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Abstract: This paper presents an analysis of the number of zeros in the binary representation of

natural numbers. The primary method of analysis involves the use of the concept of the fractional

part of a number, which naturally emerges in the determination of binary representation. This idea is

grounded in the fundamental property of the Riemann zeta function, constructed using the fractional

part of a number. Understanding that the ratio between the fractional and integer parts of a number,

analogous to the Riemann zeta function, reflects the profound laws of numbers becomes the key

insight of this work. The findings suggest a new perspective on the interrelation between elementary

properties of numbers and more complex mathematical concepts, potentially opening new directions

in number theory and analysis.
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1. Introduction

We will use the following well-known fact: if, for the members of the Collatz sequence, zeros

predominate in their binary representation, then these members will lead to a decrease in the

subsequent members according to the Collatz rule. A striking example is when the initial number

in the Collatz sequence is equal to 2n. Let’s write the solution of the equation n = 2x in the form

x = {x}+ [x] and note that the smaller x, the more zeros in the corresponding binary representation

for n. Developing this idea, we come to the following steps.

• Analysis of the binary representation of simple cases of natural numbers.
• Creation of a process for decomposing an arbitrary natural number into powers of two.
• Analysis of the proximity of the process to binary decomposition at the completion of

decomposition at each stage.
• Calculation of the number of zeros in the binary decomposition of a natural number.
• Estimation of the Collatz sequence members depending on the number of ones in the binary

decomposition.

2. Results

This document reveals a comprehensive solution to the Collatz Conjecture, as first proposed in [1].

The Collatz Conjecture, a well-known unsolved problem in mathematics, questions whether iterative

application of two basic arithmetic operations can invariably convert any positive integer into 1. It

deals with integer sequences generated by the following rule: if a term is even, the subsequent term is

half of it; if odd, the next term is the previous term tripled plus one. The conjecture posits that all such

sequences culminate in 1, regardless of the initial positive integer. Named after mathematician Lothar

Collatz, who introduced the concept in 1937, this conjecture is also known as the 3n + 1 problem, the

Ulam conjecture, Kakutani’s problem, the Thwaites conjecture, Hasse’s algorithm, or the Syracuse

problem. The sequence is often termed the hailstone sequence due to its fluctuating nature, resembling

the movement of hailstones. Paul Erdős and Jeffrey Lagarias have commented on the complexity

and mathematical depth of the Collatz Conjecture, highlighting its challenging nature. Consider an

operation applied to any positive integer:

• Divide it by two if it’s even.
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• Triple it and add one if it’s odd.

This operation is mathematically defined as:

f (n) =

{

n
2 , if n ≡ 0 mod 2,

3n + 1, if n ≡ 1 mod 2.

A sequence is formed by continuously applying this operation, starting with any positive integer,

where each step’s result becomes the next input. The Collatz Conjecture asserts that this sequence

will always reach 1 Recent substantial advancements in addressing the Collatz problem have been

documented in works [2]. Now let’s move on to our research, which we will conduct according to the

announced plan. For this, we will start with the following

Theorem 1. Let

M ∈ N,

[αj]− [αj+1] = δj > 0,

ϵ1 < 0.65,

|Fj(x)| < |x|,

αj = [αj] + ϵj,

ϵj < 1,

σj = 1 − ϵj.

M =
j−1

∑
i=1

2[αi ] + 2αj , M =
j

∑
i=1

2[αi ] + 2αj+1 , (1)

Then for δj = 1

σj = 2−1σj+1

(

1 −
σj+1 ln 2

2

)

+ Fj

(

σ3
j+1

12

)

, (2)

and for δj > 1

σj = 2−δj σj+1 + 1 −
2−δj − 2−2δj+1

ln 2
− 2−2δj

σ2
j+1 ln 2

4
+ 2−2δj Rj

(

ln2 2σ3
j+1

8

)

. (3)

Proof. Consider

M − M = 0 =
j

∑
i=1

2[αi ] + 2αj+1 −

[

j−1

∑
i=1

2[αi ] + 2αj

]

= 2[αj ] + 2αj+1 − 2αj

2αj = 2[αj ] + 2αj+1 = 2[αj ] + 2[αj+1]−[αj ]+[αj ]+ϵj+1 .

Next, we move to functional relations between σj and σj+1:

2ϵj = 2−δj+ϵj+1 + 1

⇒ 21−σj = 2−δj+1−σj+1 + 1

⇒ ln(21−σj) = ln 2 − σj ln 2 = ln(2−δj+1−σj+1 + 1).
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Calculating for δj = 1, we get:

ln(2−δj+1−σj+1 + 1)

∣

∣

∣

∣

δj=1

= ln(2−σj+1 + 1)

= ln 2 + ln

(

1 −
σj+1 ln 2

2
+

σ2
j+1 ln2 2

4
+ Fj

(

σ3
j+1

12

))

.

Continuing calculations for δj > 1, we get:

ln(2−δj+1−σj+1 + 1) = ln

(

1 + 2−δj+1 − 2−δj+1 σj+1 ln 2

2
+ 2−δj+1Fj

(

σ2
j+1 + 2−δj+1

)

)

= 2−δj − 2−2δj+1 − 2−δj
σj+1 ln 2

2
+ 2−2δj Fj

(

σ2
j+1

)

.

Thus, we obtain the final formulas.

Theorem 2. Let

M = 3n = 2[α]+{α} =
n∗

∑
i=1

γi2
i,

1 − {α} > 0.55, n∗ =

[

n
ln(3)

ln(2)

]

, (4)

then

∑
γi=0

1 ≥
n∗

2
.

Proof. Let

3n = 2α ⇒ α =
n

ln(3)/ ln(2)
⇒ 3n = 2[α]+{α}.

Using Theorem 1, we create a sequence

ϵi, mi, ϵ1 = {α},

2ϵ1 =
i−1

∑
k=0

2[αk ]−α1 + 2αi−α1 .

Assuming that the binary decomposition process, according to formula (1), stops at the j-th step. From

this it immediately follows that the other terms of the decomposition are zeros and we immediately

reach the truth of the statement of the Theorem. Therefore, we will consider the case when the

generation of the decomposition according to formula (1) does not stop, and j reaches n. This means

that all σj > 0, j < n

We conduct a more detailed analysis of the number of zeros and ones in our binary representation

Introduce the following notations:

l- the number of zeros in the binary representation.

m- the number of ones in the binary representation.

n- the digit capacity of the binary decomposition and then

n=l+m.

δj = 1, αj = 0, β j =

(

(1 −
ln 2δj+1

2
)/2 + Fj

(

σ2
j+1

12

)

)

)−1

δj > 1, αj = −2δj

(

1 −
2−δj − 2−2δj+1

ln 2
+ 2−δj Rj

(

ln2 2σ3
j+1

8
+

2−2δj+1

ln 2

))

, β j = 2δj
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Solving the following system of equations

σj+1 = αj + β jσj

Conduct a series of transformations to understand the following steps.

σn+1 = αn + α1

n−2

∏
k=0

βn−k +
n−2

∑
m=1

βn−m
αn−m

βn−m

m−1

∏
k=0

βn−k + σ1

n−1

∏
k=0

βn−k

σn+1 = αn + β1
α1

β1

n−2

∏
k=0

βn−k +
n−2

∑
m=1

βn−m
αn−m

βn−m

m−1

∏
k=0

βn−k + σ1

n−1

∏
k=0

βn−k

σn+1 = αn +
α1

β1

n−1

∏
k=0

βn−k +
n−1

∑
m=1

αn−m

βn−m

m

∏
k=0

βn−k + σ1

n−1

∏
k=0

βn−k (5)

Introduce the notations

α∗ = inf
0≤i≤n

αi

βi

α∗ = sup
0≤i≤n

αi

βi

A(m) =
m

∑
k=1,δj=1

ln2(β j) +
m

∑
k=1,δj>1

ln2(β j) = A1(m) + A2(m)

Note that δk, σk appear at points with coordinates x(δk), x(σk), x(δk) = x(σk) and by definition αi

1 < α∗ < α∗ < 1.3

Thus, all possible variants with L-zeros will be determined by all possible sets of

(δ1, δ2....δn)

With corresponding coordinates

(x(δ1), x(δ2)....x(δn))

m∗ =
n

∑
i=1,δi>1

δi

Rewrite formula (5)

σn+1

∏
n−1
k=0 βn−k

=
αn

∏
n−1
k=0 βn−k

+ α1β1 +
n−1

∑
m=1

αn−m

βn−m

1

∏
n−1
k=m βn−k

+ σ1

σ1 ≥
σn

2A(n)
−

α∗

2A(n)

n−1

∑
i=1

2A(i)

To calculate the sum in the last inequality, we use the equations

2k = 1 +
k−1

∑
i=0

2i, 2k + 2l = 2l

(

1 +
k−l−1

∑
i=0

2i

)

= 2l +
k−l−1

∑
i=0

2i+l = 2l +
k−1

∑
i=l

2i

It is important to note that here k,l also have their coordinates x(k), x(l) and all i, l < i < k, have

coordinates x(i) which are built on a uniform grid Thanks to these simple formulas and corresponding

coordinates, we can calculate sums using integrals.
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I =
n

∑
i=1

2A(i)

I(γ) =
∫ n−1

0
2γxdx = I + R(n), γ =

m∗ + (ln 2 + ϵ)l

n
>

where R(n) is the residual term which we can neglect for large n Where

L = n − l < m∗

- a given level of the number of zeros.

I(γ) =
1 − 2A(n)

2γ ln 2

α∗
1 − 2−A(n)

2 ln 2(1 + ln2 + ϵ)
≤ σ1,

dI(γ)

dγ
< 0 ⇒

α∗
1 − 2−A(n)

2 ln 2(1 + ln2 + ϵ)
≤ σ1,

dI(γ)

dγ
< 0 ⇒

Note that the smaller γ the larger I(γ) therefore to reach the given level L it is possible only with the

corresponding σ1 and to reach the level L = n/2 it is necessary to choose

0.55 =
1.3

2 ln 2(1 + ln 2 + ϵ)
< σ1

⇒ L ≥ n/2. ⇒

The statement of the theorem is true.

Proof. Let

3n = 2α ⇒ α =
n

ln(3)/ ln(2)
⇒ 3n = 2[α]+{α}.

Using Theorem 1, we create a sequence

ϵi, mi, ϵ1 = {α},

2ϵ1 =
i−1

∑
k=0

2[αk ]−α1 + 2αi−α1 .

Assume that the process of binary decomposition, according to formula (1), stopped at the j-th step.

From which it immediately follows that the remaining terms of the decomposition are zeros and we

immediately reach the truth of the Theorem’s statement. Therefore, we will consider the case when the

generation of decomposition according to formula (1) does not stop, and j reaches n. This means that

all σj > 0, j < n

Let’s conduct a more detailed analysis of the number of zeros and ones in our binary

representation. Introduce the following notations:

l- number of zeros in the binary representation.

m- number of ones in the binary representation.

n- bit depth of the binary decomposition and then

n=l+m.

δj = 1, αj = 0, β j =

(

(1 −
ln 2δj+1

2
)/2 + Fj

(

σ2
j+1

12

)

)

)−1
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δj > 1, αj = −2δj

(

1 −
2−δj − 2−2δj+1

ln 2
+ 2−δj Rj

(

ln2 2σ3
j+1

8
+

2−2δj+1

ln 2

))

, β j = 2δj

Solving the following system of equations

σj+1 = αj + β jσj

we get

σn+1 = αn +
n−1

∑
m=1

αn−m

m−1

∏
k=0

βn−k + σ1

n−1

∏
k=0

βn−k

Let’s perform a series of transformations to understand the following steps.

σn+1 = αn + α1

n−2

∏
k=0

βn−k +
n−2

∑
m=1

βn−m

m−1

∏
k=0

βn−k
αn−m

βn−m
+ σ1

n−1

∏
k=0

βn−k

σn+1 = αn + β1
α1

β1

n−2

∏
k=0

βn−k +
n−2

∑
m=1

βn−m

m−1

∏
k=0

βn−k
αn−m

βn−m
+ σ1

n−1

∏
k=0

βn−k

σn+1 = αn + σ1
α1

β1

n−1

∏
k=0

βn−k +
n−1

∑
m=1

αn−m

βn−m

m−1

∏
k=0

βn−k + σ1

n−1

∏
k=0

βn−k

σn+1 = αn + σ1
α1

β1

n−1

∏
k=0

βn−k +
n−1

∑
m=1

αn−m

βn−m

m−1

∏
k=0

βn−k + σ1

n−1

∏
k=0

βn−k

Introduce notations

α∗ = inf
0≤i≤n

αi

βi

α∗ = sup
0≤i≤n

αi

βi

A(m) =
m

∑
k=1

ln2(β j) =
m

∑
k=1,δj=1

ln2(β j) +
m

∑
k=1,δj>1

ln2(β j)

A(m) =
m

∑
k=1,δj=1

ln2(β j) +
m

∑
k=1,δj>1

(δj + 1) = A1(m) + A2(m)

m∗(t) = inf
m
{A2(m)− m ≥ t}

ν∗(t) =
m∗(t)

∑
k=1

ln2(β j) ≥ m∗(t)(ln 2 − ln(1 − ln2σj+1/2)) ≥ m∗(t) ln 2

Note that δk, σk appear at points with coordinates x(δk), x(σk), x(δk) = x(σk) and by definition of αi

1 < α∗ < α∗ < 1.3

Thus all possible variants with L-zeros will be determined by all possible sets of

(δ1, δ2....δn)

With corresponding coordinates

(x(δ1), x(δ2)....x(δn))

Note that

k > m∗ ⇒ δk = 1,
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σ1 ≥
σn

2A(n)
−

α∗

2A(n)

n−1

∑
i=1

2A(i)

To calculate the sum in the last inequality, we use the following formulas

2k = 1 +
k−1

∑
i=0

2i, 2k + 2l = 2l

(

1 +
k−l−1

∑
i=0

2i

)

= 2l +
k−l−1

∑
i=0

2i+l = 2l +
k−1

∑
i=l

2i

It is important to note that here k,l also have their coordinates x(k), x(l) and all i, l < i < k, have

coordinates x(i) which are built on a uniform grid Thanks to these simple formulas and corresponding

coordinates, we can calculate sums using integrals.

I =
m∗

∑
i=1

2A(i) =
m∗−1

∑
i=1

2i + R(n)

where R(n) is a residual term that we can neglect at large values

I(γ) =
∫ x(m∗)−1

0
2γxdx, γ =

L + ν∗
x(m∗)

>
L + m∗(L) ln 2

x(m∗(L))
, m∗(L) ≥ n − L

Where L- given level of number of zeros.

I(γ) =
1 − 2A(n)

2γ ln 2

α∗
1 − 2−A(n)

2γ ln 2
≤ σ1,

dI(γ)

dγ
< 0 ⇒

α∗
1 − 2−A(n)

2γ ln 2
≤ σ1,

dI(γ)

dγ
< 0 ⇒

Note that the smaller γ the larger I(γ) therefore to reach a given level L only with corresponding σ1 and

to reach the level L = n/2 it is necessary to choose 1.3
2(ln 2+ln 2)

< σ1 and x(m∗) = n/2 ⇒ L ≥ n/2. ⇒

The statement of the theorem is true.

Theorem 3. Let

an =
n

∑
i=0

γi2
i, n > 1000, γi ∈ {0, 1},

then

∃j∗ ∈ {0, 1}, and a4n−j∗ < an.

Proof. Introduce operators defined as follows:

P f =
f

2
, T f = 3 f + 1, Z f = 3 f ,

Ti ∈ {P, T}, Ri ∈ {Z, P}.

Consider all possible scenarios of Collatz sequence behavior, which can be written in the following

form:

an+n = T1T2 . . . Tnan,

We need to estimate each 2n-th term of the Collatz sequence based on the number of applied operators

P, T, Z during n steps.

an+n = TnTn−1 . . . T1an,
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Let an have m ones in its binary representation, then we count the number of applications of operator

Z using the following formula:

m = ∑
Ri=Z,

i≤n

1,

and the number of applications of operator P using the following formula:

∑
Ri=P,
i≤n

1 = m + n − m = n.

Since each application of Z is accompanied by operator P, and the number of applications of operator

P corresponds to the number of zeros in an, which equals n − m. According to the rules of Collatz,

after n steps we have:

an+n =
3m

2n
an + TnTn−1 . . . T11 =

3m

2n
an + Bn,

Bn ≤ 2−n+m
m

∑
j=1

3j

2j
an < 2−n+m · 3m/2m · an ≤ 2−2n+1 · 3m · an.

According to the last formula, we see that the growth of each term of the sequence depends on the

number of ones in the binary representation. Next, we will show that a large number of ones at

the 2n-th step leads to an increase in the number of zeros at the 3n-th step for binary representation

according to the previous theorems, from which it follows that subsequent terms of the sequence

decrease:

a2n = 3man · 2−n + Bn = 3m + 3m(an − 2n) + Bn,

Repeating the reasoning of Theorem 2, consider the equation

2x = a2n = 3man · 2−n + Bn = 3m + 3m(an − 2n) · 2−n + Bn,

x ln 2 = m ln(3) + ln
(

1 + (an − 2n) · 2−n + Bn · 3−m
)

,

From the last equation, to apply the results of theorem 2, we need σ1 >
1

2 ln 2 . To satisfy the last

inequality, consider mj = m − j, θ = (an − 2n) · 2−n,

{x} = min
j<10

{

(m − j) ln(3)

ln(2)
+

ln(1 + θ)

ln 2
+ Fj

(

1

2n ln 2

)}

,

Consider p = (m − j) ln 3
ln 2 = (2k + l)1.5849625007 . . . , ϵ = 1.5849625007 . . . − 1.5, we get

p = (2k + l)(1.5 + ϵ +
ln(1 + θ)

ln 2
) = 3k + (2k + l) · ϵ +

ln(1 + θ)

ln 2
,

{p} = {1.5 · l + (2k + l) · ϵ +
ln(1 + θ)

ln 2
} = {1.5 · l + {(2k + l) · ϵ +

ln(1 + θ)

ln 2
}},

Choosing l from even numbers less than 10, if inequalities 0 ≤ {(2k) · ϵ + ln(1+θ)
ln 2 } ≤ 0.5, are true

{p} = {2k · ϵ +
ln(1 + θ)

ln 2
} = {2k · ϵ +

ln(1 + θ)

ln 2
},

Choosing l from odd numbers less than 10, if inequalities 0.5 < {2k · ϵ + ln(1+θ)
ln 2 } < 1, are true

{p} = {2k · ϵ +
ln(1 + θ)

ln 2
} = {0.5 + (2k + l) · ϵ},
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Using ϵ < 0.1, also satisfy the condition σ1 = 1 − {x} >
1

2 ln 2 .

m∗ number of non-zero γi,

According to theorem 2 we get

m∗ ≤ n/2 + (n − j∗) · ln 3/ ln 2/2,

According to our application of Collatz rules, we have an element a4n−j∗ , and the order of its binary

representation is

n2 = n + (n − j∗) · ln 3/ ln 2/2,

After 3n − j∗ steps of applying Collatz rules we have

a4n−j∗ =
3m∗

22n−j∗
a2n + T3n−j∗T3n−1−j∗ . . . T11 =

3m∗

22n
a2n + B3n,

a4n−j∗ =
3m∗

22n
a2n + T3n−j∗T3n−j∗−1 . . . T11 =

3m∗

22n

(

3m

2n−j∗
an + Bn

)

+ B3n−j∗ ,

a4n−j∗ = 3m∗+m · 2−3n−j∗ an + 3m∗
· 2−2n−j∗Bn + B3n−j∗ ,

a4n−j∗ ≤ q1 · an,

By definition of m∗, l∗, Bn we get

q1 < 1,

Using n > 1000, it follows that q1 < 1 ⇒ a4n−j∗ < an.

Theorem 4. Let

an =
n

∑
i=0

γi2
i, n > 1000, γi ∈ {0, 1},

then

∃j∗ < 0.1n, and a4n−j∗ < an.

Proof. Let’s introduce operators defined by the formulas

P f =
f

2
, T f = 3 f + 1, Z f = 3 f ,

Ti ∈ {P, T}, Ri ∈ {Z, P}.

Consider all possible scenarios of the behavior of the Collatz sequence, which can be written in the

following form:

an+n = T1T2 . . . Tnan,

It is necessary to calculate an estimate for each 2n-th member of the Collatz sequence based on the

number of P, T, Z operators applied during n steps.

an+n = TnTn−1 . . . T1an,

Let an have m units in its binary representation, then calculate the number of applications of the Z

operator by the following formula:

m = ∑
Ri=Z,

i≤n

1,
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and calculate the number of applications of the P operator by the following formula:

∑
Ri=P,
i≤n

1 = m + n − m = n.

Since each application of Z is accompanied by the P operator, and the number of applications of the P

operator corresponds to the number of zeros in an, which is equal to n − m. According to the rules of

Collatz after n steps, we have:

an+n =
3m

2n
an + TnTn−1 . . . T11 =

3m

2n
an + Bn,

Bn ≤ 2−n+m
m

∑
j=1

3j

2j
an < 2−n+m · 3m/2m · an ≤ 2−2n+1 · 3m · an.

According to the last formula, we see that the growth of each member of the sequence depends on the

number of units in the binary representation. Next, we will show that a large number of units on the

2n-th step leads to an increase in the number of zeros in the 3n-th step for the binary representation

according to previous theorems, hence the reduction of subsequent members of the sequence:

a2n = 3man · 2−n + Bn = 3m + 3m(an − 2n) + Bn,

Repeating the reasoning of Theorem 2, consider the equation

2x = a2n = 3man · 2−n + Bn = 3m + 3m(an − 2n) · 2−n + Bn,

x ln 2 = m ln(3) + ln
(

1 + (an − 2n) · 2−n + Bn · 3−m
)

,

From the last equation, in order to apply the results of theorem 2, we need σ1 = 1 − {x} > 0.5. To

fulfill the last inequality, consider mj = m − j, θ = (an − 2n) · 2−n,

{x} = min
j∈{0,1}

{

(m − j) ln(3)

ln(2)
+

ln(1 + θ)

ln 2
+ Fj

(

1

2n ln 2

)}

,

Consider p = (m − j) ln 3
ln 2 = (2k + l)1.5849625007 . . . , ϵ = 1.5849625007 . . . − 1.5, we get

p = (2k + l)(1.5 + ϵ +
ln(1 + θ)

ln 2
) = 3k + (2k + l) · ϵ +

ln(1 + θ)

ln 2
,

{p} = {1.5 · l + (2k + l) · ϵ +
ln(1 + θ)

ln 2
} = {1.5 · l + {(2k + l) · ϵ +

ln(1 + θ)

ln 2
}},

Choosing l = 0, if the inequalities 0 ≤ {(2k) · ϵ + ln(1+θ)
ln 2 } ≤ 0.5 are true,

{p} = {2k · ϵ +
ln(1 + θ)

ln 2
} = {2k · ϵ +

ln(1 + θ)

ln 2
},

Choosing l = 1, if the inequalities 0.5 < {2k · ϵ + ln(1+θ)
ln 2 } < 1 are true,

{p} = {2k · ϵ +
ln(1 + θ)

ln 2
} = {0.5 + (2k + l) · ϵ},

Using ϵ < 0.1, we also satisfy the condition σ1 = 1 − {x} > 0.51.

m∗ is the number of non-zero γi,
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According to theorem 2 we get

m∗ ≤ n/2 + (n − j∗) · ln 3/ ln 2/2,

According to our application of the Collatz rules, we have the element a4n−j∗ , and the order of its

binary representation is

n2 = n + (n − j∗) · ln 3/ ln 2/2,

After 3n − j∗ steps of applying the Collatz rules, we have

a4n−j∗ =
3m∗

22n−j∗
a2n + T3n−j∗T3n−1−j∗ . . . T11 =

3m∗

22n
a2n + B3n,

a4n−j∗ =
3m∗

22n
a2n + T3n−j∗T3n−j∗−1 . . . T11 =

3m∗

22n

(

3m

2n−j∗
an + Bn

)

+ B3n−j∗ ,

a4n−j∗ = 3m∗+m · 2−3n−j∗ an + 3m∗
· 2−2n−j∗Bn + B3n−j∗ ,

a4n−j∗ ≤ q1 · an,

By definition of m∗, l∗, Bn we get

q1 < 1,

Using n > 1000, implies q1 < 1 ⇒ a4n−j∗ < an.

Theorem 5. Let

an =
n

∑
i=0

γi2
i, n > 1000, γi ∈ {0, 1},

then for an the Collatz conjecture is true.

Proof. The proof follows from Theorems 1-3.

Proof. Proof follows from theorem 1-3

6. Conclusions

Our assertion proves that after 3n steps, a sequence with an initial binary length of n arrives at a

number strictly smaller than the initial one, from which the solution to the Collatz conjecture follows.

This is because by applying this process n times, we are guaranteed to arrive at 1.
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