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Abstract: The spin-1/2 quantum transverse Ising model, defined on a ladder structure, with
nearest-neighbor and four-spin interaction on a plaquette, is studied by using exact diagonalization
and finite-size-scaling procedures. The quantum phase transition between the ferromagnetic and
paramagnetic phases has been obtained in the thermodynamic limit. The critical transverse field
decreases as the antiferromagnetic four-spin interaction increases, and reaches a multicritical point.
However, the exact diagonalization approach was not able to capture the essence of the dimer phase
beyond the multicritical transition.
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1. Introduction

Low dimensional quantum spin models have long been the subject of many theoretical and
experimental approaches. The interest in such systems comes mainly due to two factors. First, there
are several strong experimental appeals, because some physical realizations, when viewed by the
relevant microscopic quantum interactions consist, in fact, of single molecules, or linear chains, or even
ladder-like structures. Just to cite a few examples among the vast list of experimental results that fall
in these scenarios, we have: i) molecular magnetism in Cu5-NIPA [1], V6-like magnetic molecules [2],
and multiferroics [3] (these compounds can be considered as zero-dimensional systems); ii) TMMC,
CsNiF3, and CuCl22NC5H5 exhibiting one-dimensional character [4]; iii) ladder-type structures as in
(VO)2P2O7 [5], Cu(C5H12N2)22Cl4 [6], as well as cuprates La2CuO4 and La6Ca8Cu24O41 [7–10]. Of
course, the majority of the physical realizations have indeed the main quantum interactions along
the three crystalline dimensions. Second, it is a real challenge to treat quantum models even in low
dimensions, since the statistical mechanics of a d-dimensional quantum model is equivalent to a
d + 1-classical model [11], implying that even one-dimensional quantum systems can undergo a critical
phase transition at zero temperature, the so called quantum phase transition.

Despite in all physical realizations cited above the nearest-neighbor exchange being the relevant
interaction, four-spin interactions in a plaquette have been suggested to reproduce the dispersion
relation observed in inelastic neutron scattering experiments on cuprates [7–10] and even to stabilize
a chiral spin liquid on the triangular lattice [12]. This new experimental motivation has lead to an
increase in theoretical investigations of quantum Ising-like models defined on a ladder, specially
with four-spin interaction that has been shown to induce other unusual types of order, such as scalar
chirality and intra-rail staggered dimerization (see, for instance, Ref. [13] and references therein).

The spin-1/2 quantum transverse Ising model, defined on a ladder structure, with
nearest-neighbor interaction, has been one of the most studied models in the literature. In particular,
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the model including a four-spin interaction on a plaquette, has been recently studied by using the
density matrix renormalization group (DMRG) approach [13] (the dynamical behavior has also been
recently studied via the recurrence relation method [14]). The ground state phase diagram has been
obtained in the transverse field versus four-spin interaction plane. In this case, a ferromagnetic to
paramagnetic second-order phase transition is observed and, for high enough antiferromagnetic
four-spin couplings, the system presents a dimer phase and a multicritical point.

In the present work, we have revisited this model and used the exact diagonalization on finite
lattices. The energy gap has been computed and from the corresponding finite-size-scaling (FSS)
relation the critical transverse field has been obtained for several values of the four-spin interaction.
The ferromagnetic-paramagnetic phase transition line has thus been obtained in the thermodynamic
limit. The results agree well with those previously obtained from DMRG [13]. However, contrary to
the model with four-spin interactions in one dimension [15], in the ladder structure it has been noticed
that there are much stronger finite-size effects and one has to use indeed the larger possible lattices
for the extrapolations. Moreover, the ferromagnetic-paramagnetic transition line on the ladder does
not go to zero at the multiphase point in the classical limit of vanishing transverse field, as does the
one-dimensional model.

The plan of the paper is the following. In the next section, the model is defined and the
configurations in the classical limit is discussed. Section 3 describes the theoretical approach using
the exact diagonalization on finite ladders and the corresponding FSS relation for the energy gap
and critical transverse field. The results of the transition line are presented in Section 4 and some
concluding remarks are addressed in the final Section.

2. Model

The Hamiltonian of the spin-1/2 Ising model, defined on a ladder structure, as depicted in Figure
1, with four-spin interaction and in the presence of a transverse field, can be written as

H = −J
L
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where J > 0 is the nearest-neighbor exchange interaction along the rails and in the rungs, J4 is the
four-spin interaction connecting the spins in a plaquette, and B is the transverse external field applied
in the x direction. The sums are over the L rungs of a ladder with periodic boundary conditions in
the direction of the two side rails denoted, respectively, by 1 and 2. The spin-1/2 operators σα

`,i, with
` = 1, 2 and α = x, z, are given by the Pauli spin matrices.
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Figure 1. (color online) Sketch of a ladder with rails labeled as 1 and 2. The interaction along the rails
and in the rungs are J. The circles represent the four-spin interaction J4 in each plaquette. σz

n,i, with
n = 1, 2, are the z-component spin operators. The z axis is taken perpendicular to the plane of the
figure and the transverse field B is along the x axis.
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Due to the positiveness convention of the four-spin interaction in the Hamiltonian (1), when
J4 < 0 the plaquette ordering is also ferromagnetic for low values of transverse fields. As a result,
the system undergoes a second-order transition from a ferromagnetic phase to a paramagnetic phase
at a critical transverse field value Bc. This critical transverse field decreases as J4 increases. As has
been shown in Ref. [13], when J4 > 0, this transition persists till some value of J4 (that is B dependent)
where a dimer phase is set up in the ladder.

At B = 0, one has a classical system with a multiphase point at J4 = 3/2 dividing the classical
axis J4 into two regions: 1) for J4 < 3/2 a double degenerated ferromagnetic phase, and 2) for J4 ≥ 3/2
a ground state that is 2L+1 degenerate, with a residual entropy Sr = (L + 1)kB ln 2 (here, kB the
Boltzmann constant).

Contrary to what happens in the one-dimensional model with four-spin interaction along a
straight line [15], the ferromagnetic-paramagnetic transition line does not terminate at the multiphase
point at B = 0. This is a consequence of the ladder structure allowing the appearance of the rung
dimerized phase [13].

3. Theoretical background

We have used finite ladders of length L, with N = 2L sites, and periodic boundary conditions.
For each ladder, the energy gap GL(B, J4) has been computed. The quantity GL(B, J4) is given by

GL(B, J4) = E1
L − E0

L, (2)

where E1
L − E0

L is the energy gap between the first excited state and the ground state, respectively.
GL(B, J4) is equivalent to the correlation length in thermal systems and satisfies the FSS relation

[16]
LGL(BL

c , J4) = L′GL′(BL
c , J4), (3)

for two finite ladders of length L and L′, with usually L > L′. From the above relation, it is possible to
estimate BL

c , the critical field for the ladder pair (L, L′).
For large enough lattices, it is expected the quantities LGL(B, J4), as a function of B for a given

value of J4, to cross at the same point Bc, the critical transverse field for the considered value of J4.
However, in some cases, where the finite lattices are not large enough, residual corrections make the
crossing points BL

c suffer a systematic shift as L varies. Nevertheless, there is an additional FSS relation
for the L dependence on the transition points BL

c given by [17]

BL
c = Bc + aL−1/ν

(
1 + bL−ω

)
, (4)

where Bc = BL→∞
c is the critical transverse field in the thermodynamic limit, ν is the correlation length

critical exponent, ω is the correction-to-scaling exponent, and a and b are non-universal constants. In
this way, for every chosen value of J4 and reference ladder L′, one obtains the crossing point BL

c for
the ladder pair (L, L′) through Eq. (3). Next, using Eq. (4) for various values of L, one computes the
desired extrapolated value of critical transverse field.

In the present work, the energy gap has been obtained through exact diagonalization of finite
ladders with length L in the range 2 ≤ L ≤ 11. For the larger lattices, we have employed the Lanczos
diagonalization procedure [18].

4. Results and discussion

In what follows, we have considered J = 1. This value of J can also be interpreted as measuring
the four-spin interaction J4, as well as the transverse field strength B, in units of J.

As an example of the behavior of energy gap as a function of the transverse field, Figure 2 shows
LGL(B, J4) for several values of L and J4 = 0. In this case, we simply have the transverse Ising model
on a ladder [19]. It is clear that a small region of unique crossings is only achieved for the larger
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ladders. The estimate of the critical transverse field, in this case, is enlighten by the corresponding
arrow.
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Figure 2. (color online) The quantity LGL(B, J4), defined in the text, as a function of the transverse field
B, for several values of L (indicated in the curves) and J4 = 0. The arrow indicates the estimate of Bc

when considering only the larger ladders.

It is also evident in that figure that for smaller ladders there is a shift in the values of crossings BL
c .

We can thus compute BL
c by taking a reference lattice L′ and several values of L > L′. From the results

of Figure 2, it is possible to have a clear crossing by using L′ = 2, 3, and 4. The results so obtained are
depicted in Figure 3, which allows one to obtain additional extrapolated estimates of Bc through fits to
Eq. (4) for each value of the reference ladder L′. The present estimate Bc = 1.8322(2) agrees very well
with Bc = 1.83213 coming from DMRG of Ref. [13] using a finite ladder with length L = 28.
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Figure 3. (color online) Crossing transverse field BL
c , as a function of L−1/ν (ν = 1), for J4 = 0

and different values of the reference ladder L′ (indicated in the legend). In the legend we find the
extrapolated values of Bc, using fits to Eq. (4) with θ = 2, for each curve. Also indicated in the legend
come the values from the crossings of the larger ladders in Figure 2 (cross) and from Ref. [13].

It should be stressed that in using Eq. (4) one needs the exponents ν and θ. Although from Eq. (3)
it is possible to compute ν using renormalization group ideas and estimates of Bc [15,20] (for instance,
from the values of the crossings BL

c for the larger ladders) the obtained results are close to the exact
ones for this universality class. However, the correction-to-scaling exponent cannot be obtained in this
way and, at least, should be treated as an extra adjustable parameter. For this reason, and from the fact
that we are indeed more interested in the location of the transition line, we have resorted to the known
values ν = 1 and θ = 2 for the Ising universality class in order to compute the extrapolated critical
transverse field.

Similar curves, with similar FSS analysis, are obtained when J4 > 0. Figure 4 shows the critical
transverse field Bc as a function of J4 obtained from the present method in comparison to some results
from DMRG of Ref. [13]. One can clearly see that, contrary of what happens for the very same model
in one dimension [15] (with four-spin interactions along a straight line), the transition line definitely
does not go to zero as J4 tends to 3/2, the multiphase point. The agreement with DMRG results is not
only apparent in Figure 4 but also in Table 1, that gives a more detailed numerical comparison for
some selected values of J4.

Table 1. Critical values of the transverse field Bc in the thermodynamic limit for some values of the
four-spin interaction J4. The first row are the results from the present work and the second row from
DMRG calculation [13] with L = 28.

J4 0 0.5 1 1.5 1.7 1.85

Bc
1.8322(2) 1.5726(2) 1.2938(2) 0.9813(3) 0.834(3) 0.697(2) this work
1.83213 1.57226 1.29334 0.98041 0.83579 0.70510 DMR[13]
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Figure 4. (color online) Critical values of the transverse field Bc as a function of the four-spin interaction
J4. FM and PM stand for the ferromagnetic and paramagnetic phases, respectively. The full line is the
present results and the circles the values from DMRG of Ref. [13]. The diamond locates the multiphase
point at Bc = 0.

5. Concluding remarks

The transverse Ising model, defined on a ladder and with four-spin interactions on a plaquette,
has been studied by using the finite-size-scaling approach with exact diagonalization of finite ladders.
The method has furnished quite good results for the ferromagnetic to paramagnetic transition line in
the transverse field versus four-spin interaction plane. The computed critical transverse field, in the
themdynamic limit, are also in good agreement with those coming from density matrix renormalization
group procedure.

Despite the expected efficacy of the FSS along the ferromagnetic-paramagnetic transition line, the
model shows, in fact, strong finite-size effects, and only with considerably larger lattices the results
could be accurately obtained. One unexpected feature consists in the method being unable to locate the
dimerized phase and the corresponding transition that occurs to the ferromagentic and paramagnetic
phases. For values J4 > 1.9 the crossings become more difuse and in some regions it is not possible to
obtain good fits with the expected scaling relation. Perhaps more suitable quantities than the energy
gap should be necessary to unveil the transition character and the microscopic spin behavior for larger
values of the four-spin interaction.
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