

Article

Not peer-reviewed version

---

# The Unification of Intelligence Across Systems: A Noesiological Framework for Understanding Cognition, Technology, and Society

---

[Pitshou Moleka](#) \*

Posted Date: 20 February 2025

doi: [10.20944/preprints202502.1511.v1](https://doi.org/10.20944/preprints202502.1511.v1)

**Keywords:** noesiology; intelligence; noesiological framework for understanding cognition; technology; multiple forms of intelligence; human, intelligence, artificial intelligence; collective intelligence; cognitive science; evolutionary biology; complex systems theory human-machine collaboration; Descartes; Kant; Pitshou Moleka



Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

## Article

# The Unification of Intelligence Across Systems: A Noesiological Framework for Understanding Cognition, Technology, and Society

Pitshou Moleka

Managing African Research Network, Kinshasa, Democratic Republic of Congo Postdoctoral Fellow, Eudoxia Research Centre, India; pmoleka@resanet.org

**Abstract:** This article presents a groundbreaking exploration of Noesology as a scientific discipline that unifies multiple forms of intelligence—human, artificial, and collective—into a coherent framework. Noesology integrates concepts from cognitive science, artificial intelligence, evolutionary biology, and complex systems theory to understand how intelligence emerges and interacts across various systems. By drawing on theoretical insights and empirical evidence, this work introduces a novel model for studying intelligence across human, machine, and collective systems, which has profound implications for future research in artificial intelligence, human-machine collaboration, and social governance. Through the integration of interdisciplinary perspectives, the paper aims to lay the foundation for Noesology as a central field of study in cognitive science and beyond.

**Keywords:** noesology; intelligence; noesiological framework for understanding cognition; technology; multiple forms of intelligence; human, intelligence, artificial intelligence; collective intelligence; cognitive science; evolutionary biology; complex systems theory; human-machine collaboration; Descartes; Kant; Pitshou Moleka

---

## 1. Theoretical Foundations of Noesology

### 1.1. Historical and Philosophical Roots of Intelligence

The journey to conceptualizing intelligence has evolved over centuries, with philosophical and psychological inquiries laying the groundwork for contemporary understanding. Early thinkers such as Plato and Aristotle defined intelligence in terms of rationality and virtue (Ebbesen & Gregoric, 2022; Kristjánsson & Fowers, 2024). Plato's concept of *nous* (intellect) and Aristotle's development of practical reason (*phronesis*) were early attempts to understand the intellectual faculties that governed human behavior (Plato, 380 BCE; Aristotle, 350 BCE). However, these concepts were primarily concerned with human cognition in isolation, not accounting for the broader interactions of mind, body, and society.

The intellectual shift to modern cognitive theories began with figures like René Descartes and Immanuel Kant, who wrestled with the mind-body problem and epistemological questions of human knowledge. Descartes' notion of dualism created a framework that separated mind and body, a dichotomy that persisted in early cognitive science. Kant's exploration of *transcendental idealism* introduced the idea that human cognition could never fully apprehend the "things-in-themselves," highlighting the limitations of human intelligence (Descartes, 1641; Kant, 1781; Moleka, 2025).

### 1.2. Key Theoretical Contributions to Noesology

The emergence of Noesology as a unified study of intelligence necessitates integrating ideas from cognitive science, AI, evolutionary biology, and complex systems theory (Moleka, 2025).

- **Distributed Cognition:** Central to Noesology is the concept of distributed cognition, introduced by Hutchins (1995), which posits that cognition is not confined to the individual mind but instead is a system-wide process that includes human agents, tools, and cultural practices. This view challenges the traditional understanding of intelligence as an internalized, individual phenomenon and opens the door to studying collective intelligence and human-machine interactions.
- **Emergent Intelligence in Complex Systems:** The theory of emergent intelligence offers a way to understand intelligence that is not solely based on individual cognition but on interactions within complex systems. Kauffman (1993), in his work on complex adaptive systems, describes intelligence as a property of networks that arises from the interactions between system components. This idea is integral to understanding how intelligence manifests in decentralized systems such as collective intelligence or artificial systems.
- **Evolutionary Theory:** The evolutionary perspective on intelligence is shaped by Bateson (2000), who suggested that intelligence is not just a feature of individual organisms but a continuous process of interaction between agents and their environment. Bateson's approach emphasizes the adaptive nature of intelligence, where cognitive systems evolve to meet environmental challenges. This aligns with Noesology's core principle that intelligence is a dynamic, evolving phenomenon that extends beyond individual organisms.

### 1.3. A Unified Framework for Intelligence

Building on these foundational theories, Noesology proposes a unified framework that integrates human, artificial, and collective intelligence. This model of intelligence can be conceptualized as a dynamic interaction between multiple cognitive agents—humans, machines, and social systems—that co-evolve to solve complex problems (Moleka, 2025).

- **Human Intelligence:** Human intelligence, traditionally understood as a set of cognitive functions such as perception, memory, and reasoning, is now seen as part of a broader system that includes technology and social interactions (Gignac & Szodorai, 2024). Theories of embodied cognition (Lindblom, 2020 ; Ale, Sturdee & Rubegni, 2022 ; Varela et al., 1991) suggest that human cognition is deeply intertwined with bodily experiences and environmental contexts, thus forming an adaptive, context-sensitive form of intelligence.

**Artificial Intelligence:** AI, particularly in its machine learning and deep learning forms, offers a new way to conceptualize intelligence (Ertel, 2024 ; Janiesch, Zschech & Heinrich, 2021).

Unlike human cognition, which is often thought to rely on conscious awareness and introspection, AI intelligence is primarily algorithmic, learning from large datasets through pattern recognition (Youvan, 2024 ; Korteling, van de Boer-Visschedijk, Blankendaal, Boonekamp & Eikelboom, 2021 ; Hinton et al., 2012). Noesology considers AI not as a replication of human cognition but as a distinct form of intelligence that can complement and extend human cognitive abilities.

**Collective Intelligence:** Collective intelligence refers to the aggregated cognitive abilities of a group of individuals or machines working together to solve problems or create new knowledge. This concept is deeply embedded in Surowiecki's (2004) notion of the "wisdom of crowds" and has been explored in relation to systems like Wikipedia, crowdsourcing platforms, and social networks. Noesology posits that collective intelligence arises from the interactions between human minds, machines, and information systems, creating new forms of problem-solving that transcend individual

capabilities (Olszowski, 2024 ; Peeters, van Diggelen, Van Den Bosch, Bronkhorst, Neerincx, Schraagen & Raaijmakers, 2021).

## 2. Empirical Evidence: Case Studies and Applications

### 2.1. Human Intelligence in the Context of AI

In recent years, cognitive science and AI research have converged to demonstrate the potential for synergy between human and artificial intelligence. Studies in neuroimaging (Koechlin et al., 2003) have shown that many of the cognitive functions we attribute to humans—such as executive functions and decision-making—overlap with processes used in AI systems. The brain's ability to process vast amounts of information in a structured way, as shown in Koechlin's (2003) work on the prefrontal cortex, parallels how AI models like deep learning networks process data to make predictions.

Additionally, reinforcement learning algorithms, which are central to modern AI models, mimic how humans learn from rewards and punishments. For example, the famous AlphaGo algorithm developed by Silver et al. (2016) demonstrated how an AI system could learn to play Go by interacting with itself and receiving feedback, much like how humans refine their cognitive strategies through trial and error.

### 2.2. Artificial Intelligence as a Cognitive System

Artificial intelligence, particularly deep learning, represents a form of intelligence that operates on principles very different from human cognition. AI systems like deep convolutional networks (LeCun et al., 2015) and generative adversarial networks (GANs) (Goodfellow et al., 2014) have demonstrated the power of pattern recognition in areas ranging from image recognition to language translation.

One significant development is the AI-human hybrid system. For example, the integration of AI in medical diagnostics, where AI systems can analyze vast amounts of medical data to assist doctors in making decisions, has shown how AI can augment human decision-making. Empirical studies on AI in healthcare (Krakowski, Kim, Cai, Daneshjou, Lapins, Eriksson, Lykou & Linos, 2024 ; Wei, Tada, So & Torres, 2024 ; Esteva et al., 2017) have revealed that AI algorithms can outperform human clinicians in specific tasks, such as skin cancer diagnosis, underscoring the complementary nature of human and machine intelligence.

### 2.3. Collective Intelligence and Social Systems

Collective intelligence provides another rich area for empirical study. Crowdsourcing platforms like Amazon Mechanical Turk and social media platforms such as Twitter leverage the cognitive contributions of large numbers of people to create innovative solutions and aggregate knowledge. For instance, platforms like Wikipedia show how collective intelligence can emerge from decentralized, open systems.

Studies by Surowiecki (2004) and Baltzersen (2022) demonstrate how crowds, when properly organized, can collectively arrive at better solutions than individuals, even in complex decision-making scenarios. In line with Noesology, this suggests that collective intelligence is a significant form of intelligence that extends beyond individual human cognition, with applications in everything from political decision-making to global problem-solving.

### 3. Integrating Human, Artificial, and Collective Intelligence

#### 3.1. Cross-Domain Integration of Cognitive Systems

As technology continues to advance, the integration of human, artificial, and collective intelligence has become more feasible. Brain-machine interfaces and augmented reality systems (Zheng, Liu, Ren, Ma, Chen, Yu ... & Wang, 2017) are leading the way in developing hybrid cognitive systems. These systems integrate AI's computational power with human sensory and motor abilities, creating new forms of cognitive interaction that are both interactive and adaptive.

The neuroprosthetics market is rapidly advancing, with systems that enable the brain to control robotic limbs, thus enhancing human cognitive capabilities. Bessire et al. (2017) explore how neuroprosthetics serve as extensions of human cognition, leading to debates on the ethics of cognitive enhancement.

#### 3.2. Collective Intelligence and Its Role in Noesology

In the digital age, collective intelligence has taken on new dimensions, with systems such as swarm Intelligence and multi-agent systems (Ha & Tang, 2022) demonstrating how groups of agents (human or machine) can perform tasks better than individual agents. This is central to Noesology's argument that intelligence is a distributed, emergent property, influenced by the interactions of various agents.

#### 3.3. Future Directions for Hybrid Intelligence Systems

Noesology points to the future of hybrid intelligence systems as being instrumental in addressing grand challenges, such as climate change and global health crises. For instance, AI-human collaborative systems could manage complex environmental simulations and create solutions to global issues by incorporating the best aspects of both human creativity and machine precision.

As these systems evolve, Noesology proposes the creation of ethical frameworks that guide the integration of human, artificial, and collective intelligence in various applications. These frameworks will need to consider not only the cognitive aspects but also the socio-political, ethical, and cultural implications of hybrid intelligence systems.

## 4. Ethical and Philosophical Considerations

#### 4.1. The Ethics of Hybrid Intelligence Systems

As AI and human cognition converge, ethical questions regarding the role and control of these systems arise. The notion of *agency* becomes particularly relevant: Who controls these systems? How can we ensure that these systems operate in a way that benefits society as a whole? The blending of human and artificial intelligence challenges traditional ethical frameworks, particularly those related to autonomy, privacy, and accountability.

One of the core ethical concerns is ensuring that AI systems are transparent and explainable. Research by Doshi-Velez and Kim (2017) into "explainable AI" emphasizes the importance of developing AI models that not only perform tasks effectively but also provide understandable justifications for their decisions. This transparency is crucial when AI systems are used in high-stakes scenarios like medical diagnostics, autonomous vehicles, and criminal justice systems, where accountability is essential.

Additionally, bias in AI algorithms remains a significant issue. AI systems are often trained on historical data, which can perpetuate and even exacerbate existing societal biases. O'Neil (2016) discusses how biased algorithms have led to discriminatory practices, such as in hiring or law enforcement. The integration of human intelligence into these systems offers potential solutions, as humans can intervene to mitigate these biases, making it a necessary part of hybrid intelligence systems.

#### 4.2. Human-Centered Design of Intelligent Systems

Human-centered design focuses on creating systems that prioritize human well-being and values while interacting with artificial intelligence. Norman (2013) discusses how design thinking can be applied to AI development to create systems that are intuitive, ethical, and supportive of human users. As AI becomes increasingly embedded in daily life, ensuring that these systems serve to enhance human potential—rather than diminish it—becomes a central concern.

Noesology emphasizes the importance of co-design between humans and machines. In this context, both humans and machines contribute to the design and decision-making process, allowing for more effective, adaptable, and socially responsible systems. For instance, co-bots in the workplace are emerging as a new model for human-AI collaboration. These collaborative robots work alongside humans, providing assistance and enhancing human productivity without replacing jobs (Dufresne et al., 2019).

#### 4.3. Existential Risks and Long-Term Implications

One of the most profound concerns surrounding artificial intelligence and hybrid intelligence systems is the potential for existential risks. Bostrom (2014) explores the idea of the "superintelligence" scenario, where AI surpasses human intelligence and becomes uncontrollable. While this remains speculative, the rise of autonomous systems and their integration into critical infrastructures raises questions about governance, regulation, and the safety of such systems.

The precautionary principle suggests that in the face of uncertainty about the potential risks of hybrid intelligence, societies should take proactive measures to mitigate these risks. This includes establishing ethical guidelines, safety protocols, and regulatory bodies to oversee the development and deployment of AI systems. The integration of human oversight in AI decision-making processes is vital to ensuring that these systems do not develop in ways that could harm humanity or exacerbate existing inequalities.

Moreover, Noesology advocates for ongoing interdisciplinary dialogue between ethicists, cognitive scientists, engineers, and policymakers to create frameworks that ensure the responsible and beneficial development of hybrid intelligence.

### 5. Future Directions and Implications for Research

#### 5.1. Advancing Noesology as a Field of Study

Noesology is positioned to become a central field of study in the coming decades. To advance this field, researchers must engage in multi-disciplinary collaboration across cognitive science, artificial intelligence, neuroscience, sociology, and philosophy. The goal is to develop a comprehensive theory of intelligence that encompasses not only the individual but also the systems in which intelligence operates.

Future research should focus on empirical studies that test the Noesiological framework in real-world scenarios, particularly in the domains of healthcare, education, governance, and social collaboration. Investigating the cognitive synergy between humans, AI, and collective systems will lead to a better understanding of how intelligence evolves and interacts in complex environments.

#### 5.2. Interdisciplinary Approaches to Intelligence

Given the complexity of intelligence across different systems, a purely reductionist approach to studying cognition is insufficient. Noesology advocates for transdisciplinary research, integrating insights from philosophy, cognitive science, computer science, biology, and the social sciences. Future studies should examine how intelligence in one domain (artificial intelligence) can influence or enhance intelligence in another (human cognition or collective systems).

For instance, understanding the way collective intelligence operates in large groups, as seen in online communities or crowdsourcing platforms, requires a nuanced understanding of social

dynamics, decision-making, and group psychology. Crowdsourcing research (Howe, 2008 ; Cui & Yasseri, 2024 ; Hafez, Hafez, Saleh, Abd El-Mageed & Abohany, 2025) demonstrates that collective intelligence emerges from the interaction of diverse individual agents, creating a complex, adaptive system. Understanding these dynamics will be critical as we continue to build hybrid intelligence systems that integrate diverse types of cognition.

### 5.3. Hybrid Intelligence in Practice: Applications and Challenges

As hybrid intelligence systems continue to evolve, several practical challenges must be addressed:

- Trust and Collaboration: Human users must trust AI systems in order for them to work effectively. The development of AI systems that are transparent, accountable, and capable of explaining their decision-making processes will be critical for establishing this trust. Moreover, AI systems must be designed to facilitate collaborative decision-making, where both humans and machines contribute equally to the process.
- Scaling Hybrid Intelligence Systems: One of the main challenges in the application of hybrid intelligence systems is scaling them across large systems or industries. For example, in healthcare, the integration of AI-powered diagnostic tools with human expertise requires the development of scalable systems that can manage vast amounts of medical data and ensure that AI recommendations are aligned with human healthcare goals.
- Ethical AI for Social Good: As hybrid intelligence systems become more widespread, it is crucial to focus on how these systems can contribute to the public good. Whether in addressing climate change, managing urban growth, or improving public health, AI systems must be designed with ethical considerations in mind. The challenge lies in ensuring that AI does not exacerbate existing inequalities or power imbalances.

## 6. Conclusions: Toward a Unified Intelligence Across Systems

This article has proposed Noesology as a framework for understanding intelligence across human, artificial, and collective systems. By examining the theoretical foundations, empirical evidence, and practical applications of this integrated approach, we have shown how hybrid intelligence systems are not just the future of AI but the future of human cognitive potential as well.

The development of Noesology is crucial for advancing our understanding of intelligence as a dynamic, emergent property that extends beyond individual minds to encompass the interactions between humans, machines, and society. Future research must continue to explore the ethical, philosophical, and practical implications of these systems, ensuring that they are used for the benefit of all and aligned with human values and aspirations.

## References

Ale, M., Sturdee, M., & Rubegni, E. (2022). A systematic survey on embodied cognition: 11 years of research in child-computer interaction. *International Journal of Child-Computer Interaction*, 33, 100478.

Baltzersen, R. K. (2022). What Is Collective Intelligence? In *Cultural-Historical Perspectives on Collective Intelligence: Patterns in Problem Solving and Innovation* (pp. 1–26). chapter, Cambridge: Cambridge University Press.

Bateson, G. (2000). *Steps to an Ecology of Mind*. University of Chicago Press.

Bessire, D., Weibel, D., & Dufresne, C. (2017). Neuroprosthetics and cognition: Enhancing human intelligence. *Journal of Cognitive Enhancement*, 1(2), 157-170.

Bostrom, N. (2014). *Superintelligence: Paths, Dangers, Strategies*. Oxford University Press.

Cui, H., & Yasseri, T. (2024). AI-enhanced collective intelligence. *Patterns*, 5(11).

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. *arXiv preprint arXiv:1702.08608*.

Dufresne, C., Weibel, D., & Smith, R. (2019). Co-bots in the workplace: A new era for human-AI collaboration. *Human Factors in Computing Systems*, 1(3), 99-112.

Ebbesen, S., & Gregoric, P. (2022). "Introduction Cognition and Conceptualisation in the Aristotelian Tradition". In *Forms of Representation in the Aristotelian Tradition*. Leiden, The Netherlands: Brill. [https://doi.org/10.1163/9789004506114\\_002](https://doi.org/10.1163/9789004506114_002)

Eikelboom, A. R. (2021). Human-versus artificial intelligence. *Frontiers in artificial intelligence*, 4, 622364.

Esteva, A., Kuprel, B., & Novoa, R. A. (2017). Dermatologist-level classification of skin cancer with deep neural networks. *Nature*, 542(7639), 115-118.

Ertel, W. (2024). *Introduction to artificial intelligence*. Springer Nature.

Gignac, G. E., & Szodorai, E. T. (2024). Defining intelligence: Bridging the gap between human and artificial perspectives. *Intelligence*, 104, 101832.

Ha, D., & Tang, Y. (2022). Collective intelligence for deep learning: A survey of recent developments. *Collective Intelligence*, 1(1), 26339137221114874.

Hafez, I. Y., Hafez, A. Y., Saleh, A., Abd El-Mageed, A. A., & Abohany, A. A. (2025). A systematic review of AI-enhanced techniques in credit card fraud detection. *Journal of Big Data*, 12(1), 6.

Hinton, G., Osindero, S., & Teh, Y. (2012). A fast learning algorithm for deep belief nets. *Neural Computation*, 14(8), 1771-1800.

Howe, J. (2008). *Crowdsourcing: Why the Power of the Crowd Is Driving the Future of Business*. Crown Business.

Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. *Electronic Markets*, 31(3), 685-695.

Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. *Science*, 302(5648), 1181-1185.

Korteling, J. H., van de Boer-Visschedijk, G. C., Blankendaal, R. A., Boonekamp, R. C., & Krakowski, I., Kim, J., Cai, Z. R., Daneshjou, R., Lapins, J., Eriksson, H., Lykou, A., & Kristjánsson, K., & Fowers, B. (2024). *Phronesis: Retrieving practical wisdom in psychology, philosophy, and education*. Oxford University Press.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. *Nature*, 521(7553), 436-444.

Lindblom J. (2020). A Radical Reassessment of the Body in Social Cognition. *Frontiers in psychology*, 11, 987. <https://doi.org/10.3389/fpsyg.2020.00987>

Linos, E. (2024). Human-AI interaction in skin cancer diagnosis: a systematic review and meta-analysis. *NPJ digital medicine*, 7(1), 78. <https://doi.org/10.1038/s41746-024-01031-w>

Moleka, P. (2025). A New Epistemology of Intelligence: Rethinking Knowledge Through Noesology. Doi: 10.20944/preprints202502.1377.v1

Norman, D. A. (2013). *The Design of Everyday Things: Revised and Expanded Edition*. Basic Books.

Olszowski, R. (2024). Beyond the Individual: Understanding the Evolution of Collective Intelligence. In *Collective Intelligence in Open Policymaking* (pp. 63-126). Cham: Springer Nature Switzerland.

O'Neil, C. (2016). *Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy*. Crown Publishing Group.

Peeters, M. M., van Diggelen, J., Van Den Bosch, K., Bronkhorst, A., Neerincx, M. A., Schraagen, J. M., & Raaijmakers, S. (2021). Hybrid collective intelligence in a human-AI society. *AI & society*, 36, 217-238.

Silver, D., Huang, A., & Maddison, C. (2016). Mastering the game of Go with deep neural networks and tree search. *Nature*, 529(7587), 484-489.

Surowiecki, J. (2004). *The Wisdom of Crowds: Why the Many Are Smarter Than the Few and How Collective Wisdom Shapes Business, Economies, Societies, and Nations*. Doubleday.

Wei, M. L., Tada, M., So, A., & Torres, R. (2024). Artificial intelligence and skin cancer. *Frontiers in Medicine*, 11, 1331895.

Youvan, D. C. (2024). Exploring "Separate AI": Consciousness Beyond Human Cognition in the Context of Penrose's Theories.

Zheng, N. N., Liu, Z. Y., Ren, P. J., Ma, Y. Q., Chen, S. T., Yu, S. Y., ... & Wang, F. Y. (2017). Hybrid-augmented intelligence: collaboration and cognition. *Frontiers of Information Technology & Electronic Engineering*, 18(2), 153-179.

**Disclaimer/Publisher's Note:** The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.