

Review

Not peer-reviewed version

Anti-Inflammatory and Neuroprotective Effects of *Undaria pinnatifida* Fucoidan

[Cheng Yang](#) , [Corinna Dwan](#) , [Barbara C. Wimmer](#) , [Sayed Koushik Ahamed](#) , [Fionnghuala James](#) ,
[Jigme Thinley](#) , [Richard Wilson](#) , [Luke Johnson](#) , [Vanni Caruso](#) *

Posted Date: 31 July 2025

doi: [10.20944/preprints202507.2631.v1](https://doi.org/10.20944/preprints202507.2631.v1)

Keywords: fucoidan; *Undaria pinnatifida*; anti-inflammatory agents; neuroprotection; oxidative stress; immune response

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

Anti-Inflammatory and Neuroprotective Effects of *Undaria pinnatifida* Fucoidan

Cheng Yang ¹, Corinna Dwan ², Barbara C. Wimmer ², Sayed Koushik Ahamed ¹, Fionnghuala James ¹, Jigme Thinley ¹, Richard Wilson ³, Luke Johnson ⁴ and Vanni Caruso ^{1,*}

¹ School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia

² Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, TAS 7170, Australia

³ Central Science Laboratory, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia

⁴ School of Psychological Sciences, Psychology, University of Tasmania, Launceston, TAS 7248, Australia

* Correspondence: vanni.causo@utas.edu.au (V.C.); Tel.: +61-3-6226-1095 (V.C.)

Abstract

Undaria pinnatifida fucoidan (UPF), a sulphated polysaccharide derived from brown seaweed, has attracted increasing scientific interest for its wide-ranging anti-inflammatory and neuroprotective properties. Previous studies have demonstrated that UPF exerts significant anti-inflammatory effects through the downregulation of pro-inflammatory cytokines, inhibition of key signalling pathways such as NF- κ B and MAPKs, suppression of oxidative stress, and modulation of immune mediators and gut microbiota. In parallel, emerging evidence highlights UPF's neuroprotective potential, characterised by reduced neuroinflammation, oxidative damage, and amyloid-beta accumulation, alongside enhanced antioxidant defence and neuronal function. Current investigations reinforce these findings, suggesting that UPF may serve as a valuable adjunct in managing inflammation-related disorders and neurodegenerative conditions. This review summarises the current knowledge on UPF's mechanisms of action, with a particular focus on its anti-inflammatory and neuroprotective pathways and implications for brain health, while also identifying gaps for future research and clinical translation.

Keywords: fucoidan; *Undaria pinnatifida*; anti-inflammatory agents; neuroprotective; oxidative stress; immune response

1. Introduction

Fucoidans are a class of highly sulphated polysaccharides which are abundantly present in the cell walls of brown algae, including *Undaria pinnatifida* [1]. These polysaccharides have attracted considerable scientific attention due to their diverse and potent biological activities in the treatment of inflammatory-related diseases [2], metabolic disorders [3], cardiovascular conditions [4], and several cancers [5–7]. The structure of common fucoidans typically consists of a backbone of L-fucose residues linked by α -(1→3) or alternating α -(1→3) and α -(1→4) glycosidic bonds, with varying degrees and patterns of sulfation (mainly at C2, C3, or C4), and may include minor sugars such as galactose, mannose, xylose, and uronic acids, resulting in highly branched and heterogeneous molecules [8]. Their structural diversity, shaped by factors such as seaweed species, degree and position of sulphation, molecular weight, and extraction methods, plays a crucial role in determining their bioactivity [9–12].

Among the various sources of fucoidan, recent research has increasingly focused on *Undaria pinnatifida* fucoidan (UPF), which has shown notable anti-inflammatory [13], antioxidant [14], immunomodulatory [15], antiviral [16], and neuroprotective effects [17] suggesting a significant potential in biomedical applications.

This review focuses specifically on the anti-inflammatory and neuroprotective activities of UPF, highlighting the molecular mechanisms responsible for these biological effects. It also evaluates the therapeutic potential of UPF in the management of chronic inflammatory conditions and neurodegenerative diseases, offering insights that may guide future research and clinical applications.

2. Anti-inflammatory Activity of UPF

2.1. In Vitro Studies

Several *in vitro* studies have indicated that UPF effectively reduces the expression of key pro-inflammatory cytokines, such as tumor necrosis factor alpha (TNF- α), Interleukin - 1 beta (IL-1 β), and IL-6, to mitigate diverse inflammation-related responses. A recent investigation has shown that a 4-hour pre-treatment with UPF (10, 50, and 100 μ g/ml) significantly suppressed lipopolysaccharide (LPS)-induced upregulation of pro-inflammatory cytokines, including TNF- α , IL-1 β , and IL-6, in human macrophages and peripheral blood mononuclear cells (PBMCs) [18]. A low molecular weight UPF (100 μ g/ml) also exhibited significant anti-inflammation effects by downregulating the gene expression of these pro-inflammatory cytokines in LPS-induced RAW264.7 cells [19]. Similarly, in a viral challenge model, UPF (200 μ g/ml) reduced pro-inflammatory cytokines, including IL-6, IFN- α , interferon gamma (IFN- γ), and TNF- α , in SARS-CoV-2 infected Caco-2-N^{int} cells [16]. These effects are primarily mediated through inhibition of key inflammatory signalling pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF- κ B) and mitogen-activated protein kinase (MAPK), which are known to regulate cytokine gene transcription [20]. For example, treatment with UPF suppresses the nuclear translocation of NF- κ B p65 and reduces the phosphorylation of p38 and extracellular signal-regulated kinases (ERK)1/2 MAPKs, leading to a marked decrease in pro-inflammatory cytokine expression [1,19,20]. Vaamonde-García et al. (2021) reported that UPF (5 μ g/ml) treatment attenuated IL-1 β -induced inflammation in osteoarthritic chondrocytes by blocking nuclear translocation of NF- κ B and inhibiting its activation [21]. In addition, UPF inhibited NF- κ B signalling and downregulated IL-6 and TNF- α in human colon carcinoma cell line (Caco-2) cells [22].

The suppression of oxidative stress represents a fundamental mechanism by which UPF alleviates inflammation. Oxidative stress, driven by excess reactive oxygen species (ROS), is a key initiator of inflammatory signalling cascades in various cell types [23]. In intestinal epithelial cell line (IEC-6) cells, UPF (100 μ g/ml) significantly reduced oxidative damage induced by hydrogen peroxide (H₂O₂), as evidenced by decreased levels of malondialdehyde (MDA) and increased activity of antioxidant enzymes, including catalase (CAT), total superoxide dismutase (T-SOD), and glutathione (GSH) [24]. These changes were associated with protection against apoptosis and inhibition of pro-inflammatory responses, indicating that UPF enhances cellular antioxidant defences to maintain redox balance. Moreover, in RAW264.7 macrophages, low molecular weight UPF (100 μ g/ml) inhibited LPS-induced ROS production and suppressed the phosphorylation of key MAPK signalling proteins (p38, ERK1/2, and JNK), leading to a significant reduction in the expression of inflammatory markers such as TNF- α , IL-6, and IL-1 β [19]. Phull et al. (2017) found that UPF (15.52–500 μ g/ml) exerted significant antioxidant activity in a dose-dependent manner in various *in vitro* antioxidant assays, including iron chelating, hydroxyl, nitric oxide, and DPPH activity, along with a reduction in inflammation responses in rabbit articular chondrocytes [25]. Another *in vitro* study also indicated that *Undaria pinnatifida* water extract (UPE) obtained by ultrasonication (200 and 400 μ g/ml) significantly suppressed ROS production and restored H₂O₂-induced viability reduction in monkey kidney (Vero) cells in a dose-dependent manner. [26]. The cell-protective activity of the extract in this study was attributed to its capability to decrease pro-apoptotic protein (Bax) and increase anti-apoptotic protein (Bcl-2) [26].

Interestingly, there are an increasing number of studies correlating the antioxidant properties of UPF with its sulphate content and molecular weight [26–31]. For instance, UPF fractions with higher sulphation levels have been shown to exhibit significantly greater antioxidant activity compared to

their lower-sulphated counterparts [29]. Moreover, fractionation studies revealed that low molecular weight UPF components possess enhanced antioxidant effects relative to high molecular weight forms, particularly in assays such as DPPH radical scavenging and ferric-reducing antioxidant power (FRAP) tests [30].

UPF inhibits major inflammatory mediators, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nitric oxide (NO), and prostaglandin E2 (PGE2) whose overproduction exacerbates inflammatory responses and tissue damage [32,33]. For instance, low molecular weight UPF (100 µg/ml) alleviated LPS-induced inflammation in RAW264.7 cells by suppressing iNOS and COX2 activities [19]. Similarly, Song et al. in 2015 demonstrated that UPF (50 µg/ml) significantly inhibited iNOS and COX-2 expression, as well as attenuated the production of NO and PGE2 in LPS-stimulated RAW264.7 macrophages [34]. Lim et al. (2022) also reported that high molecular weight UPF (500 µg/ml) mitigated MG-11-induced inflammation in Caco-2 cells by suppressing protein expression of COX-2 and iNOS and inhibiting NF-κB activation [22]. Additionally, UPF exerted potent anti-inflammatory effects in rabbit articular chondrocytes, where UPF significantly reduced COX-2 expression in a dose (0–100 µg/ml, 24h) and time (30 µg/ml, 0–48 h) dependent manner [25]. Moreover, Vaamonde-García et al. found that UPF (5 µg/ml) significantly inhibited IL-1 β -induced production of NO, PGE2, and IL-6 in osteoarthritic chondrocytes, suggesting an immunomodulatory role of UPF in inflammatory conditions [21].

Recent *in vitro* investigations have suggested that UPF is capable of suppressing chemokine secretion in various inflammatory cells. Chemokines, also known as chemotactic cytokines, are a family of small signalling proteins that significantly contribute to regulating the migration and activation of immune cells during inflammatory responses [1,35]. According to the structure of N-terminal cysteine residues, chemokines are classified into four major subfamilies, including CXXXC (fractalkine), C-X-C (IL-8), C-C (monocyte chemoattractant protein [MCP-1], or monocyte inflammatory protein [MIP-1 α], and MIP-1 β), and C chemokines (lymphotoactin) [35]. Chen et al. (2025) demonstrated that sulphated *Undaria pinnatifida* polysaccharides (50 and 200 µg/ml) significantly reduced MCP-1 production *in vitro* during oxalate crystal-induced inflammation in renal cells [36]. This reduction was linked to decreased cellular inflammation and oxidative stress, indicating the potential role of UPF in modulating chemokine-driven immune cell recruitment [36]. Kim et al. also reported that UPF treatment (100 µg/ml) significantly suppressed MCP-1 expression in 3T3-L1 adipocytes, indicating that UPF inhibits inflammation-associated chemokine signalling during adipocyte differentiation [37]. In addition, Vaamonde-García et al. (2022) indicated that UPF (5 µg/ml) significantly downregulated IL-6 and IL-8 (CXCL8) in IL-1 β -induced human chondrocyte cells [38]. Similarly, Wimmer et al. (2025) demonstrated that UPF significantly reduced the secretion of pro-inflammatory chemokines (IL-8 and MCP-1) and increased production of anti-inflammatory cytokines (IL-6 and IL-10) in the Caco-2/THP-1 co-culture system after microbial stimulation [39], indicating that UPF can suppress immune cell recruitment and inflammatory signalling at the gut mucosal level. Moreover, a study on atopic dermatitis found that UPF significantly inhibited the mRNA expression of several key chemokines, including thymus- and activation-regulated chemokine (TARC), macrophage-derived chemokine (MDC), and RANTES (also known as CCL5), in TNF- α or IFN- γ -induced human epidermal keratinocytes [40].

The major outcomes derived from *in vitro* investigations into the anti-inflammatory effects of UPF are listed in **Table 1**.

Table 1. *In vitro* anti-inflammatory activity of UPF.

Cell Line	Model	Compound	Tested Concentration	Effective Concentration	Activity	Reference
Murine RAW264.7 cells	LPS stimulation	Low molecular weight UPF	1, 10 and 100 μ g/ml	1, 10 and 100 μ g/ml	Reduced ROS, COX-2 and iNOS; suppressed phosphorylation of p38, ERK1/2, and JNK; and downregulated TNF- α , IL-6, and IL-1 β	[19]
		UPF	12.5, 25, and 50 μ g/ml	50 μ g/ml	Inhibited COX-2 and iNOS, and attenuated production of NO and PGE2	[34]
Human osteoarthritic chondrocytes	IL-1 β -induced inflammation	UPF	5, 30, and 100 μ g/mL	5 μ g/ml	Inhibited NF- κ B activation; and reduced production of NO, PGE2, and IL-6	[21]
		UPF	1, 5, and 30 μ g/mL	5 μ g/ml	Downregulated IL-6 and IL-8 (CXCL8); upregulated Nrf-2, HO-1, and SOD-2.	[38]
THP-1 cells and PBMCs	LPS-induced inflammation	UPF	10, 50, 100, and 200 μ g/ml	10, 50, and 100 μ g/ml	Reduced expression of TNF- α , IL-1 β , and IL-6	[18]
Caco-2-N ^{int} cells	SARS-CoV-2 infection	UPF	0–1000 μ g/ml	200 μ g/ml	Reduced IL-6, IFN- α , IFN- γ , and TNF- α	[16]
Caco-2 cells	MG-H1-induced inflammation	High molecular weight UPF	0–1000 μ g/ml	500 μ g/ml	Inhibited NF- κ B signalling; downregulated IL-6 and TNF- α ; and suppressed COX-2 and iNOS expression	[22]

Table 1. Cont.

Cell Line	Model	Compound	Tested Concentration	Effective Concentration	Activity	Reference
IEC-6 cells	H ₂ O ₂ -induced oxidative stress	UPF	10, 20, 50, and 100 µg/ml	100 µg/ml	Decreased levels of MDA, and increased CAT, T-SOD, and GSH	[24]
Rabbit articular chondrocytes	Antioxidant assays	UPF	0–500 µg/ml	2.5–100 µg/ml	Reduced COX-2; scavenged DPPH, nitric oxide and hydroxyl radicals; and exhibited iron chelating activity	[25]
Vero cells	H ₂ O ₂ -induced viability reduction	Water-ultrasonicated UPE	50, 100, 200, and 400 µg/ml	200 and 400 µg/ml	Suppressed ROS production; decreased Bax; and increased Bcl-2	[26]
Human renal cells	Oxalate crystal-induced inflammation	sulphated <i>Undaria pinnatifida</i> polysaccharides	50, 100, 150, 200, and 250 µg/ml	200 µg/ml	Reduced ROS and MCP-1 production; increased SOD content; and decreased secretion of TNF-α and IL-1β	[36]
3T3-L1 adipocytes	Adipogenesis	UPF	1, 10, and 100 µg/ml	100 µg/ml	Reduced production of ROS, SOD, and GPx; and downregulated expression of TNF-α, MCP-1 and PAI-1	[37]
Caco-2/THP-1 coculture	Microbial stimulation	UPF	2.5 g/l	2.5 g/l	Reduced secretion of IL-8 and MCP-1; decreased TNF-α; and increased IL-6 and IL-10	[39]
Human epidermal keratinocyte cell line	TNF-α or IFN-γ-induced inflammation	UPF	400 µg/mL	400 µg/mL	Inhibited expression of TARC, MDC, and RANTES (CCL5)	[40]

2.2. In Vivo Studies

A substantial body of *in vivo* studies further supports the notion that UPF exerts its anti-inflammatory effects by suppressing pro-inflammatory cytokines such as TNF- α , IL-1 β , and IL-6 [13,41–43]. Herath et al. (2020) reported that a 7-day oral administration of UPF (400 mg/kg/day) significantly attenuated particulate matter (PM) and ovalbumin (OVA)-induced IL-4, IL-17a, and IL-33 increase in lungs of a murine model of allergic airway inflammation [42]. In a later study, 27 days of UPF supplementation (400 mg/kg/day) significantly reduced TNF- α , IL-6, and IL-1 β , and mitigated inflammation responses in the colon of dietary fibre deficiency (FD)-induced mice [24]. Similar effects of UPF were reported by Shi et al. (2024) in a Syrian hamster model of virus infection, where 6 days oral administration of UPF (200 mg/kg/day) alleviated SARS-CoV-2-induced lung and gastrointestinal tract injury by suppressing gene expression of TNF- α and IL-6 [16]. Lim et al. (2022) also indicated that 4 weeks oral administration of high molecular weight UPF (25 mg/kg/day) significantly inhibited MG-H1-caused TNF- α increase in mouse colon tissues [22]. Similarly, a 10-week oral administration of UPF (400 mg/kg/day) suppressed systemic inflammation in a high-fat diet (HFD)-induced obese mouse model [13]. The results of the study showed that UPF significantly reduced the expression of pro-inflammatory cytokines (TNF- α , IL-1 β , and IL-6) in skeletal muscle, small intestine, and hypothalamus [13].

The antioxidant properties of UPF have been well demonstrated in animal models of inflammatory-related disorders. In HFD-fed mice, a 10-week oral administration of sulphated polysaccharides from *Undaria pinnatifida* significantly (100, 300, and 500 mg/kg/day) reduced markers of oxidative stress, including MDA and SOD in liver tissues, alongside an inhibition of triglycerides (TG), low-density lipoprotein cholesterol (LDL-c), and TNF- α production, suggesting that the suppression of oxidative stress contributed to hepatic lipid metabolism improvements, and mitigated HFD-induced inflammatory conditions [44]. Similarly, 7 days of UPF oral gavage (100 and 400 mg/kg/day) attenuated MDA in the serum and lungs of PM-induced allergic airway inflammatory mice [42]. Phull et al. (2017) also reported that 25 days UPF administration (150 mg/kg/day) significantly decreased arthritis-induced endogenous antioxidant enzymes such as CAT, peroxidase (POD), and SOD [25]. This reduction was mainly due to UPF capability to scavenge the free radicals, abrogate ROS-induced oxidative stress, and maintain the oxidative flux [25]. In contrast, Kang et al. found that 14 days UPF intraperitoneal administration (100 mg/kg/day) markedly prevented oxidative stress in carbon tetrachloride (CCL₄)-induced rats by increasing antioxidant enzymes (CAT, SOD, and glutathione peroxidase [GPx]), and decreasing markers of oxidative damage (MDA) in liver [45]. These results are in line with the findings of Zheng et al. (2023), where 27 days of UPF treatment (400 mg/kg/day) significantly elevated the levels of CAT and T-SOD, and attenuated myeloperoxidase (MOP) and MDA production in the colon tissues of FD-induced mice [24], suggesting that UPF exerts a protective effect against inflammation-associated oxidative damage by enhancing endogenous antioxidant defences and reducing lipid peroxidation, thereby contributing to the amelioration of oxidative stress in various inflammatory disease models.

Recent studies have also demonstrated that UPF exhibits strong antioxidant activities in an *in vivo* zebrafish model, a vertebrate species with notable biochemical and physiological similarities to mammals [31,46]. The findings suggest that UPF effectively mitigates oxidative stress induced by 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) and H₂O₂, as evidenced by increased survival rates, reduced cellular apoptosis, decreased heart rate, and lower levels of ROS and lipid peroxidation [31,46].

UPF has been shown to ameliorate inflammatory responses by modulating gut microbiota composition. A bidirectional relationship exists between gut dysbiosis and host inflammation, whereby microbial imbalance promotes inflammatory processes, which in turn further disrupt the gut microbial ecosystem [47–50]. Recent studies have indicated that UPF treatment significantly attenuated intestinal inflammation by restoring microbial balance, notably decreasing *Firmicutes* and increasing *Bacteroidetes* in the gut of HFD-induced obese mice [44,51–54]. Comparable outcomes were

observed in FD-induced inflammatory mouse models, where 27 days of oral UPF administration (300 and 400 mg/kg/day) led to a marked increase in *Bacteroidetes* and a reduction in *Firmicutes* within colon tissues [24,55]. As the dominant phyla in the gut, *Firmicutes* and *Bacteroidetes* play key roles in maintaining intestinal homeostasis [56], and imbalances in their ratio have been associated with various inflammatory disorders [57–60]. The anti-inflammatory effects of UPF may also derive from its prebiotic properties, as evidenced by reductions in pathogenic taxa (*Faecalibaculum*, *Desulfovibionales*, *Proteobacteria*, and *Clostridia*) and enrichment of beneficial bacteria (*Akkermmania muciniphila*, *Bacteroides*, *Bifidobacterium spp.*, and *Lactobacillus*) [52–54,61]. Additionally, Park et al. (2024) reported that 4 weeks of UPF supplementation (50, 100, and 200 mg/kg/day) significantly increased the abundance of *Papillibacter cinnamivorans*, a butyrate-producing bacterium, in immunosuppressed rats [62]. Butyrate, one of the short-chain fatty acids (SCFAs), mitigates inflammation by interacting with immune cells, promoting anti-inflammatory cytokines, and suppressing pro-inflammatory mediators through G-protein coupled receptors (GPR41/43) and inhibition of histone deacetylases (HDACs) [63,64]. Similarly, Zheng et al. (2023) have suggested that 27 days of UPF supplementation (400 mg/kg/day) significantly restored HFD-induced reduction in colonic SCFAs, including acetate, propionate, and butyrate [24], suggesting that UPF may exert its anti-inflammatory effects, at least in part, by restoring SCFA levels and modulating immune responses through established SCFA-mediated pathways.

UPF has been reported to attenuate immune cell infiltration, including macrophages and T cells, and to ameliorate inflammatory responses in allergic conditions. Herath et al. (2020) indicated that 7 days of UPF oral gavage (400 mg/kg/day) significantly reduced PM-exacerbated infiltration of inflammatory cells, such as F4/80⁺ macrophages, CD4⁺ T lymphocytes, Gr-1⁺ granulocytes, and eosinophils, in the trachea and lungs of OVA-sensitised mice [42]. The results also showed that UPF decreased serum level of immunoglobulin E (IgE) and suppressed inflammatory provocation-induced increase in goblet cell hyperplasia and mucus secretion [42], suggesting potent therapeutic effects of UPF in allergic airway inflammation. Similarly, Yu et al. (2024) demonstrated that 16 days administration of ethanol-extracted UPE (50, 100, and 200 mg/kg/day) mitigated combined allergic rhinitis and asthma syndrome by inhibiting the accumulation of inflammatory cells, including epithelial cells, eosinophils, neutrophils, lymphocytes, and macrophages, in both nasal and bronchoalveolar lavage fluid, as well as a reduction in Th2 cytokines expression (IL-4, IL-5, and IL-13) [65].

The capability of UPF to re-establish immune homeostasis also plays a significant role in mitigating inflammatory conditions. Several *in vivo* studies have demonstrated that UPF exerts immunomodulatory effects by upregulating the expression of the anti-inflammatory cytokine IL-10 while concurrently downregulating the production of pro-inflammatory cytokines in various animal models of inflammatory intestinal diseases [44,53,55,66].

The main results of *in vivo* evaluations of UPF effects are listed in **Table 2**.

Table 2. *In vivo* anti-inflammatory activity of UPF.

Model	Animal	Compound	Dose	Treatment	Tissue	Result	Reference
HFD-induced obesity	Male and female C57BL/6J mice	UPF	400 mg/kg/day	Oral supplementation for 10 weeks	Skeletal Muscle	Reduced TNF- α , IL-1 β , and IL-6	
					Small Intestine	Reduced TNF- α , IL-1 β , IL-6, NF-Kb, Tjp1, GPR41, and GPR43	[13]
					Plasma	Reduced IL-1 α and IL-6	
HFD-induced obesity	Male and female C57BL/6J mice	UPF	400 mg/kg/day	Oral supplementation for 10 weeks	Faeces	Increased abundance of <i>Bacteroidetes</i> , <i>Bacteroides/Prevotella</i> , <i>Akkermansia muciniphila</i> , and <i>Lactobacillus</i> ; and reduced F/B ratio	[54]
					Serum	Reduced levels of TC, TG, and LDL-c; increased HDL-c; suppressed FITC and LPS	
					Liver	Increased expression of ABCG8, PPAR- γ , PGC-1 α and CAT; reduced content of TC, TG, and MDA; and inhibited LPS production	[53]
Male BALB/c mice	Male BALB/c mice	Sulphated polysaccharides from <i>Undaria pinnatifida</i>	150 and 300 mg/kg/day	Oral gavage for 10 weeks	Colon	Increased IL-10 expression; and reduced IL-6	
					Faeces	Increased abundance of <i>Bacteroidetes</i> , <i>Bacteroidaceae</i> , and <i>Prevotellaceae</i> ; decreased <i>Firmicutes</i> , and <i>Proteobacteria</i> ; increased levels acetate, propionate, and butyrate; and reduced F/B ratio	

Table 2. Cont.

Model	Animal	Compound	Dose	Treatment	Tissue	Result	Reference
HFD-induced obesity	Male BALB/c mice	Sulphated polysaccharides from <i>Undaria pinnatifida</i>	100, 300, and 500 mg/kg/day	Oral gavage for 10 weeks	Serum	Reduced levels of TC, TG, LDL-c, LPS, and FITC; and increased HDL-c	[44]
					Liver	Suppressed levels of LDL-c and MDA; and increased SOD	
					Colon	Decreased TNF- α ; and increased IL-10	
					Faeces	Increased <i>Bacteroidetes</i> abundance; reduced <i>Firmicutes</i> , <i>Desulfovibrionales</i> , and <i>Clostridia</i> ; and increased levels acetate, propionate, and butyrate	
HFD-induced dyslipidaemia	Male C57BL/6J mice	<i>Undaria pinnatifida</i> powder	10% (w/w)	Oral supplementation for 10 weeks	Faeces	Increased acetic acid, propionic acid, and butyric acid; increased <i>Bacteroidetes</i> , <i>Bacteroidaceae</i> , and <i>Bacteroides</i> ; and reduced <i>Firmicutes</i> , <i>Lachnospiraceae</i> , <i>Streptococcaceae</i> , <i>Mariniflaciae</i>	[52]
					Serum	Suppressed levels of TC and LDL-c	
					Liver	Attenuated levels of TG and CHO	
l-NAME-induced hypertension	Male SD rats	UPF	50 and 100 mg/kg/day	Oral gavage for 8 weeks	Faeces	Increased <i>Bacteroidetes</i> ; and reduced <i>Firmicutes</i>	[51]
					Thoracic aorta	Increased phosphorylation of eNOS and Akt; and decreased levels of iNOS and NO	
					Serum	Decreased levels of TNF- α and IL-1 β	

Table 2. Cont.

Model	Animal	Compound	Dose	Treatment	Tissue	Result	Reference
-------	--------	----------	------	-----------	--------	--------	-----------

Particulate-matter-induced allergic airway inflammation	Female BALB/c mice	UPF	100 and 400 mg/kg/day	Oral gavage for 7 days	Lung	Suppressed MDA level; attenuated eosinophils, Gr-1+ cells, F4/80+ macrophage, and CD4+ T cell infiltration; and reduced IL-4, IL-17a, and IL-33	[42]
					Trachea	Attenuated eosinophils, Gr-1+ cells, F4/80+ macrophage, and CD4+ T cell infiltration	
					Serum	Inhibited MDA level; attenuated total IgE; and reduced IL-4	
Testosterone-induced BPH	Male SD rats	UPF	40 and 400 mg/kg/day	Oral administration for 4 weeks	Prostate	Reduced levels of testosterone and DHT; increased Bax; and reduced Bcl-2 expression	[43]
					Serum	Decreased levels of IL-1β, TNF-α, testosterone, DHT, and PSA	
Fiber deficiency-induced intestinal inflammation	Male BALB/c mice	UPF	100 and 400 mg/kg/day	Oral supplementation for 4 weeks	Colon	Increased levels of occludin, ZO-1, and claudin-3; reduced expression of TNF-α, IL-6, and IL-1β; increased IL-10; suppressed MDA, MOP, and LPS; promoted CAT and T-SOD; and increased production of acetate, propionate, and butyrate	[24]
					Colon	Reduced expression of TNF-α and IL-1β; elevated occludin and IL-10; increased levels of T-SOD and CAT; and decreased COX-2, iNOS, and LPS	
	Male BALB/c mice	UPF	300 mg/kg/day	Oral gavage for 4 weeks	Faeces	Increased abundance of <i>Bacteroidetes</i> and <i>Bacteroidales</i> ; and decreased <i>Firmicutes</i> , <i>Clostridiales</i> , and <i>Ruminococcaceae</i>	[55]

Table 2. Cont.

Model	Animal	Compound	Dose	Treatment	Tissue	Result	Reference
		UPF			Lung	Downregulated ACE2, IL-6, and TNF-α	[16]

					Colon	Reduced levels of ACE2, IL-6, and TNF- α	
SARS-CoV-2 infection	Female Syrian hamsters		100 and 200 mg/kg/day	Oral administration for 6 days	Faeces	Decreased <i>Firmicutes</i> , <i>Limosillactobacter</i> ; increased <i>Bacteroidota</i> , <i>Patescibacteria</i> , <i>Allobaculum</i> , <i>Candidatus saccharimonas</i> , and <i>Ileibacteria</i> ; and increased levels of acetate and propionate	
MG-H1-induced intestinal inflammation	Male ICR mice	High molecular weight UPF	25 and 75 mg/kg/day	Oral administration for 4 weeks	Colon	Inhibited MPO activity; and decreased expression of ZO-1, RAGE, and TNF- α	[22]
Carrageenan induced inflammation	Male SD rats	UPF	50 and 150 mg/kg/day	Oral gavage for 25 days	Serum	Decreased production of CAT, POD, and SOD	[25]
CCL4-induced oxidative stress	Female SD rats	UPF	100 mg/kg/day	Intraperitoneal injection for 2 weeks	Serum	Reduced levels of GOT, GPT, ALP, and LDH	
					Liver	Decreased MDA production; and increased SOD, CAT, and GPx	[45]
Broad-spectrum antibiotics (ABX)-induced tumour model	Male C57BL/6 mice	UPF	400 mg/kg/day	Oral gavage for 3 weeks	Tumour tissue	Reduced levels of CD31 $^+$, Bcl2; increased Bax level and CD8 $^+$ cells; and decreased CD4 $^+$ cells and IDO1 expression	
					Faeces	Increased abundance of <i>Akkermansia</i> , <i>Bifidobacterium</i> , and <i>Lactobacillus</i>	[61]

Table 2. Cont.

Model	Animal	Compound	Dose	Treatment	Tissue	Result	Reference

Cyclophosphamide-induced immunosuppression	Male SD rats	High molecular weight UPF	50, 100, and 200 mg/kg/day	Oral administration for 4 weeks	Faeces	Increased abundance of <i>Papillibacter cinnamivorans</i> and <i>Desulfomicrobium orale</i> ; and reduced <i>Marvinbryantia formatexigens</i>	[62]
					Serum	Attenuated IgE and IgG1 levels; and increased IgG2a	
Ovalbumin-induced CARAS	Male BALB/c mice	Ethanol-extracted UPE	50, 100, and 200 mg/kg/day	Oral administration for 16 days	Nasal lavage fluid	Increased expression of IFN- γ , SOD, and HO-1; reduced IL-4, IL-5, IL-13, and MDA; and enhanced ZO-1 and occludin	[65]
					Bronchoalveolar lavage fluid	Decreased levels of IL-4, IL-5, IL-13, and MDA; and increased HO-1 and occludin production	
					Lung	Increased expression of occludin and ZO-1	
Salmonella typhimurium-induced inflammation	Male BALB/c mice	UPF	200 and 500 mg/kg/day	Oral administration for 21 days	Colon	Increased expression of occludin and claudin-1; reduced TNF- α , IKB α , p-IKB α , p65, and p-p65; elevated levels of CAT and SOD; and decreased MDA and iNOS	[66]
					Faeces	Reduced abundance of <i>Proteobacteria</i> , <i>Colidextribacter</i> , and <i>Oscillibacter</i> ; increased <i>Parabacteroides</i> , <i>Lactobacillus</i> , <i>Akkermansia</i> , <i>Lachnospiraceae_NK4A136 group</i> and <i>Muribaculum</i> ; and enhanced levels of acetate and butyrate	

2.3. Clinical Trials

A growing body of clinical evidence supports the therapeutic potential of UPF in modulating metabolic, immune, and inflammatory responses in humans. Various human studies have demonstrated that incorporating *Undaria pinnatifida* (4–6 g/day) into diets help improve metabolic parameters, including suppressed postprandial glycaemia, modulated appetite sensations, reduced waist circumference and blood pressure, as well as a decrease in total cholesterol, LDL-cholesterol, and resistin levels [67–70]. *Undaria pinnatifida* also exerts potent immunostimulatory properties to manage Herpes infections by promoting healing and preventing reactivation [71]. Moreover, a clinical trial showed that a single dose of UPF (1 g) modulated microRNA expression related to immune response and inflammation, highlighting its systemic regulatory potential [72]. Additionally, a combination of UPF and *Fucus vesiculosus* fucoidan significantly increased faecal lysozyme levels, a protein known for its antimicrobial and anti-inflammatory functions, suggesting that UPF may promote mucosal barrier integrity and reduce mucosal inflammation [73]. Cox et al. (2023) reported that 3 weeks of UPF supplementation (1 g/day) significantly increased salivary immunoglobulin (Ig) A contents after an intensified training, indicating UPF properties to enhance mucosal immunity and provide protective anti-inflammatory benefits [74,75]. In a double-blind randomised placebo-controlled clinical trial, 2 weeks of UPF administration (1 g/day) significantly suppressed the upregulation of inflammatory cytokines induced by high-intensity exercise [76]. Similarly, UPF combined with green-lipped mussel mitigated joint pain and prediabetes in a randomised, double-blinded clinical setting, demonstrating that UPF elicits antioxidant and anti-inflammatory effects [77].

3. Neuroprotective Effect of UPF

Scientific literature has reported an increasing number of studies highlighting the neuroprotective effects of UPF in promoting brain health and mitigating the progression of neurodegenerative diseases such as Alzheimer's (AD). These effects arise from a multifactorial interplay involving anti-inflammatory [13], anti-apoptotic [78], antiviral [17], and antioxidant activities [79] of UPF. Findings from both *in vitro* and *in vivo* investigations demonstrate that UPF can attenuate neuronal apoptosis, inhibit amyloid- β (A β) aggregation, and suppress the activation of microglia and astrocytes by reducing oxidative stress and neuroinflammation across various experimental models of neurodegenerative conditions [13,17].

3.1. In Vitro Studies

Several *in vitro* studies demonstrated that UPF is capable of suppressing inflammation in neurodegenerative conditions, primarily through inhibition of the NF- κ B signalling pathway and modulation of the Akt/mTOR and AMPK/mTOR pathways. Notably, Giuliani et al. (2025) reported that UPF (100 μ g/ml) significantly attenuated herpes simplex virus type I (HSV-1)-induced AD-like pathology. This included a reduction in amyloid precursor protein (APP) production and A β synthesis, alongside inhibiting NF- κ B pathway activation and reducing IL-6 expression [17]. Ethanol-extracted UPF (5 μ g/ml) also has been suggested to reduce endoplasmic reticulum (ER) stress and increase cell viability in hypothalamic neurons via Akt/mTOR signalling, highlighting its anti-inflammatory and neuroprotective potential [80]. ER stress is closely linked to the activation of inflammatory responses and is increasingly recognised as a contributing factor in the pathogenesis of various neurodegenerative diseases [81]. Additionally, Chen et al. (2025) suggested that low molecular weight UPF (0.125 mg/ml) significantly ameliorated LPS-induced macrophage inflammatory state by promoting its polarisation from pro-inflammatory M1 phenotype to anti-inflammatory M2 phenotype through the AMPK/mTOR pathway [82]. Literature has indicated that modulating the AMPK/mTOR pathway regulates microglia polarisation and reduces neuroinflammation [83].

UPF has also been shown to exert neuroprotective effects in various *in vitro* cell models of neurodegeneration by enhancing cell viability and attenuating cytotoxicity, particularly in response to neurotoxic insults such as A β and oxidative stress [17,78,79,84–86]. For instance, Wei et al. (2017) demonstrated that pre-treatment with UPF (100, 200, 400 μ g/ml) for 24 hours protected PC12 cells from apoptosis induced by A β _{25–35} and d-galactose (D-Gal), alongside elevated levels of SOD and GSH [79]. Similar effects were observed in a rat cholinergic basal forebrain neuron model of AD conditions, where treatment of a commercial UPF (1 μ M) inhibited cellular and neurotoxic effects of A β _{1–42} and suppressed ROS production [84]. In addition, UPF demonstrated strong free radical-scavenging activity, effectively inhibiting DPPH and hydroxyl radicals, and reducing ROS production as well as A β synthesis in HSV-1-infected retinal pigment epithelium (RPE) cells [17]. HSV-1 infection and A β synthesis have been associated with the development of AD [87]. Mohibullah et al. (2018) also reported that ethanol-extracted UPE (15 μ g/ml) enhanced cell viability and reduced cytotoxicity in hippocampal neurons by decreasing ROS generation, membrane phosphatidylserine exposure, genomic DNA degradation, and restoring hypoxia-induced mitochondrial depolarization [86]. Notably, although both fucoidans reduced A β _{1–42}-induced oxidative stress and apoptosis levels, UPF exhibited stronger neuroprotective effects than *Fucus vesiculosus* fucoidan, likely due to its distinct structural features such as higher sulphate content and specific molecular weight distribution [78].

The key *in vitro* outcomes regarding the neuroprotective activity of UPF are comprehensively outlined in **Table 3**.

Table 3. *In vitro* neuroprotective activity of UPF.

Cell Line	Model	Compound	Tested Concentration	Effective Concentration	Activity	Reference
Human RPE cell line	HSV-1-induced A β production	HCl-extracted UPF	100 μ g/ml	100 μ g/ml	Inhibited NF- κ B phosphorylation, IL-6 expression, and A β_{42} synthesis; and reduced DPPH scavenging and ROS production	[17]
Rat PC-12 cells	A β -induced neurotoxicity	UPF	3.125–100 μ g/ml	3.125–100 μ g/ml	Increased cell viability; reduced A β_{1-42} aggregation and cell apoptosis; and enhanced neurite outgrowth	[78]
PC12 cells	A β 25–35 and d-Gal-induced neurotoxicity	Water-extracted UPF	100, 200, and 400 μ g/ml	100, 200, and 400 μ g/ml	Improved cell viability; prevented cell apoptosis; reduced levels of cleaved caspase-3, caspase-8, caspase-9, and cytochrome c; increased livin and X-linked apoptosis inhibitor protein expression; and elevated levels of SOD and GSH	[79]
Hypothalamic neurons (GT1-7 cells)	Tunicamycin-induced ER stress	Ethanol-extracted UPE	5–40 μ g/ml	5 μ g/ml	Increased cell viability; reduced expression of CHOP and ATF-6; decreased levels of cleaved-PARP and cleaved-caspase-3; and modulated AKT/mTOR signalling	[80]
BMDMs	LPS-induced macrophage inflammation	Low molecular weight UPF	0.0625, 0.125, 0.25, 0.5 mg/ml	0.125 mg/ml	Reduced CD86 $^{+}$ proportion; increased CD206 $^{+}$ proportion; regulated AMPK/mTOR pathway	[82]
Rat basal forebrain cholinergic neurons	A β -induced neurotoxicity	UPF	50 nM –1 μ M	1 μ M	Improved neuronal survival; inhibited ROS generation and PKC phosphorylation; and blocked cleavage of caspases 9 and 3	[84]
Rat hippocampal neurons	Hypoxia-mediated oxidative injury	Ethanol-extracted UPE	5, 15, 30 μ g/ml	15 μ g/ml	Reduced ROS formation; increased cell viability; and decreased cytotoxicity	[86]

3.2. In Vivo Studies

UPF has emerged as a promising neuroprotective agent due to its ability to attenuate neuroinflammation. For example, 10 weeks of UPF oral administration (400 mg/kg/day) significantly attenuated HFD-induced neuroinflammation in obese mice by downregulating the expression of pro-inflammatory cytokines (TNF- α , IL-1 β , IL-6, and IFN- γ) in hypothalamic tissues and suppressing the production of inflammation-related proteins (leucine-rich repeat serine/threonine-protein kinase 2 [Lrrk2], wolframin [Wfs1], and neuroglobin [Ngb]) in the nucleus accumbens [13]. Hu et al. (2014) also reported that a 10-day intrathecal injection of commercial UPF (15, 50, and 100 mg/kg/day) mitigated rat neuropathic pain induced by L5 spinal nerve ligation (SNL). The findings suggested that UPF inhibited microglia and astrocyte activation in the lumbar spinal cord and reduced TNF- α , IL-1 β , and IL-6 expression in the spinal dorsal horn [88]. Similarly, Che et al. (2017) demonstrated that intraperitoneal injection of commercial UPF (80 and 160 mg/kg/day) for 7 days significantly ameliorated cerebral ischemia-reperfusion injury (IRI)-caused neurological impairment in rats and significantly decreased the levels of pro-inflammatory cytokines, including IL-1 β , IL-6, MPO, and TNF- α [89].

Several *in vivo* studies have highlighted the effects of UPF in neuroprotection and rehabilitation, demonstrating its beneficial properties in inhibiting oxidative stress and attenuation neurotoxic protein aggregation. Specifically, 21 days of oral administration of UPF (50, 100, and 200 mg/kg/day) improved learning and memory impairments in AD-model mice induced by D-Gal, where UPF exhibited potent antioxidant effects, enhancing SOD and GSH activity [79]. The ability of UPF to promote learning and memory in this study is largely attributed to its enhancement of acetylcholine (ACh) content and choline acetyl transferase (ChAT) enzyme activity, along with the inhibition of acetylcholine esterase (AChE) enzyme activity, which are key factors involved in the cognitive dysfunction characteristic of AD [79]. UPF also has been reported to reduce oxidative stress-related proteins (SOD and MDA), suppress pro-apoptotic proteins (p-p53 and Bax), and elevate anti-apoptotic protein (Bcl-2) in IRI-induced rats by inhibiting MAPK pathway [89]. Similarly, Wang et al. (2016) illustrated that intraperitoneal pre-treatment of low molecular weight commercial UPF (50 mg/kg) significantly suppressed neuronal damage and neurological deficits in aged mice after traumatic brain injury (TBI), where UPF exerted these protective effects by inhibiting oxidative stress (reduced MDA, 4-hydroxynonenal [4-HNE], ROS and increased CAT, SOD, GPx) and mitochondrial dysfunction (suppressed cytochrome c release) [90]. In addition, the neuroprotective effects of UPF have been found in an invertebrate model of AD, where UPF (500 ng/ml) alleviated A β -induced paralysis by decreasing A β deposition and ROS production in transgenic *Caenorhabditis elegans* [91]. Taken together, these findings suggest that UPF confers neuroprotection across diverse experimental models by modulating oxidative stress, mitochondrial integrity, and apoptosis-related pathways, supporting its potential as a therapeutic agent in the prevention and treatment of neurodegenerative disorders (**Table 4**).

Table 4. *In vivo* neuroprotective activity of UPF.

Model	Animal	Compound	Dose	Treatment	Tissue	Result	Reference
HFD-induced obesity	Male and female C57BL/6J mice	UPF	400 mg/kg/day	Oral supplementation for 10 weeks	Hypothalamus	Reduced TNF- α , IL-1 β , IL-6, and IFN- γ	[13]
					Nucleus accumbens	Suppressed Lrrk2, Wfs1, and Ngb	
SNL-induced neuropathic pain	Male SPF SD rats	UPF	15, 50, and 100 mg/kg/day	Intrathecal injection for 10 days	Lumbar spinal cord	Inhibited microglia and astrocyte activation; and reduced expression of GFAP and mac-1	[88]
					Spinal dorsal horn	Downregulated expression of TNF- α , IL-1 β , and IL-6; and attenuated phosphorylation of ERK	
IRI-caused neurological impairment	Male SD rats	UPF	80 and 160 mg/kg/day	Intraperitoneal injection for 7 days	Ischemic brain	Reduced levels of TNF- α , IL-1 β , IL-6, MPO, SOD, MDA, p-p53, p-p38, p-ERK, p-JNK, and Bax; and increased Bcl-2	[89]
D-Gal-induced AD model	Male ICR mice	UPF	50, 100, and 200 mg/kg/day	Oral administration for 21 days	Brain	Increased levels of Ach, ChAT, and GSH; reduced AChE activity; and decreased A β deposition	[79]
					Serum	Increased levels of SOD and GSH	
Controlled cortical impact-induced TBI	Male C57BL/6 mice	Low molecular weight UPF	10 and 50 mg/kg	Intraperitoneal injection	Brain	Decreased brain edema and cell apoptosis; reduced generation of MDA, 4-HNE, and ROS; increased levels of CAT, SOD, and GPx; suppressed cytochrome c release; and upregulated Sirt3 expression	[90]
A β -induced AD model	Caenorhabditis elegans	UPF	50–500 ng/ml	Bath immersion method	Entire organism	Decreased A β deposition, aggregation, and fibrillization; increased expression of pbs-2 and pbs-5; and reduced ROS production	[91]

4. Conclusions

In summary, *Undaria pinnatifida* fucoidan (UPF) exhibits robust anti-inflammatory and neuroprotective properties, as demonstrated by both *in vitro* and *in vivo* studies. UPF exerts its anti-inflammatory effects through the suppression of pro-inflammatory cytokines, inhibition of key signalling pathways (NF-κB, MAPKs), reduction of oxidative stress, and modulation of immune responses, including chemokine expression and gut microbiota composition. Its neuroprotective potential is similarly multifaceted, involving attenuation of neuroinflammation, oxidative damage, and amyloidogenic processes, alongside enhancement of antioxidant defences and neuronal function. Despite these promising findings, the molecular mechanisms underlying UPF's actions remain incompletely understood, and its therapeutic effects in humans have yet to be fully confirmed. Future studies should prioritise detailed mechanistic investigations, standardisation of UPF extraction and characterisation, and the development of targeted delivery systems to enhance its bioavailability. Most critically, well-designed clinical trials are essential to validate UPF's efficacy and safety, and to support its integration into evidence-based therapeutic strategies.

Author Contributions: Conceptualization, C.Y. and V.C.; methodology, C.Y. and V.C.; validation, C.Y., C.D., B.W., S.A., F.J., J.T., R.W., L.J. and V.C.; resources, C.D., B.W. and V.C.; data curation, C.Y., C.D., B.W. and V.C.; writing original draft preparation, C.Y. and V.C.; writing review and editing, C.Y., C.D., B.W., S.A., F.J., J.T., R.W., L.J. and V.C.; visualization, C.Y. and V.C.; supervision, R.W., L.J. and V.C.; project administration, C.D., B.W. and V.C.; funding acquisition, V.C., C.D. and B.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by The Marine Bioproducts Cooperative Research Centre (MBCRC)-Project 301.

Conflicts of Interest: The current study was sponsored by Marinova Pty. Ltd. (Cambridge, TAS, Australia). C.D. and B.W. are employees of Marinova Pty. Ltd. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

1. Sanjeeva, K.K.A., et al., *Anti-Inflammatory Mechanisms of Fucoidans to Treat Inflammatory Diseases: A Review*. Mar Drugs, 2021. **19**(12).
2. Apostolova, E., et al., *Immunomodulatory and Anti-Inflammatory Effects of Fucoidan: A Review*. Polymers (Basel), 2020. **12**(10).
3. Yang, Z., et al., *Algal polysaccharides and derivatives as potential therapeutics for obesity and related metabolic diseases*. Food Funct, 2022. **13**(22): p. 11387-11409.
4. Yao, Y. and E.K.F. Yim, *Fucoidan for cardiovascular application and the factors mediating its activities*. Carbohydr Polym, 2021. **270**: p. 118347.
5. Fernandes, A.S., et al., *Marine-Inspired Drugs and Biomaterials in the Perspective of Pancreatic Cancer Therapies*. Mar Drugs, 2022. **20**(11).
6. Miyata, Y., et al., *Present Status, Limitations and Future Directions of Treatment Strategies Using Fucoidan-Based Therapies in Bladder Cancer*. Cancers (Basel), 2020. **12**(12).
7. Jin, J.O., et al., *Seaweeds in the Oncology Arena: Anti-Cancer Potential of Fucoidan as a Drug-A Review*. Molecules, 2022. **27**(18).
8. Luthuli, S., et al., *Therapeutic Effects of Fucoidan: A Review on Recent Studies*. Mar Drugs, 2019. **17**(9).
9. Chadwick, M., et al., *A Comparative Review of Alternative Fucoidan Extraction Techniques from Seaweed*. Marine Drugs, 2025. **23**(1): p. 27.
10. Saetan, U., et al., *Potential health benefits of fucoidan from the brown seaweeds *Sargassum plagiophyllum* and *Sargassum polycystum**. Journal of Applied Phycology, 2021. **33**(5): p. 3357-3364.

11. Zayed, A., et al., *Structural tailoring of fucoidan backbones for maximizing their benefits: Enzymatic, chemical, and physical strategies*. *Journal of Applied Phycology*, 2023. **35**(5): p. 2445-2462.
12. Hu, S., et al., *Low Molecular Weight, 4-O-Sulfation, and Sulfation at Meta-Fucose Positively Promote the Activities of Sea Cucumber Fucoidans on Improving Insulin Resistance in HFD-Fed Mice*. *Marine Drugs*, 2022. **20**(1): p. 37.
13. Yang, C., et al., *Neuroprotective and Anti-Inflammatory Activity of Undaria pinnatifida Fucoidan In Vivo—A Proteomic Investigation*. *Marine Drugs*, 2025. **23**(5): p. 189.
14. Ebrahimi, B., et al., *Antioxidant and immunomodulatory activity of Perna canaliculus oil extract in combination with low molecular weight fucoidan extracted from Undaria pinnatifida*. *Future Foods*, 2025. **11**: p. 100652.
15. Li, Q., et al., *In vivo immunomodulatory activity of fucoidan from brown alga Undaria pinnatifida in sarcoma 180-bearing mice*. *Journal of Functional Foods*, 2023. **103**: p. 105486.
16. Shi, F.-S., et al., *Fucoidan from Ascophyllum nodosum and Undaria pinnatifida attenuate SARS-CoV-2 infection in vitro and in vivo by suppressing ACE2 and alleviating inflammation*. *Carbohydrate Polymers*, 2024. **332**: p. 121884.
17. Giuliani, M., et al., *Undaria pinnatifida fucoidan extract inhibits activation of the NF-κB signaling pathway by herpes simplex virus type 1 and prevents amyloid-β peptide synthesis in retinal pigment epithelium cells*. *Archives of Virology*, 2025. **170**(2): p. 27.
18. Ahmad, T., et al., *Anti-Inflammatory Activity of Fucoidan Extracts In Vitro*. *Marine Drugs*, 2021. **19**(12): p. 702.
19. Kim, K.-J., K.-Y. Yoon, and B.-Y. Lee, *Low molecular weight fucoidan from the sporophyll of Undaria pinnatifida suppresses inflammation by promoting the inhibition of mitogen-activated protein kinases and oxidative stress in RAW264.7 cells*. *Fitoterapia*, 2012. **83**(8): p. 1628-1635.
20. Flórez-Fernández, N., et al., *Relevance of the Extraction Stage on the Anti-Inflammatory Action of Fucoidans*. *Pharmaceutics*, 2023. **15**(3): p. 808.
21. Vaamonde-García, C., et al., *Study of fucoidans as natural biomolecules for therapeutical applications in osteoarthritis*. *Carbohydrate Polymers*, 2021. **258**: p. 117692.
22. Lim, J.-M., H.J. Yoo, and K.-W. Lee, *High Molecular Weight Fucoidan Restores Intestinal Integrity by Regulating Inflammation and Tight Junction Loss Induced by Methylglyoxal-Derived Hydroimidazolone-1*. *Marine Drugs*, 2022. **20**(9): p. 580.
23. Li, P. and M. Chang, *Roles of PRR-Mediated Signaling Pathways in the Regulation of Oxidative Stress and Inflammatory Diseases*. *International Journal of Molecular Sciences*, 2021. **22**(14): p. 7688.
24. Zheng, W., et al., *Undaria pinnatifida fucoidan ameliorates dietary fiber deficiency-induced inflammation and lipid abnormality by modulating mucosal microbiota and protecting intestinal barrier integrity*. *International Journal of Biological Macromolecules*, 2023. **247**: p. 125724.
25. Phull, A.-R., et al., *In vitro and in vivo evaluation of anti-arthritis, antioxidant efficacy of fucoidan from Undaria pinnatifida (Harvey) Suringar*. *International Journal of Biological Macromolecules*, 2017. **97**: p. 468-480.
26. Lee, J.H., et al., *The Antioxidant Activity of Undaria pinnatifida Sporophyll Extract Obtained Using Ultrasonication: A Focus on Crude Polysaccharide Extraction Using Ethanol Precipitation*. *Antioxidants (Basel)*, 2023. **12**(11).
27. Mak, W., et al., *Fucoidan from New Zealand Undaria pinnatifida: Monthly variations and determination of antioxidant activities*. *Carbohydrate Polymers*, 2013. **95**(1): p. 606-614.
28. Zhao, Y., et al., *Fucoidan Extracted from Undaria pinnatifida: Source for Nutraceuticals/Functional Foods*. *Mar Drugs*, 2018. **16**(9).
29. Koh, H.S.A., J. Lu, and W. Zhou, *Structure characterization and antioxidant activity of fucoidan isolated from Undaria pinnatifida grown in New Zealand*. *Carbohydrate Polymers*, 2019. **212**: p. 178-185.
30. Yu, J., et al., *Fucoidan Extracted From Sporophyll of Undaria pinnatifida Grown in Weihai, China – Chemical Composition and Comparison of Antioxidant Activity of Different Molecular Weight Fractions*. *Frontiers in Nutrition*, 2021. **Volume 8 - 2021**.
31. Silva, M.M.C.L., et al., *Comparison of in vitro and in vivo antioxidant activities of commercial fucoidans from *Macrocystis pyrifera*, *Undaria pinnatifida*, and *Fucus vesiculosus**. *International Journal of Biological Macromolecules*, 2022. **216**: p. 757-767.
32. Kim, M.E. and J.S. Lee, *Advances in the Regulation of Inflammatory Mediators in Nitric Oxide Synthase: Implications for Disease Modulation and Therapeutic Approaches*. *Int J Mol Sci*, 2025. **26**(3).

33. Yang, H., et al., *COX-2 in liver fibrosis*. Clinica Chimica Acta, 2020. **506**: p. 196-203.
34. Song, K.-M., et al., *High yield ultrasonication extraction method for Undaria pinnatifida sporophyll and its anti-inflammatory properties associated with AP-1 pathway suppression*. LWT - Food Science and Technology, 2015. **64**(2): p. 1315-1322.
35. Zhang, J.M. and J. An, *Cytokines, inflammation, and pain*. Int Anesthesiol Clin, 2007. **45**(2): p. 27-37.
36. Chen, X.-W., et al., *Sulfated Undaria pinnatifida polysaccharides inhibit kidney stone formation through crystalline modulation and relieving cellular oxidative damage and inflammation*. Biomaterials Science, 2025. **13**(6): p. 1512-1528.
37. Kim, K.-J. and B.-Y. Lee, *Fucoidan from the sporophyll of Undaria pinnatifida suppresses adipocyte differentiation by inhibition of inflammation-related cytokines in 3T3-L1 cells*. Nutrition Research, 2012. **32**(6): p. 439-447.
38. Vaamonde-García, C., et al., *In Vitro Study of the Therapeutic Potential of Brown Crude Fucoidans in Osteoarthritis Treatment*. International Journal of Molecular Sciences, 2022. **23**(22): p. 14236.
39. Wimmer, B.C., et al., *Undaria pinnatifida Fucoidan Enhances Gut Microbiome, Butyrate Production, and Exerts Anti-Inflammatory Effects in an In Vitro Short-Term SHIME® Coupled to a Caco-2/THP-1 Co-Culture Model*. Marine Drugs, 2025. **23**(6): p. 242.
40. Yang, J.-H., *Topical Application of Fucoidan Improves Atopic Dermatitis Symptoms in NC/Nga Mice*. Phytotherapy Research, 2012. **26**(12): p. 1898-1903.
41. Li, X., et al., *Fucoidan from Undaria pinnatifida prevents vascular dysfunction through PI3K/Akt/eNOS-dependent mechanisms in the l-NAME-induced hypertensive rat model*. Food & Function, 2016. **7**(5): p. 2398-2408.
42. Herath, K., et al., *The Role of Fucoidans Isolated from the Sporophylls of Undaria pinnatifida against Particulate-Matter-Induced Allergic Airway Inflammation: Evidence of the Attenuation of Oxidative Stress and Inflammatory Responses*. Molecules, 2020. **25**(12).
43. Shanmugasundaram, D., et al., *Fucoidan Ameliorates Testosterone-Induced Benign Prostatic Hyperplasia (BPH) in Rats*. Res Rep Urol, 2024. **16**: p. 283-297.
44. Jiang, P., et al., *Sulfated polysaccharides from Undaria pinnatifida improved high fat diet-induced metabolic syndrome, gut microbiota dysbiosis and inflammation in BALB/c mice*. International Journal of Biological Macromolecules, 2021. **167**: p. 1587-1597.
45. Kang, K.S., et al., *Undaria pinnatifida fucoidan extract protects against CCl4-induced oxidative stress*. Biotechnology and Bioprocess Engineering, 2008. **13**(2): p. 168-173.
46. Oh, J.-Y., et al., *Protective Effects of Fucoidan Isolated from Celluclast-Assisted Extract of Undaria pinnatifida Sporophylls against AAPH-Induced Oxidative Stress In Vitro and In Vivo Zebrafish Model*. Molecules, 2020. **25**(10): p. 2361.
47. Buttó, L.F. and D. Haller, *Dysbiosis in intestinal inflammation: Cause or consequence*. International Journal of Medical Microbiology, 2016. **306**(5): p. 302-309.
48. Zeng, M.Y., N. Inohara, and G. Nuñez, *Mechanisms of inflammation-driven bacterial dysbiosis in the gut*. Mucosal Immunology, 2017. **10**(1): p. 18-26.
49. Nagao-Kitamoto, H. and N. Kamada, *Host-microbial Cross-talk in Inflammatory Bowel Disease*. Immune Netw, 2017. **17**(1): p. 1-12.
50. Liyanage, N.M., et al., *The Role of Seaweed Polysaccharides in Gastrointestinal Health: Protective Effect against Inflammatory Bowel Disease*. Life (Basel), 2023. **13**(4).
51. Liu, M., et al., *Fucoidan alleviates dyslipidemia and modulates gut microbiota in high-fat diet-induced mice*. Journal of Functional Foods, 2018. **48**: p. 220-227.
52. Li, L., et al., *Undaria pinnatifida improves obesity-related outcomes in association with gut microbiota and metabolomics modulation in high-fat diet-fed mice*. Applied Microbiology and Biotechnology, 2020. **104**(23): p. 10217-10231.
53. Zhang, P., et al., *Polysaccharides from edible brown seaweed Undaria pinnatifida are effective against high-fat diet-induced obesity in mice through the modulation of intestinal microecology*. Food & Function, 2022. **13**(5): p. 2581-2593.
54. Yang, C., et al., *Fucoidan from Undaria pinnatifida Enhances Exercise Performance and Increases the Abundance of Beneficial Gut Bacteria in Mice*. Marine Drugs, 2024. **22**(11): p. 485.

55. Zheng, W., et al., *Undaria pinnatifida fucoidan contributes to anti-inflammation activity of Bacteroides in fiber-deficient mice via modulation of gut microbiota and protection of intestinal barrier integrity*. International Journal of Biological Macromolecules, 2023. **252**: p. 126256.
56. Rinninella, E., et al., *What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases*. Microorganisms, 2019. **7**(1): p. 14.
57. Spychala, M.S., et al., *Age-related changes in the gut microbiota influence systemic inflammation and stroke outcome*. Ann Neurol, 2018. **84**(1): p. 23-36.
58. Stojanov, S., A. Berlec, and B. Štrukelj, *The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease*. Microorganisms, 2020. **8**(11).
59. An, J., H. Kwon, and Y.J. Kim, *The Firmicutes/Bacteroidetes Ratio as a Risk Factor of Breast Cancer*. Journal of Clinical Medicine, 2023. **12**(6): p. 2216.
60. Yin, Y., et al., *Progress in the investigation of the Firmicutes/Bacteroidetes ratio as a potential pathogenic factor in ulcerative colitis*. Journal of Medical Microbiology, 2025. **74**(1).
61. Ren, P., et al., *Fucoidan exerts antitumor effects by regulating gut microbiota and tryptophan metabolism*. International Journal of Biological Macromolecules, 2025. **300**: p. 140334.
62. Park, E.-J., et al., *High-molecular-weight Fucoidan exerts an immune-enhancing effect in RAW 264.7 cells and cyclophosphamide-induced immunosuppression rat by altering the gut microbiome*. International Immunopharmacology, 2024. **139**: p. 112677.
63. He, J., et al., *Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism*. International Journal of Molecular Sciences, 2020. **21**(17): p. 6356.
64. Vinolo, M.A.R., et al., *Regulation of Inflammation by Short Chain Fatty Acids*. Nutrients, 2011. **3**(10): p. 858-876.
65. Yu, Z.N., et al., *Undaria pinnatifida extract attenuates combined allergic rhinitis and asthma syndrome by the modulation of epithelial cell dysfunction and oxidative stress*. Acta Biochim Biophys Sin (Shanghai), 2024. **57**(5): p. 792-804.
66. Men, Q., et al., *Fucoidan alleviates Salmonella-induced inflammation and mortality by modulating gut microbiota and metabolites, protecting intestinal barrier, and inhibiting NF-κB pathway*. Food Bioscience, 2023. **56**: p. 103209.
67. Zaharudin, N., et al., *Effects of brown seaweeds on postprandial glucose, insulin and appetite in humans – A randomized, 3-way, blinded, cross-over meal study*. Clinical Nutrition, 2021. **40**(3): p. 830-838.
68. Yoshinaga, K. and R. Mitamura, *Effects of Undaria pinnatifida (Wakame) on Postprandial Glycemia and Insulin Levels in Humans: a Randomized Crossover Trial*. Plant Foods for Human Nutrition, 2019. **74**(4): p. 461-467.
69. Teas, J., et al., *Could dietary seaweed reverse the metabolic syndrome?* Asia Pac J Clin Nutr, 2009. **18**(2): p. 145-54.
70. Izaola, O., et al., *Effects of a snack enriched with carob and Undaria pinnatifida (wakame) on metabolic parameters in a double blind, randomized clinical trial in obese patients*. Nutr Hosp, 2020. **34**(3): p. 465-473.
71. Cooper, R., et al., *GFS, a preparation of Tasmanian Undaria pinnatifida is associated with healing and inhibition of reactivation of Herpes*. BMC Complement Altern Med, 2002. **2**: p. 11.
72. Gueven, N., et al., *Micro RNA Expression after Ingestion of Fucoidan; A Clinical Study*. Mar Drugs, 2020. **18**(3).
73. Cox, A.J., et al., *Fucoidan Supplementation Restores Fecal Lysozyme Concentrations in High-Performance Athletes: A Pilot Study*. Mar Drugs, 2020. **18**(8).
74. Olas, K., et al., *Immunomodulatory properties of human serum immunoglobulin A: anti-inflammatory and pro-inflammatory activities in human monocytes and peripheral blood mononuclear cells*. Clin Exp Immunol, 2005. **140**(3): p. 478-90.
75. Cox, A.J., et al., *Immunomodulatory effects of fucoidan in recreationally active adult males undertaking 3-weeks of intensified training*. Journal of Sports Sciences, 2023. **41**(20): p. 1875-1882.
76. McFadden, B.A., et al., *Effects of fucoidan supplementation on inflammatory and immune response after high-intensity exercise*. Journal of the International Society of Sports Nutrition, 2023. **20**(1): p. 2224751.
77. Tay, A., et al., *Combining mussel with fucoidan as a supplement for joint pain and prediabetes: Study protocol for a randomized, double-blinded, placebo-controlled trial*. Frontiers in Nutrition, 2022. **9**.
78. Alghazwi, M., et al., *Comparative study on neuroprotective activities of fucoidans from Fucus vesiculosus and Undaria pinnatifida*. International Journal of Biological Macromolecules, 2019. **122**: p. 255-264.

79. Wei, H., et al., *Protective Effects of Fucoidan on A β 25-35 and d-Gal-Induced Neurotoxicity in PC12 Cells and d-Gal-Induced Cognitive Dysfunction in Mice*. *Marine Drugs*, 2017. **15**(3).
80. Kim, J., et al., *Algae Undaria pinnatifida Protects Hypothalamic Neurons against Endoplasmic Reticulum Stress through Akt/mTOR Signaling*. *Molecules*, 2015. **20**(12): p. 20998-1009.
81. Singh, R., et al., *Endoplasmic reticulum stress and its role in various neurodegenerative diseases*. *Brain Research*, 2024. **1826**: p. 148742.
82. Chen, M., et al., *Low molecular weight fucoidan induces M2 macrophage polarization to attenuate inflammation through activation of the AMPK/mTOR autophagy pathway*. *European Journal of Pharmacology*, 2025. **986**: p. 177134.
83. Wu, Y.-q., et al., *Metformin promotes microglial cells to facilitate myelin debris clearance and accelerate nerve repairment after spinal cord injury*. *Acta Pharmacologica Sinica*, 2022. **43**(6): p. 1360-1371.
84. Jhamandas, J.H., et al., *Fucoidan inhibits cellular and neurotoxic effects of β -amyloid (A β) in rat cholinergic basal forebrain neurons*. *European Journal of Neuroscience*, 2005. **21**(10): p. 2649-2659.
85. Mohibullah, M., et al., *The Edible Marine Alga Gracilaria Gracilaria Alleviates Hypoxia/Reoxygenation-Induced Oxidative Stress in Cultured Hippocampal Neurons*. *J Med Food*, 2015. **18**(9): p. 960-71.
86. Mohibullah, M., et al., *Neuroprotective effects of fucoxanthin and its derivative fucoxanthinol from the phaeophyte Undaria pinnatifida attenuate oxidative stress in hippocampal neurons*. *Journal of Applied Phycology*, 2018. **30**(6): p. 3243-3252.
87. Phuna, Z.X. and P. and Madhavan, *A reappraisal on amyloid cascade hypothesis: the role of chronic infection in Alzheimer's disease*. *International Journal of Neuroscience*, 2023. **133**(10): p. 1071-1089.
88. Hu, C., G. Zhang, and Y.-t. Zhao, *Fucoidan attenuates the existing allodynia and hyperalgesia in a rat model of neuropathic pain*. *Neuroscience Letters*, 2014. **571**: p. 66-71.
89. Che, N., Y. Ma, and Y. Xin, *Protective Role of Fucoidan in Cerebral Ischemia-Reperfusion Injury through Inhibition of MAPK Signaling Pathway*. *Biomol Ther (Seoul)*, 2017. **25**(3): p. 272-278.
90. Wang, T., M. Zhu, and Z.Z. He, *Low-Molecular-Weight Fucoidan Attenuates Mitochondrial Dysfunction and Improves Neurological Outcome After Traumatic Brain Injury in Aged Mice: Involvement of Sirt3*. *Cell Mol Neurobiol*, 2016. **36**(8): p. 1257-1268.
91. Wang, X., K. Yi, and Y. Zhao, *Fucoidan inhibits amyloid- β -induced toxicity in transgenic *Caenorhabditis elegans* by reducing the accumulation of amyloid- β and decreasing the production of reactive oxygen species*. *Food & Function*, 2018. **9**(1): p. 552-560.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.