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Abstract: The emergence of antimicrobial resistance (AMR) Candida auris presents a formidable
global health challenge, causing severe healthcare-associated infections with high mortality rates.
Its ability to colonize surfaces and resist standard disinfectants undermines traditional hygiene
practices, prompting an urgent need for novel strategies. Ultraviolet C (UVC) light offers a
promising approach due to its rapid and broad-spectrum germicidal efficacy. This review
comprehensively examines the current knowledge of UVC LED technology in combating C. auris,
highlighting its effectiveness, limitations, and potential applications in healthcare hygiene. UVC
light has potent activity against C. auris, including multidrug-resistant (MDR) strains. UVC can
reduce C. auris on contaminated surfaces, aiding in transmission prevention. This review explores
implementation strategies, including mobile UVC systems for targeted disinfection of high-risk
areas and equipment, integration into air handling units (AHUs) to continuously disinfect
recirculating air, and incorporation into water treatment systems. Current limitations in our
understanding of UVC safety and effectiveness necessitate further research to optimize application
protocols and ensure treatment safety while maintaining efficacy against C. auris. Integrating UVC
disinfection technology into infection control programs holds promise for strengthening hygiene
practices that will curb the global spread of C. auris and improve patient outcomes.

Keywords: Antimicrobial resistance; Candida auris; Global Spread; High Mortality Rates; Hospital
Infections; Superbug; UVC Light; Hospital Waste Management

1. Introduction

Antimicrobial Resistance

Antimicrobial resistance (AMR) poses a significant threat to global health and economic
development, with emerging pathogens like Candida auris (C. auris) sparking particular concern.
AMR is characterized by microorganisms (bacteria, viruses, fungi, and parasites) resisting the effects
of antimicrobial medications that they were once susceptible to, rendering them ineffective [1-4]. This
phenomenon significantly threatens human health with rising attributable morbidity, mortality, and
healthcare costs [5,6]. In recent years, the emergence of multidrug-resistant (MDR) pathogens, which
are resistant to multiple classes of drugs, has intensified the danger of microbial spread and infection
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[7]. In response to the global public health threat due to AMR, the World Health Organization (WHO)
convened a global tripartite in partnership with the Food and Agriculture Organization of the United
Nations (FAO) and the World Organization for Animal Health (WOAH) to monitor and evaluate
global progress on AMR [8,9]. The spread of AMR and fungal diseases is further complicated by the
rapid rise in healthcare-associated infections (HAIs), which now constitute the most common adverse
patient events [10]. Other contributing challenges include the non-uniform surveillance and
monitoring systems for AMR across geopolitical locations, cross-sector and multi-industry siloes,
non-uniform policies, and resource disparities to build and maintain the infrastructure needed to
sufficiently address AMR [8].

Candida auris

Candida auris is a member of the candida genus, which colonizes the skin more than other
mucosal surfaces like the gastrointestinal system, leading to potential person-to-person transmission
[11]. C. auris has been in the media spotlight due to frequent infections with poor prognosis among
compromised hosts and its persistent antifungal resistance compared to other Candida species. While
cases of C. auris have been on the rise since the first accurately identified case in Japan in 2009, there
has been a rapid spike in global cases recently [12]. Media attention to the active outbreaks across the
United States (Washington, Nevada, Illinois, and New York) in early 2024 has raised alarm bells for
healthcare and public health officials [13-18]. Some savvy social media users have even dubbed the
emerging crisis the “Candida auris fungus 2024 pandemic” [19]. C. auris is currently the only fungal
pathogen identified by the Centers for Disease Control and Prevention (CDC) as an urgent threat by
the Mycotic Diseases Branch [20,21].

While most reports suggest that C. auris infections are not a threat to healthy individuals,
vulnerable populations and healthcare facilities are at high risk for adverse outcomes. Nosocomial
infections, also called hospital-acquired infections or healthcare-associated infections (HAIs), are
associated with the worst outcomes for C. auris clinical infection, with expert consensus advising that
C. auris-associated candidemia (Candida-related blood infections) and subsequent sepsis could
contribute to crude mortality rates as high as 72% in hospitals and residential healthcare facilities
[10,22]. Despite the remarkably high mortality rate, there are very few effective drugs against C. auris
due to the growing AMR and (well-meaning) misuse of antibiotics and antifungals [23]. C. auris is
also an opportunistic fungus with frequent outbreaks overlapping with other pathogenic spreads,
such as COVID-19. A recent retrospective chart review at one of NYC'’s largest hospitals found that
C. auris incidence tripled during the COVID-19 pandemic [18].

Despite recent attention, including media coverage, public health advisories, and even
heightened scholarly work on C. auris (annual publication and citation growth rate of nearly 38%),
implementing robust prevention and disinfection practices to reduce the overall burden of C. auris
presents substantial challenges [24]. Poor surveillance and non-uniform screening practices
contribute to the continued spread [15,25]. However, once C. auris is colonized (presence of fungus
on the skin, but without any clinical infection), there are no specific interventions that reduce or
eliminate colonization [26]. While a few medications have an efficacious impact on C. auris, early
detection and treatment are imperative for optimal outcomes. Early treatment is often prohibitive
without standardized and uniform screening and surveillance [23].

Environmental Disinfection

Considering the challenges of identifying and treating C. auris colonization and infection,
primary prevention through environmental disinfection may be the most promising method for
reducing nosocomial spread. However, effective environmental disinfection also faces substantial
challenges in implementation [26]. Infection control strategies span from environmental disinfection
of contaminated areas (water, air, and surface) to appropriate waste management strategies. Current
environmental infection control procedures focus almost entirely on manual cleaning and chemical
disinfection [26]; however, this is not 100% effective against C. auris and leaves substantial room for
nosocomial spread. Current waste management strategies emphasize segregation, transport, and
disposal procedures but often fail to properly disinfect and sanitize waste contaminated with highly
pathogenic microbes such as C. auris.
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UVC LED Technology

The resilient and antimicrobial-resistant nature of C. auris poses significant challenges to
adequate disinfection protocols in healthcare settings. No-touch disinfection is a critical disinfection
modality for the management of C. auris outbreaks and the reduction of the global candidemia
burden. No-touch disinfection includes Ultraviolet C light emitting diodes (UVC LED) disinfection
or vaporized hydrogen peroxide systems used for terminal cleaning and disinfection procedures [27].
UVC technology is a validated disinfection modality for water, air, and surface applications, and the
UVC spectrum (200 — 280 nm) offers enhanced germicidal disinfection when used in conjunction with
common chemical cleaning agents [28-35]. UVC LED technology can inactivate microbes and
pathogens because the intracellular structures, like DNA/RNA and proteins, are susceptible to the
specific density of UVC photons that are emitted in a controlled environment, causing critical
genomic damage that mainly occurs through a disruption in the adenine-to-thymine bond, resulting
in a pyrimidine dimer between the adenines. Damage to the cell structures prevents the microbes
from replicating and limits survival times substantially [30,31,36-38]. Despite genetic damage to
pathogenic cells, UVC is considered safe for human cells and DNA/RNA up to a specific energy
exposure (though shielding may be necessary for direct human exposure) [39-41]. Tailored UVC
wavelengths, time, and other parameters of the disinfection mechanism vary by microbe or pathogen,
environmental application (i.e., water, air, and surface), and specific conditions of the contaminated
element. The most common UVC wavelength used for healthcare disinfection is 253.7 nm emitted by
low-pressure mercury lamps, as this is absorbed by microbial cell structures, allowing for targeted
DNA/RNA damage.

Waste Management

Effective waste management is a critical component of controlling the spread of C. auris in
healthcare facilities. Implementing robust waste management practices alongside proper patient care
protocols is crucial to protect healthcare workers and patients from this emerging fungal threat.
Healthcare wastes are generated within healthcare facilities, research centers, and laboratories related
to medical procedures, with considerable potential for microbial contamination and transmission. It
is estimated that between 75% and 90% of all healthcare waste is generalized and non-hazardous,
with the remaining 10% to 25% considered hazardous and may cause environmental or health risks
[42]. Hazardous waste covers a wide range of materials, including pathological waste, sharps waste,
chemical waste, pharmaceutical waste, cytotoxic waste, radioactive waste, and infectious waste [43].
Improper waste management practices can facilitate the spread of C. auris through contact with
contaminated waste by healthcare workers, and environmental contamination in healthcare facilities
[44].

Infectious waste may contain pathogens (including fungi like C. auris) capable of causing disease
in susceptible hosts and may include waste contaminated with blood or body fluids, cultures, and
stocks of infectious agents from laboratory work, and waste from infected patients in isolation wards
[42]. Microorganisms in a reservoir (such as an inanimate object) may exit the reservoir via a suitable
mode of transmission (such as through droplets or contact) and gain entry to infect the susceptible
host [45]. This transmission pathway further explains how C. auris can easily spread throughout and
beyond healthcare facilities. High-income countries, on average, generate 0.5 kg of hazardous waste
per hospital bed per day, while low-income countries generate 0.2 kg per hospital bed per day [43].
Despite the importance of safe and adequate healthcare waste management, 2019 data showed that
one in three healthcare facilities globally does not safely manage healthcare waste [46].

Traditionally, waste management relies on methods like chemical disinfection or incineration.
While effective, these methods have drawbacks: chemicals can pose environmental and health risks,
and incineration can contribute to air pollution [47]. UVC LEDs offer a promising alternative for
waste management, providing a safe and environmentally friendly disinfection method. UVC LEDs
can be adapted for various waste streams, including healthcare waste, food waste, and wastewater,
offering a broader application than some traditional methods.

While UVC LEDs offer a compelling alternative for waste management, there are still challenges
to overcome for widespread adoption:
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a. Safety Concerns: UVC light can cause damage to skin and eyes upon direct exposure.
Implementing proper safeguards, like protective equipment, engineering controls (enclosed
systems), and training for workers is essential.

b. Limited Penetration Depth: UVC light has limited ability to penetrate through materials. This
means that for effective disinfection, waste needs to be spread out in a thin layer or the UVC
source needs to be strategically placed to ensure all areas are exposed.

c.  Efficacy for Complex Waste Streams: The effectiveness of UVC LEDs may vary depending on
the type of waste and the presence of organic matter that can shield microorganisms from the
UVC light. Further research is needed to optimize UVC LED application for different waste
compositions.

d. Long-Term Performance and Maintenance: The long-term effectiveness of UVC LEDs can be
impacted by factors like aging and dust accumulation. Regular maintenance and monitoring of
UVC LED systems are crucial to ensure consistent disinfection performance.

e. Regulatory Landscape: Regulations governing the use of UVC LEDs for waste disinfection may
vary by region. Staying updated on relevant regulations and obtaining necessary approvals is
essential.

Enhanced Infection Prevention and Control

UVC LEDs may be a feasible and scalable method for environmental disinfection with technical
applications in water, air, surface, and waste disinfection [48-57]. This review provides a
comprehensive analysis and critical discussion of the relevant literature on the global public health
threat and economic disruption relative to the rapid spread of C. auris, the feasibility of applying UVC
LED disinfection technology to environmental services and waste management strategies in
healthcare facilities, and the challenges to implementing robust infection prevention protocols and
surveillance systems. We offer recommendations for scalable and affordable UVC LED-enhanced
disinfection protocols and briefly discuss future research and development in the field.

2. Relevant Literature

Due to the cross-industry content, literature was obtained through reputable research databases
(e.g., PubMed, Web of Science, and Dimensions) that index high-quality journals from a broad range
of fields, including the physical sciences (e.g., mycology, biochemistry, biology, engineering, and
physics) and applied sciences (e.g., public health, healthcare management, medicine, and economics).
Search terms included (but not limited to) “Candida auris,” “C. auris,” “antimicrobial resistance,”
“nosocomial spread,” “C. auris surveillance,” “UVC disinfection,” “healthcare facility disinfection,”
and “global fungal disease burden.” Additional literature was identified by carefully reviewing
appropriate articles’ citations and relevant conference presentations. Our review critically examines
the evidence base for the feasibility of UVC LED disinfection and waste management of C. auris.

2.1. Global disease Threat of C. auris

Fungal diseases account for a significant global burden of morbidity and mortality. Fungal
infections (including skin, nails, and hair) are estimated to impact approximately one billion people,
with associated mortality rates accounting for over 1.5 million deaths annually [58]. Nearly all forms
of yeast are from the Candida genus, though many are not responsible for infection or have only
superficial infection capacity [59]. Ringworm, nail fungus, yeast infections (e.g., vaginal candidiasis),
and thrush (e.g., oral Candida infections) are among the most common fungal infections [60].
Candidiasis is an infection caused specifically by a Candida species and can present in many infection
sites; however, there are over 200 specific species [61]. The annual incidence of oral and esophageal
candidiasis is estimated to be approximately 3.3 million, with the global burden of recurrent
vulvovaginal candidiasis being approximately 134 million each year. Invasive candidiasis is unlike
oral and vaginal candidiasis because it infects the bloodstream, brain, heart, eyes, bones, and other
internal parts of the body. The annual incidence of invasive candidiasis (from any form of Candida
spp.) is estimated to be approximately 750,000 [58]. Candidemia, a common healthcare-associated
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infection, is a specific and dangerous blood infection caused by Candida isolates with adverse
outcomes [62].

C. auris is a particularly resilient branch of the Candida species that rapidly develop multi-drug
resistance with morphisms specific to regional development or genetic clade [63]. To date, C. auris
has been reported in over 47 countries worldwide, representing all continents except Antarctica [64].
C. auris strains have been categorized into different genomic clades: I (southern Asia), II (eastern
Asia), III (Africa), IV (South America), and V (Iran), each with independent emergence, which is
visualized in Figure 1. C. auris clades are revealed by genome analysis, PCR amplification of genetic
loci, or mass spectrometry [65]. Despite the first isolation in 2009 (ear canal), retrospective sample
testing revealed the presence of C. auris as far back as 1996 in South Korea [12]. More than 740 isolates
of C. auris have now been identified [23,63,66-74]. Multidrug-resistant and pan-drug-resistant C. auris
isolates are increasingly detected worldwide [75,76].
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Figure 1. The global distribution of Candida auris is categorized into four clades based on phylogenetic
analysis and geographic origin. Reprinted from [65].

The rising ambient air temperatures (i.e., emerging climate change), combined with changes in
avian migration patterns, farm activities, and increased urban dwellers, have created an environment
that supports thermotolerant fungi like C. auris [67,77]. Since first being identified in Japan, C. auris
has become a globally transmitted pathogenic infection that often leads to invasive candidemia and
invasive candidiasis of the heart and central nervous system [78,79]. In 2016, the Centers for Disease
Control and Prevention (CDC) identified the first reported case of a patient in the United States with
C. auris, discovered via a misidentified isolate collected in 2013 [80]. C. auris has been identified in
several infection sites and bodily fluids, including blood, urine, bile, ear canal, nares, axilla, skin, and,
in rare instances, the oral, esophageal, and gut mucosa [63].

C. auris has gained notoriety due to its increasing resistance to common antifungal agents and
the possibility that it may be the first fungal disease related to emerging climate change [67,77]. Many
C. auris strains have a high minimum inhibitory concentration (MIC) towards antifungal drug classes
and common disinfectants, contributing to the challenge of decolonization and the treatment of
infections [51,63]. Its pathogenicity has been associated with virulent traits like the production of
proteases, lipases, mannosyltransferases, oligopeptides, siderophore-based iron transporters, and
biofilm formation. These virulent traits assist C. auris in invading, colonizing, and acquiring nutrients
from the host [11]. Further, C. auris has the capability of transforming into a persistent yeast capable
of surviving under unfavorable conditions [11,61,81,82].
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Once C. auris colonizes and progresses to invasive candidiasis or candidemia, several molecular
mechanisms can evade the action of antifungals, leading to resistance to agents like amphotericin B
and the Azole and Echinocandins classes of drugs. Azole (e.g., fluconazole) resistance is associated
with the overexpression of drug efflux pumps belonging to ATP Binding Cassette (ABC) and Major
Facilitator Superfamily (MFS) transporters and encoding alterations of the ergosterol synthesis
pathway (overexpression of ERGI11, and point mutations in ERGI1, Y132F or K143R). The
Echinocandin resistance in C. auris is shown to be attributable to mutations of FKSI, a gene that codes
the enzyme responsible for the key fungal cell wall component, 3(1,3)D-glucan. Single nucleotide
polymorphisms in genes related to the ergosterol synthesis pathway leading to altered sterol
composition and potential amino acids substitution in the FUR1 gene (i.e., F211I) have been linked to
C. auris resistance to polyenes (e.g.,, amphotericin B) and nucleoside analogs (e.g., flucytosine)
respectively [61,83-88]. In addition to the multidrug resistance, C. auris can survive on surfaces,
including human skin, for extended periods, contributing to high mortality rates (30-60%) in
healthcare settings [63,64,89,90]. Difficulties in pathogen identification and disinfection have also led
to increased transmission and delayed infection management [11,61,81,82].

While antifungals may be used to treat invasive candidiasis due to C. auris, multidrug-resistant
and pan-drug-resistant isolates are rapidly being identified across the globe [78]. The near-
simultaneous emergence of multi-drug resistant C. auris on multiple continents, as well as the
associated high mortality rate, make C. auris a significant global threat [91]. The changing climate
trending towards warmer global temperatures is not enough to fully explain the rapid ability to
develop resistance to antifungals [67]. More concerning is that many MDR C. auris outbreaks have no
direct epidemiological links, indicating they are developing new resistance in each cluster [92]. In
2022, the World Health Organization listed C. auris on the “WHO fungal priority pathogens list’ in
the critical priority group, urging global action on three priority areas: (1) surveillance, (2) research
& development and innovation, and (3) public health interventions [78]. In 2018, the CDC made C.
auris a nationally notifiable infectious disease [93].

The global incidence rate of C. auris infections cannot currently be established due to a lack of
uniform surveillance systems, few epidemiological outbreak studies, and limited diagnostic
capability [78]. Conventional laboratories often misidentify C. auris as one of several similar isolates,
such as other Candida species like C. haemulonii, C. famata, and C. sake, as well as Rhodotorula glutinis,
R. mucilaginosa, and Saccharomyces species [25,94]. While accurate incidence rates are challenging to
estimate, individual studies and health systems across the globe have evaluated incidence through
outbreak investigations. Studies across Asia, Europe, the Middle East, Africa, Australia, and the
Americas have examined colonization, progression to IC and candidemia, and specific antimicrobial
resistance [12,79,91,95-101]. Du et al. (2020) estimate that there are over 400,000 candidemias
(bloodstream infections) each year across all species, with a global mortality rate higher than 40%;
however, other studies have estimated mortality rates up to 60% [102].

In the United States, the CDC reported 1,747 confirmed clinical cases across 26 states and DC,
with 95% of cases occurring in population-dense states (i.e., New York, Illinois, New Jersey,
California, and Florida) by the end of 2020 [80]. This rapid escalation continued in the US, with over
3200 active cases accumulated between 2019 — 2021, which rose from a 45% case increase in 2019 to a
95% case increase in 2021, with a three-fold increase in AMR cases [103]. Following this trend, the
CDC reported 2,377 clinical cases and 5,754 screening cases of C. auris in 2022 [20]. These rates are
widely thought to be under-reported due to a lack of robust surveillance systems and non-uniform
screening protocols [15].

While incidence rates may be underreported or unreliable, disease burden has been tracked
more frequently. The median length of hospital stay for adult patients identified with C. auris
candidemia was 46-68 days (70-140 days for pediatric patients) (WHO, 2022). Researchers and
hospital investigation teams more frequently report mortality rates; however, rates related to IC and
candidemia vary significantly across the globe as noted in Table 1. Since the emergence of C. auris,
mortality rates reported for candidemia have been quite high, nearing 50% of diagnosed infections
[63]. Further complicating accurate surveillance and monitoring is that misidentification of Candida
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species also extends to mortality reporting errors. Mortality rates are often reported only for
candidemia or IC, without species attribution [104].

Table 1. Global Mortality Estimates — Global Crude Mortality Rates Attributable to Candidemia .

Mortality Rate e
D
Country (estimated) ate Citation
F i 1., 201
Pakistan 52% 2009 ( arooq; fg;} 013)
(Chowdhary et al.,
50%* 2009-2011
India 2013) [68]
449, (Pfaller & Diekema,
? 2007) [106]
South Africa 46% 2012 (Smidt et al., 2014)
[107]
Panama 78%* 2017 (Aratiz et al., 2018) [96]
Venezuela 28%* 2012 - 2013 (Calvo et al., 2016) [97]
Brazil 72% 2007 - 2010 (Doi et al., 2016) [108]
. o (Armstrong et al.,
Columbia 43% 2015 -2016 2019) [66]
Engl;r::;f’t;‘s’)ndo“ 14.5%" 2015 - 2018 (Taori et al., 2019) [109]
India, US, UK .
(combined systematic 30%* (Osel Sel[<2yBe]re, 2018)
review)

*Rate attributed specifically to C. auris.

2.1.1. Vulnerable Populations

While invasive candidiasis and other infections from C. auris are not thought to pose a significant
threat to healthy people even if colonization occurs, vulnerable populations are often unprotected
and unable to successfully clear the infection without intensive therapies [110]. Invasive candidiasis
and candidemia are nosocomial infections that can disproportionately impact the critically ill,
immunocompromised, elderly, and patients with extensive comorbidities or a history of frequent
antimicrobial therapy [12,23,63,78,111]. Patients with indwelling medical devices (e.g., central venous
catheters), patients using parenteral nutrition, patients on mechanical ventilation, and hospital
admissions longer than 10-15 days are among the most at risk for adverse outcomes [78]. Underlying
respiratory and/or cardiovascular illness, vascular surgery, prior antifungal exposures, and low
APACHE II score (ICU-based severity-of-disease classification system) are considered significant risk
factors associated with C. auris candidemia and poor prognosis [63,112]. Nosocomial outbreaks of
invasive candidiasis (C. auris-specific) in intensive care (ICU) settings are common, especially where
colonization on non-human hosts has been previously identified [94]. In an analysis of 27 ICUs in
India, where 1,400 candidemia cases were reported, over 5% were attributed to C. auris [112].
Rudramurthy et al. (2017) also found that patients with C. auris candidemia had longer ICU
admissions prior to diagnosis than other microbial infections, indicating that nosocomial spread
contributed to fungal outbreaks in India [78]. It is estimated that unless substantial actions to address
AMR infections are taken, nearly 10 million people will die annually by 2050 [113,114].

Annually, over 2 million children die globally before their first month of life [115,116], with
infection as one of the top three most prevalent causes (along with prematurity-related complications
and intrapartum-related complications) [116,117]. Candida species are responsible for the greatest
number of neonatal invasive fungal infections [117]. The most common Candida species affecting
pediatric populations are C. albicans, C. parapsilosis, C. glabrata, and C. krusei [118]; however, C. auris
is now impacting pediatric populations as well. In a prospective cohort study of hospitalized infants
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(<60 days postnatal age with sepsis) in Low and Middle-Income Countries (LMICs) at 19 hospitals
across 11 countries, researchers found C. auris to be the third most commonly reported pathogen
[3,4,117-119]. In South Africa, C. auris was among the 5th most common Candida species responsible
for candidemia [120]. In India, of 273 neonates from three hospitals with neonatal invasive candidiasis
(NIC) cases, investigators isolated C. auris in 2.2% of the cases, highlighting the vulnerability and
susceptibility of infants in LMICs [121].

The crude mortality rate associated with NIC varies significantly, unsurprisingly, with higher
rates disproportionately impacting LMICs compared to high-income countries (HIC) (8.9%-75% in
LMIC and 12%-37% in HIC) [117]. Risk factors for neonates developing NIC or candidemia include
preterm birth, older infants and children with ICU stays, post-surgical stays, underlying
malignancies, malnourishment or requiring parenteral nutrition, post-solid organ transplantation, an
underlying renal disease requiring hemodialysis, central venous catheter placement, and requiring
respiratory support [118,119]. A case study in Italy found that an extremely low birth weight preterm
neonate born via vaginal delivery from a C. auris colonized mother was colonized within only a few
hours after birth [122]. Though limited by the ability to clearly determine if the colonization route
was the birth canal or the ICU environment, this case does highlight the heightened risk for already
vulnerable infants to C. auris [122].

2.1.2. Economic Impact

AMR is a significant and global threat to public health and the successful clinical management
of microorganisms [2,6]. Economic simulations run by the World Bank suggest that by 2050, with an
optimistic (i.e.,, low) AMR impact, the annual global gross domestic product (GDP) could fall by
approximately 1.1%, with GDP shortfalls exceeding $1 trillion annually after 2030. Less optimistic
simulations (i.e., high AMR impact) predicted a 3.8% decline in annual GDP by 2050, with an annual
shortfall of $3.4 trillion by 2030 [123]. The predicted impact of AMR is likely to disproportionately
impact low-income countries and increase the rate of poverty [123]. The total economic burden of
fungal diseases and AMR in the US is thought to be dramatically underestimated [59,124]. The
financial burden can be estimated as a total burden or pared down to direct costs, loss of productivity
costs, premature death costs, costs per patient, and costs per hospitalization. In the absence of a
standard reporting mechanism, economic burden is not always consistent across reports. Table 2
provides an overview of the estimated global economic burden for all AMR diseases, fungal diseases,
and candidiasis/candidemia specifically.

Table 2. Global Economic Burden of Fungal Disease and Antimicrobial Resistance.

Esti
Economic Burden CO(S;U;?)I;?& Cost Type Source Citation
AMR disease burden
Prestinaci et al.,
Europe $9.77 billion Total burden ( re;’g?Sa)cE?)e]t a
United States $55 billion Total Burden
. Direct
520 billion healthcare costs CDC (Dadgostar,
L - 2019) [6]
$35 billion N
productivity
Fungal Disease Burden
$11.5 billion Total burden (Benedict et al.,
e Direct 2019, 2022;
$7.5 billion healthcare costs CDC Kumar et al.,
Loss of 2022)
70 milli
S870million | quctivity [59,124,125]
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Premature
3.2 billi
$ ron death
Candidiasis & Candidemia Burden
Noninvasive . Total Cost
Candidiasis $2.5 billion Burden
Invasive Candidiasis $1.7 billion Total Cost
Burden .
Direct medical (Benedict et al,
$1.2 billion costs CDC 2019, 2022)
[124,125]
1 Loss of
$75 million ..
productivity
Premature
4 illi
$450 million death
Western Developed | Range: $48,487 - Cost per patient Systematic
Countries $157,574 Perp Review (Wan Ismail et
Western Developed | Range: $10,216 - Cost per Systematic al., 2020) [126]
Countries $37,715 hospitalization Review
London Outbreak $1.2 million Attime of Institutional .
outbreak Report (Taori et al,,
$73,000 per Year to year P 2019) [109]
month post-outbreak

*All economic estimates are indicated in US dollars. Any global economic impact reports have been converted
to US dollars from the primary source for this review.

2.2. Public Health Pandemonium — AMR and Nosocomial Spread of C. auris

2.2.1. Public Health Prevention

Global public health initiatives often fall into three categories: primary, secondary, and tertiary
prevention methods. Tertiary (treating infections before spread) and secondary prevention
(screening for colonization and early infection of common pathogens) are common protocols for
addressing AMR; however, the most effective form of public health prevention is primary prevention
(stopping transmission of the pathogen before colonization). The WHO Tripartite Global Action Plan
Objective Three (GAPO 3) is specifically aimed at primary prevention by reducing infection through
adequate sanitation, hygiene, and infection prevention measures [8]. GAPO 3 urges participating
countries to develop or implement robust action plans for infection prevention and control through
enhanced waste management and improved WASH conditions (water, sanitation, and hygiene),
among other priorities.

Multidrug-resistant C. auris is increasingly becoming a challenge for successful clinical
intervention [127]. AMR is closely linked to misguided and clinically ineffective prescribing practices
of antibiotics and the increased presence of antibiotics in food sources such as farm-raised meats
[128]. Global estimates suggest that AMR and MDR infections are directly responsible for over 1.2
million deaths and are a contributory factor in nearly 5 million deaths each year, with a concerning
annual upward trend [78]. Even more concerning is the burden of AMR-related deaths falls heaviest
on resource-limited settings. AMR and basic antifungal stewardship programs, often absent or
insufficient in resource-limited regions, are critical in addressing this global health threat [78]. Guided
by the similar principles of standard antibiotic stewardship programs that suggest effective
diagnostic tools and encourage empirical antibiotic use, antifungal stewardship aims to protect the
effectiveness of antifungal therapy in the future [127]. Antifungal stewardship programs must be
tailored to the specific resources and capacity of each healthcare institution and health system. Key
elements common in all antifungal stewardship programs include guidelines for diagnostic tests to
inform therapy initiation and withdrawal, specialist consultation, identification of provider
knowledge gaps and coinciding education, and implementation of prescribing restrictions when


https://doi.org/10.20944/preprints202407.2129.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2024 d0i:10.20944/preprints202407.2129.v1

10

specialized infectious disease support is available [129]. In many healthcare institutions, especially in
developing countries, the resources, capacity, and specialized health workforce required to create
and operationalize effective antifungal programs may be limited. Lack of access to diagnostic tests
and delayed results, and unavailability of C. auris low-resistance antifungal (e.g., echinocandins,
which have limited availability in many countries despite designation as a WHO essential medicine)
make effective antifungal stewardship challenging in many resource-limited health systems [78,127].

The lack of accurate screening and non-uniform testing protocols significantly contributes to the
rising spread of AMR pathogens. Detecting C. auris is particularly challenging due to the over 700
isolates and limited laboratory testing capabilities [23]. Labs often misidentify C. auris as another
Candida species due to common multiplex testing mediums that lack the sensitivity and accuracy to
detect specific strains of C. auris. Hospitals, healthcare facilities, and clinical labs have no standard
testing protocols or procedures with tests ranging from differential or selective media, mass
spectrometry, and real-time PCR (polymerase chain reaction) tests. Each test varies in sensitivity and
accuracy, as well as the associated need for precision in implementation, sensitivity to tester variation,
and cost for scaled testing [130]. Rapid and accurate testing for C. auris colonization on surfaces, in
water, and in human hosts is critical. In addition to identifying the C. auris colonization or infection,
labs need the capacity and standardized protocol to complete pathogen genomic analysis and
antimicrobial resistance testing to determine the best action for remediation. Enhanced screening
protocols play a significant part in outbreak investigations and rapid remediation, particularly in
reducing nosocomial spread [130].

Effective infection prevention control measures to prevent the transmission of C. auris must
include strategies that consider demonstrated transmission pathways, including isolation of patients
and contacts, wearing personal protective equipment, routine screening of patients, skin
decontamination, environmental cleaning, and terminal decontamination [100,102,131]. Source
control of C. auris should include disinfection of commonly identified surfaces where C. auris is
colonized (mattress, bed rail, bedside tables, ventilators), aseptic removal of intravascular catheters,
and adequate drainage and disposal of biological material. Biswal et al. noted that C. auris could be
reduced by the most common hospital chemical disinfectants if adhering to the proper concentrations
and contact time; however, these protocols are challenging to meet in understaffed and under-
resourced ICUs [132]. Terminal cleaning with UV-C light to reduce infection of nosocomial pathogens
may be effective at preventing transmission of Candida auris but may need to be a supplement to
standard disinfection strategies [133,134].

2.3. Current Healthcare Environmental Infection Control Standard Procedures

The global spread of C. auris has been attributed to the easy transmission through direct or
indirect contact on high-touch surfaces, air, and wastewater, the ability to survive outside of a human
host, and the ability to sustain long periods of desiccation, biofilm formation, and high thermal
tolerance [21,41,63,89,121,135-139]. Not only is C. auris highly resilient to hostile environments, but
studies suggest that it is also adaptive to environmental stress, creating near-impossible parameters
for disinfection [63]. In India, ICU patients who were not colonized with C. auris at the time of
admission were later colonized during their stay [132]. After a C. auris outbreak at a London hospital,
researchers found that C. auris was not isolated from any patient prior to their admission to the ICU
[100]. Once the patient’s skin is colonized, transmission can proceed via skin-to-skin contact with
individuals beyond the healthcare setting [140]. Appropriate infection control protocols include
identifying C. auris colonization and infections and genomic analysis to assess for AMR. However, a
critical factor in infection management is adequate and scalable disinfection [104]. Given the broad
range of colonization sites, disinfection and environmental health facility management is critical for
water, air, and surface. Due to the cross-sector siloes, the protocols for point-of-service (e.g., patient
and bed-specific cleaning in rapid rooming flips) disinfection across applications, larger healthcare
facility environmental health management, and waste management are often ineffective and
inefficient.
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According to several pathogenic surveillance agencies (i.e., CDC, European Centre of Disease
Prevention and Control, Pan American Health Organization, World Health Organization, Public
Health England, and Centre for Opportunistic, Tropical and Hospital Infections in South Africa),
infection prevention and control of C. auris in healthcare settings includes proper hand hygiene,
transmission-based precautions (i.e., patient and room precautions to limit exposure), cleaning and
disinfection, uniform screening and surveillance practices, and enhanced communication
[26,104,111]. These generic and nonspecific disinfection procedures all lack the specificity for C. auris.
This strategic gap in environmental C. auris mitigation to prevent nosocomial spread is apparent [39].
Each component of the infection prevention protocol is critical; however, this review focuses
specifically on disinfection as a primary prevention method. Environmental disinfection and cleaning
(hand hygiene products are included here; however, policies and methods of hand washing are not)
in patient care and high-traffic environments is challenging and covers patient and room turnover,
daily cleaning practices, mobile and high-touch equipment disinfection (e.g., blood pressure cuffs,
glucometers, stethoscopes, crash carts, etc.) [26]. Standard protocols are limited by the required
complex procedures to reach efficacy, availability of disinfecting agents, and end-user education.
Another significant limitation is the non-standardized use of “no-touch” disinfection, such as UVC
LED technology. Reliance on standard contact and air precautions for patient care of colonized
individuals is not a sustainable or widely effective method. Enhanced disinfection and waste
management is necessary for a robust infection prevention and control policy.

2.3.1. Water

C. auris can survive and spread through wastewater as well. A recent study in Nevada positively
detected the dangerous fungus in nearly 80% of effluent samples with over 90% positivity rates near
healthcare facilities [141]. Testing and surveillance of wastewater, particularly in effluent sewer sheds
near healthcare facilities, can help identify and track potential outbreaks and trigger early warning
alarms for public health action. Lower-resourced regions and LMICs without proper water
infrastructure may also reuse wastewater after only superficial disinfection. If water treatment and
disinfection strategies in these areas do not fully inactivate C. auris, public health could be
compromised by transmission of the pathogen through daily WASH activities. The documented
capability to produce biofilms can complicate wastewater system testing and surveillance and require
more nuanced disinfection of water supplies [41,141]. The most common methods of water
decontamination are chemicals (i.e., chlorination and ozonation). However, these methods generate
persistent residual carcinogenic by-products (such as chlorine or bromate) [142-144]. Furthermore,
these methods have led to new resistant microorganisms and affected the organoleptic properties of
water [143,144]. No specific healthcare setting infection prevention and control protocols were found,
including an absence of water testing protocols for C. auris isolates as a function of outbreak
surveillance.

2.3.2. Air

Airborne transmitted pathogenic infections, which occur via droplets or aerosol, are also a
common concern [145-147]. Coughing, sneezing, and even talking may lead to pathogen
transmission, which became a critical concern during the COVID-19 pandemic. Researchers have also
found a positive relationship between decontamination effectiveness and airflow conditions [148]. In
poorly ventilated environments, indoor air has lower convection, leading to the environmental
accumulation of pathogens and increasing the likelihood of infection [149]. C. auris can spread
through contamination of air handling units (AHUs) [150]. Fungal colonies can be transmitted via
aerosolized particulates with both active and passive air samples. In Tehran, air samples tested
positive for the presence of fungi (C. auris was not included in the testing protocol), indicating low
air quality and the need for enhanced filtration and air purification [151]. However, the lack of
discriminant air particulate testing and non-uniform air sampling renders the rate of aerosolized C.
auris transmission unknown. Public Health England’s efforts to address C. auris include a targeted
effort to understand the transmission pathways via the aerosolized spread, particularly in healthcare
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settings; however, data from this ongoing study has yet to be reported [152]. No standard air
purification protocols or procedures for monitoring and disinfecting air handling systems for C. auris
were found.

2.3.3. Surface

C. auris can survive on surfaces for more than three weeks (wet or dry surfaces), with colony
growth (up to 1 log increase) possible on wet wood surfaces [41,104,153]. Among the surfaces from
which C. auris has been isolated in healthcare facilities include mattresses, bedside tables, bed rails,
chairs, windowsills, ventilators, thermometers, pulse oximeters, IV poles, and ECG leads
[21,26,63,100,132,154]. C. auris colonization and survival can also spread to sinks, bathrooms, cleaning
buckets, computers, phones, and doors with relative ease [67]. In fact, an outbreak in Brazil during
the height of the COVID-19 pandemic (March 2020) and increased infection prevention and control
awareness was traced back to colonized axillary thermometers reused across patients without
sufficient disinfection [154].

In surface applications, the current chemical disinfection protocols range widely by site and
sector and are impacted by the MICs associated with C. auris isolates. Common disinfection wipes
containing quaternary ammonium compounds (QACs) used for high-touch surfaces or in floor
detergent mixtures are ineffective on the fungal strain, allowing transfer and spread of C. auris
colonies to other areas [104,155]. Only a few hospital-grade disinfectants are certified by the
Environmental Protection Agency (EPA) to kill C. auris (List P), and no registered products have been
developed specifically for C. auris [104,156]. Three of the most common hospital disinfectants (QACs,
Iodine-based, and chlorine-based) have only minimal effectiveness unless strict protocols are
followed, including follow-up with ethanol-based gel sanitizers after wet-to-dry cleaning.
Disinfectants without sporicidal claims were not able to inactivate C. auris [155].

While chlorine-based products were considered the most effective for superficial disinfection,
strict cleaning protocols must be followed [26,39,51,104,133,157]. Even slight deviation from the
established protocol diminishes effectiveness tremendously, and use in patient care areas is limited
due to the caustic chemical properties and respiratory irritation [104,157]. All high-touch items and
multi-use equipment, personal protective equipment, and employee items require disinfection after
every use; however, when these standards are not followed, nosocomial spread increases [158].
Chemical-based cleaning agents also require accurate concentrations tailored to the specific surface
for cleaning and cannot be used across varying surfaces with efficacy [12]. In environments where
strict adherence to complex cleaning protocols requires nuanced chemical concentrations and specific
wet and dry times before effectiveness, the window for error widens. Despite adherence to standard
infection prevention and control procedures, a significant, high-mortality C. auris outbreak was
identified in a European tertiary care hospital [159]. Healthcare facilities facing growing patient
boarding challenges, rapid turnover of fatigued and burned-out staff, and continual cost cuts can
lead to seemingly innocuous shortcuts in environmental disinfection procedures. However, even
small deviations amplify the nosocomial spread of C. auris and contribute to AMR in patients who
become colonized in healthcare facilities. Switching to single-patient-use materials is recommended
where feasible [111]; however, this is costly and not always practical in lower-resourced facilities
where the reuse of even single-use equipment is common. Healthcare facilities overburdened with
patients and have limited human and resource capacity often use less than ideal infection control
procedures, leading to C. auris outbreaks [67,158].

Further complicating surface colonization and resistance to disinfection is the proclivity for
biofilm formation. Biofilms can form around the exterior of fungal (and other microbial) colonies on
plastics, steel, poly-cotton, and other high-touch surfaces, including on dampness-prone skin niches
(e.g., sweat in axillary regions) [41,160]. Biofilms may promote multi-drug resistance as the film
protects C. auris from hostile environments, including dehydration and common germicides
[41,98,104]. In healthcare settings, biofilm development contributes to the overall nosocomial spread
and pathogenicity, particularly among medical equipment, including those with direct internal
mucosal exposures (e.g., urinary and intravenous catheter tubing) [41,63,161]. When biofilm
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formation is present, common hospital-grade disinfectants are even less effective. Ledwoch and
Maillard (2018) tested 12 commercial wipes and hypochlorite disinfectants on C. auris biofilms on
stainless steel. They found that over 50% failed to decrease survival or transferability, and up to 75%
failed even to delay regrowth [162].

For skin colonization, common chlorhexidine-based soaps are not widely effective through
standard hand washing procedures, which may be due to biofilm formation [104,134]. Additional
steps using alcohol-based sanitizers are needed to reach maximal disinfection from the skin [104].
When using alcohol-based sanitizers, at least one minute of wet contact time is necessary to achieve
disinfection; however, the standard hand sanitation time for healthcare professionals is often under
15 seconds [163]. Even using optimal conditions, chlorohexidine (0.5%-4.0%) and other common
alcohol disinfectants often achieve less than a 3-logi reduction. There are no efficacy studies that
demonstrate inactivation of C. auris colonization on skin with only 15 seconds of contact time [163].
No matter what chemical agent is used for disinfection, terminal cleaning should be completed at
least twice daily in addition to per-patient disinfection practices [12], which adds another layer of
time and capacity complexity to the infection prevention protocols.

Other less common disinfecting agents have been used with varying effectiveness. Farnesol,
which is a quorum-sensing molecule, has been used to inhibit biofilm formation, similar to its
properties in C. albicans, and has the capacity to reduce the expression of multi-drug resistance genes
[164]. Ozone disinfection units have also been used for beds and linens with some success; however,
they require long exposure times [51].

2.3.4. Waste Management

Regulated medical waste (RMW) or healthcare waste is not governed by a single regulating
body, and therefore, waste management protocols vary widely by facility and region. Over time,
common medical waste management strategies have included incineration, steam, microwave
irradiation, mechanical, chemical, and pyrolysis [165,166]; however, disinfection and sterilization of
healthcare waste have now become more common [167]. Disinfection of surgical waste is paramount
for disrupting and preventing the spread of infectious diseases, such as pathogenic MDR microbes.
Disease outbreaks across several countries and facilities have been traced back to an organizational
failure to comply with established guidelines for medical waste [167]. Standard disinfection of
medical waste using chemical disinfectants has serious challenges, including hazardous operating
conditions and limited germicidal efficacy. Without proper disinfection of infectious waste,
transmission across healthcare facilities and among waste workers and communities is likely [168].
Another notable challenge in LMICs is that increased diagnostic testing has generated a rise in
healthcare waste that was not accounted for during implementation planning. Many of the facilities
and even governments of LMICs were not prepared to be held accountable for adequate waste
management strategies, strongly calling for strategies that required lower resources, costs, and
technical expertise [169].

Fundamental principles for the appropriate management of hazardous waste to safeguard
public health and environmental protection have been established through several international
agreements, including [170]:

e  The Basel Convention on the Control of Transboundary Movements of Hazardous Waste and
Their Disposal minimizes the generation of hazardous wastes, the treatment of waste close to
where it was generated, and the transboundary movement of hazardous waste.

e The Bamako Convention is a treaty with well over a dozen signatories that bans the importation
of hazardous wastes into Africa.

e Polluter Pays Principle - the producer of waste is legally and financially liable for disposing of
waste in a manner safe for people and the environment.

e  Precautionary Principle - When risk is uncertain, it must be regarded as significant.

e  Proximity Principle - Hazardous waste must be treated and disposed of as close as possible to
where it was produced.
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As improved healthcare access and technological advancements have grown exponentially, the
need for enhanced waste management has also risen. Infectious disease outbreaks have driven the
need for field testing of medical waste to identify and disrupt pathogen spread. Field indicators have
been used in West African nations (Liberia & Guinea) to improve the efficacy of chlorine-based
disinfection against Ebola, while modern technology (e.g., genome sequencing of contaminants for
targeted disinfection) continues to be applied for contemporary standards [171]. Some facilities in
Uganda and India have even designed smart waste bins to assist in the proper segregation and
disinfection of infectious waste [172,173].

Incomplete disinfection and variation in medical waste management procedures can
significantly contribute to the spread of infectious diseases. Within the context of national healthcare
systems, active governmental intervention can help establish and operationalize a successful and
sustainable healthcare waste management system [42]. Components of the development of effective
and safe healthcare waste management systems must include 1) healthcare waste management
planning at the national level and at healthcare facilities, 2) waste minimization, reuse, and recycling
protocols, 3) waste segregation, 4) safe storage, and transport, and 5) treatment and effective disposal
of waste [42]. While these strategies are not specific to the disinfection of C. auris, a broad application
of microbial disinfection of healthcare waste should be applied to serve in multi-layered protection
procedures.

2.4. UVC LED Disinfection of C. auris in Healthcare Settings

UVC technology is rapidly advancing, as are the many use cases, with many potential
opportunities in healthcare settings. The evidence confirms that UVC can inactivate up to 99.99% of
microbial pathogens, including highly resilient C. auris. Conventional UVC disinfection uses low-
pressure mercury lamps emitting light at the wavelength of 253.7 nm; however, the energy dose
required to kill or inactivate resilient pathogens (e.g., C. auris) often rises quickly beyond the safe
exposure levels for humans [40]. The recent emergence of UVC light-emitting diodes (LEDs) as an
alternative to mercury lamps is a significant advancement. UVC LEDs can potentially provide as
good or better disinfection as traditional mercury lamps but have other advantages beyond efficacy
ratings [174]. Conventional mercury lamps (254 nm peak wavelength) can have high energy
demands, short lifespans, cumbersome sizes, and pose potential human exposure hazards [31,175].
UVC LEDs can emit light at multiple wavelengths between 250 — 280 nm and have lower energy and
voltage requirements, smaller sizes, and optics that can be tailored to microbial disinfection
[31,176,177].

C. auris is susceptible to UVC inactivation; however, longer exposure times and higher doses of
UVC energy are required when compared to other common Candida species (C. auris k-values 0.108
t0 0.176 cm?/m] vs. C. albicans k-values 0.239 and 0.292 cm?/m)]). In general, lower k-values were found
for isolates expressing AMR properties, indicating a higher dose of UVC is necessary for the
inactivation of AMR C. auris [53]. Studies have determined the optimal wavelength dose for
inactivating C. auris. As shown in Table 3, Mariita et al. (2022) found that a peak wavelength
sensitivity of 267-270 nm offered higher disinfection performance against multidrug-resistant C.
auris. Giese and Darby (2000) also noted that wavelength sensitivities of 267 and 270 nm showed a
similar effect, with the fastest inactivation rate at the average log reduction value (LRV) of 0.13
LRV/m]J/cm?2. A linear regression analysis revealed a significant association between all arrays and
their disinfection efficacy at 5, 10, 20, and 40 mJ/cm2 while emphasizing the effectiveness of UVC
emission wavelengths of 267-270 nm [54].
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Table 3. UVC efficacy in inactivating C. auris is found with 267 and 270 nm peak wavelengths, and
log reduction value (LRV) 3 (99.9% reduction) is obtained.
Peak Time Dose Controls uvc Log % Susceptibility | References
wavelength (s) (mJ/cm-2) (CFU treated | Reduction | Reduction constant (k)
(nm) ml-1) (CFU Value (cm?2 mJ)
ml-1) (LRV)
252 5 5 8.60E + 3.67E + 0.37 57.336 0.0691 (Mariita et
10 10 05 05 0.55 71.744 al., 2022)
20 20 8.60E + 243E + 1.05 91.081 [54]
40 40 05 05 2.96 99.892
8.60E + 7.67E +
05 04
8.60E + 9.33E +
05 02
261 5 5 8.60E + 5.47E + 0.20 36.617 0.0565 (Giese &
10 10 05 05 0.63 76.477 Darby,
20 20 8.60E + 2.03E + 1.20 93.627 2000) [178]
40 40 05 05 222 99.396
8.60E + 5.50E +
05 04
8.60E + 521E+
05 03
267 5 5 6.40E + 2.50E + 0.41 60.938 0.1294 (Mariita et
10 10 05 05 1.17 93.234 al., 2022)
20 20 6.40E + 433E + 3.44 99.964 [54]
40 40 05 04 4.81 99.998
6.40E + 2.33E +
05 02
6.40E + 1.00E +
05 01
270 5 5 9.53E + 3.33E + 0.46 65.058 0.126 (Giese &
10 10 05 05 118 93.358 Darby,
20 20 9.53E + 6.33E + 3.46 99.965 2000) [178]
40 40 05 04 4.61 99.998
9.53E + 3.33E +
05 02
9.53E + 233E+
05 01
273 5 5 8.00E + 3.27E+ 0.39 59.125 0.111 (Mariita et
10 10 05 05 0.88 86.625 al., 2022)
20 20 8.00E + 1.07E + 2.59 99.746 [54]
40 40 05 05 4.34 99.995
8.00E + 2.03E +
05 03
8.00E + 3.67E +
05 01
280 5 5 4.07E + 2.07E + 0.29 49.140 0.0889 (Mariita et
10 10 05 05 0.38 58.537 al., 2022)
20 20 4.07E + 1.70E + 1.16 93.000 [54]
40 40 05 05 4.01 99.990
4.07E + 2.87E +
05 04
4.07E + 4.00E +
05 01
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The applications for UVC disinfection in healthcare settings are broad. UVC LED technology
can be effectively and easily integrated into protocols for water, air, surface, and waste disinfection.
In fact, a systematic review of UVC germicidal inactivation found that UVC had a potent effect on
microorganisms, including those with AMR, when used as an adjunct to manual chemical cleaning
procedures [179]. UVC disinfection in water and water distribution systems at healthcare sites can
ensure that pathogens, like C. auris, are not recycled within closed systems and can prevent
transmission to water treatment facilities where wide distribution would be possible. UVC LED water
reactors at treatment facilities can prevent the transmission of pathogens to community and
household water sources. In air applications, UVC LED technology can be applied to air handling
units and circulated air systems to enhance the purification of recirculated air. Pathogens can colonize
inside air ducts, become dislodged, and then spread through circulated air and deposited on surfaces
where skin contact can escalate. UVC disinfection of in-duct systems will purify and disinfect forced
air, while in-room units will disinfect the circulating air between two UV sources. In surface
application, mobile UVC units may provide terminal cleaning enhancements for all surfaces
(particularly high-touch surfaces). Mobile units may be autonomous robots or personnel-monitored
units but can disinfect manually pre-cleaned areas with a high degree of efficacy.

2.4.1. Water

UVC LED technology is a proven method for disinfecting water and wastewater, which are
primary transmission sources of many gastrointestinal pathogens. Several studies have
demonstrated the efficacy of UVC LED technology at inactivating microbial pathogens in water and
wastewater, though few studies have specifically evaluated C. auris due to its rapid transmission via
surface contact first [35,141,144,180-188].

Research has discovered that UVC technology has applications in disinfecting drinking water
[181,182,189], rainwater disinfection [190], and food processing water management [191]. UVC LED
technology in water reactors can inactivate biofilm-bound Pseudomonas aeruginosa (265nm at UV dose
8 mJ/cm?) to a 1.3 + 0.2 log inactivation or LRV [180], pathogenic bacteria Aeromonas salmonicida and
Escherichia coli (265nm at UV dose 24 mJ/cm? and 28 m]J/cm?) to a 4.5 log reduction [35], Giardia sp. and
Cryptosporidium sp. [183], and a wide range of other pathogenic microbes [33,34,143,192]. UVC LED
disinfection also reduces the use of harmful chemicals and any associated risks while demonstrating
efficacy at eliminating microorganisms, pharmaceuticals, and personal care product residue [193].

In addition to the disinfection of water for consumption or daily use and solid waste
management, UVC may also effectively disinfect wastewater, particularly in and around healthcare
facilities. Researchers isolated C. auris from wastewater, demonstrating an epidemiologic link to
healthcare facilities within that wastewater treatment plant’s sewer shed in Southern Nevada, further
highlighting the importance of scalable and sustainable pathogen disinfection [194]. Researchers have
specifically found effective UVC disinfection for wastewater reuse [142,195,196] and sewage
decontamination [197]. While chlorine-based disinfection has traditionally been used to disinfect
wastewater, concerns about the impact have resulted in UVC disinfection as an alternative [42]. UVC
LED water reactors are effective at eliminating microorganisms in water and wastewater using peak
wavelengths between 260-270 nm, with synergistic inactivation at 2601280 nm for E. coli [28,48].
Human norovirus can be effectively inactivated in wastewater by UVC LED water reactors and scaled
tertiary wastewater treatment facilities, which can integrate UVC LED Driven Advanced Oxidation
Processes (AOP) to decontaminate and disinfect wastewater simultaneously [184,185]. Combined
UVC LED and AOP disinfection of wastewater has also been effective at reducing medical
contaminants. The combined UVC LED + H20: wastewater treatment system showed efficacy and
efficiency for smaller-scale water treatment facilities [198].

The effectiveness of UVC-based water disinfection depends on several important operating
parameters. More opaque liquids reduce UV treatment effectiveness at different levels [182,199].
Whereas water circulation and exposure time improve water decontamination effectiveness [200].
Interestingly, water volume causes a dubious effect on UVC treatment, with insignificant to slightly
better performance in lower volumes [189,200]. Continuous or pulsed UVC light application provides
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comparable results [143]. Depending on the intended final use of the treated water, the protocols
must reach different decontamination targets. For drinking water, the treatment should disinfect the
surface with at least a 4-log reduction [182]. The reuse of wastewater, excreta, and greywater, on the
other hand, requires at least a 3-log reduction for water disinfection [182]. Combined UV wavelengths
or combining UV treatments with other methods may also have additive effects. Several studies have
demonstrated that combining UV wavelengths [144,187,195,201,202] and multi-method treatment
applications [142,196,203] have demonstrated synergistic effects that have improved the disinfection
or decontamination process. Combining UVA and UVC [144,187,202] or UVB and UVC [186], UVC
with other light sources such as excimer lamps [203], or UVC with chemical oxidants [196] all lead to
synergistic effects.

A systematic review of the literature found that all examined studies achieved some level of
decontamination or disinfection. Most studies achieved biological reductions of less than 3 log
[144,181,186,187,201,202,204], and three studies achieved sterilization levels up to 5-6 log reduction
[182,191,199]. These results give users confidence in applying UVC for its decontamination
capabilities in the water. While UVC light can inactivate microbial pathogens, some pathogens can
recover from the UVC decontamination effect. These microorganisms use dark repair and
photoreactivation processes to recover from the UVC impact [146,186,195,205].

24.2. Air

UVC LED disinfection is effective at inactivating aerosolized viruses, bacteria, and fungi [145-
147]. There is variation in how UVC technology is used to purify air of microbial contaminants,
ranging from sanitizing the air circulating between UVC sources to disinfecting the surfaces of air
handling units, filters, and fans to prevent re-circulation of spores [40,206—-208]. Some studies of UVC
LED air treatment have demonstrated disinfection of some, but not all, biological indicators [145—
147], and one study achieved sterilization in part of its biological targets [148].

Forced air handling systems can incorporate UVC disinfection technology into traditional filters
and interior surfaces of the fans and system (in-duct systems) to further purify the air that is dispersed
into the environment. While C. auris is not part of the standard air pathogen testing array, adding UV
disinfection to filters increases the log reduction of many harmful pathogens, including C. albicans
[208]. The log reduction of airborne pathogens is dependent on the highly variable UV dose and
standard operating parameters of each in-duct UV disinfection product [209]. Air purification
systems with combined HEPA + UV disinfection technology have been found effective at sanitizing
rooms up to 12 m? in area [206]. Stand-alone UV recirculation units (or unitary UV systems) are
another common application of UV air disinfection that works similarly to in-duct systems but are
more compact and operate at variable air flows. These units draw air from the floor or near other
high-concentration areas and then redistribute the cleaned air at breathing height [208]. A 2-log
reduction of Candida spores was achieved in a 2-point circulating air sanitation cycle; however, when
combining surface and air UVC disinfection in a single room, the required dose is unknown [40].
Mobile air disinfection units have shown effectiveness at eliminating C. auris from recycled air in
healthcare settings using combination systems that disperse ozone into a room before sanitizing the
recombinant air with UVC light [40]. The Khan-Mariita Equivalent Ventilation Model (KM Model)
supplements standard mechanical ventilation with UVC air treatment, accounting for many of the
previously noted variables (e.g., room size, occupancy, existing ventilation, and targeted air changes
per hour) [207]. In healthcare settings (as with many other environments), it is challenging to circulate
only fresh air. Therefore, recirculation of potentially contaminated air is necessary. Utilization of the
enhanced KM model that integrates UVC disinfection into standard mechanical ventilation allows
for increased energy efficiency, net carbon-zero requirements, and decreased dependency on outside
air injection. Broad application of the principle of UVC disinfection of C. auris on surface and
circulated air shines a spotlight on the potential for building systems to integrate the KM Model as a
standard ventilation system, in addition to other disinfection protocols [207].

Muramoto et al. (2021) developed an air purifier that combines UVA/UVC LEDs, a HEPA filter,
a honeycomb ceramics filter, and a pre-filter. In this system, the LEDs are responsible for treating the
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surface of the HEPA filter to decontaminate any microorganisms trapped in it, leading to the faster
elimination of floating influenza viruses [210]. Researchers are also particularly interested in
demonstrating how compact systems that are easy to implement in different settings are applicable
to UVC LED disinfection [146-148,211]. Nicolau et al. (2022b) found that UVC possessed higher
decontamination efficacy than ozone and was capable of achieving synergistic effects when combined
with other methods.

2.4.3. Surface

Researchers have also determined UVC decontamination effectiveness on different materials,
including various hard surfaces (e.g., carpet or laminate) [212], food contact surfaces [213], and
recreational ball types [214]. In addition to the decontamination effectiveness, Wood et al. (2021)
evaluated the relative humidity impact on the decontamination effectiveness and compared
conventional UVC sources with LEDs. Trivellin et al. (2021) found that UVC light did not cause any
visual changes or material degradation following disinfection. A synergistic effect from the
combination of UVC treatment with mild temperatures (60 -C) was also found [145].

UVC disinfection is also specifically effective at inactivating C. auris on hard surfaces, which is
common in healthcare settings [49,51-53,55-57,215]. The use of UVC technology as an adjuvant
disinfection modality for C. auris may be an advantageous environmental mitigation strategy [26].
While there is no standard log reduction requirement for C. auris, at least a 3-logiw reduction (99.9%
reduction) is suggested to most likely be clinically effective [57]. A review of several UVC exposure
parameters and devices found that UVC was clinically effective against C. auris when using proper
conditions [56]. In lab testing, a mobile UVC tower equipped with high-performance bulbs at the 254
nm wavelength used for a continuous 7-minute exposure period in a patient-room-sized test chamber
demonstrated 99.97% inactivation of C. auris [52]. Other lab settings have found UVC technology to
be an effective approach to inactivating C. auris as well [49-51,55]. Maslo et al. (2019) saw a 99.6%
reduction after a 10-minute pulsed-xenon UV light exposure cycle at a 2-meter distance from their
mobile UV device and 100% elimination after more than 15 minutes of exposure. Chatterjee et al.
(2020) reported a 0.8 to 1.19 log reduction of C. auris when exposed for 30 minutes. However, despite
the increased exposure time, isolates from clade III were not susceptible to inactivation in their lab
testing [49]. In 2020, an experimental test at the University of Siena found a 4.43 log reduction of C.
auris after 15 minutes of exposure to a novel UVC chip [50]. In a modification of the American Society
for Testing and Materials (ASTM), six relatively low-cost (<$15,000 per unit) UVC devices (3 room
decontamination devices and 3 UVC box devices) were tested against the suggested clinically
effective 3-logio reduction of C. auris. Three of the tested units (one room decontamination and two
enclosed boxes) met all criteria for effective decontamination [216]. In a lab test, UVC exposure (267
— 270 nm) prevented C. auris biofilm growth on stainless steel and plastic and significantly reduced
formation on poly-cotton fabrics [54]. The field studies branch of the Respiratory Health Division at
NIOSH) found UV disinfection of C. auris was 99.9% effective but required significantly higher UV
energy dose than other Candida species (C. auris 103-192 mJ/cm? vs. C. albicans 78-80 m]J/cm?) [217].

Some studies have reported that C. auris is resistant to UVC treatment [218]; however, this seems
to be a misnomer. More recent research has determined specific UVC parameters necessary for
inactivation, aligning with the fungus’ propensity to respond differently to other common
disinfectants and antimicrobial therapies due in part to the higher MIC and rapidly developing AMR
[219]. While UVC inactivation efficacy is reduced when used outside of the recommended
parameters, proper use as an adjuvant to other disinfection protocols is advantageous [51]. Time and
exposure parameters, such as irradiance and fluence rate, in addition to clade and strain-specific
parameters, are critical variables when determining the most efficacious disinfection protocol.
Findings seem to suggest that efficacy is inversely proportional to the distance from the UVC source
[219]; however, some studies achieved inactivation at shorter distances, although later experienced
regrowth [39]. The UV-360 Room Sanitiser (UltraViolet Devices, Inc. Valencia, CA), using four
vertical UV lamps (254 nm) in a 360-degree motion sensor cycle, produced maximal inactivation after
30-minute exposure cycles; however, they noted that Japan/Korean strains were most susceptible
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compared to Venezuela, Spain, and India strains [219]. Whole room decontamination devices are
capable of a 4.57 log reduction in C. auris when in the direct line of sight but had slightly reduced
efficacy (3.96) when only achieving indirect exposure [57].

2.4.4. Waste Management

Disinfection or reduction of disease-causing microorganisms in medical waste to minimize
disease transmission is imperative (WHO, 2014). Since completely destroying all microorganisms is
challenging, sterilizing medical and surgical instruments is generally expressed as a 6 logio reduction
(2 99.9999% reduction) or greater of a specified microorganism [42]. In addition to thermal, chemical,
biological, and mechanical waste-treatment technologies already discussed, UV has also been
identified as an effective synergistic waste-treatment modality. Smart waste bins may include UV
light for additive disinfection of the interior walls and air circulating inside closed waste units,
rendering waste safer to transport within and outside of healthcare facilities [172]. Other UV waste
management strategies include disinfection of waste prior to disposal, such as with mobile boxes
designed to disinfect used N-95 masks during the COVID-19 pandemic [220]. Novel applications for
small, mobile waste bins with integrated UVC LED disinfection are also emerging to address
contamination before large-scale storage [221]. While UV has been used to destroy airborne and
surface pathogens as a supplement to other technologies, it may be limited in its ability to penetrate
closed waste bags. The effectiveness of UVC is likely to depend on the processes and protocols in
place, allowing a direct line of sight to the discarded waste [42].

2.4.5. UVC LED Disinfection Critical Factors

Effective UVC LED disinfection of C. auris and other AMR pathogens relies on several critical
factors across applications. Pathogen inactivation in water applications is highly dependent on the
turbidity of the water and UV transmittance (or wavelength). Air temperature and humidity are
critical factors in UV disinfection of AHUs. Air velocity inside units is also an important factor, as
higher velocities result in cooled air. Many critical factors impact surface UV disinfection, including
the material, topography, and reflectiveness of the material to be treated. The critical factors
associated with surface disinfection are also important considerations in air applications, as the
interior surfaces of AHUs are necessary. UVC disinfection in waste management is beholden to many
of these critical factors depending on the specific waste and container to be treated

2.5. Case Studies of UV-C in Reducing C. auris

2.5.1. Water

No clinical case studies were available that examined the specific efficacy of UVC LED
disinfection of C. auris in healthcare facilities” water or wastewater. However, despite this lack of
specific attention, several case studies demonstrate pan-microorganism reduction efficacy in water
treatment facilities worldwide. The implementation of several point-of-use UVC LED water reactors
(alongside chlorination systems) in the United States has demonstrated viral and bacterial
inactivation efficacy using peak wavelengths ranging from 272 to 285 nm, depending on the unit and
additive methods [222,223]. Due to the small size of UVC LED water reactors and affordable
implementation, smaller villages in LMICs can also implement water disinfection infrastructure.
There have been reportable success stories from across India and Thailand [224-226]. Sundar &
Kanmani implemented a portable UVC water reactor at handpumps in a small village in South India,
achieving a 2-log reduction of bacterial contaminants. Other portable UVC LED water reactors with
multi-pass geometry were implemented throughout India with the effective elimination of test-
selected E. coli [225]. Both of these implementations were considered cost-effective and efficient due
to the relatively affordable price, small size, low-to-zero energy requirements, and practical operation
guides [225,226]. In Thailand, the UVC LED wastewater reactor was implemented in conjunction
with pre-treatment sand and settler filters. The UVC LED disinfection was effective at inactivating
coliforms found in the wastewater [224]. When combined with adsorbent additives (e.g., agricultural
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waste), solar-powered UVC LED water reactors are effective at reducing microbial load in
community wastewater, proving advantageous for public health protection [227]. In addition, two
commercial-grade UVC LED water treatment systems have produced high-grade water purification
in their large-scale implementations. In Singapore, the NEWater Initiative utilizes UVC LED to
disinfect the entire country’s water system. The Orange County Water District's Groundwater
Replenishment System uses UVC LED disinfection of wastewater to prevent runoff into the Pacific
Ocean [193].

2.5.2. Air

The mobile (remote, smart app-controlled) OZY AIR+Light combination air purification system
disperses 60 g/h of ozone into a room for a preset time. Then, UVC sanitizers provide a flux of 80
m3/h, and the air is exposed to UVC LEDs before it is cycled back to the room [40]. In a clinical trial
across Italian hospitals, the OZY AIR+Light system achieved a greater than 99% reduction in C. auris
spores in each of three cycles of disinfection in medium- to high-risk patient areas. In the United
States, UVC air purification units (15 W of high output UVC energy at 253.7 nm wavelength with a
MERV 5 filter prior to UV light treatment) were installed in 16 special care unit rooms, hallways, and
biohazard rooms of a long-term acute care hospital. After installation and continuous run time (81
days), there was a 42% reduction in airborne bacteria and a significant reduction in clinical HAIs,
including common pathogens with contact spread. While the air sampling did not test for C. auris
specifically in this study, efficacy against other AMR fungal spores shows promise for the extension
of UVC air disinfection to C. auris [228]. In a similar study (not tailored to C. auris), HAIs were
dramatically reduced after the clinical installation of in-room VidaShield (American Green
Technology) continuous air purification units in the long-term ventilation unit of a hospital [229].

2.5.3. Surface

Clinical pilot testing designed to mimic common surfaces in a hospital setting (i.e., steel, plastic,
glass) also found UVC technology to be effective at disinfecting after 10 minutes of exposure;
however, effectiveness was statistically different across all three surfaces. While this pilot study was
conducted in a clinical environment, only four patient rooms with random swab testing were used
in the experiment at a time without any known outbreaks [32]. The Tru-D (Lumalier, Memphis, TN)
UVC room disinfection device was clinically tested in an acute-care tertiary hospital in Chapel Hill,
North Carolina. Room decontamination achieved a 4.45 log10 reduction (direct line of sight) of C.
auris after a 17-19 minute cycle on the bacterial setting [57]. After standard chemical cleaning agents
were completed, a larger academic medical center pilot tested a UVC disinfection robot (UVD robot,
Clean Room Solutions) in two hospital outpatient clinics. The autonomous robot substantially
reduced C. auris growth on surfaces compared to standard cleaning and disinfection practices. The
clinical study confirmed previous in vitro tests that suggested longer exposure times are needed as
the resiliency of the microbe increases [230]. Clinical studies of ICU terminal disinfection have
demonstrated that UVC is considerably more effective (96.75% reduction) than aerosolized hydrogen
peroxide (50.71% reduction) at no-touch reduction of C. auris on surfaces already manually cleaned
[231]. A large systematic review evaluated the efficacy of 12 commercial UVC applications in adjunct
disinfection across the United States, Canada, and South Africa. Among the 12 clinical studies, each
found UVC surface disinfection to be effective at substantially reducing microbial load. In addition,
several studies noted that the UVC disinfection protocol was easy to implement and recommended
adoption for future adjuvant cleaning procedures [179].

2.5.3. Waste Management

No clinical case studies were identified examining the efficacy of UVC LED disinfection of
healthcare and medical waste. While many studies previously discussed demonstrated lab-tested
effectiveness, additional research is needed to report on the real-world implementation of this
strategy.
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3. Discussion

3.1. Benefits, Feasibility, & Challenges of Implementing UVC Disinfection in Healthcare Settings

Based on substantial lab testing and clinical case studies, UVC LED technology is a feasible and
beneficial disinfection modality for healthcare environments. While this technology is promising,
implementation and clinical efficacy measures present important challenges. Given the need for
continued research on the standardization of disinfection conditions for C. auris, UVC LED
disinfection across water, air, and surface can be used in a combination protocol and as an adjuvant
sanitation procedure.

3.1.1. Challenges

Implementation of UVC LED disinfection is not without challenges. Across surface applications,
the most predominant challenge is the requirement for specific conditions and parameters to reach
the required clinical log reduction unique to C. auris [30,39,52,54,163,206]. Another notable challenge
is that different isolates and clades have varying susceptibility to UVC light and require specific
parameters tailored to the unique strain present [163]. The operational time required within an empty
room for disinfection may be unachievable in busy healthcare facilities [30,52,232]. Operating
limitations resulting in diminished efficacy are also possible, including shadows, changes in
topography and surface, barriers to direct line of sight, physical contamination, and lack of
standardization [233]. Specialized units (e.g., mobile disinfection devices and robots) also required
trained personnel (e.g., microbiologists and technical engineers) to operate and troubleshoot errors
in real-time and test the device’s sensitivity to the identified isolates [52,230,233]. Additionally, while
UVC is considered safer than UVA and UVB, there are still risks for human exposure. There are
unknown health and safety risks associated with frequent UVC disinfection exposure, and the
standard shielding parameters are not yet fully understood [54,233].

While UVC LED devices are relatively low-cost or cost-effective, upfront purchase prices may
be a barrier to low-resourced facilities [206]. Cost is particularly prohibitive if multiple units are
required to meet protocol standards and efficient disinfection across a larger facility [52]. Compared
to alternative disinfection, UVC devices are more costly than current standard procedures (e.g., air
purification without UVC and manual cleaning-only protocols) [234]. Successful implementation of
UVC disinfection is predicated on the availability of electricity, which can be a challenge in LMICs.
A multiagency report found that close to 1 billion people in LMICs are served by healthcare facilities
without a reliable electricity supply or no electricity at all [235]. It is estimated that 1 in 4 health
facilities in sub-Saharan Africa have no electricity and that 2 in 3 healthcare facilities in LMICs lack
access to reliable energy [236]. In air applications, air purification units equipped with HEPA filters
+ UVC LEDs (along with all other types of air purification with and without UVC) have been noted
to sanitize a smaller than declared space, making it challenging for healthcare administrators to
purchase and implement air purification units adequately sized for full disinfection of a desired area
[234].

Patient and operator safety is another significant concern. While UVC is safer than other
subtypes of UV light (i.e, UVA and UVB are more highly carcinogenic) and meets global
requirements to phase out mercury lamps due to the harmful health and environmental impact, there
are still safety risks that are not fully understood. When used outside of the intended purpose or
straying from the suggested parameters for use, DNA damage, skin damage, and other adverse
bodily effects are possible. Direct exposure to higher UVC wavelengths may also cause
photocarcinogenic, mutagenic, or cytotoxic damage to human cells. While the adverse effect of direct
UVC light exposure is not well researched, caution is needed when operating these devices [179].
Shielding is likely necessary for any direct UVC source; however, the wavelength, energy threshold,
and other baseline parameters are not yet known [54].

3.1.2. Benefits
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Despite these challenges, the benefits of enhanced no-touch UVC disinfection procedures are
substantial. Given the limited efficacy of chemical agents in reducing colonization, the tremendous
barriers to implementing strict disinfection procedures in overburdened healthcare settings, and the
rapidly rising AMR and vast spread of C. auris, there is a significant need for supplementary
disinfection modalities. While time to disinfect is noted as a challenge, many emerging commercial
systems offer rapid disinfection as compared to traditional procedures. UVC LED arrays intended to
disrupt and eliminate biofilm formation can achieve >99.99% microbial reduction without any
optimization in under 40 seconds, compared to the traditional 60-second wet contact time required
for various chemical disinfectants [54]. Many other commercial units report effective pathogen
reduction in under 10 minutes [237].

Implementation of adjunct UVC LED disinfection across water, air, surface, and waste
applications provides multi-layer protection against dangerous and costly C. auris spread. While
there are costs associated with any UVC device (air, surface, or water), the upfront price is
considerably less than the accrued costs of outbreaks (direct and indirect costs). The addition of UVC
disinfection in healthcare settings can substantially reduce the global incidence and mortality rates
related to C. auris, disrupting the current escalation of AMR candidemia and IC. As international
resource mobilization for LMICs progresses, implementation of UV-C disinfection as a supplement
disinfection modality is likely to become feasible despite current challenges. The United Nations
Development Programme’s ‘Solar for Health’ initiative, which has equipped over 1,000 health centers
with solar PV systems across 15 countries, including 11 in sub-Saharan Africa, provides strong
infrastructure support that could equip LMICs in integrating UVC LED disinfection across water, air,
surface, and waste applications. [236].

Quality of life benefits for patients who contract C. auris while admitted for other primary
conditions are tremendous, but the costs associated with HAIs are skyrocketing. It is also important
to note that the Medicare non-payment policy holds the healthcare facilities responsible for all HAI-
associated costs due to a failure to prevent infections [238]; however, this is not consistent across all
payers [239]. Facing rising healthcare costs and dwindling payer reimbursements, healthcare facilities
should prioritize patient safety and infection prevention. UVC LED water, air, and surface
disinfection is a simple, cost-effective method with proven efficacy at reducing C. auris and
decreasing clinical candidemia.

3.2. Recommendations for the use of UVC Disinfection in Healthcare Settings to Reduce Transmission of C.
auris

Since no specific chemical cleaning agents or germicides are designed to target C. auris,
supplemental disinfection protocols are critical in reducing the transmission of C. auris. UVC LED
technology across water, air, and surface applications and enhanced waste management protocols
can bolster insufficient infection control procedures. The relatively low cost of UVC LED technology
and broad use applications position it as an option for immediate adoption in healthcare settings. It
is our recommendation to implement a multi-layered, enhanced UVC LED disinfection protocol, as
illustrated in Figure 2, as an adjunct to any current infection prevention and control procedures. UVC
LED water reactors for disinfection of water and wastewater have the highest impact, while air and
surface applications follow close behind. UVC water disinfection has the potential to impact the
greatest population with the fewest units and associated costs. UVC air disinfection for air handling
systems has a similar impact ratio, reaching many people with only one unit; however, circulating
air disinfection systems would need to be placed in discrete areas and would require additional units
and cost. UVC LED surface disinfection is the most challenging to implement and is limited to sing]le-
room use. While disinfection is highly effective, it offers the lowest impact ratio when used only
during terminal cleaning. UVC LED disinfection of waste has a more limited direct impact in
healthcare facilities; however, the trickle-down effect may be substantial. Effective disinfection of
healthcare waste can prevent community transmission of HAIs and limit the pathogenic spread of
fungi like C. auris. If patient safety and infection control budgets allow for the implementation of
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UVC LED disinfection measures in each application, this would be considered the gold standard for
infection prevention and control.

om UVC LED Disinfection Opportunities

=
./ ] Implementation locations for enhanced infection
ﬂ prevention and control

e 4 . . ® Potential opportunities include:

'. 4 - i Water - Drinking water dispensers, sinks and showers, other
<4 3 potable water sources

] = \
-

»n = ,‘%’\wn: ,’ o ' Air - Air Handling Units

Surface - Hard surfaces such as bed railings, countertops, medical
equipment, floors, and monitors

Waste Management - irash and medical waste bins, wastewater sources
like sewage

Figure 2. [llustration of potential multi-layered UVC LED protocol for enhanced infection prevention
and control in a healthcare environment. UVC LED disinfection is not suggested to replace standard or
regulated infection prevention protocols. (Image created using icons designed by Freepik).

In the absence of an unlimited budget, careful consideration of the healthcare facility’s specific
needs, the existing infrastructure, and the institutional capacity for implementation should be
considered. The following recommendations outline considerations for scaled implementation,
standard operating procedures, and policy revisions for any UVC disinfection applications in
healthcare facilities.

1. Determine the UVC application (i.e., water, air, surface, and/or waste) needed and how it will
be integrated into the current infection prevention and control infrastructure.

2. Ensure the UVC LED device meets all regional, national, and international disinfection
standards.

a. Ensure all regulations put forth by the CDC or other regulating bodies are followed. We suggest
using UVC LED disinfection as an adjunct to currently accepted chemical disinfection until
nationally and internationally recognized regulations are amended to consider UVC LED
technology a first-line defense for the disinfection of C. auris.

3. Research all available devices with a cross-tabulated list of specific needs. Then, find the device
that most closely aligns with the facility’s size and disinfection challenges.

a. Consider the necessary operating parameters and associated critical factors across application
areas that are necessary for effective disinfection.

b.  Assess the time and space requirements for effective disinfection in contrast to the available time
and space for implementation.

c.  If the budget allows layer UVC LED disinfection technology (e.g., water, air, surface, and waste;
however, given C. auris’s primary transmission route, a minimum of surface disinfection devices
are strongly suggested.

4.  Consider the human capacity and technical expertise required to implement and operate each
type of device.

a. Determine if the current infection prevention team will be sufficiently trained to augment
disinfection with UVC LED or if new training or staff will be required.

i. Any new training or personnel requirement should be factored into the budget assessment for
the device.

5. Ensure the UVC LED technology adopted meets all required industry disinfection standards
specific to the application.

a. Surface — International Sanitary Supply Association (ISSA) standards for clean times [240,241]

b. Air- ASHRAE Standard 185.1 and 241 [242]; ISO 15858:2016 [243].
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c.  Water - NSF/ ANSI 55 Class A certification [244]

6. Establish robust evaluation protocols

a. Accurate data collection and disease surveillance are necessary to determine the efficacy of C.
auris inactivation and reduce colony spread.

7. Develop and implement routine maintenance schedules for all UVC LED systems to ensure their
proper function and efficacy in disinfection.

8. Educate all healthcare system staff and administrators on the new infection prevention and
control protocols, device safety, and disinfection procedures.

9.  Write all policies and procedures in language the entire staff can understand and operationalize.

10. Establish a routine schedule for the evaluation of emerging UVC LED technology applications
and device updates or upgrades.

4. Future Directions, in the Collection, Analyses, or Interpretation of Data, in the Writing of the
Manuscript,

Emerging UVC LED technology development in C. auris disinfection has been rapid and critical
to advancing human health and well-being. Across applications, additional research is needed to
support the standardization of UVC LED disinfection in healthcare facilities as an adjuvant modality
or as a first-line prevention and control mechanism. In addition to further exploring the efficacy of
UVC LED disinfection across water, air, surface, and waste applications, studies should also focus on
the best practices for C. auris disinfection parameters and conditions, including wavelength, energy
requirements, time of exposure, distance from the UVC source, direct vs. indirect exposures, manual
disinfection requirements, and frequency of use. Beyond further evaluation of clinical and
operational efficacy and efficiency, additional research is needed on UVC LED systems’ power,
lifetime, reliability, optimal substrate material, and the size of LEDs inside devices [245].
Standardization and certification of these operational parameters by a centralized regulating body
should be a future goal for researchers and policymakers. Adoption of standard UVC LED
disinfection procedures as part of a certified infection prevention and control program should also
be addressed at the health system or facility level.

5. Conclusions

This article emphasizes the urgent need for surveillance, infection control, and global
collaboration to combat the formidable fungal superbug, C. auris. Traditional cleaning and
disinfection methods are inefficient and often ineffective, particularly when not performed in optimal
conditions. UVC LED technology has demonstrated efficacy in inactivating C. auris and other
healthcare-associated pathogens across many applications, including water, air, surface, and
wastewater. UVC LED disinfection may also be more efficient and cost-effective than certain
traditional methods. It is important to consider the UVC disinfection operating parameters and other
critical factors necessary for effective treatment across each application. Despite the critical factors
that must be met, UVC disinfection can also be used synergistically with current cleaning and
infection control standards to increase efficacy in reducing the transmission of AMR superbugs.

*Note - All economic and financial estimates are indicated in US dollars. Any global economic impact reports
have been converted to US dollars from the primary source for this review.
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