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Abstract: The study shows that the recurrence relations defining volumes and surfaces of 

omnidimensional convex polytopes and n-balls are continuous and defined for complex n, 

whereas in the indefinite points their values are given in the sense of a limit of a function. 

The volume of an n-simplex is a bivalued function for n < 0, and thus the surfaces of n-

simplices and n-orthoplices are also bivalued functions for n < 1. Applications of these 

formulas to the omnidimensional polytopes inscribed in and circumscribed about n-balls 

reveal previously unknown properties of these geometric objects in negative, real 

dimensions. In particular for 0 < n < 1 the volumes of the omnidimensional polytopes are 

larger than the volumes of circumscribing n-balls, while their volumes and surfaces are 

smaller than the volumes of inscribed n-balls. Specific products and quotients of volumes 

and surfaces of the omnidimensional polytopes and n-balls are shown to be independent 

of the gamma function. 

Keywords: regular basic convex polytopes; circumscribed and inscribed polytopes; 

negative dimensions; fractal dimensions; complex dimensions 

1. Introduction 

In n-dimensional space, n-dimensional objects have (n−1)-dimensional surfaces which have a 

dimension of volume in (n−1)-dimensional space. However, this sequence has a singularity at n = −1. 

A 0-dimensional point in 0-dimensional space has a vanishing (−1)-surface being a vanishing volume 

of the (−1)-dimensional void. But the surface of the (−1)-dimensional void is not (−2)-dimensional. It 

is undefined. This discontinuity, along with the recently discovered [1] reflection relations around zero 

for volumes and surfaces of n-cubes inscribed inside n-balls, hint that thinking about dimension in 

terms of a point on a number axis, with negative dimensions being simply analytic continuations from 

positive dimensions [2], may be misleading. Thinking in terms of dimension as a point on a number 

semiaxis, similarly to a point on a radius, seems more appropriate. Thus n-dimension corresponds to 

(−n)-dimension. Considering dimension of a set as the length exponent at which that set can be 

measured [3] makes the negative dimensions to refer to densities as positive ones refer to quantities 

[3]. Thus, (−2)-dimensional pressure, for example, considered in terms of a density (e.g. in units of 

kg/m
2
) corresponds to 2-dimensional area (e.g. in units of m

2
) that it acts upon. Following the same 

logic, gravitational force F = GMm/R
2
 acting towards a center enclosed by a 2-dimensional surface is 

(−2)-dimensional, whereas centripetal force F = mV
2
/R

1
 acting towards a center enclosed by a 1-

dimensional perimeter is (−1)-dimensional. 

This study extends the prior research [1] presenting novel recurrence relations for volumes and 

surfaces of n-balls, regular n-simplices, and n-orthoplices. It was signaled in the prior research that 

these recurrence relations are continuous on their domains of definitions for n  ℝ, whereas the 

starting points for fractional dimensions can be provided, e.g., using spline interpolation between two 
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(or three in the case of n-balls) subsequent integer dimensions. It was also conjectured that for 

0 < n < 1 volumes of n-cubes inscribed inside n-balls are larger than volumes of those n-balls. 

This study shows that the recurrence relations of the prior research [1] are continuous, whereas 

their values at the singular points can be given in the sense of a limit of a function. The properties of 

the three omnidimensional, regular, convex polytopes, present for all n  ℕ0 [4], including inscribed in 

and circumscribed about n-balls are presented. It is shown that for 0 < n < 1 their volumes are larger 

than volumes of circumscribing n-balls, while their volumes and surfaces are smaller than volumes of 

inscribed n-balls. 

The paper is structured as follows. Section 2 summarizes known formulas for omnidimensional, 

regular, convex polytopes in natural dimensions that are employed in the further sections of the paper. 

In Section 3 it is shown that these recurrence relations can be naturally extended to complex, 

continuous dimensions, yielding complex values, as illustrated in Section 4 in the example of n-balls. 

Section 5 examines the properties of the omnidimensional, regular, convex polytopes inscribed in and 

circumscribed about n-balls for n  ℝ. Section 6 hints possible applications and concludes the findings 

of this paper. 

2. Known Formulas for Omnidimensional, Convex Polytopes and n-Balls 

It is known that the volume of an n-ball (B) is 

  
 

2

2 1

n
n

n B
V R R

n



 

, (1) 

where Γ(ℂ → ℂ) is the Euler’s gamma function and R denotes the n-ball radius. This implies that 

volumes of n-balls are complex in complex dimensions (cf. Section 4). The volume of an n-ball can be 

expressed [5] in terms of the volume of an (n − 2)-ball of the same radius as a recurrence relation 

    
2

2

2
n nB B

R
V R V R

n


 , (2) 

where V0 (R)B := 1 and V1 (R)B := 2R. It was shown in the prior research [1] that the relation (2) can be 

extended into negative dimensions as 

    22

2

2
n nB B

n
V R V R

R



 , (3) 

solving (2) for Vn−2 and assigning new n  ℤ as the previous n − 2. A radius recurrence relation  

 2

2
n nf f

n
 , (4) 

defined [1] for n  ℕ, where f0 := 1 and f1 := 2, allows for expressing the volume n-ball as 

   2n n

n nB
V R f R    , (5) 
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where “⌊x⌋“ denotes the floor function giving the greatest integer less than or equal to its argument x. 

The relation (4) can be analogously as formula (2) extended [1] into negative dimensions as 

 
2

2

2
n n

n
f f 


 , (6) 

which allows to define f−1 := 1, f0 := 1 to initiate (4) or (6). Known [5] surface of an n-ball is 

    n nB B

n
S R V R

R
 . (7) 

Known [6, 7] volume of a regular n-simplex (S) having the edge length A is 

  
1

! 2

n

n S n

n
V A A

n


 . (8) 

The formula (8) can be written [1] as a recurrence relation 

    1 3

1

2
n nS S

n
V A AV A

n



, (9) 

with V0(A)S := 1, to remove the indefiniteness of the factorial for n < 1. Formula (9) can be solved for 

Vn−1. Assigning new n  ℤ as the previous n − 1, yields [1] 

  
   

3

1 2 1

2

n S
n S

V A n
V A

A n

 



, (10) 

which also removes the singularity for n = 0 present in known formula (8). Aby n-simplex has n + 1 (n 

− 1)-facets [5]. Therefore, its surface is 

      11n nS S
S A n V A  . (11) 

Known [5] volume of n-orthoplex (O) is 

  
2

!

n
n

n O
V A A

n
 . (12) 

Formula (12) can be written [1] as a recurrence relation 

    1

2
n nO O

V A AV A
n


, (13) 

with V0(A)O := 1, to remove the indefiniteness of the factorial for n < 1. Solving (13) for Vn−1 and 

assigning new n  ℤ as the previous n − 1, yields [1] 
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    1

1

2
n nO O

n
V A V A

A



 , (14) 

which also removes singularity for n = 0 present in formula (12). Any n-orthoplex has 2
n
 facets [5], 

which are regular (n − 1)-simplices. Therefore, its surface is 

    12n

n nO S
S A V A . (15) 

3. Continuous Recurrence Relations in Complex Dimensions 

The recurrence relations presented in the preceding section can be naturally extended to 

complex, continuous dimensions. 

Theorem 1. 

Recurrence relations (2), (3), (5) (n-balls) are continuous for n  ℂ, wherein for n = −2k − 2, k  ℕ0 

their values are given in the sense of a limit of a function. 

Proof 1.  

Comparing (1) with (3) and setting m = n + 2 and k = m/2, yields the n-ball volume 

 

 
 

 

 
   

 
   

 
 

 
 

2

22

2 2 2 2
2 2

2

2 2

2

2 1 2

2 2

2 2 1 2
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n
n

n nB B

n m k
n m k

n mB B

n n
n n

n n nB B

n
V R R V R

n R

V R R V R R R
n n m m k k

V R R V D D
n n





   

 








 
 

  
    

 
   

, (16) 

which recovers (1), as nΓ(n/2)/2 = Γ(n/2 + 1) for n > 0, n  ℂ. On the other hand, (3) corresponds to 

(5) 

 
   

     

2

2 22

1 2 22 21 2

2 2

2 2

2 2

n n

n n nB B

mn mn m m

n n m m mB B

n n
V R V R f R

R

V R f R V R f R f R



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  
 

          
 

 
 

  

, (17) 

for n  ℂ, which completes the proof. □ 

Also 

 
 0

2

2 2,

1
lim 2 0 0

2 1

n n n

n k k
D a

n
 

  
  

 
, (18) 

where a ≠ 0, a  ℂ. 

Using (7) and (16) the surface of an n-balls is given by 
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  
 

1 2
12

2 1

n n
n

n B

n
S D D

n




 
. (19) 

Theorem 2. 

Recurrence relations (9), (10) (regular n-simplices) are continuous for n  ℂ, wherein for n = −k − 1, 

k  ℕ0 their values are given in the sense of a limit of a function. 

Proof 2.  

Expressing the factorial in (8) by the gamma function, comparing (8) with (10), and setting m = n + 1, 

yields the regular n-simplex volume 

 

 
 
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nnm m








 
  

  

 

  

 
  

    

, (20) 

which recovers (8), as Γ(n +1) = n! for n  ℕ, and completes the proof. □ 

Also 

 
 0

2

1,

1
lim 2 1 0 0

1

n n

n k k
A n a

n



  
   

 
, (21) 

where a  ℂ. 

For n < −1 n-simplex volume formula (20) is imaginary and for n < 0 it is a bivalued function, 

as n√n/√n
3
 = 1 only for n  ℝ, n > 0. Thus, its general form, involving principal branch for n ≥ 0 and 

the 2
nd

 branch for n < 0 is 

  
  2 3

1

1 2

m

n nS

n n n
V A A

n n



 

. (22) 

Using (11) and (20) the surface of a regular n-simplex is given by 

  
 

   

3 2

1

1 2

1 11

1 11 2

n

n nS

nn n
S A A

nn





 
 

   
. (23) 

For n < 0 n-simplex surface formula (23) is imaginary and for n < 1 it is a bivalued function, as 

(n − 1)√(n − 1)/√(n − 1)
3
 = 1 only for n  ℝ, n > 1. Thus, its general form is 
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  
 

   

 

 
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n n n n
S A A

n n





  

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. (24) 

Theorem 3. 

Recurrence relations (13), (14) (n-orthoplices) are continuous for n  ℂ, wherein for n = −k − 1, 

k  ℕ0 their values are given in the sense of a limit of a function. 

Proof 3. 

Expressing the factorial in (12) by the gamma function, comparing (12) with (14), and setting 

m = n + 1, yields the n-orthoplex volume 

 

 
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m m n




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


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  

 
  

, (25) 

which recovers (12), as nΓ(n) = Γ(n + 1) for n  ℂ\{n  ℤ, n ≤ −1} and Γ(n + 1) = n! for n  ℕ0, and 

completes the proof. □ 

Using (15) and (25) the surface of an n-orthoplex is given by 

  
 

 

1 23 2
1

1 12

1 11

n

n
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S A A
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


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   

. (26) 

For n < 0, n  ℤ n-orthoplex surface formula (26) is imaginary and for n < 1 it is a bivalued function, 

as (n − 1)√(n − 1)/√(n − 1)
3
 = 1 only for n  ℝ, n > 1. Thus, its general form, involving two branches, 

is 

  
 

 

 

 

1 23 2
1

3

1 12

1 1

n

n
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n nn
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n n




 


  

. (27) 

Continuous recurrence relations (16)-(27) are shown in Figure 1, along with the integer 

recurrence relations (2)-(15). 
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Figure 1. Graphs of volumes (V) and surfaces (S) of unit edge length regular n-simplices (red), 

n-orthoplices (green), n-cubes (pink), and unit diameter n-balls (blue), along with the integer 

recurrence relations (dashed lines) and the 2
nd

 branches (dotted lines) for n = [−4, 6]. 

4. The volume of an n-Ball in Complex Dimensions 

The gamma function is defined for all complex numbers except the non-positive integers. 

Therefore the volumes and surfaces (16)-(27) of n-balls and omnidimensional polytopes containing the 

gamma function are also defined for all n = a + ib  ℂ. For example, in the case of n-balls [9] 

 
     22 2 cos ln sin ln

2 2

a ibn a b b
i    

     
      

    
, (28) 

      cos ln sin lnn a ib aR R R b R i b R      , (29) 

and the volume (1) and surface (7) become 

  
    

2

cos ln sin ln

1
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a

n B

b R i b R
V R R

a ib

 


   
   


 

  
 

, (30) 
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    
    
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   
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  
 

, (31) 

where we have used cos(a)cos(b) − sin(a)sin(b) = cos(a + b) and cos(a)sin(b) + sin(a)cos(b) = 

sin(a + b), as shown in Figure 2 for unit radius n-balls. 
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Figure 2. Graphs of complex volumes (V) and surfaces (S) of unit radius n-balls in complex 

dimensions n = a + ib for a = [0, ±12], b = [0, ±2]. 

In particular for n = 3 + ib, b  ℝ (spacetime dimensionality) equation (30) becomes 

  
    3

32

cos ln sin ln

3
1

2

n B

b R i b R
V R R

ib

 


   
   


 

  
 

, (32) 

which reduces to familiar V3(R)B = 4πR
3
/3 for n = 3 + 0i, i.e. at the present moment. Note that the anti-

symmetry of the imaginary part of the volume (30), in a way, establishes the arrow of time and is 

independent on Re(n) for Im(n) = 0. 
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5. Basic Regular Polytopes Inscribed in and Circumscribed About n-Balls 

Each of the three regular polytopes can be inscribed in and circumscribed about an n-ball, and 

this is considered in this section on the basis of the continuous relations presented in Section 3. 

5.1 Regular n-Simplices Inscribed in and Circumscribed About n-Balls 

The diameter DBCS of an n-ball circumscribed about a regular n-simplex (BCS) is known [7] to 

be 

 
2

1
BCS

n
D A

n



, (33) 

where A is the edge length. Hence, the edge length ASIB of a regular n-simplex inscribed (SIB) inside an 

n-ball (B) with diameter D is 

 
1

2
SIB

n
A D

n


 , (34) 

so that the regular n-simplex volume (20) becomes 

 
 
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nn n
V D
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  
 
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. (35) 

For n < −1 the inscribed n-simplex volume (35) is imaginary (as n
−n/2

 introduces the imaginary unit for 

n < 0) and divergent with n approaching negative infinity, for n < 0 it is a bivalued function of n, and 

is complex for −1 < n < 0, with the real part being equal to the imaginary part for n = −1/2. It is zero 

for n = −k, k  ℕ and for 0 < n < 1 it is larger than the volume of the circumscribing n-ball. 
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Figure 3. Graphs of volumes (V) of regular n-simplices (red) inscribed in unit diameter n-balls 

and volumes of unit diameter n-balls (blue) for n = [0, ±6] (inset for n = [−1, 0]). 

Similarly, the surface (23) of a regular inscribed n-simplex with edge length A given by (34) is 
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as shown in in Figure 4. For n < −1 the inscribed n-simplex surface (36) is imaginary and divergent 

with n approaching negative infinity, for n < 1 it is a bivalued function of n, and is complex for −1 < 

n < 0, with the real part being equal to the imaginary part for n = −1/2. It is zero for n = −k, k  ℕ0. 
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Figure 4. Graphs of surfaces (S) of regular n-simplices (red) inscribed in unit diameter n-balls 

and surfaces of unit diameter n-balls (blue) for n = [0, ±6] (inset for n = [−1, 0]). 

The diameter DBIS of an n-ball inscribed inside a regular n-simplex (BIS) is known [7] to be 

 
2

1
BISD A

n n



, (37) 

where A is the edge length. Hence, the edge length ASCB of a regular n-simplex circumscribed (SCB) 

about an n-ball (B) with diameter D is 

 
1

2
SCB

n n
A D


 , (38) 

so that its volume (20) becomes 
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, (39) 

as shown in in Figure 5. For n < 0 the circumscribed n-simplex volume (39) is a complex, bivalued 

function of n, whereas both branches are left-handed and convergent to zero with n approaching 

negative infinity. For 0 < n < 1 it is smaller than the volume of the inscribed n-ball (cf. Table 2). It is 

zero for n = −k, k  ℕ and real for n = −(2k + 1)/2, k  ℕ. For the principal branch and D = 1 it 

amounts 
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Figure 5. Graphs of volumes (V) of regular n-simplices (red) circumscribed about unit diameter n-

balls and volumes of unit diameter n-balls (blue) for n = [0, ±6] (inset for n = [−30, 0]). 

Furthermore for n = −1/2 and for n = −(2k + 3)/4, k  ℕ, the real part the volume (39) is equal to the 

imaginary part up to a modulus. For n = −1/2 V (−1/2)SCB = (1 − i)/√π ≈ 0.5642(1 − i). Otherwise, for the 

principal branch and D = 1 it amounts 
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Figure 6. Graphs of surfaces (S) of regular n-simplices (red) circumscribed about unit diameter n-balls 

and surfaces of unit diameter n-balls (blue) for n = [0, ±6] (inset for n = [−30, 0]. 
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Similarly, the surface (23) of a regular circumscribed n-simplex with edge length ASCB (38) is 
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, (42) 

as shown in in Figure 6. For n < 1 the circumscribed n-simplex surface formula (42) branches, and for 

0 < n < 1 it is smaller than the surface of the inscribed n-ball. For n < 0 is complex with both branches 

being right-handed towards negative infinity or the branch point. It is zero for n = −k, k  ℕ0 and real 

for n = −(2k + 1)/2, k  ℕ, achieving local maximum at n ≈ −7/2. For the principal branch and D = 1 it 

amounts 
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Its real part is equal to the imaginary part up to a modulus for n = −1/2 and for n = −(2k + 3)/4, k  ℕ. 

For n = −1/2 S(−1/2)SCB = (−1 + i)/√π. Otherwise, for the principal branch and D = 1 it amounts 

 

  

      
 

 
 

   

1 1 2 86 1 4

2 3 4
2 5 8

1

1 2 2 1

1 2
2 3

4

0.8873, 1.1755,1.3484,1.4443, 1.4842, 1.4828, 1

k kk

k SCB
k

k

i i k
S

k
k

i i

 

 




  
 

 
  
 

      

. (44) 

The surface (42) is initially divergent to achieve local modulus maximum of about 2.9757 at 

n ≈ −3.4997 (numerical), and local real maximum of about −2.976 at n = −7/2, and then becomes 

convergent to zero with n approaching negative infinity. 

5.2 n-Orthoplices Inscribed in and Circumscribed About n-Balls 

The diameter DBCO of an n-ball circumscribed about an n-orthoplex (BCO) is known [8] to be 

 2BCOD A , (45) 

where A is the edge length. Hence, the edge length AOIB of an n-orthoplex inscribed inside an n-ball 

(OIB) with diameter D is 

 
1

2
OIBA D , (46) 

so that its volume (25) becomes 
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, (47) 
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as shown in in Figure 7. The inscribed n-orthoplex volume formula (47) is real for n  ℝ, where for 

n = −k, k  ℕ, its zero values are given in the sense of a limit of a function (cf. (21)), and for 0 < n < 1 

it is larger than the volume of the circumscribing n-ball (cf. Table 2). 
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Figure 7. Graphs of volumes (V) of n-orthoplices (green) inscribed in unit diameter 

n-balls and volumes of unit diameter n-balls (blue) for n = [0, ±6]. 

Similarly, the surface (26) of the inscribed n-orthoplex with edge length A given by (46) 

becomes 
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as shown in in Figure 8. For n < 1 inscribed n-orthoplex surface (48) branches, for n < 0, n  ℤ it is 

imaginary and oscillatory divergent with n approaching negative infinity, and for n ≤ −1, n  ℤ, its 

zero values are given in the sense of a limit of a function. 
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Figure 8. Graphs of surfaces (S) of n-orthoplices (green) inscribed in unit diameter n-balls 

and surfaces of unit diameter n-balls (blue) for n = [0, ±6]. 

The diameter DBIO of an n-ball inscribed inside an n-orthoplex (BIO) is known [8] to be 
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where A is the edge length. Hence, the edge length AOCB of an n-orthoplex circumscribed about an n-

ball (OCB) with diameter D is 
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n
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so that its volume (25) becomes 
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as shown in Figure 9. Circumscribed n-orthoplex volume (51) is a singlevalued function, is complex 

for n < 0, crossing the quadrants of the complex plane in the order {Re(VOCB) > 0, Im(VOCB) < 0}, 

{Re(VOCB) > 0, Im(VOCB) > 0}, {Re(VOCB) < 0, Im(VOCB) > 0}, and {Re(VOCB) < 0, Im(VOCB) < 0}. It 

oscillates and is initially convergent to achieve local modulus maximum of about 0.1181 at 

n ≈ −3.4976 (numerical) and then becomes divergent with n approaching negative infinity. For n = −k, 

k  ℕ, its zero values are given in the sense of a limit of a function. For 0 < n < 1 it is smaller than the 

volume of the inscribed n-ball (cf. Table 2). For n = −(2k + 1)/2, k  ℕ0 the real part of the volume 

(51) equals the imaginary part up to a modulus, achieving local maximum at n ≈ −7/2 and for D = 1 

amounts 
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Figure 9. Graphs of volumes (V) of n-orthoplices (green) circumscribed about unit diameter n-balls 

and volumes of unit diameter n-balls (blue) for n = [0, ±6]. 
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Figure 10. Graphs of surfaces (S) of n-orthoplices (green) circumscribed about unit diameter n-balls 

and surfaces of unit diameter n-balls (blue) for n = [0, ±6]. 

Similarly, the surface (26) of the circumscribed n-orthoplex with edge length A given by (50) 

becomes 
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as shown in Figure 10. Circumscribed n-orthoplex surface (53) is a bivalued function for n < 1, is 

complex for n < 0, crossing the quadrants of the complex plane in the order {Re(SOCB) < 0, 

Im(SOCB) > 0}, {Re(SOCB) < 0, Im(SOCB) < 0}, {Re(SOCB) > 0, Im(SOCB) < 0}, and {Re(SOCB) > 0, 

Im(SOCB) > 0}. It oscillates and is initially convergent to achieve local modulus maximum of about 

0.6244 at n ≈ −1.5 (numerical), and then becomes divergent with n approaching negative infinity. For 

n ≤ −1, n  ℤ, its zero values are given in the sense of a limit of a function (cf. (21)). For 0 < n < 1 it is 

smaller than the surface of the inscribed n-ball (cf. Table 3). Furthermore its real part is equal to the 

imaginary part up to a modulus for n = −(2k + 1)/2, k  ℕ0. It achieves local maximum at n = −3/2 and 

for the principal branch and D = 1 and amounts 
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5.3 n-Cubes Inscribed in and Circumscribed About n-Balls 

The edge length ACCB of an n-cube circumscribed about an n-ball (CCB) corresponds to the 

diameter D of this n-ball. Thus, the volume of this cube is simply 

 n

CCBV D , (55) 

and the surface is 
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 12 n

CCBS nD  . (56) 

However, the edge length ACIB of an n-cube inscribed inside an n-ball (CIB) of diameter D is 

ACIB = D/√n, which is singular for n = 0 and complex for n < 0, rendering [1] the following volume and 

the surface of an n-cube inscribed in an n-ball 

 2n n

nCIBV n D , (57) 

  3 2 12
n n

nCIBS n D
  . (58) 

The reflection relation can be obtained setting m = −n in (57), yielding [1] the volume and the 

surface 

 2m m m

mCIBV i m D , (59) 

  3 21 12
mm m

mCIBS i m D
    , (60) 

which are complex for m  ℝ. Volumes (57) and (59) correspond to each other [1] for n ≤ 0, n  ℝ 

and for n = 2k, k  ℤ, as shown in Figure 11. Surfaces (58) and (60) correspond to each other [1] for 

n  ℝ, n ≤ 0, and for n = 2k − 1, k  ℤ, as shown in Figure 12. 

For n ≥ 0 (by convention 0
0
 := 1) the inscribed n-cube volume (57) is real, complex if n < 0, 

becoming real if n is negative and even and imaginary if n is negative and odd, and divergent with n 

approaching negative infinity. For 0 < n < 1 it is larger than the volume of the circumscribing n-ball. 

For n ≥ 0 the inscribed n-cube surface (58) is real, complex if n < 0, becoming real if n is negative and 

odd and imaginary if n is negative and even, and divergent with n approaching negative infinity. 
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Figure 11. Graphs of volumes (V) of n-cubes (pink) inscribed in unit diameter n-balls 

with the reflection relation (dotted) and volumes of unit diameter n-balls (blue) for n = [0, ±6]. 
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Figure 12. Graphs of surfaces (S) of n-cubes (pink) inscribed in unit diameter n-balls 

with the reflection relation (dotted) and volumes of unit diameter n-balls (blue) for n = [0, ±6]. 

5.4 Summary 

The principal branches of the volumes and surfaces of the omnidimensional polytopes, 

discussed in this section, are summarized in Table 1, where n-balls are defined in terms of their 

diameters, which concept is closer to the concept of the edge length of a polytope. Further properties 

of these polytopes are listed in Tables 2-5. 

 

Table 1. Volumes and surfaces of regular n-simplices, n-orthoplices, and n-cubes inscribed in and 

circumscribed about an n-balls. 
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(1) one branch, (2) two branches. 

It was shown [1] that the following metric independent relation holds between volumes (57) of 

n-cubes inscribed in an n-ball 

  
2 2n n n n n n

nCIB n CIB
V V D n i D n i 


  . (61) 
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Similar metric independent relations can be derived for volumes and surfaces of the remaining 

omnidimensional convex polytopes 

 
 

     
1 2 1 2

1 1 sin 1
nS n S

n n n
V V

n





      , (62) 

 
 

 
 

 
 

 
1 2 1 2

1 1 sin 1
n nn

nSIB n SIB

i n n n
V V

n





 



      , (63) 

 
 

 
 

 
 

 
1 2 1 2

1 1 sin 1
n nn

nSCB n SCB

i n n n
V V

n





 



      , (64) 

 
   

 sin 1
nO nOIBn O n OIB

n
V V V V

n



 

     , (65) 

 
 

 sin 1n

nOCB OCBn

i n
V V

n









    , (66) 

where we used m = n + 1 and Euler's reflection formula 

             
 

1 1 2 1 1
sin 1

n
n n m m m m m

n






              

  

, (67) 

and 

  
   

 1 23 2

2
4 2

nn

nCIB n CIB
S S n n




  , (68) 

  
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 
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1 2 3 sin 1
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S S

n





      


, (69) 

  

   
 

   
 

 

 

1 2 2 3 22 2

2

1 2 3 sin 1

1

n n nn

nSIB n SIB

n n n n n
S S

n





 



      


, (70) 

  

 
 

 
 

 
 

 

 

1 2 2 2 3 22

2

1 2 3 sin 1

1

n n nn

nSCB n SCB

n n n n n
S S

n





  



      


, (71) 

    

   

 

1 21 2

2 2

4 2 sin 1

1
nO nOIBn O n OIB

n n n
S S S S

n



 

     


, (72) 

  

 
 

 

 

2 22

2

4 2 sin 1

1

nn

nOCB n OCB

n n n
S S

n









    


, (73) 
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where we have also used m = n + 1 and Euler's reflection formula 

           
  

 

1 2
1 3 1 1 2 3

sin 1

n n n
n n m m m m m

n





  
           

  

. (74) 

Knowing the volume (30) and surface (31) of n-balls in complex dimensions we can extend (in 

a way correct) the relations SnBS(2−n)B = 4Re(i
n−1

) (24) and 2πnVnBV(−n)B = 4Re(i
n−1

) (27) between n-ball 

surfaces and volumes in in integer dimensions, disclosed in the prior research [1]. Simple two products 

of respectively (30) for −n = −a − ib and (31) for 2 − n = 2 − a − ib and yield 

 
 

   2sin 2 12sin 2
nB Bn

nn
V V

n n



 

     , (75) 

 
     2

4sin 2 4sin 2 1nB Bn
S S n n 


      . (76) 

Relations (61)-(76) are shown in Figure. 13. Curiously, the imaginary part of  the surface 

relations (68)-(73), and (76) vanishes for 0 < n < 2. 
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Figure 13. Metric independent relations between volumes (V) and surfaces (S) of omnidimensional 

convex polytopes and n-balls (SIB - red, SCB - dark red, S - red doted, OIB - green, OCB - dark green, 

O - green dotted, CIB - magenta, CCB - dark magenta, B - blue). 

Also the following relations (principal branch, where applicable) 

 
nnSCB

nSIB

V
n

V
 , (77) 

 
1nnSCB

nSIB

S
n

S

 , (78) 

 
2nnOCB nCCB

nOIB nCIB

V V
n

V V
  , (79) 

 
 1 2nnOCB nCCB

nOIB nCIB

S S
n

S S


  , (80) 

relating formulas (39), (35); (42), (36); (51), (47); (55), (57); (53), (48); and (56), (58) with each other, 

can be easily obtained. Notably, as n-cube is dual to n-orthoplex, the ratios of their volumes and 

surfaces circumscribed about n-balls to, respectively, volumes and surfaces inscribed in n-balls are the 

same. 

Also the following particular symmetries between n = −1/2 and n = 1/2 hold for (35), (36); (39), 

(42); (47), (48); (51), (53); (57), (58); and (55), (56) (principal branch, where applicable) 
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where “*” denotes a complex conjugate. 

Behavior of volumes of regular n-simplices inscribed in and circumscribed about n-balls, n-

orthoplices circumscribed about n-balls, and n-cubes inscribed in n-balls, around n = 0, illustrated in 

Figure 14 supports the semiaxis hypothesis: the singularity is alleviated.  

Re( )V
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Figure 14. Graphs of the real part of volumes (V) of unit edge length regular n-simplices inscribed in 

(red) and circumscribed about (black) n-balls, n-orthoplices circumscribed about n-balls (green), and 

n-cubes inscribed in n-balls (pink) in the vicinity of n = 0. 

Table 2. Particular values of volumes of omnidimensional polytopes inscribed in and circumscribed 

about unit diameter n-balls (principal branch only). 

n −3/2 −1 −1/2 0 ½ 1 3/2 

VB 0.331 2/π ≈ 0.637 0.867 1 1.039 1 0.908 
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n −3/2 −1 −1/2 0 ½ 1 3/2 
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Table 3. Particular values of surfaces of omnidimensional polytopes inscribed in and circumscribed 

about unit diameter n-balls (principal branch only). 

n −3/2 −1 −1/2 0 1/2 1 3/2 

SB −0.992 −4/π ≈ −1.273 −0.867 0 1.039 2 2.723 

SSIB 

11 43

2

5.787

i

i








 
0 

 

3 2

1

2

0.199 1

i

i








 
0 

3 43

2

0.643


  

2 

1 4 5 43 5

2

2.776


  

SSCB 

3 2

1 4

2

3

2.1








 
0 

 

1

0.564 1

i

i



 


 

 
0 

3 43

2

0.909


  

2 

3 4 5 4

3 2

3 5

2

3.4


  

SOIB 

3 2

3 2

3

2

1.036

i

i


  

0 2

0.399

i

i








 
0 

2

0.798


  

2 

3 22 3

2.764


  

SOCB 

 

 

1 4

1 4

1 3

2

0.442 1

i

i



 


 

 
0 

 

 

1 4

1

2

0.474 1

i

i



 


  

 
0 

3 42

0.949


  

2 

5 4 3 42 3

3.059


  

SCIB 

 

 

9 4

7 4

1 3

2

3.521 1

i

i






 
2 

 

5 4

1

2

0.42 1

i

i






 
0 1 42 0.841   2 3 4 1 43 2 2.711  

SCCB -3 -2 -1 0 1 2 3 

 

Table 4. Volumes of omnidimensional polytopes inscribed in and circumscribed about unit diameter 

n-balls (n  ℝ unless stated otherwise; “no complex” means that the relation is real or imaginary; for 

n → −∞ all relations are oscillatory divergent). 

n bival. complex real imaginary zero div./conv. 

VB  (16) no 

no 

n  ℝ no n = −2k, k  ℕ0 

0, n → ∞ 

−∞, n → −∞ 

VS  (20) 

n < 0 

n = −k, k  ℕ 

n ≥ −1, n  ℝ 
n < −1, n  ℤ 

n = −k, k  ℕ 

VSIB  (35) 
−1 < n < 0 

(RH) 

n = −k, k  ℕ 

n ≥ 0, n  ℝ 

VSCB  (39) 
n < 0 

(LH) 

n = −(k + 1)/2, k  ℕ 

n ≥ 0, n  ℝ 

no 

∞, n → ∞ 

0, n → −∞ 

VO  (25) 

no 

no n  ℝ 
0, n → ∞ 

−∞, n → −∞ 

VOIB  (47) 

VOCB (51) 
n < 0 

(LH) 

n = −k, k  ℕ 

n ≥ 0, n  ℝ 
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n bival. complex real imaginary zero div./conv. 

VC no n  ℝ 

no 

const 

VCIB  (57) n < 0 
n = −2k, k  ℕ 

n ≥ 0, n  ℝ 

n = −2k − 1, 

k  ℕ0 

0, n → ∞ 

−∞, n → −∞ 

VCCB  (55) no n  ℝ no const 

 

Table 5. Surfaces of omnidimensional polytopes inscribed in and circumscribed about unit diameter n-

balls (n  ℝ unless stated otherwise; “no complex” means that the relation is real or imaginary; for 

n → −∞ all relations are oscillatory divergent, with the exception of SC and SCCB). 

n bival. complex real imaginary zero div./conv. 

SB  (19) no 
no 

n  ℝ no n = −2k, k  ℕ0 

0, n → ∞ 

−∞, n → −∞ 
SS (23) 

n < 1 

n = −k, k  ℕ 

n ≥ 0, n  ℝ 

n < 0, n  ℤ 

n = −k, k  ℕ0 

SSIB (36) 
−1 < n < 0 

(RH) 
n < −1, n  ℤ 

SSCB (42) 
n < 0 

(LH) 

n = −(k + 1)/2, k  ℕ 

n ≥ 0, n  ℝ 
no 

∞, n → ∞ 

0, n → −∞ 

SO (26) 
no 

n = −k, k  ℕ 

n ≥ 0, n  ℝ 

n < 0, n  ℤ 
0, n → ∞ 

−∞, n → −∞ 

SOIB (48) 

SOCB (53) 
n < 0 

(LH) 
no 

SC  

no 

no n  ℝ no n = 0 
∞, n → ∞ 

−∞, n → −∞ 

SCIB (58) n < 0 
n = −4k − 1, k  ℕ0 

n ≥ 0, n  ℝ 

n = −4k − 3 

k  ℕ0 
no 

0, n → ∞ 

−∞, n → −∞ 

SCCB (56) no n  ℝ no n = 0 
∞, n → ∞ 

−∞, n → −∞ 

 

6. Conclusions 

The recurrence relations (2), (3), (5), and (9), (10), (13), (14) defining volumes and surfaces of 

the omnidimensional polytopes and n-balls can be expressed by the gamma function (16), (19); (20), 

(23); (25), (26) and thus are continuous for n  ℂ. For n = −2k − 2, k  ℕ0 in the case of n-balls, and 

for n = −k − 1, k  ℕ0 in the case of n-simplices and n-orthoplices their values are given in the sense of 

a limit of a function. The starting points for fractional dimensions are given due to the continuity of the 

gamma function. 

In the negative dimensions the volume of an n-simplex is a bivalued function. Thus, the surfaces 

of n-simplices and n-orthoplices are also bivalued functions for n < 1. Moreover, as the gamma 

function is a function of a complex argument and value, these volumes and surfaces inherit this 

gamma function property. 

Applications of these formulas to the omnidimensional polytopes inscribed in and 

circumscribed about an n-balls revealed the properties of these geometric objects in negative, real 

dimensions. In particular for 0 < n < 1 the volumes of the omnidimensional polytopes are larger than 

volumes of circumscribing n-balls, while their volumes and surfaces are smaller than volumes of 

inscribed n-balls. It was shown that certain products (61)-(76) and quotients (77)-(80) of volumes and 

surfaces of the omnidimensional polytopes and n-balls are independent on the gamma function. 
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The results of this study could perhaps be applied in linguistic statistics, where the dimension in 

the distribution for frequency dictionaries is chosen to be negative [10], in fog computing, where n-

simplex is related to a full mesh pattern, n-orthoplex is linked to a quasi-full mesh structure, and n-

cube is referred to as a certain type of partial mesh layout [11], and in molecular physics and 

crystallography. Perhaps the menagerie of rational numbers discovered in this study is related to the 2-

dimensional quantum hall effect. 
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