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Abstract

Iron oxide nanoparticles (IONPs) have emerged as key materials in magnetic hyperthermia (MH), a
minimally invasive cancer therapy capable of selectively inducing apoptosis, ferroptosis, and other
cell death pathways while sparing surrounding healthy tissue. This review synthesizes advances in
the design, functionalization, and biomedical application of magnetic nanoparticles (MNPs) for MH,
highlighting strategies to optimize heating efficiency, biocompatibility, and tumor targeting. Key
developments include tailoring particle size, shape, and composition; doping with metallic ions;
engineering multicore nanostructures; and employing diverse surface coatings to improve colloidal
stability, immune evasion, and multifunctionality. We discuss preclinical and clinical evidence for
MH, its integration with chemotherapy, radiotherapy, and immunotherapy, and emerging
theranostic applications enabling simultaneous imaging and therapy. Special attention is given to the
role of MNPs in immunogenic cell death induction and metastasis prevention, as well as novel
concepts for circulating tumor cell capture. Despite promising results in vitro and in vivo, clinical
translation remains limited by insufficient tumor accumulation after systemic delivery, safety
concerns, and a lack of standardized treatment protocols. Future progress will require
interdisciplinary innovations in nanomaterial engineering, active targeting technologies, and real-
time treatment monitoring to fully integrate MH into multimodal cancer therapy and improve patient
outcomes.

Keywords: magnetic hyperthermia; iron oxide nanoparticles; cancer therapy; nanotheranostics;
targeted drug delivery; ferroptosis; immunotherapy; biocompatibility; —multifunctional
nanoplatforms; clinical translation

1. Introduction

As one of the leading global health challenges, malignant diseases remain a major cause of
mortality, primarily arising from the progressive accumulation of genetic mutations in normal cells
that promote unchecked cell division and tumor development. Despite decades of research and
therapeutic advances, the overall mortality rates for several cancer types have only modestly declined
[1]. Conventional cancer treatment strategies typically include surgical resection, radiotherapy, and
systemic therapies such as chemotherapy, hormonal therapy, and targeted biological agents [2].
While these modalities have demonstrated clinical efficacy, they are frequently associated with
significant adverse effects. Surgical interventions, for instance, can result in postoperative
complications, tissue damage, and the potential dissemination of malignant cells, thereby increasing
the risk of metastasis [3]. Chemotherapy involves the administration of cytotoxic agents that often
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lack tumor specificity, leading to collateral damage to healthy tissues and systemic toxicity [4].
Similarly, radiotherapy employs ionizing radiation which, when applied over extended periods, may
compromise the structural and functional integrity of surrounding normal tissues [5].

Hyperthermia treatment, or thermotherapy, has emerged as a promising adjunct or alternative
to conventional treatments. This approach involves elevating the temperature of body tissues to
induce cancer cell apoptosis while sparing normal cells [6]. The therapeutic application of heat dates
back to ancient civilizations, including those of Greece, Egypt, Rome, and India [7]. In the 19t century,
spontaneous tumor regression in febrile patients was documented, prompting early investigations
into hyperthermia for oncological applications, such as in the treatment of cervical cancer [7,8]. Since
the 1970s, hyperthermia has garnered renewed clinical interest, with controlled trials exploring its
efficacy in cancer treatment. Studies have demonstrated that cancer cells are more susceptible to
temperatures between 42-45 °C, undergoing apoptosis, whereas normal cells exhibit greater thermal
resilience [9].

Depending on the tumor’s location, depth, and stage of progression, three main hyperthermia
strategies have been established for clinical application: local, regional, and whole-body
hyperthermia. Whole-body hyperthermia is typically employed in cases involving deep-seated
tumors or disseminated metastases, where the entire body is uniformly heated using methods such
as hot water baths, thermal chambers, or infrared radiation [10-13]. For advanced-stage malignancies
confined to specific areas, regional hyperthermia is applied through techniques like thermal
perfusion, external applicators, or microwave antennas to deliver targeted heat [10-13]. Local
hyperthermia, the least invasive approach, is primarily used for treating localized tumors situated
either superficially or within accessible body cavities.

Over the past century, substantial technological progress has led to the development of magnetic
nanoparticles (MNPs), which have attracted growing interest in biomedical research, particularly in
oncology. These nanomaterials possess the unique ability to convert electromagnetic energy into heat
when exposed to an external alternating magnetic field (AMF) [14,15]. Importantly, the penetration
depth of AMF is not significantly attenuated by biological tissues, allowing effective activation of
MNPs even within deep-seated tumors [15,16]. Once internalized by cancer cells, MNPs function as
localized heat sources, raising the temperature of tumor tissue to levels sufficient to induce apoptosis.
This approach, known as magnetic hyperthermia (MH), has emerged as a promising and innovative
therapeutic strategy with the potential to enhance cancer treatment outcomes while minimizing
damage to surrounding healthy tissues [16,17].

The first experimental evidence supporting the use of MH for cancer treatment was reported in
1957 by Gilchrist et al. [18], who conducted an in vitro study involving lymph nodes containing colon
and rectal cancer metastases. In this pioneering work, maghemite (y-Fe,Os) nanoparticles, ranging in
size from 20 to 100 nm, were introduced into the lymph nodes and subjected to an AMF with an
amplitude (H) of 16 - 19.2 kA/m at a frequency (f) of 1.2 MHz. The resulting temperature increases to
43 - 46 °C successfully eradicated carcinoma cells by destroying the metastatic tissue [18]. As a result
of extensive research and due to their favorable biocompatibility and biodegradability, both
maghemite (y-Fe-Os) and its reduced form, magnetite (Fe;Os), were approved by the U.S. Food and
Drug Administration (FDA) for clinical trials [19]. Consequently, iron oxide nanoparticles have
become the most widely used agents in magnetic hyperthermia (MH) applications [20,21]. The
therapeutic potential of MH reached a significant milestone with the advancement of the German
company MagForce AG, which received regulatory approval from the European Union to clinically
treat glioma patients [22-25].

The interaction between AMFs and biological tissues generates non-specific heating through the
induction of eddy currents. This can activate the body's thermoregulatory responses and produce
complex thermal gradients throughout the patient's body [26,27]. To ensure safety, a limit has been
established for human exposure to AMFs by restricting the product of H and f to a maximum of 5 x
10> A-m"s7! [28]. However, the heat dissipation capabilities of commercially available magnetic
nanoparticles (MNPs), such as Nanotherm, Feridex, and Resovist, remain inadequate within
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physiologically safe AMF parameters. As a result, the therapeutic effect is often insufficient for
complete tumor ablation, limiting the widespread adoption of MH as a standalone treatment option
in clinical settings.

To advance the clinical application of MH in cancer therapy, two principal strategies have been
identified in scientific literature. The first approach focuses on the design and synthesis of magnetic
nanoparticles (MNPs) with enhanced intrinsic magnetic properties, such as increased saturation
magnetization (Ms) and magnetic anisotropy (K), to improve heat generation efficiency even at low
concentrations. This can be achieved by manipulating parameters such as particle size, shape,
chemical composition, and surface morphology. As these aspects have been extensively covered in
previous reviews [29-31], therefore we will briefly summarize the most significant developments in
this area in the first part of our review. Notably, numerous studies have reported that only a small
fraction of systemically administered MNPs effectively accumulate at the tumor site [32].
Consequently, clinical efficacy often relies on direct intratumoral injections, which restrict treatment
to tumors that are accessible [33]. To address this limitation, recent research has increasingly focused
on combining MH with other anticancer modalities within a single, multifunctional MNP-based
nanoplatform [34]. The aim of this review is to highlight the advancements and the challenges that
the magnetic hyperthermia faces from the design of magnetic nanoparticles to ensure
biocompatibility, tumor specificity and clean biodegradation in the living organisms, while still
preserving the hyperthermic and drug delivery properties, towards the biological testing on different
in wvitro, respectively in vivo models and eventually clinical patients. This integrative strategy
represents the second major approach in the field and will be explored in detail in the second part of
this review. Clinical advancements in the field, based on clinical studies of MH efficacy in oncologic
patients, will be further discussed in the third part of this review. Finally, the challenges, outlook and
conclusions regarding the advances of magnetic hyperthermia in oncological research and the
prospects of MH to become an important adjuvant therapy in the oncologic patients are described.

2. Relevant Sections and Discussions

2.1. Toxicity Issues

Magnetite (Fe;O,) nanoparticles (MNPs) are among the most widely investigated nanomaterials
in biomedicine due to their superparamagnetic (SP) properties, ease of functionalization, and intrinsic
biocompatibility. They are extensively employed in applications such as magnetic resonance imaging
(MRI) contrast enhancement, targeted drug delivery, and MH therapy. However, despite their
promising biomedical potential, MNPs are not inherently risk-free. Concerns about both acute and
chronic toxicity have emerged, particularly under conditions of MH, where deliberate nanoparticle
heating can inadvertently damage surrounding healthy tissues [35-37].

In vitro cytotoxicity studies have revealed that Fe;O, nanoparticle-induced toxicity is both dose-
and time-dependent, typically associated with increased production of reactive oxygen species (ROS)
and lipid peroxidation, evidenced by elevated malondialdehyde (MDA) levels. This oxidative stress
can impair cellular enzymes, damage membranes, and compromise cell viability. For instance,
Ahamed et al. [38] demonstrated significant ROS and MDA elevation in A431 and A549 cell lines
exposed to 25-100 pg/mL MNPs, correlating with reduced cell viability. Similarly, recent findings on
human umbilical vein endothelial cells (HUVECs) identified oxidative stress and genotoxic effects at
an ICs of approximately 79 ug/mL [39]. Iron overload from internalized nanoparticles may further
exacerbate toxicity by triggering ferroptosis—a form of programmed cell death driven by lipid
peroxidation—and catalyzing Fenton-type reactions that generate hydroxyl radicals. These highly
reactive species induce DNA strand breaks, protein carbonylation, and membrane damage. Such
mechanisms have been implicated in neuropathological contexts like intracerebral hemorrhage, and
may similarly contribute to nanotoxicity in non-neuronal tissues [40,41]. The surface chemistry of
Fe;O4 nanoparticles plays a pivotal role in modulating their biocompatibility. For example, in porcine
aortic endothelial cells, dextran- or polyethylene glycol (PEG)-coated particles (5nm and 30 nm)
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induced no significant loss of viability or increase in ROS generation even at 0.5 mg/mL after 24 h
exposure. Notably, PEG reduced ROS production by 62.6%, and dextran by 35.2% compared to
uncoated cores, with apoptosis levels remaining below 10% [42]. In contrast, polyethylenimine (PEI)-
functionalized Fe;O, particles (30 nm) displayed pronounced cytotoxicity in SH-SY5Y, MCF-7, and
U937 cell lines, decreasing viability by up to 50% within 24 hours at 100 pg/mL, and even further after
168 hours. These effects, marked by increased ROS, lipid peroxidation, and lactate dehydrogenase
(LDH) release, were largely mitigated upon PEGylation of the PEI coating [43].

In vivo, the toxicity profile of MNPs is influenced by parameters such as dose, administration
route, biodistribution, and particle size. Following systemic administration, MNPs tend to
accumulate in organs of the mononuclear phagocyte system, notably the liver and spleen, where they
may trigger inflammation and tissue injury. For instance, high-dose administration of dextran-coated
iron oxide particles in mice, followed by AMF exposure, resulted in severe hepatosplenic damage or
mortality, whereas lower-dose groups survived but still exhibited signs of tissue stress, including
elevated liver enzymes and splenic necrosis [44]. Particle size is equally critical: ultrasmall MNPs (2.3
and 4.2nm) administered intravenously at 100 mg/kg induced fatal multiorgan oxidative stress,
particularly affecting cardiac tissue, whereas 9.3 nm particles of identical composition showed no
overt toxicity at the same dose [45]. Long-term studies suggest that MNPs are only partially cleared
from the body. Residual iron, often sequestered in ferritin-like structures, can persist in the liver and
spleen for several months post-administration. This has been associated with chronic low-grade
hepatic inflammation and disruption of iron metabolism, although conclusive evidence linking this
persistence to long-term health consequences remains limited [46,47].

2.2. Methods to Enhance the Hyperthermic Capability of Iron Oxide Nanoparticles

The thermal effect generated by MNPs under AMF stimulation is quantified by a physical
parameter known as the specific absorption rate (SAR), also referred to as specific loss power (SLP).
SAR represents the amount of heat released per unit time per unit mass of MNPs and is typically
expressed in watts per gram (W-g1) [48]. The SAR value is influenced by both the intrinsic properties
of the MNPs—such as particle volume and saturation magnetization—and the extrinsic parameters
of the applied AMF. To enhance the induction heating performance, efforts have been directed
toward optimizing the intrinsic magnetic properties of MNPs. Simultaneously, thermal efficiency has
been externally improved by increasing the frequency and amplitude of the AMF in different MH
setups.

2.2.1. Formulation

For biomedical applications requiring “injectable" nanoprobes, superparamagnetic
nanoparticles—commonly referred to as SPIONs (superparamagnetic iron oxide nanoparticles) —are
generally preferred. Their lack of remanent magnetization in the absence of an external magnetic field
facilitates colloidal stability, enhances dispersion in biological fluids, and minimizes the risk of
particle aggregation. Among these, ultra-small SPIONs (typically <5 nm in core diameter) have
emerged as promising candidates for magnetic resonance imaging (MRI) contrast enhancement due
to their excellent magnetic relaxation properties [49,50]. However, in the context of magnetic
hyperthermia (MH), such ultra-small SPIONs often exhibit low specific absorption rate (SAR) values,
limiting their heating efficiency [51]. Furthermore, a significant reduction in heating performance is
commonly observed when SPIONs are internalized into cells or embedded in tissues, likely due to
restrictions in Brownian motion and changes in local viscosity [52]. As a result, considerable research
efforts have been directed toward optimizing nanoparticle properties within the superparamagnetic
regime to enhance the efficacy of magnetically induced hyperthermia under physiological conditions.

The magnetic properties of MNPs are strongly influenced by their size. An increase in the size
or volume of MNPs typically results in a higher Ms, which reflects the net alignment of all magnetic
spins within the particle. This increase continues up to a critical threshold, beyond which M stabilizes
and approaches the bulk material value. Numerous studies have reported a significant increase in
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the SAR with the growth of spherical SPIONSs, ranging from several tens to several hundreds of W/g
[63-58]. As the diameter of MNPs increases, their magnetic anisotropy energy — the energy
responsible for maintaining the magnetic moment in a preferred orientation — also increases. For
each MNP composition, there exists a characteristic size at which the anisotropy energy surpasses the
thermal energy, stabilizing the magnetic moment along a preferred axis known as the easy axis of
magnetization. This transition drives MNPs from a superparamagnetic to a ferromagnetic regime,
characterized by the appearance of hysteresis loops. These loops exhibit remanent magnetization
(M), representing the residual magnetization at zero external field, and coercivity (Hc), the magnetic
field required to bring the magnetization to zero. The magnetic MH efficiency of MNPs is governed
by their dynamic hysteresis behavior [59], which is influenced not only by Neel and Brownian
relaxation mechanisms but also by DC magnetic hysteresis. As a result, SAR values in ferromagnetic
particles can be nearly an order of magnitude higher than in their superparamagnetic counterparts
[60-63]. However, despite their high heating efficiency, ferromagnetic nanoparticles are generally
less suitable for biomedical applications due to their colloidal instability and finite coercive field,
which promote aggregation and reduce biocompatibility [64—66].

Individual SPIONSs often exhibit limited magnetic moments, which restrict their efficiency in
MH. However, when these SPIONs are organized into clusters through self-assembly or aggregation,
magnetic interactions between the closely packed cores can induce collective magnetic behaviors,
resulting in enhanced net magnetic moments [67]. This clustering significantly improves key
magnetic properties, such as Ms and magnetic susceptibility, thereby increasing their responsiveness
to external magnetic fields. Moreover, the clustered architecture provides improved colloidal stability
and resistance to uncontrolled aggregation, preserving SP behavior while ensuring long-term
performance under physiological conditions [68,69]. Cluster formation can occur via two primary
strategies. In a two-step process, SPIONSs are first synthesized as discrete particles, followed by their
assembly into clusters mediated by ligand-induced colloidal interactions, such as hydrophobic or
electrostatic forces [70]. Alternatively, clustering can occur in a single-step synthetic route, wherein
the nanoparticles aggregate during formation [71,72]. The polyol method has been widely employed
for this purpose in the past decade due to its adaptability, scalability, and ability to control particle
morphology. This method enables the formation of various hierarchical structures, including
nanoclusters, nanoflowers, and hollow spheres, by tuning reaction parameters such as temperature,
solvent polarity, and precursor concentration [73-78]. Particularly, flower-like magnetic
nanoparticles (nanoflowers) with coherent crystallographic orientation between cores have garnered
attention for their superior magnetic heating performance [79-81]. The improved SAR values are
thought to arise from collective spin dynamics and magnetic coupling effects within the multicore
structure, which favor more efficient energy dissipation under AMF [82,83].

2.2.2. Shape

In the case of MNPs, surface atoms represent a significant proportion of the total atomic content,
and their magnetic and chemical behavior often diverges from that of the bulk material. This is
primarily due to the intrinsically high surface-to-volume ratio of MNPs, which causes surface effects
to dominate their overall magnetic properties. Notably, the asymmetric coordination of surface atoms
gives rise to spin disorder or spin canting, ultimately reducing the Ms of the nanoparticles [84]. This
phenomenon is especially pronounced in spherical SPIONs, which expose multiple crystallographic
facets with numerous edges and corners [85]. These structural features enhance surface anisotropy
and require greater energy to reorient surface magnetic moments, negatively impacting their heat
dissipation efficiency under AMF. Consequently, the synthesis of anisotropic SPIONs has gained
considerable interest as a strategy to enhance MH performance [86]. Various non-spherical
morphologies, including nanocubes [87-91], octopods [92], octahedrons [93,94], nanorods [95-97],
nanodiscs [98], nanorings [99], and polyhedral structures [100], have demonstrated improved heating
efficiency compared to their spherical counterparts (Figure 1).
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Figure 1. Various strategies have been developed to design efficient nanoplatforms with enhanced MH
capabilities, as increasing size or tunning the shape. Metallic doping mangan, zinc, with magnesium improves
magnetic properties as well as heating capabilities. Additionally, assembling nanoparticles into magnetic
nanoclusters (MNCs) or chain-like structures can further amplify their hyperthermic effects. Another approach
involves either inorganic or organic surface coatings, also applied to improve biocompatibility, facilitate cellular
uptake, and provide functional binding sites, using silica, gold, organics such as synthetic polymers (such as
polyethylene glycol (PEG), polyvinyl alcohol (PVA), polydopamine (PDA), or polyvinylpyrrolidone (PVP)) or
natural polymers (like chitosan and dextran). These nanoplatforms can also be functionalized to achieve
theranostic capabilities by modifying the shell or polymer coating. Ligands (e.g., folic acid or antibody
fragments) can be added for specific targeting of tumor cells, while therapeutic agents (such as chemotherapeutic
drugs) enable combined MH and chemotherapy. For imaging purposes, fluorescent dyes may be incorporated
to enhance tumor visualization, together with MRI imaging. Moreover, photosensitizers can be included to

facilitate combined photodynamic or photothermal therapy alongside MH.

2.2.3. Doping with Metallic Ions

Magnetite (Fe;O4) exhibits an inverse cubic spinel structure, in which O?- anions form a face-
centered cubic (FCC) lattice that accommodates two distinct cationic sublattices: tetrahedral (A) sites,
exclusively occupied by trivalent iron ions (Fe®), and octahedral (B) sites, shared by both divalent
(Fe?*) and trivalent (Fe%) cations. Superexchange interactions mediated by O? anions govern the
magnetic coupling between these cations, resulting in three main interaction types: A-O-A, B-O-B
(intra-sublattice), and A-O-B (inter-sublattice). While intra-sublattice interactions tend to be
ferromagnetic, the inter-sublattice (A—O-B) interactions are antiferromagnetic in nature, giving rise
to the characteristic ferrimagnetism of magnetite. The net magnetic moment per formula unit is
determined by the difference between the magnetic moments at B and A sites (loct — Llet), primarily
attributed to the presence of Fe?* ions on B sites, resulting in a net moment of approximately 4 us
(Bohr magnetons) per formula unit.

Tailoring the magnetic properties of Fe;O, nanoparticles (MNPs), can be effectively achieved
through substitutional doping of Fe?* ions with other divalent transition metal cations such as Mn?,
Co?*, Ni%, Cu?, and Zn?* (Figure 1). For instance, replacing Fe?* (3d®) with Mn?* (3d°), which possesses
a higher magnetic moment, enhances the overall magnetic moment to 5 ps per formula unit. This
substitution has been shown to significantly increase the saturation magnetization (Ms), reaching
values up to 110 emu/gmeta, and consequently, improve both heating efficiency in MH [101-106].
Interestingly, zinc doping—despite Zn?** (3d'°) having zero magnetic moment—also leads to
modulation of Ms due to site-specific cation rearrangement within the spinel lattice. At low doping
concentrations (x < 0.5 in Zn.Fe;4Oy), Zn?* preferentially occupies A sites, displacing Fe3* cations to
B sites. This redistribution increases the magnetic moment at B sites (Lloct) and reduces that at A sites
(Met), resulting in a substantial increase in Ms (161 emu/gmetal), displaying approximately four times
greater heating efficiency compared to conventional SPIONs [85,107-109]. Another example is the
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use of magnesium as a dopant. Mg,Fe,O3; nanoparticles (x = 0 — 0.15) with an average size of 7 nm
demonstrated exceptional heating power — approximately 100 times higher than commercial Fe;O,
(Feridex) — attributed to enhanced magnetic susceptibility and ~50% octahedral Fe3* vacancy
occupation by Mg?* ions, as supported by atomic structural modeling [110]. Although MxFesxO,
nanoferrites are often doped to Ms and SAR, results vary significantly depending on synthesis
parameters and dopant distribution across Ta and On sites. Thus, precise control of dopant
incorporation within the Fe;Oy lattice is essential to optimize magnetic and thermal performance.

2.2.4. Controlled Nanoscale Assembly of MNPs

It has been demonstrated that during MH experiments, the application of an AMF promotes the
organization of MNPs into elongated assemblies or chains. This field-induced structuring
significantly influences the SAR and overall heat generation capabilities of the MNPs [111-113].
Chain formation behavior has also been observed intracellularly, where MNPs internalized by cells
tend to align in response to the AMF [114]. Further studies have revealed that such alignment occurs
within intracellular vesicles and does not compromise cellular morphology or nuclear integrity [115].
In a related context, magnetosomes—magnetic nanoparticles biosynthesized by magnetotactic
bacteria —exhibit superior heating efficiency compared to their synthetic analogs, primarily due to
their intrinsic chain-like organization [116-118]. Consequently, the controlled nanoscale assembly of
MNPs to enhance SAR represents an important topic in MH research.

Several groups have investigated the effect of pre-aligning MNPs in a static magnetic field (Hoc)
on their heating performance. They have demonstrated that MNPs pre-aligned under a Hoc before
immobilization (e.g., via gelation in a solid matrix) produce significantly higher SAR values when
aligned parallel to the AMF, compared to randomly oriented nanoparticles [119-123]. Furthermore,
two in vitro studies have shown that either culturing cancer cells with MNPs under a Hoc or pre-
aligning incubated MNPs significantly improves MH efficiency and enhances cancer cell destruction,
compared to the non-aligned scenario [124,125].

Another promising strategy for boosting MNP heating efficacy involves the superposition of a s
Hbc on the AMF during MH treatment. Experimental evidence indicates that for SPIONs, this
approach can lead to SAR enhancements of up to 40% relative to AMF-only conditions [16]. Chain
formation in this system was confirmed by atomic force microscopy [126]. In contrast, ferromagnetic
MNPs, when aligned under an Hoc in low-viscosity agar matrices (0.10-2.00 wt%), exhibit even more
pronounced SAR increases—up to threefold —especially at low agar concentrations (0.1 wt%), where
particle mobility is less restricted [10]. Similarly, the application of static fields (Hoc = 10-20 kA/m)
parallel to the AMF during MH measurements has been shown to significantly increase the SAR of
zinc ferrite nanoparticles in a concentration-dependent manner, with greater effects observed at
lower particle concentrations [127].

2.2.5. Controlled Nanoscale Assembly of MNPs

An effective strategy to enhance the specific absorption rate (SAR) of superparamagnetic iron
oxide nanoparticles (SPIONSs) lies in tailoring their surface coating properties. Surface coatings
influence both magnetic behavior and colloidal stability, ultimately impacting heating efficiency
under an alternating magnetic field (AMF) [128].

Liu et al. investigated the influence of coating thickness on the SAR of Fe;O, magnetic
nanoparticles (MNPs) coated with phosphorylated methoxy polyethylene glycol 2000 (PEG2000).
Their findings revealed that for smaller-sized nanoparticles (e.g., 9 nm and 19 nm), SAR increased as
coating thickness decreased, an effect attributed to enhanced Brownian relaxation losses. Notably,
the PEGylated SPIONSs retained high SAR values under various physiological conditions, indicating
strong colloidal and functional stability [129].

In another study, Fe;O, nanoparticles coated with PEG of different molecular weights
demonstrated resistance to the formation of collective coatings. This prevented the agglomeration of
nanoparticles into large clusters and preserved their high SAR across environments with varying
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ionic strengths and viscosities, including distilled water, physiological saline, agar, and cell culture
media [130]. Further investigations into the impact of surface functionalization demonstrated that
hydrophilic SPIONs synthesized via oleate capping and subsequently modified with diverse ligands
(PEG, dimercaptosuccinic acid — DMSA, cetrimonium bromide — CTAB, stearic acid — SA, and
poloxamer 188 — P188) exhibited different heating profiles [131]. Ligand exchange with PEG and
DMSA promoted nanoparticle dispersion, whereas intercalation with CTAB and SA or encapsulation
with P188 led to agglomeration into spherical clusters. Magnetic hyperthermia experiments showed
significantly higher SAR for the PEG- and DMSA-modified samples, emphasizing the detrimental
effect of aggregation on heating performance [131]. Additionally, dextran-coated SPIONs with a
diameter of 7 nm have also demonstrated high SAR values [132], supporting the notion that both
organic and inorganic surface coatings can substantially enhance magnetic heating efficiency.

Inorganic coatings, such as gold or silica shells, have also proven effective [133]. Mohammad et
al. [134] reported a 4-5-fold enhancement in SAR when SPIONs were coated with a thin gold shell
(0.5 nm). Moreover, a maximum SAR value of 1300 W/g_Fe was achieved for dumbbell-shaped
hybrid nanostructures comprising a 24 nm Fe;O, domain attached to a 9 nm gold seed [135]. These
structures benefit from synergistic effects between magnetic and plasmonic components, improving
thermal response. Silica coating represents another widely used approach for surface
functionalization of SPIONs [136-138]. Individual SPIONs coated with a silica shell were shown to
maintain colloidal stability and avoid magnetic dipolar interactions, particularly under AMF
exposure [139]. This led to superior heating performance compared to uncoated SPIONs or clusters
encapsulated within a common silica shell [140-143]. These findings collectively emphasize the
critical role of surface chemistry and nanoparticle architecture in optimizing the magnetic
hyperthermia potential of SPIONs.

2.2.6. AFM Characteristics

In general, MH experiments demonstrate that SAR tends to increase with both the frequency (f)
and amplitude (H) of the applied alternating magnetic field (AMF). However, the heat released
during MH cannot be indefinitely enhanced solely by tuning these two external AMF parameters,
due to both biological safety limits and intrinsic magnetic nanoparticle (MNP) properties.

First, to prevent overheating of healthy tissues due to eddy currents, safety guidelines such as
the well-known Brezovich limit (H-f <5 x 10° A‘m™'-s7!) have been established [28]. Although some
recent studies suggest that higher limits could be acceptable under certain conditions [144,145],
Garcia-Alonso et al. propose a more permissive threshold of H-f <9.6 x 10° A-m"-s71 [146].

Second, while SAR is often assumed to scale linearly with frequency across various MNP types
and sizes, its dependence on field amplitude H is more complex. For SPIONs smaller than ~10 nm,
SAR typically follows a quadratic relationship with H (i.e.,, SAR « H?) [48,147,148]. In contrast, for
larger nanoparticles, SAR exhibits more complex field dependencies, sometimes deviating from
simple power-law behavior [63]. Importantly, the quadratic dependence is generally observed only
at low H; beyond this range, SAR tends to saturate [149]. This saturation effect has been correlated
with the nanoparticle saturation magnetization (Ms) and is supported by numerical simulations that
incorporate the field dependence of both Néel and Brown relaxation times [149]. For ferromagnetic
particles, SAR saturation follows a sigmoidal trend as a function of H, a behavior that has been
reported in several experimental and theoretical studies [74,100,122,127,150,151].

The saturation of SAR with increasing field amplitude (H), together with the safety constraints
imposed by the H-f product limit, highlights a fundamental limitation of MH: the amount of heat that
can be safely and effectively delivered to deep-seated tumors is inherently restricted. Consequently,
MH alone is unlikely to achieve full tumor eradication, particularly in aggressive or resistant cancer
types. For this reason, MH is more appropriately used as an adjuvant strategy, enhancing the efficacy
of conventional treatments such as chemotherapy, radiotherapy, or immunotherapy. When applied
in combination, MH can sensitize tumor cells to these therapies by promoting localized
hyperthermia, thereby offering a synergistic anticancer approach [152]
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2.3. Organic Coating

A great deal of research was conducted on biocompatibility and cellular uptake enhancement
by using synthetic polymer coating, such as polyethylene glycol (PEG), polyvinylpyrrolidone (PVP),
polydopamine (PDA) and PDA analogues or natural derived coatings like chitosan and dextran
(Figure 1).

2.3.1. Synthetic Polymers

PEG is one of the most common nanoparticle formulations, having wide-ranging applications
by decreasing clearance and increasing water solubility. PEG forms a “stealth” hydration layer,
reducing opsonization and MPS capture along with preventing hydrophobic aggregation of
hydrophobic particles, shielding the NP surface from enzymes and antibodies [153-156].
Polyvinylpyrrolidone (PVP) is a colorless, water-soluble, biocompatible polymer known for its
exceptional pH stability and binding capabilities, which aid in drug solubility and dispersion. Its
amphiphilic structure allows it to interact effectively with solvents of varying polarities, making it
versatile for constructing complex macromolecules, often via conjugation with polyacids like
polyvinyl alcohol PVA or PAA. PVA-PVP composites improve mechanical strength and thermal
stability along with boosting ferrimagnetic performance [157,158].

Polymerizing catecholamines leads to polydopamine (PDA) and PDA analogue polymers on the
surface of the nanoparticles, particularly nanoclusters, which allow many potential applications due
to their multiple surface functions. Dopamine and L-DOPA from the catecholamine class can act as
surfactants and therefore can be used for making core-shell structures, in a single step by using the
solvothermal/hydrothermal method of synthesis. Magnetic nanoclusters containing a magnetite core
and a polymeric shell synthesized by in situ solvothermal process, using, 3,4-
dihydroxybenzhydrazide (DHBH) and poly[3,4-dihydroxybenzhydrazide] (PDHBH) as stabilizers
showed biocompatibility, antitumor efficacy and tumor selectivity against colon cancer cells
(CACQO2), melanoma cells (A375) when used for MH in vitro [159]. Other MNC synthetized by
solvothermal polyol reaction and using as a coating dopamine, 3,4-dihydroxybenzylamine, 2-
aminomethyl-3-(3,4-dihydroxyphenyl) propionamide and 3,4-dihydroxybenzylidenehydrazine
yielded PDA and PDA analogues coating onto the core-shell MNCs. These nanoparticles showed
good biocompatibility in normal cells (fibroblasts and endothelial cells) and melanoma (A375), and
emitted a fluorescent signal, which can be used for tumor imaging purposes [160].

2.3.2. Natural Polymers

Chitosan, derived from the deacetylation of chitin (found in insect exoskeletons), carries
multiple hydroxyl (-OH) and amino (-NH>) functional groups, which facilitate the binding of
antitumor drugs such as paclitaxel (PTX). Chitosan is biocompatible, biodegradable, and
antibacterial, making it a leading candidate for nanoscale drug delivery systems. Magnetite
nanoparticles coated with a chitosan shell demonstrated an 18% increase in paclitaxel adherence
compared to uncoated particles [161,162]. Chitosan also exhibits stimuli-responsive release patterns
due to its pH-dependent solubility, and its mucoadhesive properties, while useful in mucosal
delivery, can reduce specificity by increasing the risk of off-target accumulation in normal tissues
[163].

Dextran-coated IONPs are widely used due to their exceptional biocompatibility, and enhanced
magnetic performance, it provides a stabilizing effect inhibiting aggregation and preserving
superparamagnetic behavior. Dextran-coated IONPs have been successfully employed in drug
delivery applications, with notable effects due to controlled drug release [164,165].

2.4. Combination with Other Therapeutic Methods

Although MH is apt for the induction of cell death by itself, it is particularly effective by
sensitizing tumors to other treatments, its results proving significant as an adjunct therapy. For
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instance, studies point to the ability of MH to increase the proportion of complete responders to
radiation therapy by 20 percentage points or more in breast, cervical and head and neck cancers [166],
while a 2010 phase III trial in high-risk soft-tissue sarcoma showed that adding regional hyperthermia
to chemotherapy nearly doubled the response rate: 28.8% versus 12.7% with chemotherapy alone (p
=0.002) [167].

Combining MH with modalities such as chemotherapy, radiotherapy, immunotherapy, and
advanced drug carriers or natural compounds has shown synergistic efficacy in preclinical studies
and emerging clinical applications [168]. IONPs are a central focus due to their biocompatibility and
strong heat induction, but similar combination approaches are being explored with other
nanoparticle types as well (e.g. gold nanostructures for photothermal therapy or high-Z
radiosensitizers) [169,170].

Although both combination therapies effectively induce the death of tumor cells and stromal
components, there is a risk of selecting resistant tumor cell subpopulations [171], such as anastatic
cells[172], blebbishield emergency program cells [173], phoenix rising [174,175], CASP3+ islands of
cells [176], nuclear expulsion cells [177], or senescence reversal [178] capable of repopulating the
tumor. However, due to their multi-targeted approach, combination therapies are potentially less
likely to promote emergence of resistant cells. Therefore, the most promising advancement in
oncotherapy is immunotherapy and the downstream awakening of the body’s own immune defense
to tumor antigens released by the MH, or other therapies which can detect and attack distant and
dormant tumor cells, eventually leading to a stable antitumor immunity (Figure 2).
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Figure 2. Chemotherapy - Nanoparticles can be loaded with chemotherapeutic agents such as doxorubicin (DOX),
paclitaxel (PCT), gemcitabine, sorafenib, or platinum-based drugs (Pt), either by attaching them to surface
polymers or directly incorporating them into the nanoparticles. Once internalized by tumor cells, the drug is
more selectively released, a process facilitated by the hyperthermic effect or the acidic tumor microenvironment.
This approach can help overcome multidrug resistance (MDR) by enhancing drug uptake and efficacy.
Radiotherapy- Radiation therapy increases local blood flow, thereby improving nanoparticle delivery to the tumor
and enhancing tumor specificity. Additionally, irradiation induces DNA damage in tumor cells, making them
more susceptible to hyperthermia-induced cell death when combined with MH. Immunotherapy - MH
combination with immune-based therapies, such as interferons, interleukins, or PD-L1 immune checkpoint
inhibitors can produce a synergistic effect. Destruction of tumor cells by MH releases tumor antigens, which, in
conjunction with immunotherapy, stimulates both local and systemic immune responses against the tumor,

potentially improving therapeutic outcomes.
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2.4.1. Chemotherapy

Moderate hyperthermia increases tumor blood flow and cell membrane permeability,
improving drug delivery to the tumor and potentiating drug uptake [179]. Furthermore, heating can
interfere with DNA repair and induce apoptosis, making cancer cells more susceptible to
chemotherapeutic agents. In practice, IONPs have been engineered as dual hyperthermia and drug-
delivery agents: they can be loaded or coated with chemotherapeutics (like doxorubicin or paclitaxel)
and then remotely heated to simultaneously release drugs and damage cancer cells. For example, in
a murine model, intratumoral injection of doxorubicin-conjugated iron oxide nanoparticles in a breast
cancer xenograft led to greater tumor regression under an AMF than either MHT alone or
doxorubicin alone, indicating a potentiating effect of the combination [180]. Similarly, paclitaxel-
loaded magnetic nanoparticles have shown synergistic efficacy with MHT: one study reported both
in vitro and in vivo results that supported the conclusion that paclitaxel-bearing IONPs under AMF
produced significantly higher cancer cell death and tumor growth inhibition compared to either
paclitaxel or hyperthermia alone [181]. This combined approach can reduce the required drug dose
(mitigating systemic side effects) while achieving enhanced tumor response (Figure 3).
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Figure 3. Schematic representation of several core-shell nanoplatforms, containing chemotherapeutic drugs. The
nanoparticles with a IONPs core and various shells were loaded with paclitaxel (left), doxorubicin (right) or
others (such as cucurbituril, platinum- prodrug, gemcitabine) used for tumor targeting, and combined magnetic
hyperthermia with chemotherapy on in vitro/in vivo experimental models.

Thermosensitive carriers can further refine chemo-hyperthermia synergy. For instance,
magneto-liposomes or polymer-encapsulated IONPs can be designed to release a payload when the
local temperature rises during MHT. In one design, thermosensitive magnetic liposomes loaded with
doxorubicin, and a cell-penetrating peptide achieved targeted drug release upon heating and
significantly improved therapeutic outcomes both in vitro and in an MCF-7 xenograft murine model
[182]. Thus, magnetic IONPs offer a promising prospect in the shape of thermo-chemotherapy,
including noninvasive control and deep tissue penetration of the activating magnetic field, making
them especially suitable for treating hard-to-reach tumors [30].

2.4.2. Radiotherapy

Heat can radiosensitize tumor cells through several mechanisms. Hyperthermia induces protein
and DNA damage and can impede the repair of radiation-induced DNA breaks, thereby increasing
radiation efficacy. It also improves tumor oxygenation by increasing blood flow at mild heating,
countering hypoxia-driven radio resistance, until higher temperatures cause vascular collapse and
direct cell killing [166]. Furthermore, while traditional hyperthermia techniques struggled to heat
deep or irregularly shaped tumors uniformly [12], magnetic hyperthermia via IONPs offers a more
targeted solution: IONPs can be delivered into the tumor (systemically or via direct injection) and
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then heated in situ by an external magnetic field, focusing thermal damage within the tumor and
sparing surrounding tissue [166].

In human glioblastoma xenograft models, for instance, adjuvant magnetic hyperthermia
elevated tumor cell DNA damage (y-H2AX levels) and apoptosis when combined with radiation,
translating into delayed tumor growth and longer survival in treated animals [179]. These benefits
are being explored clinically. In a single-arm pilot clinical study, intratumoral MHT plus
radiotherapy was tested in patients with recurrent glioblastoma multiforme. Iron oxide nanoparticles
(aminosilane-coated magnetite) were injected into the tumor and an AMF applied to produce heating
alongside fractionated RT. The combined treatment was found to be safe and led to prolonged
survival in these patients compared to historical controls (median overall survival ~13-14 months
after recurrence, which was notably longer than with radiotherapy alone) [183]. This approach has
since received regulatory approval in Europe as an adjunct therapy for glioblastoma, validating the
potential of clinically exploiting the properties of magnetite nanoparticles [184].

2.4.3. Immunotherapy

MH can trigger immunogenic cell death (ICD), through the release of DAMPs such as ATP,
HMGB1, and calreticulin that activate dendritic and T cells, turning dying tumor cells into
immunostimulants. Intracellular heating from IONPs induced broader ICD marker expression than
external heating, highlighting MH's unique immunological effect [185]. Thus, MH subsumes
mechanisms which, beside local tumor control, offer a pathway to systemic immune activation.
Recent reviews highlight that nanoparticle-mediated hyperthermia boosts tumor immunogenicity
and permeability, thereby enhancing immune cell infiltration and increases responsiveness to
checkpoint inhibitors [185,186]. In one model, MH combined with anti-CTLA-4 therapy suppressed
both primary and metastatic tumors, inducing long-term immune memory [187]. Other studies
showed that iron in superparamagnetic iron-oxide nanoparticle can shift macrophages to a tumor-
suppressive phenotype [188]. Combining MH with immunotherapy may also reduce immune escape
by increasing antigen presentation and induce inflammation into the tumor microenvironment
[189,190]. Although still preclinical, these findings suggest MH may help turn immunologically
“cold” tumors into “hot,” responsive ones.

2.4.4. Role of Natural Compounds and Polymer-Based Carriers in MH

Polymer and natural-compound-based carriers enhance IONPs function through stability,
targeted delivery, and stimuli-responsive payload release. For example, quercetin-loaded chitosan-
coated magnetic nanoparticles improved stability and tumor targeting in colon cancer models [191].
Similarly, polysaccharide-based magnetic hydrogels — such as chitosan-alginate combined with
PNIPAM - exhibited efficient on-demand drug delivery and controlled release under AMF heating
[192]. These systems improved both therapeutic specificity and systemic toxicity, making them
promising platforms for combining hyperthermia and pharmacotherapy.

Polymer coatings like chitosan and PEG improve IONP stability, circulation, and drug loading.
Chitosan-coated IONPs, for example, loaded ~3.2 mg doxorubicin/mg nanoparticle — six times more
than uncoated versions — yielded higher in vitro cancer cell death [193]. PEGylated magnetite with
folate or peptide ligands improved tumor uptake and PEG-stability [194]. These systems can also
reduce premature clearance and minimize systemic toxicity.

Natural compounds may also synergize with MH. One PLA-PEG—curcumin-Fe;O, formulation
allowed AMEF-triggered curcumin release and tumor shrinkage in vivo, outperforming curcumin or
hyperthermia alone [195]. Other natural agents (e.g. resveratrol) and biodegradable hydrogels further
expand MHT's versatility by enabling controlled release and retention at specific sites [192,196-198].
These strategies added multifunctionality while maintaining biocompatibility.

Another strategy for designing specific nanoparticles revolves around targeting specific
receptors on the cellular membrane, leading to highly specific therapeutic benefits. Using an
engineered antibody fragment, Christian Ndong and his team managed to target folate receptor

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.0830.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2025 d0i:10.20944/preprints202508.0830.v1

13 of 46

alpha overexpressing cancer cells, which leading to high accumulation intracellularly [199]. A similar
formulation was used by Monty Liong, achieving drug delivery, magnetic resonance, fluorescence
imaging and cell targeting with the same formulation [200]. Formulations targeting the transferrin
receptor have also been used [201,202].

2.5. Experimental Studies of Biocompatibility and Oncologic Efficiency of IONPs In Vitro

2.5.1. In Vitro Cancer Models Used for Testing of IONPs

Modern in vitro models are being used more frequently to explore novel approaches for cancer
detection and treatment, including the use of iron oxide nanoparticles. These models range from 2D
cell cultures, where cancer cells are grown in flat monolayers to more advanced 3D systems like
tumor spheroids and organoids, which better mimic the tumor microenvironment. In addition, more
complex simulated models are also employed (Table 1).

Certain 2D models have been widely adopted and have produced promising outcomes while
remaining reproducible and accurate. Therefore, cancer cell lines, whether human: glioblastoma
[203], lung cancer [204], breast cancer [205], cervical cancer [206], pancreatic cancer [200], hepatic
cancer [207]; or murine: breast cancer/colon carcinoma [208], fibrosarcoma [209], were used to test
nanoparticle cytotoxicity, cellular uptake, and drug delivery efficacy. Fibroblast-like cell lines from
humans [203] and mice [209,210]) were also employed, primarily as controls. Bacteria such as
Staphylococcus aureus, Proteus vulgaris, and Pseudomonas aeruginosa were used as models for the
testing of the antibacterial activity of MNPs [204].

3D tumor models are generally considered more accurate than monolayer-based systems in
replicating tumor physiology and predicting the response to chemotherapeutic agents. A study
conducted on breast cancer spheroids revealed that MCEF-7 spheroids exhibited considerable
heterogeneity, with notable differences in spheroid morphology. This variability suggests that these
spheroids may not be ideal for evaluating the cytotoxicity or resistance of anticancer drugs [205].
Porcine aortic endothelial cells (PAEC) were exposed to superparamagnetic iron oxide nanoparticles
to assess reactive oxygen species (ROS) levels, cytoskeletal structure, and cell stiffness, yielding
significant and consistent results [211].

Norouzi et al. developed an MDCK-MDR1-GBM co-culture model to replicate the human blood-
brain barrier (BBB) and GBM tumor interface. As a result, the MDCK-MDR1 layer, which consisted
of kidney epithelial cells genetically engineered to overexpress the human MDR1 gene, mimicked the
BBB, whereas the GBM layer, which comprised human glioblastoma U251 cells, was used to assess
nanoparticle uptake and cytotoxicity [212].

Table 1. Biocompatibility and anti-cancer efficacy of iron nanoparticles w/wt MH in vitro.

Nanoparticles Model Main results
SKOV-3 human|
IONPs with PEGlovarian cancer

Cytotoxic effects by ROS production and

coating/IONPs  with  PEIRAW 264.7 apoptosis induction [156]
coating murine
macrophages
SPIONs loaded with
T98G-

curcumin, coated with poly

(lactic-co-glycolic acid)-poly glioblastoma | nduced cytotoxic effects increased by

ol lveol) diblock multiforme, exposure to radiofrequency
(ethy erlle g ycg) iGZ bOC fibroblast -like hyperthermia application [203]
copolymer -b-
POy cell line

PEG)conjugated with
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glycine-arginine-glycine-
aspartic acid-serine (GRGDS)

IONPs

A549 human
lung cancer cell
line
Staphylococcus

aureus, Proteus

Cytotoxic effect
Antibacterial effect through ROS
generation [204]

vulgaris,
Pseudomonas
aeruginosa
SPIONS- functionalized with
SDS and loaded with Decreased viability in a dose and time
HeLAa human

curcumin and coated with
chitosan SPIONs-SDS-CU-
CHIT

cervical cancer

related manner related to drug release in
the medium [206]

green iron nanoparticles

(Rosemary-FeNPs)

4T1 murine
breast cancer
C26 cancer cell

lines

Cytotoxic effect against cancer cells,
efficient intracellular delivery of the

rosemary flavonoid components [208]

Bare superparamagnetic iron

oxide nanoparticles (SPIONs)

Porcine aortic

endothelial cells

ROS formation leads to morphological
changes and forms actin stress fibers;

blocking ROS formation by

(PAEC) functionalization could increase medical
applications [211]
IONPs coated with chitosan o IONPs coated with chitosan induced
uman
IONPs coated with polyvinyl mild toxicity, IONPs coated with PVA
fibroblasts
alcohol (PVA) were well tolerated [222]
mammary adeno|Macrophages showed pro-inflammatory
ferumoxytol carcinoma cells M1 phenotype upon ferumoxytol
carboxymethyldextran incubated with exposure
coating macrophages |Increased caspase -3 in mammary tumor
cells [305]
A549 human

IONPs load with LLY-507
(inhibitor of SMYD?2), coated
with PVA

non-small cell
lung cancer cell
line
RBC- human

Efficient delivery of the SMYD2 inhibitor
by the IONPs , dose dependent decrease
in viability, hemolysis below 5%[306]

poly(ethylene glycol)-block-

poly(lactic-co-glycolic acid)
copolymer-encapsulated

FesOs superparticles (SPs),

4T1 triple
negative human
breast cancer
cells

loaded with imiquimod

Efficient photothermal ablation of 4T1
cells by apoptosis/necrosis upon PTT
irradiation, efficient delivery of R837 in
vivo against primary tumors to enhance

immune response [307]
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(R837 a Toll-like receptor 7
agonist)
HeLa human
cervical cancer Biocompatible, increased efficacy of
FesOs@PDA SPs cell line, mice |[photothermal therapy against tumors in
bearing tumor vivo [308]
(HeLa)

IONPs - loaded with

curcumin and coated with [ MCF-7 human | Decreased cell viability in a dose and

dextran CUR/DEX/Fe304- | breast cancer time related manner [309]
NPs
SPIONS- functionalized with
SDS and loaded with HeLAa human Decreased viability in a dose and time
curcumin and coated with corvical cancer related manner related to drug release in
chitosan SPIONs-SDS-CU- the medium [310]

CHIT

2.5.2. MNP Formulation

The primary type of iron-based nanoparticles used in cancer therapy are iron oxide
nanoparticles (IONPs), known for their magnetic properties and biocompatibility. Among these,
superparamagnetic iron oxide nanoparticles (SPIONs) are particularly significant, as they facilitate
magnetic drug targeting, MH, and function as contrast agents in MRI [200]. There are two main
approaches in the study of iron nanoparticles used in cancer therapy research, (1) functionalized bare
nanoparticles, evaluated for their biocompatibility, tumor-targeting ability, and cytotoxic effects
w/wt MH and (2) drug-loaded nanoparticles, designed for delivering chemotherapeutic agents,
photosensitizers, or for use in combined MH and chemotherapy [217].

Natural compounds rich in antioxidants serve a dual purpose in nanoparticle synthesis: they act
as reducing agents that promote nanoparticle formation and prevent aggregation, and they function
as coatings that enhance the biocompatibility of magnetic nanoparticles (MNPs) by forming a natural
antioxidant shell. Additionally, these compounds facilitate the targeted delivery of bioactive agents
into tumor cells. Many cancer cells are particularly sensitive to polyphenols, resveratrol, flavonoids
or anthocyanins [213] present in natural extracts, which can trigger apoptosis or increase the cells'
responsiveness to other treatments, such as chemotherapy, photodynamic therapy (PDT), or
hyperthermia. Natural compounds, such as polyphenols, synergize with anticancer drugs like
cisplatin, doxorubicin, and 5-fluorouracil [214]. Rosemary terpenes also showed antitumoral activity
on colon cancer cells in vitro inducing necrosis by an acute ROS increase and on in vivo colon cancer
models, they inhibit proliferation and increased animal survival [215]. Green iron nanoparticles
(Rosemary-FeNPs) phyto synthesized by using the natural antioxidants from the rosemary extract
showed an average diameter range of 50-100 nm and excellent homogenization [208]. Turmeric
extracts and their key compounds, carnosic acid and curcumin also showed antiproliferative effects
of cancer cells [216]. SPIONs loaded with curcumin and coated with organic polymers, poly (lactic-
co-glycolic acid)-poly (ethyleneglycol) di-block copolymer (PLGA-b-PEG) conjugated with glycine-
arginine-glycine-aspartic acid-serine (GRGDS). GRGDS peptide has been found to allow targeting of
integrins, typically overexpressed in cancer cells, moreover the combined delivery of curcumin
enhanced therapy efficiency and can serve as a drug delivery platform for a chemotherapeutic in
view of a synergistic effect [203]. Multiple chemotherapeutic drugs, such as paclitaxel (PTX) [200,217],
doxorubicin (DOX) [207,212,218], camptothecin (CPT) [200], gemcitabine [219], sorafenib [220],
temozolomide [179] were loaded on magnetic nanoparticles. Despite its efficiency as an antitumor
drug, Paclitaxel (PTX) administration is difficult due to its hydrophobic nature. To address this issue,
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MNPs loaded with PTX were synthesized using chitosan as coating: FesOs@LaFs: Ce*Tb3/chi NPs
associated with Paclitaxel (PTX). This formulation increased the water-solubility, of PTX while
preserving the superparamagnetic behavior of the MNPs, and provided a biocompatible method for
Paclitaxel administration with reduced side-effects and possibility for a synergic therapy using MH
and chemotherapy (Table 2) [217].

Folic acid receptors are overexpressed in many cancers; therefore folic acid can be used for
selective targeting of the malignant cells cancers including ovary, kidney, uterus, testis, brain, colon,
lung, myelocytic blood cells [221]. This strategy was used for the synthesis of PTX-loaded
nanoparticles, such as SPIONs with PTX-loaded chitosan (Cs), polyethylene glycol (PEG), and folic
acid (FA), and yielded improved tumor targeting and PTX uptake in the malignant cells [209]. A
study on SPIONs- PLGA core / poly(N-isopropylacrylamide)-carboxymethyl chitosan shell with
NU7441/Gemcitabine found that targeting folate receptors increased specific uptake, while the pH-
sensitive shell ensured gemcitabine was preferentially released in the tumor environment. The
nanoplatform retained magnetic properties, which make it suitable for combined MH and
chemotherapy combined therapy [219]. Another coating, such as lauric acid (LA) and human serum
albumin (HSA) was used for the synthesis of SPIONs (SPION-LA-HSA-Ptx) for the delivery of PTX.
The presence of lauric acid improved the PTX hydrophobic drug loading and nanoparticle stability,
while LA and HSA increased MNPs biocompatibility and colloidal stability [205]. Magnetic
nanoparticles coated with an amphiphilic polymer containing disulphide linkages (hyaluronic acid-
disulfide bond-polylactic acid) loaded with PTX showed efficient drug delivery by combining
magnetic tumor targeting and redox-triggered specific release of paclitaxel, leading to improved
therapeutic efficacy and minimizing side effects [206]. Mesoporous silica-coated SPIONs with
fluorescent dyes, hydrophilic groups, cancer-specific targeting ligands, and co-loaded with
camptothecin (CPT) and paclitaxel (PTX) showed advantages in magnetic manipulation, targeted
drug delivery, and efficient drug loading and release [200].

A54-Dex-PLGA micelles with DOX exhibited strong encapsulation efficiency (approximately
80%) and prolonged release (up to 72 hours). MNPs demonstrated tumor targeting and enhanced
efficacy compared to free medication [207]. Doxorubicin-loaded IONPs with surface coatings such as
trimethoxysilylpropyl-ethylenediamine triacetic acid (EDT) were also effective, as EDT coating had
a significant impact on blood-brain barrier penetration. Furthermore, this formulation achieved
sustained DOX release, with quicker release in acidic conditions (tumor microenvironment), allowing
for more tailored therapeutic action [212]. The DOX-loaded Fe;0,@MnO,@PPy nanocomposite
improved hypoxia tolerance and PDT efficiency by integrating photothermal, photodynamic, and
chemotherapeutic treatments [218].

SPIONSs synthesized by using a double coating of polyvinyl alcohol (PVA) or polyethylene
glycol (PEG) and magnesium-aluminum-layered double hydroxide (MLDH) were loaded with
Sorafenib. The resulting nanoparticles were spherical, with an average diameter of 17nm and released
sorafenib over a period of 72 hours, more effectively when exposed to an acidic pH (4.8), simulating
tumor microenvironment. This system showed increased toxicity towards HepG2 hepatoma cells and
decreased towards fibroblast 3T3 cells, which served as controls, compared to sorafenib [220].

Table 2. Biocompatibility and anti-cancer efficacy of iron nanoparticles w/wt MH in vitro.

PACLITAXEL
Nanoparticles Model Main results

Multifunctional mesoporous
silica nanoparticles SPIONs | Human pancreatic

Surface modifications: cancer cell lines: Selective cytotoxicity; dual imaging
Fluorescent dye molecules/ | PANC-1, BxPC3,

Hydrophilic groups / Cancer-f human foreskin

capability; targeted drug delivery
through ligands (FA) [200]

specific targeting ligands —

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.0830.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2025

17 of 46

folate (FA), Drugs: fibroblasts (HFF) as
Camptothecin (CPT) control
/Paclitaxel (PTX)
SPIONSs coated with lauric human breast

acid and human serum

albumin as carriers for

paclitaxel (SPION-LA-HSA-

Ptx)

231 cells)

cancer cell lines (T-
47D, BT-474, MCE-
7, and MDA-MB-

High potential for magnetically
targeted drug delivery in breast

cancer

Similar effects on human breast
cancer as PTX alone [205]

SPION@Cs-PTX-PEG-FA
SPIONs with paclitaxel
(PTX)-loaded chitosan (Cs),
polyethylene glycol (PEG)
and receptors that target

folate (FA)

cell line

WEHI-164: Mouse
fibrosarcoma; MEF:
Mouse embryonic

fibroblast (normal)

High nanoparticle stability, selective

uptake, reduced systemic toxicity due

to the FA receptors, apoptosis of
cancer cells [209]

FesOs@LaF3:Ce3t, Tb3*/chi NPs
bonded with Paclitaxel (PTX)

A549 human lung

cancer cell line

Increased cell toxicity compared to
free paclitaxel; efficient imaging (MRI
and fluorescence imaging); reduced
side effects [217]

MNPs coated with
an amphiphilic polymer
containing disulfide linkages
(Hyaluronic Acid—disulfide
bond-Polylactic Acid, HA-
SS-PLA), loaded with PTX

HelLa cells human
cervical cancer cell

line)

Targeted delivery, through
magnetism and redox response;
improved cytotoxicity, and
biocompatibility [311]

DOXORUBICIN

Ab4 peptide-functionalized

poly(lactic-co-glycolic acid)-

grafted dextran (A54-Dex-

PLGA) micelles with DOX/
SPIO

BEL-7402, HepG2

hepatic cancer

MNPs easy synthesis of SPIO, low

off-target distribution and toxicity;
controlled drug release; dual

imaging/ therapy function [207]

Electro-spun fibers co-loaded

with magnetic IONPs, cubic

Mouse embryonic
fibroblast cell line
(NIH 3 T3 cells),
DOX-sensitive
HeLa-WT cervical

Hyperthermia combined with

) enhanced diffusion of doxorubicin -
shaped loaded with cancer cells and the effective oncotherapy [210]
doxorubicin
DOX-resistant
MCEF?7 breast cancer
cells

Doxorubicin-loaded IONPs
with surface coatings like

trimethoxysilylpropyl-

MDCK-MDR1-GBM

co-culture model

High DOX penetration through BBB;
effective magnetic targeting and
reduced systemic toxicity; possibly

overcoming MDR cancer cells [212]
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ethylenediamine triacetic

acid (EDT)
Fe304@MnOz@PP y . . .
. . Good magnetic targeting delivery
nanocomposite loaded with and enhanced cancer toxicity

human hepatoma improved photodynamic (PDT)

DOX; Fe;O4 (Iron oxide) core;
/photothermal therapy (PTT) reduced

MnO, (Manganese dioxide) (HepG2)
shell; PPy (Polypyrrole) outer side e'ffe'cts and better tolerance to
. hypoxia induced by PDT/PTT [218]
ayer

IONP DOX: PEG-coated, | HeLa cells (human | Delivery of DOX directly into the
cytoplasm trough macro pinocytosis

doxorubicin-loaded cervical cancer cell and endocytosis; high

nanoparticles line) biocompatibility [223]

PEG-coated FesOx
Theranostic nanoparticle formulation

luteininzing hormone- A549 and MCE-7
an - ing LHRH ligand with individual

releasing hormone (LHRH) Hsing ‘gand with indivicua
chemotherapy and thermotherapy,

cancer cells
effective on both cell lines [312]

ligand containing

doxorubicin
OTHERS
Magnetic IONPs/ SD3, G-16, G-302, Combined hyperthermia using

temozolomide GL-261 cell lines magnetic IONPs with temozolomide
and radiation showed synergistic

anti-glioblastoma effects [179]

SPIONs- PLGA core /
Approach for simultaneous

poly(N-
] . A549 and H460 lung| radiotherapy and chemotherapy,
isopropylacrylamide)- o
cancer cells Folate receptor targeting increased
carboxymethyl chitosan shell specific uptake [219]
with NU7441/Gemcitabine
HepG2 human
SPIONs- (PVA/LDH-coated hepatoma/3T3 | Strong superparamagnetic behavior;
and PEG/LDH-coated) with motuse enhanced anticancer activity and
Sorafenib fibroblast cell line selectivity; minimal side effects [220]

Magnetic-core silica
nanoparticles with nano MDA-MB-231

valves and loaded with breast cancer cells

Targeted delivery using a nano valve
system and hyperthermia [313]

cucurbituril

Human ovarian . . .
Efficient drug delivery overcoming

Fe-NP2 coated with PEI carcinoma A2780 cisplatin resistance through unique
internalization pathway of

conjugated with cisplatin cells / cisplatin-
(IV) prodrug resistant A2780DDP| nanoparticles/ increased production
1 of ROS [314]
cells

Redox-triggered release of cisplatin,

B16-F10 melanoma | ferroptosis of melanoma cells, lower

concentration threshold, lymphatic
delivery [315]

Phospholipid-modified

Pt(IV) prodrug-loaded IONP-
cells

filled micelles
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Nanoflowers MoS2@Fe3Qs-
loaded with ICG/Pt(IV)

1.929 fibroblasts, ; - .
indocyanine green (ICG) and Biocompatible, theranostics

. HeLa, H22 tumor- | bioimaging capabilities and laser-
platinum (IV) prodrugs {c,c t- induced cytotoxicity [316]

bearing Balb/c mice
Pt(NHs):Cl2(OOCCH2CH2CO

OH)}
tongue cancer VX2
Fe(Salen) nanoparticles with (rabbit), Hyperthermia-guided, temperature
p-oxo N,N'-bis (salicylidene)| HSC-3 (human), | stable cytotoxic effects, even at low
ethylene diamine and OSC-19 concentrations [317]
(human)

2.5.3. Eficiency, Side Effects

Iron nanoparticles have been widely studied and applied in cancer therapy due to their
effectiveness in targeted treatment, imaging, and hyperthermia, along with their generally favorable
biocompatibility.

MNPs cytotoxic effects may arise either through hyperthermia-induced mechanisms [203] or
from the intrinsic properties of the nanoparticles themselves [204]. Functionalization has been shown
to enhance both cytotoxicity against cancer cells and intracellular targeting. MNPs incorporating
rosemary flavonoid compounds demonstrated improved efficacy [208]. Tran et al showed that
chitosan or PVA coating of iron oxide nanoparticles reduced the cell toxicity towards normal mouse
fibroblasts, with PVA coating having a better result and also reduced nanoparticle aggregation,
underscoring the role of surface coating for biocompatibility [222].

The generation of reactive oxygen species (ROS) has been identified as a key mechanism driving
the biological activity and toxicity of nanoparticles, contributing not only to their antibacterial effects
[204] but also to cellular morphological changes and the formation of actin stress fibers [211]. Overall,
the use of iron nanoparticles loaded with various anticancer agents has proven beneficial, improving
therapeutic effectiveness and targeting specificity while minimizing adverse side effects. MNPs
loaded with PTX demonstrated enhanced tumor cell toxicity compared to free paclitaxel, with less
side effects and increased imaging properties, by both MRI and fluorescence imaging [217], induced
apoptosis in cancer cells [209], demonstrated a high potential of PTX-loaded SPIONSs for magnetically
based targeted drug delivery in breast cancer, but the effects were similar to those of PTX alone [205].
PTX-loaded MNPs were used for targeted administration, which combined magnetic drug delivery
with redox dependent release to increase cytotoxicity [206].

DOX-loaded nanoparticles also demonstrated significant potential for cancer treatment.
Doxorubicin-loaded IONPs with surface coatings such as trimethoxysilylpropyl-ethylenediamine
triacetic acid (EDT) were able to overcome MDR cancer cells in a GBM model, combined with
magnetic targeting and low systemic toxicity [212]. Popescu et al. presented direct delivery of DOX
loaded nanoparticles into the cytoplasm via macropinocytosis and endocytosis, with promising
future possibilities [223]. Fe;04@MnO,@PPy nanocomposites used DOX-loaded nanoparticles to
deliver the chemotherapeutic and enhance two types of phototherapy (PDT and PTT) at the tumor
site, resulting in more effective cancer treatment [218].

2.5.4. Type of Cell Death

e Apoptosis

Nanoparticles, depending on their dose and physicochemical properties, can influence various
cell fates (Figure 4), including necrosis and apoptosis [224]. Apoptosis is a distinct type of cell death
characterized by particular morphological changes, such as membrane blebbing, cell shrinkage,
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chromatin condensation, and tiny vesicles (apoptotic bodies) [225]. The most important apoptosis
mechanisms occur via three different pathways involving death receptors, mitochondria, or the
endoplasmic reticulum, with caspases mediating all morphological and biochemical changes
[226,227]. As a result, multiple studies indicate the necessity of linking nanoparticle dosage and
exposure time with apoptotic intensity, such as the one published by Naqvi et al., who examined
SPIONSs coated with Tween 80 on murine macrophage (J774) cells. Cell viability was higher at lower
concentrations (25-200 pug/mL) and up to three hours of exposure but decreased to 55-65% at higher
concentrations (300-500 pg/mL) and longer exposure (six hours). According to the same study,
apoptosis was the main registered cause of cell death, with oxidative stress serving as the primary
toxicity mechanism. [228] Functionalized iron oxide nanoparticles, particularly those conjugated with
therapeutic agents (such as, IONs conjugated with lysine and methotrexate tested on breast cancer),
can effectively induce apoptosis in cancer cells in vitro [229]. Tousi et al. found that mPEG-b-PLGA
coated IONs loaded with the flavonoid eupatorin increased apoptosis and decreased necrosis in
prostate cancer cells compared to free eupatorin or uncoated nanoparticles, suggesting that they
could be an effective drug delivery system for cancer therapy [230].

e Necrosis

Necrosis has long been thought to be the outcome of general cell injury caused by trauma. As a
result, it is seen as an uncontrolled form of cell death that is not caused by specific signaling processes.
Various clinical circumstances, including toxin exposure, ischemia, viral or bacterial infection can
cause necrotic cell death [224]. Also in this case, the key mechanism appears to be reactive oxygen
species (ROS), as supported by Khan et al. The study reveals that ROS generated by iron oxide
nanoparticles lead to necrosis and cell death in lung cancer cells (Figure 4). The type of cell death
(necrosis vs. apoptosis) is determined by the level of oxidative stress and the cellular antioxidant
capability [231]. Another study found that certain coatings and greater doses of IONPs can cause
necrosis, notably PEI-coating, which is known to be cytotoxic and damage the cell membrane [156].
There are just a few in vitro studies that particularly address necrosis caused by iron nanoparticles
(figure 4). Most of the studies focus on apoptosis, with necrosis as a secondary consequence at higher
doses, frequently related to increased oxidative stress or membrane damage [228,232].
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Figure 4. Mechanisms of cell death induced by magnetic hyperthermia. Following cellular uptake, and exposure
to an alternating magnetic field (AMF), MHT triggers apoptosis via either the membrane pathway, through
death receptor activation, or the mitochondrial pathway, both leading to caspase cascade activation. Higher
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temperatures, nutrient deprivation, or combined therapies favor necrosis, typically caused by rapid ROS
accumulation that overwhelms antioxidant defenses, leading to terminal oxidation of cellular components. ROS
can also damage nuclear DNA, leading to necroptosis or activating DNA repair. Ferroptosis results from
intracellular iron buildup, which generates ROS through Fenton reactions, and causes lipid peroxidation. This
process can culminate in cell death or trigger autophagy, particularly described on in vivo models, with
lysosomal activation. Autophagy may enable cell survival by recycling damaged organelles to provide energy
and restore cellular functions acting as a tumor escape mechanism. However, when damage is extensive,

autophagy serves as a programmed cell death pathway.

e  Ferroptosis

Ferroptosis represents a type of cellular death due to lethal accumulation of iron intracellularly.
Ferroptosis is mainly caused by accumulation of reactive oxygen species, that lead to lipid
peroxidation, cellular membrane instability and eventually, cellular death. One of the main pathways
in which IONPs act to induce ferroptosis is by intracellular accumulation, internalization in
lysosomes which act to dissolve the formulations, leading to release of iron ions intracellularly (figure
4). Ferroptosis is driven by ferrous iron through Fenton reactions, generating reactive oxygen species
(ROS, among these, radical hydroxyl, HO-, responsible for lipid peroxidation intensifying) [233],
disruption of mitochondria functions [234,235], cellular membrane rupture [236], and other alteration
processes at ultrastructural levels (endoplasmic reticulum, peroxisomes, etc.) [237,238]. Antioxidant
defenses, through the cysteine/glutamate antiporter and FSP1/ubiquinol systems are overloaded.
Ferroptosis represents an attractive target for current and future anticancer therapies as tumor cells
are surprisingly susceptible to its effects. [239-241]. In vivo, ferroptosis (iron-dependent cell death)
was considered a helpful mechanism that may destroy the tumors but the accumulation of IONPs in
healthy tissues limited the usage of this therapeutic method. Medication associated with ferroptosis
such as Lanperisone, Sorafenib, Trigonelline, Cisplatin, Ferumoxytol etc. is used in cancer [233], as a
therapeutic method only affecting tumors. IONPs are especially suitable for inducing ferroptosis
through several mechanisms and may act as theranostic, providing multiple capabilities at the same
time. Another strategy concentrates on creating synergistic therapies, for example, Qi Nie and her
research team used IONPs loaded with paclitaxel (PTX) to increase intracellular concentration of iron
ions, with higher ROS formation and confirmed ferroptosis by evaluating cellular upregulation as a
response to ferroptosis [242], results that were echoed by a similar article focusing on inhibiting non-
small cell lung cancer cells. Ferroptosis appears to be associated with autophagy, as several studies
presented this possible correlation [243,244]. Autophagy, the physiological cellular removal and
replacement of degraded organelles represents a mechanism that protects against tumor
development or destroys healthy cells. When the stressors, like IONPs, accumulate in healthy tissues,
intracellular environment is modified toward the production of reactive oxygen species in high
concentration that induce damage inside the cells and transforms autophagy into a cancer promoter
[245].

2.6. Biocompatibility and Oncologic Efficiency of IONPs In Vivo

In vivo studies were realized for theranostic purposes of magnetic iron oxide nanoparticles
(IONPs), superparamagnetic iron oxide nanoparticles (SPIONs), surface-coated IONPs, charged
polyvinyl alcohol-coated SPIONs (PV A-coated SPIONS), protein-coated IONPs, SPIONs coated with
anti-biofouling polymers etc. Technological advances permit the drug delivery at nanoscale inside
the tumor, the small dimensions and coating giving the possibility of their transport even through
tumor stromal components.

2.6.1. Biodistribution

IONPs biodistribution depends on several factors such as the nanoparticle’s dimension and
shape the type, chemical composition, or electric charges of their coating, properties that make them
able to also migrate in healthy tissues. In living organisms, iron oxide nanoparticles may follow
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different pathways, especially depending on their dimension (Figure 5). Nanoparticles with
diameters higher than 100 nm are rapidly captured in spleen and liver, and their penetration inside
the tumor is limited by the tumor pathological characteristics of the vessels” wall, that differ with the
cancer type and stage [246]. Wang et al. showed that after oral administration of IONPs with
dimensions lower than 100 nm in mice, the liver was exposed to two picks of nanoparticles
concentration, in the first day and in the seventh day. These particles also accumulated in other
organs, with maximum levels: at 6 hours after gavage (lungs, kidneys), in the first day (stomach,
small intestine, bone marrow) and during the first 3 days (heart, spleen, brain) [247].

IONPs with dimensions between 20 nm and 100 nm are preferred for cancer treatments, to avoid
IONPs urinary excretion (< 20 nm) and spleen/liver capture (> 100 nm) [248]. Several studies
presented their role on vascular permeability. In tumors with reduced vascularization,
administration of IONPs coupled with external magnetic field exposure leads to endothelial layer
alterations, increasing the accumulation of drugs inside the cancer area [249]. Endothelium
permeability may also be increased by IONPs through the oxidative stress that they generate,
reorganizing the microtubules position in the cellular cytoskeleton [250].

Small IONPs, with dimensions lower than 20 nm, may pass easily the endothelium toward
different organs and may be filtered by the kidneys, processes that occur when they are administered
intravenously, orally or when they migrate from the tumor back into the blood flow [251]. Since the
endothelial glycocalyx presents 20 nm gaps between proteoglycan chains, the small nanoparticles can
pass freely the healthy endothelium layer [252]. At tumor level, endothelial layer develops pores of
100 nm till 1 um (pores dimensions depend on cancer type and stage) that are passed easily by the
small IONPs (<20 nm) [253].

>100 nm

" ‘ Pharmacokinetics

Liver/Splenic sequestration

20-100 nm Biodistribution Elimination

Endothelial permeability

<20 nm Kidney excretion G

Organ Storage

Glomerular
filtration

<3 nm  Pparacellular distribution

Tissue
sequestration

Glycocalyx accumulation/

<1nm glomerular clustering

Long term toxicity

Figure 5. Pharmacokinetics of IONPs in vivo after systemic administration or vascular leakage post-intratumoral
injection. Biodistribution of the MNPs strongly depends on their size, with nanoparticles between 20-100 nm
diameter being the most suitable for MHT, due to their ability to pass through the endothelial layer into the
tissue leading to selective tumor accumulation (EPR effect), that can be enhanced by application of an external
magnetic field. Smaller particles (<1 nm) are fast eliminated by the kidney or can cluster into the glomerular cells
glycocalyx leading to impaired nephron function, while bigger MNPs (>100nm) can be stored in the internal

organs, leading to medium/long term toxicity.

Injected IONPs with sizes lower than 10 nm are excreted in large amounts through urine. Studies
showed that more than 40% of administered IONPs were eliminated within 24 hours after
administration. PEGylated IONPs with dimensions around 10 nm are transported easily inside the
cells, accumulate in high concentrations inside the tumors, but also in spleen and liver where their
degradation is realized very slowly (Figure 5). The PEGylated IONPs are toxic at high concentrations
and may trigger the autophagy [156].
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IONPs with sizes lower than 3 nm can pass through the vessel wall also paracellular [254], while
those of around 1 nm are blocked in the glycocalyx of the glomerular filtration membrane, forming
nanoclusters that remain for a long time at kidney level [255].

2.6.2. Coating

For drug delivery, IONPs are coated with different materials: natural polymers (dextran,
chitosan, starch, etc.) [256], synthetic polymers (polyethylene glycol -PEG; polyvinyl alcohol -PVA;
polyvinyl pyrrolidone -PVP; etc.) [256,257], proteins (albumin) [258], lipids [259], silane [260], silica
[261] or combination of synergistic materials [262]. To avoid the IONPs agglomeration that can
produce embolism inside the capillaries [263] and to prevent the nanoparticles rapid systemic
dispersion, amines, aldehydes, thiols or the carboxylic acids are used for IONPs synthesis [264]. Iron
nanoparticles can be synthesized with specific coating that may increase the cytotoxicity of the
transported drug, like gold-coated IONPs [265], or with coverings that may present a prolonged drug
release, even over 4 days after their administration, like hyaluronic acid-coated IONPs [266].
Intraperitoneal administration of gold-coated IONPs in mice with melanoma tumor leaded to
nanoparticles accumulation in high amounts in tumor area but also in spleen, liver, kidney, lungs
and brain, with ultrastructural modification at tissue levels [267].

2.6.3. Shape

Iron nanoparticles were developed in different shapes: cubes, concave cubes, spheres,
tetrahedrons, hexagons, octahedrons, octapods, polypods [268], ellipsoids, discs, cylinders, cones,
hemispheres, etc. [248]. The shape of IONPs is very important for their transport through the
circulatory system and for the drug delivery to the target tissue. The elongated drug carriers travel
through the blood stream closer to the vessel wall, compared to the spherical nanosystems,
margination property that permits the easier transport of these nanoparticles into the adjacent tissues
[269]. The spike-shaped IONPs adhere easily to the endothelium while the lengthen-shaped IONPs
interact with the vessel wall through the long axis, mechanisms that keep these drug delivery systems
attached to areas that may not be of treatment interest, blocking their transport toward the tumor
zone, when they are administered through intravenous or intraarterial injections [270]. The spherical
nanoparticles are transported easier along the circulatory system because of their small area of contact
[248].

2.6.4. Electrical Charge

Zeta potential of iron nanoparticles affects their cellular uptake. Several studies present a higher
internalization when IONPs zeta potential is positive [271]. IONPs penetration inside the cells is
affected by their size, chemical composition of coating, hydrophobicity, or by the proteins that can
attach to them. Administration of IONPs with positive zeta potential (30 nm, 10 mg/kg, for 8 days) in
pregnant mice produced fetal death and accumulation of nanoparticles in fetal liver and placenta
[272]. PEGylated IONPs, through its hydrophilic properties, has prolonged systemic circulation,
while PVP-coated IONPs has anti-opsonization properties [248]. The cell type exposed to IONPs is
also important, affecting the nanoparticles internalization [273]. Cancer tissue is more acidic than the
healthy zones of the body, a tumor feature that stimulated the development of IONPs that can attach
and release the drug in a pH-controlled manner [274].

2.6.5. IONPs Internalization

Inside the cell, IONPs can bind different molecules or ions, leading to reactions that may affect
the desired result [275]. Nanoparticles are captured by lysosomes (spherical IONPs) or are
transported in endosomes (spherical, elongated, or spiked IONPs along the microtubules till the
storage and processing area. Inside the cell, the ultrasmall spherical IONPs are rapidly transported
to the nucleus, inhibit DNA synthesis and activate apoptosis [276]. Similar effects on DNA were in a
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study performed in mice with intravenous administration of ultrasmall IONPs (4 - 6 nm) [277]. The
hexagonal-shaped nanoparticles remain in the cytoplasm [248] where they initiate oxidative stress.

2.6.6. Immune Response Following IONPs Administration

Systemic administration of IONDPs triggers complex responses of the organism. The
administration of iron nanoparticles through inhalations, injections (intraperitoneal, intravenous,
intraarterial) or through oral gavage decreases the immune responses, suppressing the activity of
helper T lymphocytes [278,279]. Macrophages easily phagocytize iron nanoparticles of large
dimensions [280], with positive zeta potential [281] or spherical-shaped. The elliptical nanoparticles
are phagocytized by macrophages in less than 6 minutes if the first contact with the cell is realized
with the major axis perpendicular on the phagocyte membrane [282], while other approaches delay
the phagocytosis for hours [283]. The worm-shaped IONPs avoid the macrophages phagocytosis
[284] and present a higher accumulation inside the tumor compared to spherical nanoparticles [285].

2.6.7. Routes of Administration and Toxicity

Intratumoral injection of IONPs could be considered the most efficient because it avoids the
systemic complex responses, but the possibility of migration from the cancer area into the circulatory
system or into the surrounding areas cannot be neglected and must be explored. The iron
nanoparticles can be synthesized in shapes, dimensions and chemical compositions for the transport
and release of the drug in a controlled manner and can be used for magnetic hyperthermia to induce
the apoptosis of tumoral cells. Wojtera et al. investigated the importance of iron content in
nanostructures exposed to radio electromagnetic fields and demonstrated that a higher iron
concentration produced a higher heat [286].

Applying an electromagnetic field for the transport of iron nanoparticles toward the tumor area
can interfere with other electromagnetic fields (wi-fi, static magnetic fields, etc.) [287,288] and the
response of IONPs depends not only on their dimension but also on their composition, local structure
of IONPs assemble organized under magnetic field effects, etc. [289]. The number and the
arrangement of blood vessels inside the tumor can also affect the drug delivery [290]. The IONPs
transport through tissues toward the tumor area using an external electromagnetic field may disrupt
healthy organs and vessels functions, processes that can be avoided by choosing the intratumorally
administration route. Johannsen et al. injected intratumorally 13 nm IONPs in rats with prostate
cancer for magnetic hyperthermia (45 °C or 50°C, for 30 minutes) that led to homogenously
distributed nanoparticles inside the tumor, but not all the animals survived [291].

Toxicity of IONPs depends on different factors related to the nanoparticle’s properties, healthy
tissues characteristics, tumor specificity, electromagnetic fields, etc. [292]. Wu et al. presented the
important role of nanoparticles dimensions in IONPs toxicity. The intravenous administration of 2.3
nm or of 4.2 nm IONPs, 100 mg/kg, produced the mice death, probably of cardiac cause, the results
showing increased oxidative stress in heart, lung, liver, spleen and serum. The death of mice was not
recorded when the same dose was administered of 9.3 nm IONPs size [45]. Oral administration of 30
nm IONPs, through gavage for 5 days, in Wistar rats, showed that 500 mg IONPs/kg leaded to
anorexia and lethargy while 5000 mg IONPs/kg had severe effects like ataxia, respiratory arrhythmia
with hemorrhages in the lungs and in the heart, and liver degeneration [293]. A previous study
noticed the noxious effects on liver of Wistar rats when a lower doze of IONPs (150 pg/kg) but of the
same size (30 nm) was orally administered for longer period (15 days) [294].

2.6.8. Elimination

IONPs can be excreted from the body if several conditions are accomplished: the size, shape,
zeta potential and other characteristics inhibit the nanoparticles dispersion, agglomeration and
storage but permit their glomerular filtration. The systemic administration of IONPs permits the
storage of nanoparticles in organs, according to their properties and tissues characteristics [295].
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IONPs can interfere with iron metabolism, participate in electron transfer reactions or can combine
with proteins, they are immunogenic and promoters of oxidative stress that initiates ferroptosis. In
vivo or in clinical trials, IONPs were investigated for the treatment of several cancer types, with
hyperthermia (induced by radiofrequencies, microwaves, magnetic field excitation or ultrasounds)
or followed by radiotherapy.

2.6.9. Combined Radiotherapy and MH

Magnetic hyperthermia may be used combined with radiotherapy; the effects of latter being
enhanced by heating of administered IONPs [166]. Several iron nanoparticles were developed and
studied for radio sensitization: dextran-coated IONPs (in prostate carcinoma, glioblastoma), gold
coating (in melanoma), sodium citrate coating IONPs (in breast adenocarcinoma) [279]. Li et al.
studied, in their experiment performed in mice with non-small cell lung cancer, the effects of
superparamagnetic iron oxide nanoclusters (60 nm), able to respond to different pH by self-
assembling, administered intratracheally, followed by radiotherapy, and noticed that all the animals
survived and presented reduced tumor areas [296]. Zhu et al. investigated the distribution of
intratracheally administrated IONPs (22 nm) in Sprague-Dawley rats and found these nanoparticles
in systemic circulatory system at 10 minutes after instillation, and stored inside the liver, kidney, and
spleen even after 50 days [297]. Hyaluronic acid-based IONPs (40 mg/kg, peritumoral injections) were
administered for radiosensitization in mice with subcutaneous tumors, combined with X-rays
irradiation, in an experiment performed by Bae et al. that showed significant decreases of tumor
dimensions with 100% survival rate [298]. The literature data provides conflicting results related to
the effects of iron nanoparticles on cancer tumors.

2.7. Clinical Studies

The importance and relevance of the topic of this study are supported by the large number and
variety of clinical studies conducted in recent years, and especially by the fact that some iron oxide
nanoparticles have already been approved for clinical use. Therefore, Nanotherm (MagForce Ag,
Berlin, Germany), Superparamagnetic iron oxide nanoparticle, FesOs or y-Fe,O; with aminosilane
coating), approved by both EMA and FDA, is used for magnetic hyperthermia therapy in recurrent
Glioblastoma and prostate cancer. [19,24] Other FDA approved nanoparticles, with no use in cancer
therapy are Ferumoxytol (Feraheme, Superparamagnetic iron oxide (magnetite) coated with
Polyglucose sorbitol carboxymethylether produced by AMAG Pharmaceuticals, Inc. (Cambridge,
MA, UK), for the treatment of iron deficiency anemia in patients with chronic kidney disease;
Fermoxtran-10 (Sinerem, produced by Guerbet, Saint-Ouen, France, or named as Combidex
produced by Advanced Magnetics, USA), Superparamagnetic iron oxide (magnetite) coated with
Dextran, as an MRI contrast agent; and Ferumoxsil (Lumirem- Guerbet), Superparamagnetic iron
oxide (magnetite) with Siloxane coating as an oral gastrointestinal tract imaging agent [19].

The clinical trials aimed to investigate the diagnostic and therapeutic properties of iron
nanoparticles in various malignancies. In a phase 1 clinical trial, Carbon Nanoparticle-Loaded Iron
CNSI-Fe(Il) in doses of 30 mg, 60 mg, 90 mg, and 150 mg was tested on breast cancer and other
advanced solid tumors, with a partial response of 25% for the 60mg dose and serious adverse events
of 33.33% for 30mg, 25% for 60mg, 83.33% for 90mg, and 0% for 150 mg [299]. When it comes to the
diagnostic role of Superparamagnetic Iron Oxide Nanoparticles (SPION), two clinical trials highlight
the advantages of using them for sentinel lymph node detection: the procedure using MagTrace
(SPIONSs coated with carboxydextran) (Sysmex Europe SE, Norderstedt, Germany) was successful in
all patients (100%), and no adverse effects were reported [300]; and it detected even more sentinel
lymph nodes (97.4% vs 91.2%) than radioisotope (P = 0.057) [301]. NanoTherm is also the first
nanoparticle-based therapy approved for the treatment of Glioblastoma Multiforme. An ongoing
clinical trial, ANCHIALE, is recruiting in Poland to examine the efficacy and tolerability of this
medication in the treatment of glioblastomas [302].
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Intra-venous injection of SPION- contrast agent Ferumoxytol proved effective in the
identification of liver neoplasms as it improved liver heterogeneity in MRI scans, allowing for more
accurate characterization of liver function and tumours [303].

In rectal cancer, clinical trials are now investigating a NanoEcho Particle-1 (NEP-1, Ferumoxtran
Lyophilisate 20 mg Fe/mL) based contrast agent to improve the diagnosis of lymph node metastases
and staging in patients [304]. The combination therapy of MH and radiotherapy was also tested in a
clinical study performed in 66 patients with glioblastoma. The pacients received intratumoral IONPs
followed by magnetic hyperthermia and radiotherapy showed adverse effects during thermotherapy:
the increase of body temperature at 38°C, headaches (probably because of the increase of intracranial
pressure), convulsions, motor impairments, tachycardia, and blood pressure variations [183].

3. Conclusions

Although superparamagnetic iron oxide nanoparticles are widely regarded as biocompatible
and clinically translatable, their safe application requires a nuanced understanding of the parameters
influencing toxicity. Optimization of surface coatings, control of administered dose and core
diameter, and careful design of external stimuli (e.g., magnetic fields) are essential to mitigate adverse
effects. Further research, particularly on long-term biodistribution and chronic toxicity —is warranted
to ensure their safe and effective use in clinical settings. In the synthesis of IONPs all the factors that
interfere with the treatment, factors related to the MNPs, targeted tissue, to the systemic body
responses, to the environmental electromagnetic field, etc. must be considered. Magnetic
hyperthermia’s integration with other therapies — particularly immunotherapy, chemotherapy, and
smart carriers — marks a shift from single-modality treatment to multifunctional platforms. With
growing preclinical validation and early clinical success, iron oxide-based MH is positioned as a
powerful adjunct strategy in cancer therapy, offering both targeted thermal control and synergistic
therapeutic potential.

4. Future Directions

Magnetic nanoparticles (MNPs) are emerging as promising agents for enhancing the efficacy of
cancer treatment. Among the innovative approaches involving MNPs, magnetic hyperthermia (MH)
stands out due to its minimally invasive nature, ability to penetrate deep tissues, and potential to
selectively induce various cell death pathways—including apoptosis, ferroptosis, necrosis and
pyroptosis. MH allows for localized thermal ablation of tumor tissues, minimizing damage to
surrounding healthy tissues. Despite numerous preclinical studies demonstrating the therapeutic
potential of MH, its clinical translation remains limited. While MH has been approved for the
treatment of recurrent glioblastoma, its safety and effectiveness for other types of malignancies still
require validation through comprehensive clinical trials. Consequently, the transition of MH from an
experimental therapeutic platform to a widely accepted clinical modality —used in conjunction with
surgery, radiotherapy, and chemotherapy —will depend on future advancements in interdisciplinary
materials science and the development of intelligent, adaptive treatment systems.

Significant progress was made in tailoring the intrinsic properties of MNPs, such as magnetic
responsiveness, biocompatibility, and surface functionality. However, further refinement is needed
to optimize their performance under clinically relevant alternating magnetic field (AMF) conditions.
Standardization of experimental parameters—such as MNP concentration, exposure duration, AMF
strength, and route of administration—is essential to ensure reproducibility and facilitate clinical
translation.

Many MH studies were conducted on in vitro 2D models, containing tumor cells w/wt co-
cultured stromal and/or vascular cells. The 2D models present certain advantages such as easy
maintenance, reliability of the results, they usually involve human cell lines, and are suitable for
toxicity screening of MNPs, researching mechanisms of cell death induction or tumor escape but they
lack the complex spatial tumor structure. There is a great need for better tumor models that match

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.0830.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2025 d0i:10.20944/preprints202508.0830.v1

27 of 46

the clinical scenario, particularly the tumor -stroma- immune system interactions, which is the key to
understanding the mechanisms of tumor destruction generated by MH as a single therapy or
combined with other options, such as radiotherapy, immunotherapy and/or chemotherapy. In view
of this, the most reliable models, so far, have been developed in vivo, on lab animals, particularly
rodents. There are, however, many limitations related to animal physiology, the ability to generate a
certain type of tumor or to the ethical and financial considerations.

Recent advancements in the development of in vitro 3D models, such as the spheroids,
organoids, microfluidics and the possibility of bioprinting creates opportunities for the design of
human tumor models, that can comprise multiple human cell types grown on organic 3D scaffolds
like collagen, Matrigel or others. These models can develop ingrown tumor vascularization and by
adding immune cells can generate a certain immune response. Therefore, the 3D models can
represent a step forward in standardized testing of MH to generate more reliable data in the
preclinical testing. However, the creation of these models requires time, knowledge and financial
resources, also reproducibility can be an issue, depending on the donor, media and reactives used for
the model creation.

Future research should prioritize the design of multifunctional MNPs capable of integrating
diagnostic and therapeutic modalities (so-called "theranostics") into a single nanoplatform. Such
platforms would allow for precise in vivo tumor localization, real-time imaging, and patient-specific
treatment, contributing to the realization of personalized oncology. A key challenge remains the
efficient targeting and accumulation of MNPs at tumor sites. Passive targeting via the enhanced
permeability and retention (EPR) effect often results in significant off-target deposition, particularly
in organs such as the liver, spleen, and kidneys. To overcome this, advanced targeting strategies—
including ligand-mediated active targeting and magnetic field-assisted navigation—should be
further explored. In parallel, the development of next-generation imaging and tracking technologies
will be critical to monitor in vivo distribution and enhance tumor-specific accumulation of MNPs via
systemic administration. Looking forward, MNPs may also play a pivotal role in preventing
metastasis. One conceptual application involves engineering MNPs to circulate within the
bloodstream and capture circulating tumor cells, directing them toward an implanted magnetic
device for sequestration and removal —a novel approach for metastasis interception. Combination of
MH and immunotherapy has the potential to inhibit the suppressive effect of the tumor cytokines,
particularly towards stroma infiltrating macrophages and trigger a phenotype switch. Combined
with enhanced tumor antigen release by MH induced cell killing it can lead to an effective immune
response against tumor antigens, leading to local and distant tumor destruction. Additionally, MNPs
could be engineered to facilitate non-invasive biopsies of tumors that are otherwise inaccessible
through conventional methods, offering new possibilities for early diagnosis and molecular profiling.
In cancer immunotherapy, MNPs may serve as potent carriers for vaccine delivery, improving
antigen presentation and immune activation. The continued convergence of nanotechnology,
immunology, and bioengineering will likely unlock new therapeutic paradigms that exploit the full
potential of MNPs in precision oncology.
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