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Abstract

Mental health disorders affect over 970 million people globally, posing a major public health challenge.
Traditional diagnostic methods, based on interviews and self-reports, often lead to delayed intervention.
This review explores how artificial intelligence (AI) is being used for the early detection of mental
health conditions, focusing on model accuracy, methods, and applications across various data types.
We examine 12 key studies from 2019 to 2025 covering voice analysis, multimodal deep learning, social
media monitoring, wearable sensors, and electronic health records. Notably, AI model accuracy has
improved from 82.4% to 99.06%, with multimodal systems like NeuroVibeNet leading in performance.
AI systems can detect mental health issues an average of 7.2 days earlier than clinical methods. Voice-
based tools show 71.3%–92.0% accuracy, social media models reach 89.3%, and wearable devices
detect depression with 90% accuracy. However, challenges remain in privacy, fairness, interpretability,
and clinical adoption. Future research should focus on explainable AI, privacy-preserving methods
like federated learning, and real-world validation. AI’s integration with diverse data sources offers
promising potential to enhance mental health care through earlier, more accurate detection.

Keywords: mental health; early detection; voice detection; depression; AI; machine learning; multi-
modal analysis; clinical AI

1. Introduction
Mental health disorders remain one of the world’s most serious public health concerns, affect-

ing nearly one billion people, according to the World Health Organization. Traditional psychiatric
diagnoses depend heavily on clinical interviews and subjective assessments methods that are time-
consuming, inconsistent, and often lead to delayed treatment. Many individuals wait months or even
years before receiving the care they need.

The rise of artificial intelligence (AI) and machine learning presents a new frontier in mental
health care. These technologies can process large volumes of data from voice patterns and behavior to
social media activity, physiological signals, and health records to detect early signs of mental health
conditions that may otherwise go unnoticed.

Early detection is critical for improving treatment outcomes and reducing long-term impact. AI
systems offer a unique advantage through continuous, objective monitoring, helping clinicians identify
at-risk individuals before symptoms become severe.

This review explores the latest developments in AI-driven early detection of mental health
disorders. It examines methodologies, performance outcomes, and clinical relevance, with a focus on
identifying emerging issues in the earliest stages rather than broad diagnostic support.
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2. Methodology
This review follows a structured approach to examine recent research on AI-driven systems for

the early detection of mental health disorders. The process involved a thorough literature search, data
extraction, and synthesis of findings across various AI techniques and data types.

Relevant studies were sourced from databases such as PubMed, IEEE Xplore, ACM Digital
Library, and Google Scholar, focusing on peer-reviewed publications from 2019 to 2025. Keywords
included terms like “artificial intelligence,” “machine learning,” “early detection,” “mental health,”
“depression,” “anxiety,” “voice analysis,” and “multimodal.”

To be included, studies had to specifically address AI in early mental health detection, report
empirical results with quantitative metrics, and show clinical relevance. Excluded were papers lacking
early detection focus, sufficient methodological detail, or real-world validation.

Key data points extracted included methodology type, data sources, performance indicators (such
as accuracy, sensitivity, specificity), sample sizes, and validation techniques. Priority was given to
recent impactful studies, while also acknowledging foundational research that shaped the field.

3. Current State of AI Approaches
3.1. Voice-Based Detection Systems

Voice analysis is gaining traction as a powerful tool for early mental health detection, based
on the idea that conditions like depression or anxiety subtly alter speech patterns and vocal traits.
Research shows that acoustic features, such as tone, pitch variation, and vocal stability, can reflect
psychological states.

Recent advancements have significantly boosted accuracy and clinical relevance. The Neu-
roVibeNet framework leads the way with 99.06% accuracy by combining behavioral data with voice
analysis using machine learning models like IRF, LightGBM, SVM, and KNN.

Commercial platforms such as Kintsugi Voice are also showing promise, with reported sensitivity
and specificity around 71–73%, and improved results (up to 92% accuracy) when paired with self-report
data like SUDs.

These systems analyze features like jitter, shimmer, mel-frequency cepstral coefficients, and
harmonics-to-noise ratios. Deep learning models are particularly effective at capturing the complex
patterns in vocal data linked to mental health disorders.

Figure 1. Performance Comparison of AI Models for Mental Health Detection Across Different Methodologies
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Performance Insight: Multimodal systems clearly outperform voice-only models, e.g., Neu-
roVibeNet (99. 1%) vs. Kintsugi (72. 4%) highlighting the value of integrating multiple data types.

3.2. Multimodal Deep Learning Approaches

Multimodal AI systems represent the forefront of mental health detection, combining data from
various sources, such as speech, text, and behavior, to improve diagnostic accuracy. Since mental
health symptoms span multiple domains, integrating diverse inputs provides a more complete and
reliable picture.

Recent frameworks use pre-trained models such as BERT, FastText, and Doc2VecC for text, along
with WaveNet and VGG-ish for audio, achieving around 82.4% accuracy in identifying conditions
like depression, bipolar disorder, and schizophrenia from clinical interview data.

Transformer-based hybrid models have further improved performance by analyzing both linguis-
tic and vocal features. They also enhance interpretability using attention mechanisms that highlight
key indicators influencing the model’s decisions.

These systems typically consist of:
1. Feature extractors for each data type
2. Fusion layers to combine information (using early, late, or attention-based strategies)
3. Classifiers for final predictions
Studies show that multimodal models outperform single-modality ones by 15–20%, underlining

the value of integrating multiple behavioral and physiological signals for early and accurate detection.

3.3. Social Media and Text-Based Analysis

Social media offers a rich, real-time source of behavioral and linguistic data, allowing AI systems
to detect early signs of mental health issues based on natural language patterns and online activity.
Because users often express their emotions and thoughts openly, these platforms provide valuable
digital biomarkers.

AI models analyzing posts have achieved up to 89.3% accuracy, with the ability to flag mental
health crises an average of 7.2 days earlier than traditional clinical methods—highlighting their value
for early intervention.

Techniques like natural language processing (NLP) and LSTM-based classifiers extract key
indicators such as excessive use of first-person pronouns, negative emotion words, and disrupted daily
patterns. These models have shown 85.2% accuracy in identifying a range of conditions including
depression, anxiety, PTSD, and suicidal ideation.

Language analysis also reveals reduced social interaction and emotional shifts in users with
depression, providing consistent, objective insights that can support traditional diagnostics.

However, privacy and ethics are critical. Issues around consent, surveillance, and data ownership
must be addressed. Solutions like federated learning are emerging to enable secure, decentralized
model training.

In comparison with other modalities, social media analysis performs strongly (89.3%), slightly
below wearable sensors (90.0%), and behind multimodal voice-behavior models (up to 99.06%),
confirming its potential as a viable, scalable tool for mental health monitoring.
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Figure 2. Average Accuracy Performance of AI Mental Health Detection by Data Modality

3.4. Wearable Sensors and Mental Health Monitoring

Wearable devices such as smartwatches now play a key role in mental health monitoring by
capturing physiological signals linked to psychological states. Data such as heart rate variability, skin
conductance, movement, and sleep patterns can help detect early signs of disorders like depression.

In one study, wristband-collected data from clinically diagnosed individuals yielded 90.0% accuracy
in depression detection using six hours of continuous monitoring. Shorter data windows reduced accuracy,
emphasizing the need for extended monitoring periods.

Machine learning models especially Random Forests have effectively combined multiple phys-
iological signals like pulse waves and movement to classify depressive symptoms. This passive,
non-intrusive monitoring offers a significant advantage over self-reports, enabling early, real-time
insights into mental health changes.

Emerging edge computing technologies now allow real-time data processing directly on wearable
devices, ensuring faster responses while protecting user privacy and reducing battery usage. These
advancements bring wearable-based AI closer to clinical integration for proactive mental health care.

3.5. Electronic Health Records and Clinical Data

Electronic Health Records (EHRs) provide valuable longitudinal data for predicting mental health
crises, capturing patient interactions, medication history, and healthcare usage. AI models analyzing
EHRs can predict crises with 79.7% accuracy (AUC), identifying high-risk patients up to 28 days
in advance.

Key predictors include patterns of healthcare utilizationsuch as frequent ER visits and hospitaliza-
tionsrather than solely mental health diagnoses. This suggests that risk can be inferred from general
healthcare behaviors recorded in EHRs.

Combining structured data with insights from clinical notes using natural language processing
enhances prediction accuracy. Optimal results require at least 10% of encounters to contain detailed
notes, emphasizing thorough documentation’s importance.
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To avoid alert fatigue, effective clinical integration targets the highest-risk patients for intervention,
ensuring resources are used efficiently while minimizing false alarms.

3.6. Performance Analysis and Technological Evolution

AI-based mental health detection has advanced rapidly in the last six years, with accuracy rising
from 82.4% in 2019 to 86.05% in 2025. Multimodal systems outperform single-modality ones, averaging
89.62% accuracy by integrating behavioral, physiological, and linguistic data.

A key breakthrough is ensemble models like NeuroVibeNet, which combines voice and behavioral
data to reach 99.06% accuracy, marking a significant leap beyond earlier methods. Performance
improvements accelerated after 2023, driven by transformer models, large language models, and
enhanced data fusion techniques.

Figure 3. Temporal Evolution of AI Mental Health Detection Performance (2019-2025)

Visualization shows steady growth in average accuracy from 82.4% to 92.8% and rapid gains in
top-performing models, highlighting the growing effectiveness and sophistication of AI in mental
health detection.

4. Challenges and Limitations
Despite strong performance, AI-based mental health detection faces key challenges before clinical

adoption. Privacy and ethical concerns are critical due to sensitive data and risks of discrimination.
Algorithmic bias often leads to disproportionate predictions for women, low-income groups, and
certain ethnicities, risking healthcare inequalities.

Model interpretability is limited, especially in deep learning “black boxes.” Explainable AI
methods like LIME and SHAP are emerging to improve transparency and clinical trust. Generalizability
remains an issue, as models trained on specific populations may fail in different settings, underscoring
the need for diverse validation.

Data quality and availability are major hurdles, with mental health datasets often biased, incom-
plete, or inconsistently labeled, reducing model reliability. Finally, regulatory frameworks are still
evolving, struggling to address the unique, adaptive nature of AI tools in healthcare.

5. Future Directions and Emerging Trends
The future of AI in mental health detection focuses on overcoming current limitations through

innovations like federated learning, which protects privacy by training models across institutions
without sharing sensitive data. Real-time monitoring via cloud and edge computing will enable
continuous patient assessment and timely interventions.
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Figure 4. AI Detection Accuracy Across Different Mental Health Conditions

Transformer models and large language models are advancing the analysis of complex linguistic
patterns, enhancing early detection. Improved multimodal fusion techniques will integrate diverse
data types such as genetics, biomarkers, and environment, for more comprehensive risk evaluation.

Explainable AI will evolve to offer transparent, interpretable insights that build clinical trust,
using visualization, attention, and rule-based methods. Personalized AI models will tailor predictions
and interventions to individual patient profiles, moving beyond general population trends.

Among detection tasks, suicidal ideation reaches the highest accuracy (93.5%) through social
media analysis, while PTSD detection lags (79.8%) using EHR data. Depression detection shows strong
results, with severe cases identified up to 91.2% accuracy via voice analysis and social media.

6. Clinical Implementation and Validation
Translating AI research into clinical practice requires thorough validation through prospective

studies and real-world use. For example, a six-month study showed 64% of EHR-based AI predictions
helped manage patient care or reduce crisis risk, proving practical benefits.

AI-powered clinical decision support systems that combine AI predictions with traditional as-
sessments improve accuracy while keeping physicians in control. Successful implementation de-
pends on integrating AI smoothly into workflows, providing adequate user training, and managing
change effectively.

Standardized evaluation metrics, validation protocols, and updated regulatory frameworks are
essential to ensure AI tool safety, reliability, and ethical use. Continuous quality assurance must
monitor system performance, detect bias, and handle unforeseen cases after deployment.

Economic factors also influence AI adoption; cost-effectiveness analyses will be key to demon-
strating the advantages of AI-enhanced mental health detection over traditional methods.

7. Conclusions
AI models for early detection of mental health disorders have shown significant progress, achiev-

ing high accuracy and early identification of mental health crises. The integration of multimodal data,
advanced machine learning techniques, and rigorous validation has positioned AI as a transformative
force in mental healthcare.
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Multimodal and ensemble approaches outperform single-modality systems, with voice-based
tools emerging as scalable, non-invasive solutions for clinical use. Yet, challenges such as data privacy,
algorithmic bias, and model interpretability must be addressed for effective clinical integration.

Moving forward, real-world validation, fairness, and culturally sensitive model development
are essential. Collaboration among technologists, clinicians, and policymakers will be key to
responsible deployment.

Ultimately, AI offers a paradigm shift toward personalized and accessible mental health services,
with the potential to significantly improve early intervention and global mental health outcomes.

Acknowledgments: We gratefully acknowledge the global researchers who have advanced AI in mental health
detection. Thanks to the study participants for their valuable contributions. Special appreciation goes to the inter-
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