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Abstract

Undaria pinnatifida fucoidan (UPF), a sulphated polysaccharide derived from brown seaweed, has
attracted increasing scientific interest for its wide-ranging anti-inflammatory and neuroprotective
properties. Previous studies have demonstrated that UPF exerts significant anti-inflammatory effects
through the downregulation of pro-inflammatory cytokines, inhibition of key signalling pathways
such as NF-kB and MAPKs, suppression of oxidative stress, and modulation of immune mediators
and gut microbiota. In parallel, emerging evidence highlights UPF's neuroprotective potential,
characterised by reduced neuroinflammation, oxidative damage, and amyloid-beta accumulation,
alongside enhanced antioxidant defence and neuronal function. Current investigations reinforce
these findings, suggesting that UPF may serve as a valuable adjunct in managing inflammation-
related disorders and neurodegenerative conditions. This review summarises the current knowledge
on UPF’s mechanisms of action, with a particular focus on its anti-inflammatory and neuroprotective
pathways and implications for brain health, while also identifying gaps for future research and
clinical translation.
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1. Introduction

Fucoidans are a class of highly sulphated polysaccharides which are abundantly present in the
cell walls of brown algae, including Undaria pinnatifida [1]. These polysaccharides have attracted
considerable scientific attention due to their diverse and potent biological activities in the treatment
of inflammatory-related diseases [2], metabolic disorders [3], cardiovascular conditions [4], and
several cancers [5-7]. The structure of common fucoidans typically consists of a backbone of L-fucose
residues linked by a-(1—3) or alternating a-(1—3) and a-(1—4) glycosidic bonds, with varying
degrees and patterns of sulfation (mainly at C2, C3, or C4), and may include minor sugars such as
galactose, mannose, xylose, and uronic acids, resulting in highly branched and heterogeneous
molecules [8]. Their structural diversity, shaped by factors such as seaweed species, degree and
position of sulphation, molecular weight, and extraction methods, plays a crucial role in determining
their bioactivity [9-12].

Among the various sources of fucoidan, recent research has increasingly focused on Undaria
pinnatifida fucoidan (UPF), which has shown notable anti-inflammatory [13], antioxidant [14],
immunomodulatory [15], antiviral [16], and neuroprotective effects [17] suggesting a significant
potential in biomedical applications.
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This review focuses specifically on the anti-inflammatory and neuroprotective activities of UPF,
highlighting the molecular mechanisms responsible for these biological effects. It also evaluates the
therapeutic potential of UPF in the management of chronic inflammatory conditions and
neurodegenerative diseases, offering insights that may guide future research and clinical
applications.

2. Anti-inflammatory Activity of UPF
2.1. In Vitro Studies

Several in vitro studies have indicated that UPF effectively reduces the expression of key pro-
inflammatory cytokines, such as tumor necrosis factor alpha (TNF-a), Interleukin - 1 beta (IL-1{3), and
IL-6, to mitigate diverse inflammation-related responses. A recent investigation has shown that a 4-
hour pre-treatment with UPF (10, 50, and 100 pg/ml) significantly suppressed lipopolysaccharide
(LPS)-induced upregulation of pro-inflammatory cytokines, including TNF-a, IL-1f, and IL-6, in
human macrophages and peripheral blood mononuclear cells (PBMCs) [18]. A low molecular weight
UPF (100 pg/ml) also exhibited significant anti-inflammation effects by downregulating the gene
expression of these pro-inflammatory cytokines in LPS-induced RAW264.7 cells [19]. Similarly, in a
viral challenge model, UPF (200 pg/ml) reduced pro-inflammatory cytokines, including IL-6, IFN-a,
interferon gamma (IFN-y), and TNF-a, in SARS-CoV-2 infected Caco-2-Nint cells [16]. These effects
are primarily mediated through inhibition of key inflammatory signalling pathways, such as nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-kB) and mitogen-activated protein kinase
(MAPK), which are known to regulate cytokine gene transcription [20]. For example, treatment with
UPF suppresses the nuclear translocation of NF-xB p65 and reduces the phosphorylation of p38 and
extracellular signal-regulated kinases (ERK)1/2 MAPKs, leading to a marked decrease in pro-
inflammatory cytokine expression [1,19,20]. Vaamonde-Garcia et al. (2021) reported that UPF (5
ug/ml) treatment attenuated IL-1p3-induced inflammation in osteoarthritic chondrocytes by blocking
nuclear translocation of NF-kB and inhibiting its activation [21]. In addition, UPF inhibited NF-xB
signalling and downregulated IL-6 and TNF-a in human colon carcinoma cell line (Caco-2) cells [22].

The suppression of oxidative stress represents a fundamental mechanism by which UPF
alleviates inflammation. Oxidative stress, driven by excess reactive oxygen species (ROS), is a key
initiator of inflammatory signalling cascades in various cell types [23]. In intestinal epithelial cell line
(IEC-6) cells, UPF (100 pg/ml) significantly reduced oxidative damage induced by hydrogen peroxide
(H202), as evidenced by decreased levels of malondialdehyde (MDA) and increased activity of
antioxidant enzymes, including catalase (CAT), total superoxide dismutase (T-SOD), and glutathione
(GSH) [24]. These changes were associated with protection against apoptosis and inhibition of pro-
inflammatory responses, indicating that UPF enhances cellular antioxidant defences to maintain
redox balance. Moreover, in RAW264.7 macrophages, low molecular weight UPF (100 pg/ml)
inhibited LPS-induced ROS production and suppressed the phosphorylation of key MAPK signalling
proteins (p38, ERK1/2, and JNK), leading to a significant reduction in the expression of inflammatory
markers such as TNF-a, IL-6, and IL-1f3 [19]. Phull et al. (2017) found that UPF (15.52-500 pig/ml)
exerted significant antioxidant activity in a dose-dependent manner in various in vitro antioxidant
assays, including iron chelating, hydroxyl, nitric oxide, and DPPH activity, along with a reduction in
inflammation responses in rabbit articular chondrocytes [25]. Another in vitro study also indicated
that Undaria pinnatifida water extract (UPE) obtained by ultrasonication (200 and 400 ug/ml)
significantly suppressed ROS production and restored H20z-induced viability reduction in monkey
kidney (Vero) cells in a dose-dependent manner. [26]. The cell-protective activity of the extract in this
study was attributed to its capability to decrease pro-apoptotic protein (Bax) and increase anti-
apoptotic protein (Bcl-2) [26].

Interestingly, there are an increasing number of studies correlating the antioxidant properties of
UPF with its sulphate content and molecular weight [26-31]. For instance, UPF fractions with higher
sulphation levels have been shown to exhibit significantly greater antioxidant activity compared to
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their lower-sulphated counterparts [29]. Moreover, fractionation studies revealed that low molecular
weight UPF components possess enhanced antioxidant effects relative to high molecular weight
forms, particularly in assays such as DPPH radical scavenging and ferric-reducing antioxidant power
(FRAP) tests [30].

UPF inhibits major inflammatory mediators, including inducible nitric oxide synthase (iNOS),
cyclooxygenase-2 (COX-2), nitric oxide (NO), and prostaglandin E2 (PGE2) whose overproduction
exacerbates inflammatory responses and tissue damage [32,33]. For instance, low molecular weight
UPF (100 pg/ml) alleviated LPS-induced inflammation in RAW264.7 cells by suppressing iNOS and
COX2 activities [19]. Similarly, Song et al. in 2015 demonstrated that UPF (50 ug/ml) significantly
inhibited iNOS and COX-2 expression, as well as attenuated the production of NO and PGE2 in LPS-
stimulated RAW264.7 macrophages [34]. Lim et al. (2022) also reported that high molecular weight
UPF (500 pg/ml) mitigated MG-11-induced inflammation in Caco-2 cells by suppressing protein
expression of COX-2 and iNOS and inhibiting NF-«kB activation [22]. Additionally, UPF exerted
potent anti-inflammatory effects in rabbit articular chondrocytes, where UPF significantly reduced
COX-2 expression in a dose (0-100 pg/ml, 24h) and time (30 pg/ml, 048 h) dependent manner [25].
Moreover, Vaamonde-Garcia et al. found that UPF (5 pg/ml) significantly inhibited IL-1p-induced
production of NO, PGE2, and IL-6 in osteoarthritic chondrocytes, suggesting an immunomodulatory
role of UPF in inflammatory conditions [21].

Recent in vitro investigations have suggested that UPF is capable of suppressing chemokine
secretion in various inflammatory cells. Chemokines, also known as chemotactic cytokines, are a
family of small signalling proteins that significantly contribute to regulating the migration and
activation of immune cells during inflammatory responses [1,35]. According to the structure of N-
terminal cysteine residues, chemokines are classified into four major subfamilies, including CXXXC
(fractalkine), C-X-C (IL-8), C-C (monocyte chemoattractant protein [MCP-1], or monocyte
inflammatory protein [MIP-1a], and MIP-1f3), and C chemokines (lymphotactin) [35]. Chen et al.
(2025) demonstrated that sulphated Undaria pinnatifida polysaccharides (50 and 200 ug/ml)
significantly reduced MCP-1 production in vitro during oxalate crystal-induced inflammation in renal
cells [36]. This reduction was linked to decreased cellular inflammation and oxidative stress,
indicating the potential role of UPF in modulating chemokine-driven immune cell recruitment [36].
Kim et al. also reported that UPF treatment (100 pg/ml) significantly suppressed MCP-1 expression
in 3T3-L1 adipocytes, indicating that UPF inhibits inflammation-associated chemokine signalling
during adipocyte differentiation [37]. In addition, Vaamonde-Garcia et al. (2022) indicated that UPF
(5 pg/ml) significantly downregulated IL-6 and IL-8 (CXCLS) in IL-1p-induced human chondrocyte
cells [38]. Similarly, Wimmer et al. (2025) demonstrated that UPF significantly reduced the secretion
of pro-inflammatory chemokines (IL-8 and MCP-1) and increased production of anti-inflammatory
cytokines (IL-6 and IL-10) in the Caco-2/THP-1 co-culture system after microbial stimulation [39],
indicating that UPF can suppress immune cell recruitment and inflammatory signalling at the gut
mucosal level. Moreover, a study on atopic dermatitis found that UPF significantly inhibited the
mRNA expression of several key chemokines, including thymus- and activation-regulated
chemokine (TARC), macrophage-derived chemokine (MDC), and RANTES (also known as CCL5), in
TNF-a or IFN-y-induced human epidermal keratinocytes [40].

The major outcomes derived from in vitro investigations into the anti-inflammatory effects of
UPF are listed in Table 1.
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Table 1. In vitro anti-inflammatory activity of UPF.
T Effecti
Cell Line Model Compound ested . ectwe. Activity Reference
Concentration Concentration
Reduced ROS, COX-2 and iNOS;
Low molecular suppressed phosphorylation of p38,
1,10 and 100 1 1,10 and 100 1 19
LPS weight UPF crvan ug/m an ug/m ERK1/2, and JNK; and downregulated [19]
Murine RAW264.7 stimulation TNF-a, IL-6, and IL-1p
cells
Inhibited COX-2 and iNOS, and attenuated
UPF 12.5, 25, and 50 pg/ml 50 ug/ml production of NO and PGE2 [34]
Inhibi FB activation:
UPF 5,30, and 100 pg/mL 5 ug/ml nhibited N kB activation; and reduced 21]
Human IL-1B- production of NO, PGE2, and IL-6
osteoarthritic induced
hondrocyt infl ti
chondrocytes inflammation - 15 and 30 ug/ml. 5 ug/ml Downregulated IL-6 and IL-8 (CXCLS); [38]
" He He upregulated Nrf-2, HO-1, and SOD-2.
THP-1 cells and LPS-induced 10, 50, 100, and 200 Reduced expression of TNF-a, IL-1p3, and
1
PBMCs inflammation UPE pg/ml 10,50, and 100 pg/ml IL-6 [18]
Caco-2-Nit cells Sl?ffse;izz_z UPF 0-1000 pg/ml 200 pg/ml Reduced IL-6, IFN-a, IFN-y, and TNF-a [16]
. . Inhibited NF-«B signalling; downregulated
Caco-2 cells MG-Hl-induced High molecular 0-1000 pg/ml 500 pg/ml IL-6 and TNF-c; and suppressed COX-2 [22]

inflammation weight UPF

and iNOS expression
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Table 1. Cont.
T Effecti
Cell Line Model Compound ested . ectwe. Activity Reference
Concentration Concentration
H2Oez-induced 10, 20, 50, and 100 Decreased levels of MDA, and increased
IEC6 cells oxidative stress UPF ug/ml 100 pg/ml CAT, T-50D, and GSH [24]
Rabbit articular Reduced COX-2; scavenged DPPH, nitric
Antioxidant assays UPF 0-500 pg/ml 2.5-100 pg/ml oxide and hydroxyl radicals; and exhibited [25]
chondrocytes . . .
iron chelating activity
H20:z-induced Water- 50, 100, 200, and 400 Suppressed ROS production; decreased
2U2- .
Vero cells L . ultrasonicated e 200 and 400 pg/ml PP P ’ [26]
viability reduction UPE pg/ml Bax; and increased Bcl-2
Oxa.late crystal- sulph'ated 'l{ndarza 50, 100, 150, 200, and Beduced ROS and MCP-1 production;
Human renal cells induced pinnatifida 250 ug/ml 200 pg/ml increased SOD content; and decreased [36]
inflammation polysaccharides He secretion of TNF-at and IL-1[3
Reduced production of ROS, SOD, and
3T3-L1 adipocytes Adipogenesis UPF 1,10, and 100 pg/ml 100 pg/ml GPx; and downregulated expression of [37]
TNF-a, MCP-1 and PAI-1
. . Reduced secretion of IL-8 and MCP-1;
Caco-2/THP-1 1\./hcrob1'al UPF 25¢g/ 25¢g/1 decreased TNF-a; and increased IL-6 and [39]
coculture stimulation
IL-10
i‘iﬁ?ﬁflij 1211?1 TNFi_r?dorciiN-Y_ UPF 400 pg/mL 400 pg/mL Inhibited expression of TARC, MDC, and [40]
oY | oneed HE K& RANTES (CCL5)
line inflammation
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2.2. In Vivo Studies

A substantial body of in vivo studies further supports the notion that UPF exerts its anti-
inflammatory effects by suppressing pro-inflammatory cytokines such as TNF-«, IL-13, and IL-6
[13,41-43]. Herath et al. (2020) reported that a 7-day oral administration of UPF (400 mg/kg/day)
significantly attenuated particulate matter (PM) and ovalbumin (OVA)-induced IL-4, IL-17a, and IL-
33 increase in lungs of a murine model of allergic airway inflammation [42]. In a later study, 27 days
of UPF supplementation (400 mg/kg/day) significantly reduced TNF-a, IL-6, and IL-1f3, and mitigated
inflammation responses in the colon of dietary fibre deficiency (FD)-induced mice [24]. Similar effects
of UPF were reported by Shi et al. (2024) in a Syrian hamster model of virus infection, where 6 days
oral administration of UPF (200 mg/kg/day) alleviated SARS-CoV-2-induced lung and
gastrointestinal tract injury by suppressing gene expression of TNF-at and IL-6 [16]. Lim et al. (2022)
also indicated that 4 weeks oral administration of high molecular weight UPF (25 mg/kg/day)
significantly inhibited MG-H1-caused TNF-a increase in mouse colon tissues [22]. Similarly, a 10-
week oral administration of UPF (400 mg/kg/day) suppressed systemic inflammation in a high-fat
diet (HFD)-induced obese mouse model [13]. The results of the study showed that UPF significantly
reduced the expression of pro-inflammatory cytokines (TNF-a, IL-1§3, and IL-6) in skeletal muscle,
small intestine, and hypothalamus [13].

The antioxidant properties of UPF have been well demonstrated in animal models of
inflammatory-related disorders. In HFD-fed mice, a 10-week oral administration of sulphated
polysaccharides from Undaria pinnatifida significantly (100, 300, and 500 mg/kg/day) reduced markers
of oxidative stress, including MDA and SOD in liver tissues, alongside an inhibition of triglycerides
(TG), low-density lipoprotein cholesterol (LDL-c), and TNF-a production, suggesting that the
suppression of oxidative stress contributed to hepatic lipid metabolism improvements, and mitigated
HFD-induced inflammatory conditions [44]. Similarly, 7 days of UPF oral gavage (100 and 400
mg/kg/day) attenuated MDA in the serum and lungs of PM-induced allergic airway inflammatory
mice [42]. Phull et al. (2017) also reported that 25 days UPF administration (150 mg/kg/day)
significantly decreased arthritis-induced endogenous antioxidant enzymes such as CAT, peroxidase
(POD), and SOD [25]. This reduction was mainly due to UPF capability to scavenge the free radicals,
abrogate ROS-induced oxidative stress, and maintain the oxidative flux [25]. In contrast, Kang et al.
found that 14 days UPF intraperitoneal administration (100 mg/kg/day) markedly prevented
oxidative stress in carbon tetrachloride (CCL4)-induced rats by increasing antioxidant enzymes (CAT,
SOD, and glutathione peroxidase [GPx]), and decreasing markers of oxidative damage (MDA) in liver
[45]. These results are in line with the findings of Zheng et al. (2023), where 27 days of UPF treatment
(400 mg/kg/day) significantly elevated the levels of CAT and T-SOD, and attenuated
myeloperoxidase (MOP) and MDA production in the colon tissues of FD-induced mice [24],
suggesting that UPF exerts a protective effect against inflammation-associated oxidative damage by
enhancing endogenous antioxidant defences and reducing lipid peroxidation, thereby contributing
to the amelioration of oxidative stress in various inflammatory disease models.

Recent studies have also demonstrated that UPF exhibits strong antioxidant activities in an in
vivo zebrafish model, a vertebrate species with notable biochemical and physiological similarities to
mammals [31,46]. The findings suggest that UPF effectively mitigates oxidative stress induced by 2,2'-
azobis (2-amidinopropane) dihydrochloride (AAPH) and H:0, as evidenced by increased survival
rates, reduced cellular apoptosis, decreased heart rate, and lower levels of ROS and lipid peroxidation
[31,46].

UPF has been shown to ameliorate inflammatory responses by modulating gut microbiota
composition. A bidirectional relationship exists between gut dysbiosis and host inflammation,
whereby microbial imbalance promotes inflammatory processes, which in turn further disrupt the
gut microbial ecosystem [47-50]. Recent studies have indicated that UPF treatment significantly
attenuated intestinal inflammation by restoring microbial balance, notably decreasing Firmicutes and
increasing Bacteroidetes in the gut of HFD-induced obese mice [44,51-54]. Comparable outcomes were
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observed in FD-induced inflammatory mouse models, where 27 days of oral UPF administration (300
and 400 mg/kg/day) led to a marked increase in Bacteroidetes and a reduction in Firmicutes within
colon tissues [24,55]. As the dominant phyla in the gut, Firmicutes and Bacteroidetes play key roles in
maintaining intestinal homeostasis [56], and imbalances in their ratio have been associated with
various inflammatory disorders [57-60]. The anti-inflammatory effects of UPF may also derive from
its prebiotic properties, as evidenced by reductions in pathogenic taxa (Faecalibaculum,
Desulfovibrionales, Proteobacteria, and Clostridia) and enrichment of beneficial bacteria (Akkermania
muciniphila, Bacteroides, Bifidobacterium spp., and Lactobacillus) [52-54,61]. Additionally, Park et al.
(2024) reported that 4 weeks of UPF supplementation (50, 100, and 200 mg/kg/day) significantly
increased the abundance of Papillibacter cinnamivorans, a butyrate-producing bacterium, in
immunosuppressed rats [62]. Butyrate, one of the short-chain fatty acids (SCFAs), mitigates
inflammation by interacting with immune cells, promoting anti-inflammatory cytokines, and
suppressing pro-inflammatory mediators through G-protein coupled receptors (GPR41/43) and
inhibition of histone deacetylases (HDACsS) [63,64]. Similarly, Zheng et al. (2023) have suggested that
27 days of UPF supplementation (400 mg/kg/day) significantly restored HFD-induced reduction in
colonic SCFAs, including acetate, propionate, and butyrate [24], suggesting that UPF may exert its
anti-inflammatory effects, at least in part, by restoring SCFA levels and modulating immune
responses through established SCFA-mediated pathways.

UPF has been reported to attenuate immune cell infiltration, including macrophages and T cells,
and to ameliorate inflammatory responses in allergic conditions. Herath et al. (2020) indicated that 7
days of UPF oral gavage (400 mg/kg/day) significantly reduced PM-exacerbated infiltration of
inflammatory cells, such as F4/80* macrophages, CD4* T lymphocytes, Gr-1* granulocytes, and
eosinophils, in the trachea and lungs of OV A-sensitised mice [42]. The results also showed that UPF
decreased serum level of immunoglobulin E (Ige) and suppressed inflammatory provocation-
induced increase in goblet cell hyperplasia and mucus secretion [42], suggesting potent therapeutic
effects of UPF in allergic airway inflammation. Similarly, Yu et al. (2024) demonstrated that 16 days
administration of ethanol-extracted UPE (50, 100, and 200 mg/kg/day) mitigated combined allergic
rhinitis and asthma syndrome by inhibiting the accumulation of inflammatory cells, including
epithelial cells, eosinophils, neutrophils, lymphocytes, and macrophages, in both nasal and
bronchoalveolar lavage fluid, as well as a reduction in Th2 cytokines expression (IL-4, IL-5, and IL-
13) [65].

The capability of UPF to re-establish immune homeostasis also plays a significant role in
mitigating inflammatory conditions. Several in vivo studies have demonstrated that UPF exerts
immunomodulatory effects by upregulating the expression of the anti-inflammatory cytokine IL-10
while concurrently downregulating the production of pro-inflammatory cytokines in various animal
models of inflammatory intestinal diseases [44,53,55,66].

The main results of in vivo evaluations of UPF effects are listed in Table 2.
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Table 2. In vivo anti-inflammatory activity of UPF.
Model Animal Compound Dose Treatment Tissue Result Reference
Skeletal Muscle Reduced TNF-a, IL-1§3, and IL-6
Male
and 400 Oral Reduced TNF-a, IL-1B, IL-6, NF-Kb, Tjp1, GPR41
female UPF supplementation ~ Small Intestine ’ e ’ ’ ’ [13]
C57BL/6] mg/kg/day for 10 weeks and GPR43
mice
Plasma Reduced IL-1a and IL-6
Male
and 400 Oral Increased abundance of Bacteroidetes,
female UPF supplementation Faeces Bacteroides/Prevotella, Akkermansia muciniphila, and [564]
C57BL/6] mg/kg/day for 10 weeks Lactobacillus; and reduced F/B ratio
mice
HFD-induced
obesity Serum Reduced levels of TC, TG, and LDL-c; increased
HDL-c; suppressed FITC and LPS
Increased expression of ABCGS8, PPAR-y, PGC-1a
Liver and CAT; reduced content of TC, TG, and MDA;
Male Sulphate(‘i 150 and and inhibited LPS production
BALB/c polysacchansies 300 Oral gavage (53]
. from Undaria for 10 weeks
mice pinnatifida mg/kg/day Colon Increased IL-10 expression; and reduced IL-6
Increased abundance of Bacteroidetes, Bacteroidaceae,
and Prevotellaceae; decreased Firmicutes, and
Faeces

Proteobacteria; increased levels acetate, propionate,
and butyrate; and reduced F/B ratio

Table 2. Cont.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.



https://doi.org/10.20944/preprints202507.2631.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 July 2025

d0i:10.20944/preprints202507.2631.v1

9 of 22
Model Animal Compound Dose Treatment Tissue Result Reference
Serum Reduced levels of TC, TG, LDL-c, LPS, and FITC;
and increased HDL-c
Liver Suppressed levels of LDL-c and MDA; and
Male olSI;LF::}cl;zcildes 100, 300, Oral gavage increased SOD
BALB/c PO ) and 500 gavag [44]
. from Undaria for 10 weeks Colon Decreased TNF-o; and increased IL-10
mice nnatifida mg/kg/day
HFD-induced prina
obesity Increased Bacteroidetes abundance; reduced
Faeces Firmicutes, Desulfovibrionales, and Clostridia; and
increased levels acetate, propionate, and butyrate
I S L .
Male - Undari Ora id msesse Bt Bocsinans, nd
C57BL/6] pinnatifida 10% (w/w)  supplementation Faeces 9 . g [52]
. Bacteroides; and reduced Firmicutes, Lachnospiraceae,
mice powder for 10 weeks o
Streptococcaceae, Marinifilaceae
Serum Suppressed levels of TC and LDL-c
HFD-induced Male 50and 100 Oral
'-1'r1 uce‘ BALB/c UPF an ral gavage Liver Attenuated levels of TG and CHO [51]
dyslipidaemia ) mg/kg/day for 8 weeks
mice
Faeces Increased Bacteroidetes; and reduced Firmicutes
. Increased phosphorylation of eNOS and Akt; and
Thoracic aorta )
I-NAME-induced =~ Male SD UDE 20 and 100 Oral gavage decreased levels of iNOS and NO (41]
hypertension rats mg/kg/day for 4 weeks
Serum Decreased levels of TNF-a and IL-1p
Table 2. Cont.
Model Animal Compound Dose Treatment Tissue Result Reference
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Suppressed MDA level; attenuated eosinophils,
Lung Gr-1+ cells, F4/80* macrophage, and CD4* T cell
Particulate-matter- infiltration; and reduced IL-4, IL-17a, and IL-33
induced allergic Female 100 and Oral gavage
. BALB/c UPF 400 Attenuated eosinophils, Gr-1+ cells, F4/80* [42]
airway . for 7 days Trachea et .
. . mice mg/kg/day macrophage, and CD4+ T cell infiltration
inflammation
Inhibited MDA level; attenuated total IgE; and
Serum
reduced IL-4
Reduced levels of testosterone and DHT; increased
Oral Prostate Bax; and reduced Bcl-2 expression
Testosterone- Male SD 40 and 400 .. . ’ p
. UPF administration for [43]
induced BPH rats mg/kg/day 4 weeks S Decreased levels of IL-13, TNF-q, testosterone,
erm DHT, and PSA
Increased levels of occludin, ZO-1, and claudin-3;
Male 100 and Oral reduced expression of TNF-a, IL-6, and IL-1(3;
BALB/c UPF 400 supplementation Colon increased IL-10; suppressed MDA, MOP, and LPS; [24]
mice mg/kg/day for 4 weeks promoted CAT and T-SOD; and increased
production of acetate, propionate, and butyrate
Fiber deficiency-
induced intestinal Reduced expression of TNF-a and IL-1p3; elevated
inflammation Colon occludin and IL-10; increased levels of T-SOD and
Male 300 Oral gavage CAT; and decreased COX-2, iNOS, and LPS
BALB/c UPF [55]
mice mg/kg/day for 4 weeks Increased abundance of Bacteroidetes and
Faeces Bacteroidales; and decreased Firmicutes, Clostridiales,
and Ruminococcaceae
Table 2. Cont.
Model Animal Compound Dose Treatment Tissue Result Reference
UPF Lung Downregulated ACE2, IL-6, and TNF-a [16]
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Colon Reduced levels of ACE2, IL-6, and TNF-a
SARS-CoV-2 FerrTale 100 and . .Oral‘ Decreased Firmicutes, Limosillactobacter; increased
. . Syrian 200 administration for ) . . )
infection h ¢ ee/d 6d F Bacteroidota, Patescibacteria, Allobaculum, Candidatus
amsters mg/kg/day ays acces saccharimonas, and Ileibacteria; and increased levels
of acetate and propionate
Oral
-H1-i
MGintesfc?riliced Male High molecular 25and75  administration for Colon Inhibited MPO activity; and decreased expression [22]
. . ICR mice weight UPF mg/kg/day 4 weeks of ZO-1, RAGE, and TNF-a
inflammation
Carrageenan
Male SD di1 1
induced ale S UPF 50 and 150 Oral gavage Serum Decreased production of CAT, POD, and SOD [25]
. ) rats mg/kg/day for 25 days
inflammation
Intraperitoneal Serum Reduced levels of GOT, GPT, ALP, and LDH
CCL4-induced Female UPF 100 in Ii:i  for 2 [45]
oxidative stress SD rats mg/kg/day jection o . Decreased MDA production; and increased SOD,
weeks Liver
CAT, and GPx
Reduced levels of CD31+, Bcl2; increased Bax level
Broad-spectrum Tumour tissue  and CD8* cells; and decreased CD4+ cells and IDO1
antibiotics (ABX) Male 400 Oral gavage i
. C57BL/6 UPF gavag expression (61]
induced tumour . mg/kg/day for 3 weeks
model fice Faeces Increased abundance of Akkermansia,
Bifidobacterium, and Lactobacillus
Table 2. Cont.
Model Animal Compound Dose Treatment Tissue Result Reference
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CycloPhosphamlde— Male SD  High molecular 50, 100, . .Oral‘ Increased abundar.lce of Papillibacter cinnamivorans
induced ) and 200 administration for Faeces and Desulfomicrobium orale; and reduced [62]
. . rats weight UPF ) . .
immunosuppression mg/kg/day 4 weeks Marvinbryantia formatexigens
Attenuated IgE and IgGl1 levels; and increased
Serum
IgG2a
Nasal lavage Increased expression of IFN-y, SOD, and HO-1;
| | fluid & reduced IL-4, IL-5, IL-13, and MDA; and enhanced
Ovalbumin-induced Male Ethanol- 50, 100, , .Ora . Z0O-1 and occludin
BALB/c and 200 administration for [65]
CARAS . extracted UPE
mice mg/kg/day 16 days
Bronchoalveolar Decreased levels of IL-4, IL-5, IL-13, and MDA;
lavage fluid and increased HO-1 and occludin production
Lung Increased expression of occludin and ZO-1
Increased expression of occludin and claudin-1;
Colon reduced TNF-a, IKBat, p-IKBa, p65, and p-p65;
elevated levels of CAT and SOD; and decreased
tyia}gnmoliiﬂin Male 200 and Oral MDA and iNOS
induced BAFB/ ¢ UPF 500 administration for Reduced abundance of Proteobacteria, [66]
inflammation mice mg/kg/day 21 days Colidextribacter, and Oscillibacter; increased

Faeces Parabacteroides, Lactobacillus, Akkermansia,
Lachnospiraceae_NK4A136 group and Muribaculum;
and enhanced levels of acetate and butyrate
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2.3. Clinical Trials

A growing body of clinical evidence supports the therapeutic potential of UPF in modulating
metabolic, immune, and inflammatory responses in humans. Various human studies have
demonstrated that incorporating Undaria pinnatifida (4-6 g/day) into diets help improve metabolic
parameters, including suppressed postprandial glycaemia, modulated appetite sensations, reduced
waist circumference and blood pressure, as well as a decrease in total cholesterol, LDL-cholesterol,
and resistin levels [67-70]. Undaria pinnatifida also exerts potent immunostimulatory properties to
manage Herpes infections by promoting healing and preventing reactivation [71]. Moreover, a
clinical trial showed that a single dose of UPF (1 g) modulated microRNA expression related to
immune response and inflammation, highlighting its systemic regulatory potential [72].
Additionally, a combination of UPF and Fucus vesiculosus fucoidan significantly increased faecal
lysozyme levels, a protein known for its antimicrobial and anti-inflammatory functions, suggesting
that UPF may promote mucosal barrier integrity and reduce mucosal inflammation [73]. Cox et al.
(2023) reported that 3 weeks of UPF supplementation (1 g/day) significantly increased salivary
immunoglobulin (Ig) A contents after an intensified training, indicating UPF properties to enhance
mucosal immunity and provide protective anti-inflammatory benefits [74,75]. In a double-blind
randomised placebo-controlled clinical trial, 2 weeks of UPF administration (1 g/day) significantly
suppressed the upregulation of inflammatory cytokines induced by high-intensity exercise [76].
Similarly, UPF combined with green-lipped mussel mitigated joint pain and prediabetes in a
randomised, double-blinded clinical setting, demonstrating that UPF elicits antioxidant and anti-
inflammatory effects [77].

3. Neuroprotective Effect of UPF

Scientific literature has reported an increasing number of studies highlighting the
neuroprotective effects of UPF in promoting brain health and mitigating the progression of
neurodegenerative diseases such as Alzheimer’s (AD). These effects arise from a multifactorial
interplay involving anti-inflammatory [13], anti-apoptotic [78], antiviral [17], and antioxidant
activities [79] of UPF. Findings from both in vitro and in vivo investigations demonstrate that UPF can
attenuate neuronal apoptosis, inhibit amyloid- (A) aggregation, and suppress the activation of
microglia and astrocytes by reducing oxidative stress and neuroinflammation across various
experimental models of neurodegenerative conditions [13,17].

3.1. In Vitro Studies

Several in vitro studies demonstrated that UPF is capable of suppressing inflammation in
neurodegenerative conditions, primarily through inhibition of the NF-«B signalling pathway and
modulation of the Akt/mTOR and AMPK/mTOR pathways. Notably, Giuliani et al. (2025) reported
that UPF (100 pug/ml) significantly attenuated herpes simplex virus type I (HSV-1)-induced AD-like
pathology. This included a reduction in amyloid precursor protein (APP) production and A
synthesis, alongside inhibiting NF-kB pathway activation and reducing IL-6 expression [17]. Ethanol-
extracted UPE (5 pg/ml) also has been suggested to reduce endoplasmic reticulum (ER) stress and
increase cell viability in hypothalamic neurons via Akt/mTOR signalling, highlighting its anti-
inflammatory and neuroprotective potential [80]. ER stress is closely linked to the activation of
inflammatory responses and is increasingly recognised as a contributing factor in the pathogenesis
of various neurodegenerative diseases [81]. Additionally, Chen et al. (2025) suggested that low
molecular weight UPF (0.125 mg/ml) significantly ameliorated LPS-induced macrophage
inflammatory state by promoting its polarisation from pro-inflammatory M1 phenotype to anti-
inflammatory M2 phenotype through the AMPK/mTOR pathway [82]. Literature has indicated that
modulating the AMPK/mTOR pathway regulates microglia polarisation and reduces
neuroinflammation [83].
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UPF has also been shown to exert neuroprotective effects in various in vitro cell models of
neurodegeneration by enhancing cell viability and attenuating cytotoxicity, particularly in response
to neurotoxic insults such as AP and oxidative stress [17,78,79,84-86]. For instance, Wei et al. (2017)
demonstrated that pre-treatment with UPF (100, 200, 400 pg/ml) for 24 hours protected PC12 cells
from apoptosis induced by Apzs-ssand d-galactose (D-Gal), alongside elevated levels of SOD and GSH
[79]. Similar effects were observed in a rat cholinergic basal forebrain neuron model of AD conditions,
where treatment of a commercial UPF (1 uM) inhibited cellular and neurotoxic effects of Afi-42and
suppressed ROS production [84]. In addition, UPF demonstrated strong free radical-scavenging
activity, effectively inhibiting DPPH and hydroxyl radicals, and reducing ROS production as well as
AP synthesis in HSV-1-infected retinal pigment epithelium (RPE) cells [17]. HSV-1 infection and Af3
synthesis have been associated with the development of AD [87]. Mohibbullah et al. (2018) also
reported that ethanol-extracted UPE (15 ug/ml) enhanced cell viability and reduced cytotoxicity in
hippocampal neurons by decreasing ROS generation, membrane phosphatidylserine exposure,
genomic DNA degradation, and restoring hypoxia-induced mitochondrial depolarization [86].
Notably, although both fucoidans reduced Af1-«-induced oxidative stress and apoptosis levels, UPF
exhibited stronger neuroprotective effects than Fucus vesiculosus fucoidan, likely due to its distinct
structural features such as higher sulphate content and specific molecular weight distribution [78].

The key in vitro outcomes regarding the neuroprotective activity of UPF are comprehensively
outlined in Table 3.
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Table 3. In vitro neuroprotective activity of UPF.
T Effecti
Cell Line Model Compound ested , ect1ve. Activity Reference
Concentration Concentration
. Inhibited NF-kB phosphorylation, IL-6 expression,
Human RPE cell line HSV—l—lnduF:ed AP HC- 100 pg/ml 100 pg/ml and A4 synthesis; and reduced DPPH scavenging [17]
production extracted UPF .
and ROS production
AB-i I 11 viability; A i
Rat PC-12 cells B mdu‘ce‘d UPF 31254100 ug/ml  3.125-100 pg/ml ncreased ce V1‘ab1 ity; reduced ﬁu% aggregation 78]
neurotoxicity and cell apoptosis; and enhanced neurite outgrowth
Improved cell viability; prevented cell apoptosis;
APB25- -Gal- levels of cl - -
(325 .35 and d-Ga Water- 100, 200, and 400 100, 200, and 400 reduced levels of cleaved czilspase 3, CE.IS}.Z)aSG 8,
PC12 cells induced caspase-9, and cytochrome c; increased livin and X- [79]
. extracted UPF ug/ml ug/ml . A . .
neurotoxicity linked apoptosis inhibitor protein expression; and
elevated levels of SOD and GSH
Hvpothalamic Increased cell viability; reduced expression of
yP Tunicamycin- Ethanol- CHOP and ATF-6; decreased levels of cleaved-
neurons . 5-40 pg/ml 5 pg/ml [80]
induced ER stress extracted UPE PARP and cleaved-caspase-3; and modulated
(GT1-7 cells) . .
AKT/mTOR signalling
LPS-induced Low 0.0625, 0.125, Reduced CD86* proportion; increased CD206*
BMDMs macrophage molecular 0.25, 0.5 mg/ml 0.125 mg/ml roportion; regulated AMPK/mTOR pathwa [82]
inflammation weight UPF £, B0 M prop 168 P Y
Rat basal forebrain Ap-induced Improved neuronal survival; inhibited ROS
cholinergic .. UPF 50 nM -1 pM 1uM generation and PKC phosphorylation; and blocked [84]
neurotoxicity
neurons cleavage of caspases 9 and 3
Rat hippocampal Hyp.oxu.a-m.ed.lated Ethanol- 5, 15, 30 ug/ml 15 ug/ml Reduced ROS formation; 1ncrease'd‘ cell viability; [86]
neurons oxidative injury extracted UPE and decreased cytotoxicity
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3.2. In Vivo Studies

UPF has emerged as a promising neuroprotective agent due to its ability to attenuate
neuroinflammation. For example, 10 weeks of UPF oral administration (400 mg/kg/day) significantly
attenuated HFD-induced neuroinflammation in obese mice by downregulating the expression of pro-
inflammatory cytokines (TNF-a, IL-13, IL-6, and IFN-v) in hypothalamic tissues and suppressing the
production of inflammation-related proteins (leucine-rich repeat serine/threonine-protein kinase 2
[Lrrk2], wolframin [Wfs1], and neuroglobin [Ngb]) in the nucleus accumbens [13]. Hu et al. (2014)
also reported that a 10-day intrathecal injection of commercial UPF (15, 50, and 100 mg/kg/day)
mitigated rat neuropathic pain induced by L5 spinal nerve ligation (SNL). The findings suggested
that UPF inhibited microglia and astrocyte activation in the lumbar spinal cord and reduced TNF-q,
IL-1B, and IL-6 expression in the spinal dorsal horn [88]. Similarly, Che et al. (2017) demonstrated
that intraperitoneal injection of commercial UPF (80 and 160 mg/kg/day) for 7 days significantly
ameliorated cerebral ischemia-reperfusion injury (IRI)-caused neurological impairment in rats and
significantly decreased the levels of pro-inflammatory cytokines, including IL-1p, IL-6, MPO, and
TNEF-a [89].

Several in vivo studies have highlighted the effects of UPF in neuroprotection and rehabilitation,
demonstrating its beneficial properties in inhibiting oxidative stress and attenuation neurotoxic
protein aggregation. Specifically, 21 days of oral administration of UPF (50, 100, and 200 mg/kg/day)
improved learning and memory impairments in AD-model mice induced by D-Gal, where UPF
exhibited potent antioxidant effects, enhancing SOD and GSH activity [79]. The ability of UPF to
promote learning and memory in this study is largely attributed to its enhancement of acetylcholine
(ACh) content and choline acetyl transferase (ChAT) enzyme activity, along with the inhibition of
acetylcholine esterase (AChE) enzyme activity, which are key factors involved in the cognitive
dysfunction characteristic of AD [79]. UPF also has been reported to reduce oxidative stress-related
proteins (SOD and MDA), suppress pro-apoptotic proteins (p-p53 and Bax), and elevate anti-
apoptotic protein (Bcl-2) in IRI-induced rats by inhibiting MAPK pathway [89]. Similarly, Wang et al.
(2016) illustrated that intraperitoneal pre-treatment of low molecular weight commercial UPF (50
mg/kg) significantly suppressed neuronal damage and neurological deficits in aged mice after
traumatic brain injury (TBI), where UPF exerted these protective effects by inhibiting oxidative stress
(reduced MDA, 4-hydroxynonenal [4-HNE], ROS and increased CAT, SOD, GPx) and mitochondrial
dysfunction (suppressed cytochrome c release) [90]. In addition, the neuroprotective effects of UPF
have been found in an invertebrate model of AD, where UPF (500 ng/ml) alleviated AP-induced
paralysis by decreasing AP deposition and ROS production in transgenic Caenorhabditis elegans
[91]. Taken together, these findings suggest that UPF confers neuroprotection across diverse
experimental models by modulating oxidative stress, mitochondrial integrity, and apoptosis-related
pathways, supporting its potential as a therapeutic agent in the prevention and treatment of
neurodegenerative disorders (Table 4).
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Table 4. In vivo neuroprotective activity of UPF.
Model Animal Compound Dose Treatment Tissue Result Reference
HFD- Male and 200 Oral Hypothalamus Reduced TNF-a, IL-1§3, IL-6, and IFN-y
induced female UPF Ike/d supplementation Nucleus [13]
m a
obesity C57BL/6] mice se/day for 10 weeks accumbens Suppressed Lrrk2, Wfs1, and Ngb
Lumbar spinal  Inhibited microglia and astrocyte activation; and
SNL-induced Male SPF SD 15,50, and Intrathecal injection cord reduced expression of GFAP and mac-1
neuropathic UPF 100 for 10 d [88]
rats or ays i i - -
pain mg/kg/day Yy Spinal dorsal =~ Downregulated expression of TNF-a, IL-1j3, and
horn IL-6; and attenuated phosphorylation of ERK
IRI-caused Reduced levels of TNF-a, IL-1p3, IL-6, MPO, SOD,
80 and 160 Intraperitoneal
neurological Male SD rats UPF o Ischemic brain MDA, p-p53, p-p38, p-ERK, p-JNK, and Bax; and [89]
) ) mg/kg/day  injection for 7 days )
impairment increased Bcl-2
Increased levels of Ach, ChAT, and GSH;
D-Gal- 50,100, and Oral administration Brain reduced AChE activity; and decreased Af3
induced AD Male ICR mice UPF 200 - [79]
for 21 days deposition
model mg/kg/day
Serum Increased levels of SOD and GSH
Decreased brain edema and cell apoptosis;
Controlled
reduced generation of MDA, 4-HNE, and ROS;
cortical Male C57BL/6  Low molecular 10 and 50 Intraperitoneal
Brain increased levels of CAT, SOD, and GPx; [90]
impact- mice weight UPF mg/kg injection
i suppressed cytochrome c release; and
induced TBI
upregulated Sirt3 expression
Decreased A deposition, aggregation, and
Ap-induced  Caenorhabditis 50-500 Bath immersion Entire
UPF fibrillization; increased expression of pbs-2 and [91]
AD model elegans ng/ml method organism

pbs-5; and reduced ROS production
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4. Conclusions

In summary, Undaria pinnatifida fucoidan (UPF) exhibits robust anti-inflammatory and
neuroprotective properties, as demonstrated by both in vitro and in vivo studies. UPF exerts its anti-
inflammatory effects through the suppression of pro-inflammatory cytokines, inhibition of key
signalling pathways (NF-kB, MAPKSs), reduction of oxidative stress, and modulation of immune
responses, including chemokine expression and gut microbiota composition. Its neuroprotective
potential is similarly multifaceted, involving attenuation of neuroinflammation, oxidative damage,
and amyloidogenic processes, alongside enhancement of antioxidant defences and neuronal function.
Despite these promising findings, the molecular mechanisms underlying UPF’s actions remain
incompletely understood, and its therapeutic effects in humans have yet to be fully confirmed. Future
studies should prioritise detailed mechanistic investigations, standardisation of UPF extraction and
characterisation, and the development of targeted delivery systems to enhance its bioavailability.
Most critically, well-designed clinical trials are essential to validate UPF’s efficacy and safety, and to
support its integration into evidence-based therapeutic strategies.
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