over time, when compared to all 
other interactions ranging from 50 to 0 for all ligands at all DRs (Figure 4Error! 
Reference source not found.). In addition, the number of contacts was found mostly 
for D4R and the smallest number for D3R and D5R (4 Å-contacts). Hydrocontacts 
contacts were counted mostly for D1R and lastly for D3R. Per interaction type, as also 
expected by comparison with other systems, the smallest number of interactions 
were counted for cat-π-interactions and hydrogen bonds, which ranged between 0 
and 2 contacts. Dopamine, due to its small size, established the lowest number of 
contacts when bounded to all DRs. On the contrary, bromocriptine seemed to form 
the highest number. Bromocriptine was also the only ligand with hydrocontacts > 
100 at D1-4R, while 97 were counted for D5R. Only D4R risperidone and spiperone 
showed hydrocontacts in similar ranges (59 and 62 respectively). Lastly, for each 
ligand a similar pattern with slight variations was found for each DR. For 
apomorphine, 10 T-stacking interactions were always formed for D2-like DR, while 
only 6 were found for D1R and 12 for D5R. Bromocriptine had the most discrepancies 
at 2.5 Å-number of interactions: highest number found at the D4R (31) and least at 
D5R (8), while it did not differ much for the other DRs. We stress out that for 
clozapine, risperidone and aripiprazole, no cat-π-interactions could be identified at 
the D1-like DR. In addition, for risperidone, more hydrocontacts were found at the 
D1R and D4R (70, 80) compared to the other DRs (2x 54, 59). Furthermore π-π-
stacking was favoured at the D3R (8 contacts), while for D1R and D2R 2 contacts were 
found, and for D4R and D5R 4 π-π-stacking interactions were found. For 
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aripiprazole, a D1R and D4R preference was found for 4 Å-interactions and 
hydrocontacts compared to the other DRs (lower contacts in the inner sphere), while 
for spiperone a distinctly decrease in contacts for these interaction types was 
observed for D3R. Lastly, for chlorpromazine, the lowest number of 4 Å-interactions 
was found for D5R, while in contrast most T-stacking interactions were found for 
this DR-subtype. Figures S10-S24 show a closer detailed of the change of interaction-
pattern over time. 

 
 

 

Figure 4 - Interactions types counted for each ligand at DR-subtypes. The data is summarized for each 
ligand at all time points. Total numbers of the contacts for each interaction type are color-coded: Red stands 
for > 100 contacts, orange 75-100, yellow 50-75, green 25-50, cyan 10-25, light-blue 8-10, dark-blue 6-8, dark 
violet 4-6, violet 2-4, light violet 1-2 and pink indicates when 0 contacts were counted. White cells indicate 
that these values are outside the scale.    
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2.5 Å interactions 
2.5 Å-interactions, very short (closer) contacts are especially relevant for ligand 
binding. For dopamine the number of these interactions increased for D1-like DRs 
at 95 ns, while for 7-OH-DPAT the highest number of interactions observed in total 
only occurred for D3R (counting highest at 95 ns). For bromocriptine 2.5 Å-
interactions were significantly higher for D4R. This effect was also observed for 
clozapine with (counting highest at 95 ns). Also, haloperidole seemed to have a 
higher number of established interactions with D4R as well as eticlopride, for which 
the most interactions were observed at 65 ns. Only risperidone had a higher number 
of interactions with D2R, especially at 95 ns. Regarding the D1-like DRs, 
nemonapride established the majority of D1R at 80 ns and sulpiride for D5R at 95 ns. 
Chlorpromazine had the lowest number of compared to all ligands with no 
preference for any DR-subtype. All in all, the 2.5 Å-interactions seemed to be 
particularly relevant for the ligand binding to D4R. 
 
4 Å-interactions 
Contrary to 2.5 Å-interactions that show higher specificity, 4 Å-interactions are more 
unspecific but may reveal other indirect receptor-ligand contacts. Bromocriptine 
showed the highest number of 4 Å-interactions (> 200) among all DRs since it was 
also the most ornate ligand. In addition, less hydrocontacts were found at the D2R, 
D3R and D5R compared to the other DR-subtypes. Furthermore, many interactions 
were observed at the D4R at 65 ns and 95 ns which is surprising as the binding energy 
decreases at these exact time points. Most 4 Å-interactions were found for dopamine 
binding to D1R, while for apomorphine this was the case for D4R. Nemonapride 
showed a high and stable number of interactions for D1R and D4R binding over time, 
yet a decrease in interaction was found for D5R at 100 ns. SCH23390 displayed a 
preference for D4R, especially at 95 ns. Also, aripiprazole seemed to favour 4 Å-
interactions preferably with the D4R despite a high interaction-loss at 90 ns. Once 
again, 4 Å-interactions are higher in D4R:ligand complexes.  
 
Cat-π-interactions and π-π-stack  
Cationic-π and π-π-stacking are considered as natural key non-covalent interactions 
[57]. They are important as solitary effects, but also their interplay omnipresent in 
many biological systems [58]. In the DR-ligand system frequent oscillations between 
time points was noted for some ligands. Dopamine, for example, showed highest 
cat-π-interactions for D2R but this oscillated from 2-4 interactions/time point. π-π-
stacking interactions displayed a similar pattern. 7-OH-DPAT showed a variety of 
possible cat-π-interactions and π-π-stack at the D5R. Apomorphine demonstrated 
cat-π-interactions between 55 and 75 ns with D5R and π-π-stacking-interactions with 
D2R between 60 and 80 ns. Bromocriptine displayed a wide array of cat-π-
interactions per time point (0-6 interactions) with D2R and D3R. In contrast none 
were found for D1R complexes. π-π-stackings occurred with bromocriptine and D5R 
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between 85 and 100 ns. Clozapine showed also no cat-π-interactions with D1R. 
Nemonapride showed oscillating π-π-stacking-interactions without preference for 
one particular DR. However, a lot of cat-π-interactions were counted for D5R 
between 70-80 ns. For risperidone, cat-π-interactions were mainly formed with D4R, 
while π-π-stacking was mostly related to D3R complexes. Aripiprazole seemed to 
preferably form cat-π-interactions with D4R, while increasing π-π-stacking-
interactions were observed with D1R between 65 and 80 ns. Haloperidole seemed to 
prefer π-π-stacking-interactions with D2R, maybe important for its selectivity 
towards this receptor. For chlorpromazine, no cat-π-interactions were observed at 
D1-like DRs (D1R and D5R), while many interactions were counted with D2R 
between 65 and 75 ns, with D3R at 95 ns and with D4R at 60 ns.  
 
T-stacking 
The T-stacking-interactions were similar to cat-π- and π-π-interactions, yet more 
frequent fluctuations in the number of interacts between ligands and receptor were 
observed in total. Especially for risperidone, which showed the highest number of 
T-stacking-contacts, preferably with D2R. Haloperidole and spiperone also seemed 
to have a D2R-preference, while chlorpromazine formed a large number of 
interactions with D5R. In brief, our results also pinpoint for the fact that T-stacking-
interactions seem to be relevant for large ligands, primary in antagonists binding 
than in agonists case.  
 
Salt-bridges 
The following ligands did not form any salt-bridges at any time point: apomorphine, 
bromocriptine, clozapine, risperidone, aripiprazole and chlorpromazine. Most 
stable salt-bridge bonding at all DR-subtypes was unsurprisingly achieved by 
dopamine. 7-OH-DPAT salt-bridge-bonding was found for D1R (3 in total), while for 
the other subtypes, contacts ranged between 1 and 3 over time. The same trend was 
observed for nemonapride and SKF38393. SCH23390 formed the highest number of 
salt-bridges with D5R and with D2R between 70 and 85 ns. Haloperidole seemed to 
establish a higher number of salt-bridges with D1-like DR and D2R, while none were 
formed with D3R and D4R. Spiperone seemed to preferably form salt-bridges with 
D1-like DRs. 
 
Hydrogen bonds and hydrophobic contacts  
Charge-reinforced hydrogen bonds are reported to be much stronger than the 
neutral hydrophobic contacts [59]. Moreover, it was reported that Hydrogen Bonds 
(HB) determine the specificity of receptor-ligand binding [59]. Hydrophobic contacts 
(hydrocontacts) also contribute to ligand-binding, and a balance between HB and 
hydrocontacts is required for drug-like molecules [59]. Therefore, it was not 
surprising that a large number of hydrocontacts was observed for all ligands, while 
HB were less common. Hydrocontacts were found for dopamine binding to D1-like 
DRs between 60 and 70 ns; while HB were only formed with D1R during this time 
period. Not more than 2 HB were found at any DR bounded to 7-OH-DPAT, while 
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hydrocontacts were preferably formed for D1R between 60 and 70 ns. Bromocriptine 
seemed to build a large hydrophobic network with the D4R at 65 ns, while this was 
the case for clozapine during 85 to 100 ns. Aripiprazole was found to form steady 
number of hydrocontacts at D1R while increasing hydrocontacts were found at the 
D4R at 90 ns. Inversely the number of hydrocontacts with the D2R, D3R and D5R 
decreased at that time point. Lastly, chlorpromazine seemed not to form any HB at 
any DR complex. In brief, D1R and D4R showed similar interaction-patterns, 
distinguishing themselves from the rest of DRs.  
 
Furthermore, the pairwise analysis resulted in the key receptor residues, responsible 
for the establishment of these types of interactions. By assorting those for each ligand 
at all DRs (time points summarized), patterns but also unique receptor-ligand 
interactions were visible (Tables S9-S13). Notably for this part of analysis the 4 Å-
interactions were omitted as they were found to be unspecific and occur very 
frequently. 
Conspicuously, residues on TM4 were not contributing to receptor-ligand 
interaction except at D4R complexes. It was not surprising that the “classical” TMs, 
e.g. TM3, TM5, TM6 and TM7 were involved in many different interaction types. By 
comparing large ligands such as spiperone or haloperidole with rather compact 
ligands such as dopamine, SCH23390 or clozapine, it was possible to point out a 
larger number of TM1 and TM2 residues involved in establishing meaningful 
interactions. Author’s had already hypothesized that these residues could belong to 
a secondary binding pocket, only accessed by large ligands [48,60].  
Undoubtedly, 3.32Asp was always involved in the establishment of salt-bridges for 
all DRs. However, at D1R, 74Pro located on ECL1 appeared also to establish salt-
bridges. In addition, D3R salt-bridge-bonding for spiperone was found occur with 
1.44Leu and 75Ser (ECL1) rather than with 3.32Asp. All in all, salt-bridges were 
found to be highly conserved regarding the residues involved. In contrast, most 
interactions in total and most unique interactions were found within hydrocontacts 
(hydrophobic bonds). Especially bromocriptine displayed the most divergent 
hydrophobic network at all DR ranging from conserved and non-conserved residues 
involving all TMs.  
Most interesting were the HB interactions. For dopamine a different set-up was 
presented at each DR. While the D2-like DRs and D5R HB were formed by the serine 
microdomain (5.42Ser, 5.43Ser and 5.46Ser), for D1R the serine microdomain was not 
involved at all. 3.32Asp appeared as interaction partner for all DRs. At D5R, an HB 
with 5.38Tyr and dopamine was unique for this interaction type for all ligands. 
However, 5.38Tyr was found at the D4R to form HB with 7-OH-DPAT. 
Less cat-π-interactions were found at the D5R and not for all ligands, while most 
were found at the D3R. Only bromocriptine (3.28Trp, 6.51Phe), nemonapride 
(6.48Trp, 6.51Phe, 6.52Phe), sulpiride (2.61Lys, 6.48Trp, 6.51Phe) and SCH23390 
(6.48Trp) showed cat-π-contacts at the D5R. Also, at the D1R cat-π-interactions were 
less common and mainly formed by conserved residues on TM6 (6.42Gly, 6.31Thr, 
6.30Glu, 6.39Val). Interestingly for dopamine at D2-like DRs most 6.55His was 
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involved in HB interactions, moreover at the D4R this interaction type occurred only 
at time point 65 ns. The same effect was found for clozapine for D2R.  
T-stacking-interactions were found for almost all ligands when complexed to all 
DRs, except for bromocriptine and sulpiride at D2R, haloperidole at D4R and 
spiperone at D5R. It was also visible that most T-stack-contacts were counted for D3R 
and less for the D5R in general. T-stack-contacts were mainly formed, despite the 
ligand, by residues either from the aromatic microdomain (6.48Trp, 6.51Phe, 
6.52Phe, 6.55His), but also by other conserved residues (6.39Val, 6.42Gly, 6.43Val). 
Unique interactions were found for risperidone at D4R with 6.44Phe and for 
chlorpromazine at D1R with 6.30Glu. However, other residues from other TMs were 
also involved in forming T-stack-contacts: for example, 7-OH-DPAT unique 
interaction with 2.47Ala and for SKF38393 with 35Ala (ICL1) were found at D3R. For 
risperidone another unique interaction with 231Phe (ICL3) was determined at D1R. 
While for spiperone 1.35Tyr and 159Ile (ECL2) seemed to be relevant for D4R. For 
chlorpromazine, 2.14Tyr was relevant in D4R coupling. TM7 residues were 
participating in T-stack-formation, such as 7.34Thr (D1R) and 7.35Tyr (D2-
like)/7.35Phe(D5R), 7.43Tyr(D2-like), which was more frequently observed for D2-like 
DR-subtypes. Residues on TM2 were also relevant for T-stack-formation (2.41Tyr, 
2.43Val, 2.45Ser, 2.46Leu, 2.47Ala, 2.50Asp) but only for D3R. For D4R and D5R, only 
residues from TM6 and TM7 were involved in T-stack-contacts, except for SKF38393 
where 5.47Phe was relevant for binding to D4R. Lastly, for D1R and D2R TM3 
(3.28Trp(D1R)/3.28Phe(D2R)) residues also established meaningful interactions with 
nemonapride, sulpiride, SCH23390, aripiprazole and spiperone.  
Although these residues (especially on TM2 and TM7) are more related to the SBP 
than to the OBP (herein TM6 is the most relevant TM), contact formation was also 
observed for smaller ligands (7OH-DPAT, SCH23390, SKF38393). It was not 
expected that these ligands would access the SBP. Noteworthy is also the fact, that 
dopamine exclusively formed T-stack-contacts with the conserved aromatic 
microdomain at all DR. Lastly, contacts with residues from TM6 were found highly 
relevant for all ligands and all DRs. Finally, it was also obvious that the variety of T-
stack-contacts was also limited by the number of aromatic rings of the ligand (e.g. 
dopamine only contacted 3 different sequential residues). 
The π-π-interactions were rather rare compared to the other interaction types. Here, 
the least contacts were found for D1-like DR subtypes, while most were found at the 
D2-like subtypes, and in particular for D3R. Some ligands did not form π-π-stacking 
interactions with DR subtypes (e.g. none π-π-stacking were found for D1R binding 
to dopamine, 7-OH-PAT and sulpiride; D2R was not favoured by sulpiride either). 
Eticlopride and haloperidole were not attracted by residues on the D4R, while 
nemonapride did not favour π-π-stacking with D5R. It was also obvious, that similar 
to T-stacking, the residues of the aromatic microdomain (6.48Trp, 6.51Phe, 6.52Phe, 
6.55His) were responsible for the majority of ligands interactions to all DRs. 
However, different residue partners were determined for π-π- compared to T-
stacking such as residues from TM5 (5.38Tyr, 5.47Phe). For aripiprazole, residues 
7.43Tyr (D2R-D4R) and 7.34Thr (D1R) seemed also to be important for this type of 
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interaction. Most interesting was the interaction pattern for sulpiride: while for D1R 
and D2R no π-π-stacking was detected, for D3R and D5R only a few residues seemed 
to be relevant (2.43Val, 2.44Val, 2.48Val, 38Thr, 5.38Phe, 6.51Phe, 6.52Phe for D3R; 
3.28Trp and 6.48Trp for D5R) while for D4R, 27 residues from all TMs were involved 
in contact network formation. This may be explained by the different possible 
binding poses of sulpiride on the different D4R conformations.  

 
3. Discussion 

3.1. Homology modeling 

Homology modeling of all DR subtypes showed that there were smaller structural 
differences among the “classical” TMs (TM3, TM5, TM6), which are important for 
ligand binding. Yet, as expected, structural differences between the subtypes were 
observed in the intracellular and extracellular loops, where some are important for 
ligand binding (ECL2) or for intracellular signalling (ICL2) [61]. The latter was the 
case for the D1-like, due to its larger intracellular loop 3. The combination of 
MODELLER [32] ClustalOmega (used for multiple sequence alignment [36] 
provided suitable models for molecular docking and is a straightforward protocol 
to follow. Although no crystal structure is available for the D1-like DRs, the high 
sequence similarity among all DR helped to find suitable models for molecular 
docking.  

3.2. Model metrics 

There are several approaches to validate homology models such as built-in metrics 
of open-source [43] and licensed softwares [62]. In a preliminary study we 
experienced [41] that the combination of different independent metrics provided 
adequate models suitable for molecular docking. For instance, the combination of 
MODELLER’s metrics [31], ProSA-web [63,64] and ProQ [65] revealed to be 
promising and again straightforward. We could not compare our models with other 
authors as metrics scores are mostly not shown [63,66]. D1-like models, which did 
not have their own crystal structure template and D2-like models for which its own 
crystal structure templates are available showed similar quality. In conclusion, the 
homology modeling approach and evaluation using the MODELLER’s metrics, 
ProSA- and ProQ-analysis is a promising and reliable protocol to create valid models 
for molecular docking.  

3.3. Molecular docking and definition of the binding pocket 

In general, the docking performance of the DR homology models and the ligand-set 
seemed to be reproducible, low binding energies, high NoC by cluster and no 
significant differences were found for the 11 conformational rearrangements tested. 
Certainly, ligand specific differences were observed. For example, dopamine 
constantly showed the lowest binding energies combined with the highest NoC per 
cluster, whereas haloperidole’s binding energies were even lower but rarely with 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 February 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 February 2019                   doi:10.20944/preprints201902.0064.v1

Peer-reviewed version available at Molecules 2019, 24, 1196; doi:10.3390/molecules24071196

http://dx.doi.org/10.20944/preprints201902.0064.v1
http://dx.doi.org/10.3390/molecules24071196


 

 16

over 10 conformations. Bromocriptine was an exception throughout the docking 
processes as it expressed positive binding energies, indicators of an unfavorable 
position of the ligand in the receptor. However, since bromocriptine acts as an 
agonist for DRs, is was expected that binding properties would be similar as for 
other agonists and dopamine, which was chosen in this large study. In other studies 
where the active state of the D2R was investigated, lower binding energies were 
measured maybe due to differences in the used templates (here we used the most 
recent one, D2R itself) [52]. However, Sukalovic et al., who used D3R crystal structure 
as template for D2R modeling, and then docked their own synthesized dopaminergic 
arylpiperazines, attained binding energies around -10 kcal/mol, in line with our 
results [60]. The binding pocket was defined according to previous studies from 
literature [41]. Foremost, 3.32Asp, a serine microdomain (5.42Ser, 5.43Ser, 5.46Ser) 
and an aromatic domain in TM6 (6.48Trp, 6.51Phe, 6.52Phe, 6.55His) are believed to 
be crucial for dopaminergic binding and receptor activation [38]. These residues 
appeared to be omnipresent in all of analyses such as ligand-residue-distance- and 
pairwise-analyses.  

3.4. Distances 

A current method to access possible receptor-ligand binding properties, is the 
measurement of the distance between the alpha carbon atoms of the relevant 
residues in the binding pocket and the centre of mass of the ligands [2]. Overall, 
most of measured residue-ligand distances were above 5 Å. By using this approach, 
one can quantify the modes of interaction of these particular ligands, but otherwise 
one overlooks other possible meaningful residues. Yet, the distances for the most 
conserved OBP residues (3.32Asp, serine residues and 6.48Trp), distinct differences 
were observed between agonists and antagonists. For example, dopamine was 
constantly close to OBP, indicating it’s receptor activating properties as described by 
Floresca and Schetz [38], while risperidone was found distant from these residues 
according to its antagonistic properties. This was also the case for the other 
antagonists such as haloperidole, nemonapride and the biased ligand aripiprazole. 
In addition, it may also be possible that other residues in other TMs were involved 
in binding of these ligands as described by Kalani et al. for the D2R. [48]. Therefore, 
the pairwise interactions were further analysed, to gain a more detailed knowledge 
about ligand-binding possibilities within the DR binding pocket 

 

3.5. Pairwise interactions 

BINANA (used in other non-GPCR studies [30,67–70]) revealed to be a helpful tool 
for assessing the full binding capacity of the DRs regarding the chosen ligand set. 
First of all, it was visible by considering the total number of interactions per ligand 
that no clear D1- or D2-like specificity was observed, except for apomorphine 
(differences of 20 interactions between D1-like and D2-like). In total, the highest 
number of interactions was found for D4R. Moreover, the lowest number of 
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interactions were formed with D5R, but not with the D1R. It was found that either 
D1R together with D4R formed the highest number of interactions with dopamine, 
nemonapride, eticlopride and aripiprazole. For other ligands, when this scenario 
occurred, the lowest number of interactions were found for D3R and D5R (clozapine, 
sulpiride, eticloride, risperidone, aripiprazole, spiperone, chlorpromazine). This 
cannot be related to the type of ligand, as they are all structurally diverse. Only 
chlorpromazine was reported to show a significantly different binding mode which 
was already described by Kalani et al. that concluded that this antagonist would 
have “atypical-bound-system” for D2R [48,71]. However, for SCH23390 and 
SKF38393 no subtype-specific differences were observed although SCH23390 is an 
antagonist at the D1-like DRs and SKF38393 a selective D1R-agonist [72,73]. Lastly, 
haloperidole showed a higher number of interactions with D4R while the number of 
interactions was indifferent of the other DRs. The interactions are on one hand 
classified unspecific in 4 or 2.5 Å radiuses or specific in the following categories: salt-
bridges, hydrogen bonds, hydrophobic contacts (hydrocontacts), cation-π, π-π- and 
T-stack-interactions. A systematic study by De Freitas and Schapira [74] showed that 
the most frequent type of non-covalent interactions for protein-ligand complexes are 
hydrophobic contacts, followed by hydrogen bonding, π-stacking, salt-bridges, 
amide-stacking (corresponds to T-stack) and lastly cation-π-stacking. The same 
ranking of frequency of interaction type was found in our study. As also described 
by Davis and Teague [59] hydrophobic contacts are the most common type of 
receptor-ligand-interactions as they not only enhance binding affinity but also are 
sometimes favoured over tight, charged hydrogen bonds [59]. In addition, they can 
be formed with different ligand-atoms such as carbons, halogens or sulphurs [74]. 
As the usual cut-off for hydrophobic contacts it 4 Å, it was also not surprising that 
almost the same number of contacts were found in the unspecific 4 Å- analysis, 
whereas significantly less contacts were found within the 2.5 Å-cluster. As reviewed 
in Davis and Teague [59] most docking studies fail to count in the hydrophobicity 
for their ligands. However, the balance between polarity (causing hydrogen bonds) 
and lipophicity (causing hydrophobic contacts) is the main drive to make a ligand 
“drug-like” [59]. Our study was successful to determine not only the hydrogen 
bonds but also the large hydrophobic network of each “drug-like” ligand (as well as 
of the marketed drugs). To what extent these hydrophobic contacts contribute to 
ligand-binding should be further validated as suggested by Davis and Teague [59].  
These hydrophobic networks were found to be scattered over residues of all TMs for 
all DRs. Floresca and Schetz [38] also reported that conserved residues in the OBP 
clustered in microdomains contribute to stabilizing ligand-binding through the 
formation of a H-bond network. Moreover, HBs where mostly mediated by the 
serine microdomain (5.42Ser, 5.34Ser and 5.46Ser especially at D2R and D5R). 
Interestingly these residues were not relevant for D1R, although a study by Hugo et 
al. mentioned 5.46Ser as key residue for activating D1R [75]. In this study, 3.37Trp 
was also proposed to be mediator of the D1R-activation [75]. We were not able to 
confirm these findings in our study, only bromocriptine and spiperone were 
interacting 3.37Trp at D1R, while at D5R we did not observe any interaction with this 
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residue. 3.37Thr D2R was found to interact with 7-OH-DPAT, indicating that these 
residues may not be D1R-specific. Other residues on TM3 such as 3.35Cys, 3.36Ser, 
3.33Val or 3.33Ile and 3.39Ser were often found forming different interactions with 
different ligands. This was also in concordance with previous studies regarding the 
involvement of other conserved residues on TM2 and TM7 (and TM3) [48,60,76,77], 
which was also described as part of a SBP only assessable for ligands with 
piperazine-moieties [50]. Furthermore, there was a clear higher network contact 
formation with D4R. Except for that fact that the D4R is physiologically distant 
compared to the D2R and D3R, no further explanation could be found for this trend 
[76].  
Frontera et al. reported that the strength of ion-π-interactions is also influenced by 
the presence of weaker interactions such as hydrogen or hydrophobic bonds [58]. 
For instance, it is well known that H-bonding is highly contributing to the bond 
strength of π-stacking [58]. But not only weaker interactions benefit π-interactions, 
cat-π and π-π-stacking were also found to be cooperative for each other [58]. Such 
combinations where cat-π and π-π-stacking were simultaneously present, were 
indisputably found at the D2-like rather than at D1-like DRs. In addition, these 
residues and those of the TM6 aromatic microdomain (6.48Trp, 6.51Phe, 6.52Phe, 
6.55His/Asn) were mostly involved in forming π-interactions (cat-π, π-π or T-stack). 
This can be explained by the fact that especially amino-acids like Phe, Tyr and Trp 
provide a surface of negative electrostatic potential that can bind to cations through 
electrostatic interaction [58]. Moreover, the majority of interacting residues filtered 
for these three interaction types were also found to be these three types of amino 
acids. D5R π-stacking-formation always involved Phe, Tyr and Trp. Therefore, these 
interactions with Phe, Tyr, Trp could be further extended in order to design a new 
selective SAR for D1-like DR ligand. Since for the D1R-like DR SCH23390 and 
SKF38393 are the only selective ligands so far, a closer look at the interacting 
residues of these ligands revealed that cat–π-interactions (6.30Glu, 6.39Val, 6.42Gly) 
were only present at the D1R for SCH23390, the antagonist at the D1-like DR [73]. 
Moreover, these residues were rather not the “classical” TM6 residues usually 
involved in binding, whereas this was true for the other ligands. This encouraged 
the search for D5R-selective ligands which should ideally form cat-π-interactions, as 
they were found in this ligand set. From a structural basis SCH23390 and SKF38393 
are more related to the benzodiazepines, compared to the other ligands which are 
either small molecules or longer ligands with piperidine moieties [78]. Lastly, 
another difference found between SCH23390 and SKF38393 binding to D5R were 
that SKF38393 established more interactions with residues from different TMs and 
a variety of neighbouring residues of the “classical” interacting residues; whereas 
SCH23390-receptor-interactions were more limited to a smaller number of residues. 
These observations were not found for both ligands at the D1R. Reported by Bourne, 
who discovered SCH23390, this compound is the 3-methyl, 7-chloro analogue of the 
D1 agonist SKF38393, which is furthermore enantioselective [73]. In addition, it was 
stated that the phenyl ring in the benzodiazepine-derivatives and the receptors was 
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involved in electrostatic forces, important for binding [73,79]. Mapping the full 
electrostatic potential of the D5R using ligands with benzodiazepine properties may 
be useful to find D5R-selective SAR. 
 
Conclusions 
Herein, we present a comprehensive in silico approach, to inspect protein-ligand 
interactions within DRs bounded to 15 ligands. One of the major research efforts in 
the research of dopamine receptors is the design of DR-subtype selective ligands 
[76]. However, most predictive studies have been performed on D2R ligand 
specificity, as this receptor is the most crucial in neurotransmission [48,77,80]. Our 
study reveals important interactions between DRs key residues and ligands in a 
more detailed way when compared with available literature [46,48,50,52,60,71] Data 
is also in line with experimental information, which corroborates the conceptual 
framework of this analysis protocol [38]. DRs classical residues participate in 
forming contacts with all ligands (e.g. 3.32Asp undoubted forms salt-bridges with 
agonists, dopamine, 7-OH-DPAT, and antagonists, risperidone). Also, hydrogen-
bonds were mostly formed by the aromatic microdomain of TM6. In addition, 
dependent on the ligand, these interaction types were either present at the DRs or 
completely non-existent.  
A clear D2-like selectivity or binding preference was only found for apomorphine, 
while for others either D2R and D5R seemed to form a lower number of 4 Å-
interactions such as nemonapride (D2R/D3R-antagonist [81]), SCH23390 (D1-like 
antagonist [73]), SKF38393 (D1R-antagonist [21]) or D1R and D4R were highly 
preferred (higher number of meaningful interactions). In other cases such as for 
eticlopride (D2R/D3R antagonist [27]) and spiperone (D2R-antagonist [56]), the D3R 
was the least attractive DR for interaction. It was also shown that the NoC does not 
automatically result in the lowest binding energy (BE), which was most visible for 
haloperidole bounded to D4R. For most ligands, a high NoC resulted in a higher 
number of interactions, mostly 4 Å-interactions or hydrocontacts, which points to a 
higher number of interactions involving the outer residue network of the DRs 
binding crevice when the ligand is involved in deeper conformational exploration. 
Regarding the electrostatic interactions, it can be concluded that they mostly 
contribute for a more specific binding and should therefore be closely investigated 
during ligand design. T-stacking interactions for D5R were most likely to achieve the 
lowest binding energies. This was also true for the D1-like DR selective ligands 
SCH23390 and SKF38393[78,82]. For bromocriptine, D5R was the only DRs with 
negative binding energies in average. Lastly, T-stacking interactions revealed as 
especially relevant for some large ligands such as apomorphine, risperidone or 
aripiprazole.  
In order to find future SARs for DRs, this computational approach helped to 
understand which types of interactions are major binding contributors and should 
be considered. Finally, this study also showed that scores made by molecular 
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docking studies such as NoC and binding energy give hints but are not able to assess 
the full-scale binding properties and potential of a certain compound. 
 
 
4. Materials and Methods  
4.1. Homology modeling 

4.1.1. General approach  

The inactive DR models were generated with MODELLER 9.19 [31], using the D2R 
complexed with risperidone (PDBid: 6CM4) [29], the D3R complexed with D2R-
antagonist eticlopride, (PDBid: 3PBL) [27] or D4R complexed with D2R/D3R-
antagonist nemonapride (PDBid: 5WIU) [28] as templates. Depending on the 
sequence similarity obtained with Basic Local Alignment Search Tool (BLAST) [34] 
and ClustalOmega [35], either D3R or D4R was chosen as template to model the DR 
(more detailed in results section). The crystal structure of D2R was chosen as 
template to model this receptor. Due to the length of the IntraCellular Loop 3 (ICL3), 
this was cut and substituted with four alanine residues. Water and co-crystalized 
compounds were removed from the template structures. In the modeling protocol 
the lengths of the TMs and the perimembrane intracellular helix (HX8) were 
specified. In addition, disulphide bonds were constricted in the known pairs of 
cysteines, in particular between 3.25Cys and a non-conserved cysteine in ECL2 and 
between two non-conserved cysteines in the ECL3. Furthermore, loop refinement 
was performed for extracellular and intracellular loops for all DR using the module 
“loop refinement” of MODELLER 9.19. The number of models calculated with 
MODELLER [31] was set to 100. 

4.1.2 Model evaluation/ Methods of quality 

We used MODELLER’s standard metrics for model assessment, Discrete Optimized 
Protein Energy (DOPE) [83] to choose the best three models for further analysis. 
However, as these scores are not reliable enough for membrane proteins (they are 
primarily based on the model’s free energy and spacial occupation directed to water-
soluble proteins) we took additional metrics into account. In particular, we used 
Protein Structure Analysis (ProSA) web service [64] and the online Protein Quality 
(ProQ) prediction server [84]. The z-score, provided by ProSA was only used for 
error recognition, as it indicates overall model quality with respect to an energy 
distribution derived from random conformations for globular proteins [64]. On the 
other hand, ProQ provides the LGscore [85] and MaxSub [86], based on a neural 
network, which were set as base for the more detailed evaluation of the models. 
Additionally, ProQ allows to include secondary structure information calculated 
with PSIPRED [37], which improves the prediction accuracy and increasing the 
model quality up to 15%. The ProQ analysis was only carried out, if z-scores around 
2-4 were achieved using the ProQ protocol. Finally, the Ballesteros and Weinstein 
numbering system for class A GPCRs was applied in order to simply comparison 
between different receptors and complex systems [42].  
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4.2. Molecular dynamics 
4.2.1. System setup 

Before setting up the system, the selected DR models were subjected to the 
Orientations of Proteins in Membranes (OPM) web-server [87–90] to calculate spatial 
orientations respecting to the Membrane Normal defined by the z-axis. In addition, 
the state of titratable residues was calculated by Propka 3.1 [91,92] within the 
PDB2PQR web-server [93] at a pH of 7.0. The prepared receptor structures were 
inserted into a rectangular box simulation with dimensions of 114 x 114 x 107 Å. The 
box was previously constructed with a lipid bilayer of POPC: Cholesterol (9:1) and 
explicitly represented water and subjected to an initial equilibration of 10 ns. 
Insertion of the receptors in the membrane was performed with g_membed package 
of GROMACS [94]. Sodium and chloride ions were added to neutralize the system 
until it reached a total concentration of 0.15 M. The final systems included 
approximately 370 POPC, 40 cholesterols, 125 sodium ions, 139 chloride ions and 
28500 water molecules, with small variations from receptor to receptor. 

4.2.2. Molecular Dynamics simulation protocol  

CHARMM36 force field was used for ions, water (TIP3P model), lipids and protein 
parameters [95]. Prior to MD simulation, the systems were relaxed to remove any 
possible steric clashes by a set of 50000 steps of Steepest Descent energy 
minimization. Equilibration was performed afterwards as following: the system was 
heated using Nosé-Hoover thermostat from 0 to 310.15 K in the NVT ensemble over 
100 ps with harmonic restraints of 10.0 kcal/mol. Then systems were subjected 
through a first step of NPT ensemble of 1 ns with semi isotropic pressure coupling 
and a pressure of one bar. Further equilibration was performed with sequential 
release of membrane lipids and protein’s atoms with a final step of NPT ensemble 
with harmonic restraints on the protein of 1.0 kcal/mol, for a total of 5 ns of 
restrained equilibration. 
MD simulations of all DR models were performed with the periodic boundary 
condition to produce isothermical-isobaric ensembles using GROMACS 5.1.1 [94]. 
The Particle Mesh Ewald (PME) method [96] was used to calculate the full 
electrostatic energy of a unit cell in a macroscopic lattice of repeating images. 
Temperature was regulated using the Nosé-Hoover thermostat at 310.15 K. Pressure 
was regulated using the Parrinello-Rahman algorithm. The equations of motion 
were integrated using leapfrog algorithm with a time step of 2 fs. All bonds, 
involving hydrogen atoms within protein and lipid molecules were constrained 
using the LINear Constraint Solver (LINCS) algorithm [97]. Then an independent 
simulation of 100 ns was initialized from the final snapshot of the restrained 
equilibration from each DR, for a total of 5 simulations. Additionally, a cut-off 
distance of 12 Å was attributed for Coulombic and van der Waals interactions. 
Trajectory snapshots were saved every 5 ns. Trajectory analysis was performed by 
in-house scripting using Visual Molecular Dynamics (VMD) [98,99].  
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4.3. Molecular docking 

4.3.1. Ligand dataset 

The following ligands were docked into the receptor decoys: Dopamine, 7-hydroxy-
N,N-dipropyl-2-aminotetralin (7-OH-DPAT), apomorphine, bromocriptine, 
clozapine, nemonapride, sulpiride, SCH23390, SKF38393, eticlopride, risperidone, 
aripiprazole, haloperidole, spiperone and chlorpromazine (Table 2). All structures 
were obtained from the DrugBank database (https://www.drugbank.ca) or from 
ChemSpider (http://www.chemspider.com) [100].  
 

Table 2 - Ligands used for molecular docking and information on their function. 

LIGAND FUNCTION BP REFERENCES 

DOPAMINE 

 

Endogenous 
agonist of all 
DR 

OBP [38,43,101] 

7-OH-DPAT 

 

Synthetic 
D3R selective 
agonist 

OBP [38,101,102] 

APOMORPHINE 

 

D2R selective 
agonist 

OBP [38,43,101] 

BROMOCRIPTINE 

 

D2R selective 
agonist 

OBP [38,101] 

CLOZAPINE 

 

“Dirty 
drug”, 
multiple 
receptor 
binding 

OBP [38,101,103,104] 

NEMONAPRIDE 

 

D2R/D3R 
selective 
antagonist 

OBP+SBP [28,38,46,101] 
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SULPIRIDE 

 

“Dirty 
drug”, 
multiple 
receptor 
binding 

OBP+SBP [38,101,102] 

SCH23390 

 

D1R 
antagonist 

OBP [22,38,101,105] 

SKF38393 

 

D1R selective 
agonist 

OBP [22,38,101,106] 

ETICLOPRIDE 

 

D2R/D3R 
selective 
antagonist 

OBP+SBP [27,102] 

RISPERIDONE 

 

“Dirty 
drug”, 
multiple 
receptor 
binding 

OBP+SBP [29,38] 

ARIPIPRAZOLE Partial D2R 
agonist, 
D2R/D3R 
heterodimer 
antagonist 

OBP+SBP [17,102] 

HALOPERIDOLE 

 

D2R selective 
antagonist, 
D4R 
antagonist 

OBP+SBP [9,38,101,103,10
7] 

SPIPERONE 

 

Affinity for 
all DR 

OBP+SBP [38,101,102] 
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CHLORPROMAZINE 

  

Antagonist 
on all DR 

OBP [38,101,108] 

Abbreviations: DR-dopamine receptors, BP-binding pocket, OBP-orthosteric binding pocket, SBP-secondary 
binding pocket. 

 
4.3.2. Docking procedure 

DR binding pocket was defined in several experimental and computational studies 
[2,38,43,46,48,50,60]. Here, we used the comprehensive review by Floresca and 
Schetz [38] as a base for exploration of the DR binding pocket, since it contains 
detailed experimental data. A summary of the procedure can be better reviewed in 
Bueschbell et al. [41]. AutoDock4.2 (version AutoDock 4.2.6, released in 2009) was 
used to perform ligand docking [109]. DR hydrogens were added and Kollman 
united atom charges were assigned. Hydrogens were also added to the ligand and 
Gasteiger-Marsili was used to calculate charges. Before docking an energy, grid was 
created using AutoGrid (version AutoGrid 4.2.6, released 2009) with a box-size 
varying with the times step and ligand. For each docking simulation 100 
independent Lamarckian genetic algorithm (LGA) runs were performed with the 
number of energy evaluations set to 10.000.000, the population size set to 200 and 
the maximum number of generations set to 27.000. Default settings were maintained 
for the rest of the parameters. Docked conformations within a RMSD of 2 Å were 
clustered. The most populated and lowest energy cluster (Gibbs free energy of 
binding) was used for conformational analysis. To find the local energy minimum 
of the binding site with a limited search space to that region, a low-frequency local 
search method was used. The 100 conformations obtained from docking were 
clustered by low-energy and RMSD. The top-ranked conformations within the best 
3 clusters were visually inspected. The docking parameters were not changed for 
any ligand, only the residues treated as flexible in the docking protocol differed 
between the ligands. The flexible residues for each DR model are summarized in 
Table 3.  

Table 3 - Flexible residues used in the molecular docking different ligands 

LIGAND FLEXIBLE RESIDUES IN B&W NUMBERING 

DOPAMINE 
3.32Asp, 5.42Ser, 5.43Ser, 5.46Ser, 6.48Trp, 6.51Phe, 6.52Phe, 6.55His/Asn 

7-OH-DPAT 

APOMORPHINE 
3.32Asp, 3.36/3.35Cys, 5.42Ser, 5.43Ser, 5.46Ser, 6.48Trp, 6.51Phe, 6.52Phe, 6.55His/Asn 

BROMOCRIPTINE 

CLOZAPINE 3.32Asp, 3.33Val, 3.36Cys, 5.42Ser, 5.43Ser, 5.46Ser, 6.48Trp, 6.55His/Asn 

NEMONAPRIDE 2.57Val, 3.32Asp, 5.42Ser, 5.43Ser, 5.46Ser, 6.48Trp, 6.51Phe, 6.52Phe, 7.43Tyr 

SULPIRIDE 3.32Asp, 6.48Trp, 5.42Ser, 5.43Ser, 5.46Ser, 6.55His/Asn, 7.43Tyr, 6.51Phe 

SCH23390 3.32Asp, 6.48Trp, 5.42Ser, 5.43Ser, 5.46Ser, 6.55His/Asn, 6.51Phe, 6.52Phe 
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SKF38393 

ETICLOPRIDE 3.32Asp, 6.48Trp, 5.42Ser, 5.43Ser, 5.46Ser, 6.55His/Asn, 7.43Tyr, 6.51Phe, 6.52Phe 

RISPERIDONE 3.32Asp, 6.48Trp, 3.36Cys, 6.55His/Asn, 2.57Val, 5.42Ser, 5.43Ser, 5.46Ser 

ARIPIPRAZOLE 3.32Asp, 6.48Trp, 3.33Val, 5.42Ser, 5.43Ser, 5.46Ser, 7.43Tyr, 6.55His/Asn 

HALOPERIDOLE 3.32Asp, 6.48Trp, 6.51Phe, 6.52Phe, 3.36Cys, 2.57Val, 5.42Ser, 5.43Ser, 5.46Ser 

SPIPERONE 3.32Asp, 6.48Trp, 5.42Ser, 5.43Ser, 5.46Ser, 3.36Cys, 6.55His/Asn, 2.57Val 

CHLORPROMAZINE 3.32Asp, 6.48Trp, 5.42Ser, 5.43Ser, 5.46Ser, 6.55His/Asn, 3.36Cys, 6.51Phe 

 
4.3.3. Analysis of molecular docking 

In this study, 15 DR ligands were docked to the homology model and to different 
conformational arrangements retrieved at every 5 ns for the 55-100 ns range for each 
DR simulation (825 dockings in total). All distances between the center of mass of 
the ligand and the alpha-C-atom (Cα) of the residues, treated as flexible in the 
docking protocol, were calculated using in-house PyMOL scripts[2,10,38,43,48,50] as 
well as previously published work [41]. We also develop in-house BINANA scripts 
to predict the main receptor-ligand interactions [30]. BINANA is an open-source 
python-implemented algorithm which uses output files from AutoDock [109] for the 
analysis of interactions and visualizes them in the free molecular-visualization 
program VMD [98]. Key binding characteristics such as hydrogen bonds, 
hydrophobic contacts, salt-bridges and π-interactions were calculated with 
BINANA.  
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structure templates calculated with Clustal Omega; Table S2 - Summary of the 
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Docking results for the D2R; Table S5 -Docking results for the D3R; Table S6 - Docking 
results for the D4R; Table S7 - Docking results for the D5R; Table S8 - Docking results 
for the crystal structure templates of D2R (6CM4), D3R (3PBL) and D4R (5WIU) 
docked with their co-crystalized ligands; Table S9 - D1R residues with Ballesteros & 
Weinstein-numbering participating in different interaction types sorted by ligands; 
Table S10 - D2R residues with Ballesteros & Weinstein-numbering participating in 
different interaction types sorted by ligands; Table S11 - D3R residues with 
Ballesteros & Weinstein-numbering participating in different interaction types 
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