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Abstract: The study shows that the recurrence relations defining volumes and surfaces of
omnidimensional convex polytopes and n-balls are continuous and defined for complex n,
whereas in the indefinite points their values are given in the sense of a limit of a function.
The volume of an n-simplex is a bivalued function for n < 0, and thus the surfaces of n-
simplices and n-orthoplices are also bivalued functions for n < 1. Applications of these
formulas to the omnidimensional polytopes inscribed in and circumscribed about n-balls
reveal previously unknown properties of these geometric objects in negative, real
dimensions. In particular for 0 < n < 1 the volumes of the omnidimensional polytopes are
larger than the volumes of circumscribing n-balls, while their volumes and surfaces are
smaller than the volumes of inscribed n-balls. Specific products and quotients of volumes
and surfaces of the omnidimensional polytopes and n-balls are shown to be independent
of the gamma function.

Keywords: regular basic convex polytopes; circumscribed and inscribed polytopes;
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1. Introduction

In n-dimensional space, n-dimensional objects have (n—1)-dimensional surfaces which have a
dimension of volume in (n—1)-dimensional space. However, this sequence has a singularity at n = —1.
A 0-dimensional point in 0-dimensional space has a vanishing (—1)-surface being a vanishing volume
of the (—1)-dimensional void. But the surface of the (—1)-dimensional void is not (—2)-dimensional. It
is undefined. This discontinuity, along with the recently discovered [1] reflection relations around zero
for volumes and surfaces of n-cubes inscribed inside n-balls, hint that thinking about dimension in
terms of a point on a number axis, with negative dimensions being simply analytic continuations from
positive dimensions [2], may be misleading. Thinking in terms of dimension as a point on a number
semiaxis, similarly to a point on a radius, seems more appropriate. Thus n-dimension corresponds to
(=n)-dimension. Considering dimension of a set as the length exponent at which that set can be
measured [3] makes the negative dimensions to refer to densities as positive ones refer to quantities
[3]. Thus, (—2)-dimensional pressure, for example, considered in terms of a density (e.g. in units of
kg/m?) corresponds to 2-dimensional area (e.g. in units of m?) that it acts upon. Following the same
logic, gravitational force F = GMm/R? acting towards a center enclosed by a 2-dimensional surface is
(—2)-dimensional, whereas centripetal force F=mV?R" acting towards a center enclosed by a 1-
dimensional perimeter is (—1)-dimensional.

This study extends the prior research [1] presenting novel recurrence relations for volumes and
surfaces of n-balls, regular n-simplices, and n-orthoplices. It was signaled in the prior research that
these recurrence relations are continuous on their domains of definitions for n € R, whereas the
starting points for fractional dimensions can be provided, e.g., using spline interpolation between two
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(or three in the case of n-balls) subsequent integer dimensions. It was also conjectured that for
0 < n < 1 volumes of n-cubes inscribed inside n-balls are larger than volumes of those n-balls.

This study shows that the recurrence relations of the prior research [1] are continuous, whereas
their values at the singular points can be given in the sense of a limit of a function. The properties of
the three omnidimensional, regular, convex polytopes, present for all n € Ny [4], including inscribed in
and circumscribed about n-balls are presented. It is shown that for 0 < n < 1 their volumes are larger
than volumes of circumscribing n-balls, while their volumes and surfaces are smaller than volumes of
inscribed n-balls.

The paper is structured as follows. Section 2 summarizes known formulas for omnidimensional,
regular, convex polytopes in natural dimensions that are employed in the further sections of the paper.
In Section 3 it is shown that these recurrence relations can be naturally extended to complex,
continuous dimensions, yielding complex values, as illustrated in Section 4 in the example of n-balls.
Section 5 examines the properties of the omnidimensional, regular, convex polytopes inscribed in and
circumscribed about n-balls for n € R. Section 6 hints possible applications and concludes the findings
of this paper.

2. Known Formulas for Omnidimensional, Convex Polytopes and n-Balls
It is known that the volume of an n-ball (B) is

7z_n/2
V (R),=—R", 1
"(R)s r'(n/2+1) @
where T'(C — C) is the Euler’s gamma function and R denotes the n-ball radius. This implies that
volumes of n-balls are complex in complex dimensions (cf. Section 4). The volume of an n-ball can be

expressed [5] in terms of the volume of an (n — 2)-ball of the same radius as a recurrence relation

_ 27R?
n

Vﬂ(R)B anZ(R)B’ (2)

where V, (R)g := 1 and V; (R)s := 2R. It was shown in the prior research [1] that the relation (2) can be
extended into negative dimensions as

n+2
Vi (R)B - anﬂ (R)B : (3)

solving (2) for V,, and assigning new n € Z as the previous n — 2. A radius recurrence relation

fn = z fn—2 ' (4)
n

defined [1] for n € N, where fy := 1 and f, := 2, allows for expressing the volume n-ball as

V,(R), = f,7"2IR", (5)

n
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where “|x|“ denotes the floor function giving the greatest integer less than or equal to its argument X.
The relation (4) can be analogously as formula (2) extended [1] into negative dimensions as

n+2
fnszmZ’ (6)

which allows to define f_; := 1, fp := 1 to initiate (4) or (6). Known [5] surface of an n-ball is

S, (R)s :%VH(R)B' (")

Known [6, 7] volume of a regular n-simplex (S) having the edge length A is

Jn+1

nly2"

Vi (A)s =

n

A" (8)

The formula (8) can be written [1] as a recurrence relation

v, (A), = AV, (A), /2—:31 , (9)

with Vo(A)s := 1, to remove the indefiniteness of the factorial for n < 1. Formula (9) can be solved for
V1. Assigning new n € Z as the previous n — 1, yields [1]

V... (A), [2(n+1)’
R e A w

which also removes the singularity for n = 0 present in known formula (8). Aby n-simplex has n + 1 (n
— 1)-facets [5]. Therefore, its surface is

Sn(A)S =(n +1)VH(A)S. (11)
Known [5] volume of n-orthoplex (O) is
V2"
Vn(A)o= o A'. (12)
Formula (12) can be written [1] as a recurrence relation
. 2
V,(A), =AV,,(A), - (13)

with Vo(A)o = 1, to remove the indefiniteness of the factorial for n < 1. Solving (13) for V,_; and
assigning new n € Z as the previous n — 1, yields [1]
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V,(A), =V n+1

o n+1(A)oA—J§’

which also removes singularity for n = 0 present in formula (12). Any n-orthoplex has 2" facets [5],
which are regular (n — 1)-simplices. Therefore, its surface is

(14)

S,(A), =2"V,,(A),- (15)

S

3. Continuous Recurrence Relations in Complex Dimensions

The recurrence relations presented in the preceding section can be naturally extended to
complex, continuous dimensions.

Theorem 1.

Recurrence relations (2), (3), (5) (n-balls) are continuous for n € C, wherein for n =—-2k — 2, k € Ny
their values are given in the sense of a limit of a function.

Proof 1.

Comparing (1) with (3) and setting m = n + 2 and k = m/2, yields the n-ball volume

n/2 n+2

T
V(R) =——~  R"=—%v (R
(R I'(n/2+1) 27R? vz (Rg

72-”/2272-2/2 , 7Z_m/22 7z'k o

V R _ n+ R — m: R

w2 (R)g (22T (V2] n(R)g mr(m2) . ko) 4O
n/2 n/2

V4 n V4

Vo (R)g ZWR V, (D), =T (n2:1)

n

which recovers (1), as n['(n/2)/2 =T'(n/2 + 1) for n >0, n € C. On the other hand, (3) corresponds to
(5)

n+2 n+2
V. (R) =—2V _(R) =—Z2f _zln2IRn
n( )B 27Z'R2 n+2( )B 2 n+2 | (17)
V., (R), =7, ,7"4R"™2 v (R), = f 2" "R = £ glm2lRe
for n e C, which completes the proof. o
Also
i n/2no-n 1
lim  72"?D"2" —————=a-0=0, 18)
n—>—2k-2, keN, r(n/2+1)

wherea#0, a e C.

Using (7) and (16) the surface of an n-balls is given by
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21—n nﬂ_n/z
S (D), =————D"". 19
(D) I'(n/2+1) 1)

Theorem 2.

Recurrence relations (9), (10) (regular n-simplices) are continuous for n € C, wherein for n = -k — 1,
k € Ny their values are given in the sense of a limit of a function.

Proof 2.

Expressing the factorial in (8) by the gamma function, comparing (8) with (10), and setting m=n + 1,
yields the regular n-simplex volume

— *ln"'l A" \/I‘H—l A" _Vn+1(A)s 2(I’H—1)3

V (A). = = =
(s nly/2" I'(n+1)272 A n+2
Jn+1dn+2 -
Vn+l(A)s = 1)/2 3 A l ' (20)
r(n+1)2"2 /(n+1)
1 >0
V() =Ly ), Sl
r(m+1)2m/2\/ﬁ I'(n+1)2 +1 n<0
which recovers (8), as I'(n +1) = n! for n € N, and completes the proof. o
Also
. 1
| 22 A" n+1 =a-0=0, 21
n~>—kI—TkeN0 n+ F(I’H—l) a (21)
where a € C.

For n <—1 n-simplex volume formula (20) is imaginary and for n <0 it is a bivalued function,
as nNn/\n®*=1 only for n € R, n > 0. Thus, its general form, involving principal branch for n>0 and
the 2" branch forn< 0 is

v, (A), - Jn+1 zAanﬁ-
S r(n+1)2" p®

Using (11) and (20) the surface of a regular n-simplex is given by

n®%(n+1) 1 n>1
S (A =—— 7 A . 23
n( )S F(n-l—l) 2(n—1)/2 {il n<1l ( )

(22)

For n <0 n-simplex surface formula (23) is imaginary and for n<1 it is a bivalued function, as
(n—1V(n—1)N(n—1)*=1only forn € R, n > 1. Thus, its general form is
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n*2(n+1) o (n-1)vn-1

_ 24
l—‘(n_'_l)z(n—l)/z (n_1)3 ( )

S, (A)s =

Theorem 3.

Recurrence relations (13), (14) (n-orthoplices) are continuous for n € C, wherein for n=-k -1,
k € Ny their values are given in the sense of a limit of a function.

Proof 3.

Expressing the factorial in (12) by the gamma function, comparing (12) with (14), and setting
m =n + 1, yields the n-orthoplex volume

T AT 141

Vn(A)o Y - F(n+1) _Vn+1(A)oA—\/§
v A 2(n+1)/2 "
(Ao = o (ne0) ’ (@)
NZEE. 74
Vm(A)OZmF(m)A Vn(A)o:r(rH_l)A

which recovers (12), as n['(n) =T'(n+1) forn e C\{n € Z,n<—-1} and I'(n + 1) = n! for n € Ny, and
completes the proof. o

Using (15) and (25) the surface of an n-orthoplex is given by

(]

3/2 5(n+1)/2 1 n>1
(A =2 . (26)
° TI'(n+1) +1 n<1

For n<0, n ¢ Z n-orthoplex surface formula (26) is imaginary and for n <1 it is a bivalued function,
as (n— DV(n— A(n—1)3=1 only for n € R, n> 1. Thus, its general form, involving two branches,
is

n%2 2(n+1)/2 At (n _1) n—1

S, (A), = F(neD) o 27)

Continuous recurrence relations (16)-(27) are shown in Figure 1, along with the integer
recurrence relations (2)-(15).
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Re(v)[

0.5r

-2 _
N

Figure 1. Graphs of volumes (V) and surfaces (S) of unit edge length regular n-simplices (red),
n-orthoplices (green), n-cubes (pink), and unit diameter n-balls (blue), along with the integer
recurrence relations (dashed lines) and the 2" branches (dotted lines) for n = [-4, 6].

4. The volume of an n-Ball in Complex Dimensions

The gamma function is defined for all complex numbers except the non-positive integers.
Therefore the volumes and surfaces (16)-(27) of n-balls and omnidimensional polytopes containing the
gamma function are also defined for all n = a + ib € C. For example, in the case of n-balls [9]

V2 = (&2 _ a2 [cos(g In (ﬂ)j+ isin (g In (ﬁ)ﬂ , (28)

R" =R*" =R? [cos(bln(R))+isin(bln(R))J, (29)
and the volume (1) and surface (7) become

. {cos[bln(R\/;)}risin[bln(R\/;)}}

V,(R), =7°R? _ :
F(azlb +1}
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. {cos[bln(R\/;)}+isin[bln(R\/;)}}

S,(R), =(a+ib)z?R** _ ,
i F(a;|b+1j

where we have used cos(a)cos(b) — sin(a)sin(b) =cos(a+b) and cos(a)sin(b) + sin(a)cos(b) =
sin(a + b), as shown in Figure 2 for unit radius n-balls.

(31)

Im(V) Im(S)

+1

+4 +1.5
Im(n) Re(n) 0 Im(n)

+1.5

+2

Figure 2. Graphs of complex volumes (V) and surfaces (S) of unit radius n-balls in complex
dimensions n =a + ib for a = [0, £12], b = [0, £2].

In particular for n =3 +ib, b € R (spacetime dimensionality) equation (30) becomes

3 {cos[b In (R\/n)} i sin[bln(R\/n)}}
\'A (R) =72R® - ,
B (3+ ib j
r +1
2
which reduces to familiar V;(R)g = 47R%3 for n = 3 + 0i, i.e. at the present moment. Note that the anti-

symmetry of the imaginary part of the volume (30), in a way, establishes the arrow of time and is
independent on Re(n) for Im(n) = 0.

(32)
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5. Basic Regular Polytopes Inscribed in and Circumscribed About n-Balls

Each of the three regular polytopes can be inscribed in and circumscribed about an n-ball, and
this is considered in this section on the basis of the continuous relations presented in Section 3.

5.1 Regular n-Simplices Inscribed in and Circumscribed About n-Balls

The diameter Dgcs of an n-ball circumscribed about a regular n-simplex (BCS) is known [7] to
be

a
N

where A is the edge length. Hence, the edge length Agg of a regular n-simplex inscribed (SIB) inside an
n-ball (B) with diameter D is

Decs = A, (33)

D, (34)

so that the regular n-simplex volume (20) becomes

VSIB =

-n/2 (n+1)/2
n n+1 1 n>0
(n+Y" " o { )

r(n+1)2" +1 n<0’

For n < —1 the inscribed n-simplex volume (35) is imaginary (as n "2 introduces the imaginary unit for
n < 0) and divergent with n approaching negative infinity, for n <0 it is a bivalued function of n, and
is complex for —1 < n <0, with the real part being equal to the imaginary part for n = —1/2. It is zero
forn=—k, k € N and for 0 <n < 1itis larger than the volume of the circumscribing n-ball.

Re(V)[ Re(Vao)
Re
) 1
15—
17 05f
0.5
0
0 —
2
_045 — 70.5
-17 Im(V)
0 +1 — i I ; i i i
; £2 +3 +4 +5 w6 2 1y +] ) 13 +4 +5 n

Figure 3. Graphs of volumes (V) of regular n-simplices (red) inscribed in unit diameter n-balls
and volumes of unit diameter n-balls (blue) for n = [0, +6] (inset for n = [-1, 0]).

Similarly, the surface (23) of a regular inscribed n-simplex with edge length A given by (34) is
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SSIB =

(4-n)/2 (n+1)/2
n n+1 1 nx>1
( + ) nl{ (36)

C(n+1)2" +1 n<1’

as shown in in Figure 4. For n <—1 the inscribed n-simplex surface (36) is imaginary and divergent
with n approaching negative infinity, for n < 1 it is a bivalued function of n, and is complex for -1 <
n < 0, with the real part being equal to the imaginary part for n = —1/2. It is zero for n = —k, k € Nj.

Re(S) [ Re(Sss) :

) -
3l
2t ; L
1 .
0 — .

i

Sl

5l

al

0 " 2 I +4 = n

Figure 4. Graphs of surfaces (S) of regular n-simplices (red) inscribed in unit diameter n-balls
and surfaces of unit diameter n-balls (blue) for n = [0, +6] (inset for n = [-1, 0]).

The diameter Dgs of an n-ball inscribed inside a regular n-simplex (BIS) is known [7] to be

2,
BIS_JHM’

where A is the edge length. Hence, the edge length Ascg of a regular n-simplex circumscribed (SCB)
about an n-ball (B) with diameter D is

D (37)

s
Ascs 7

D, (38)

so that its volume (20) becomes

n"2(n+1)"* (1 n>0
D (39)

V =
¢ T(n+1)2" +1 n<0’

as shown in in Figure 5. For n <0 the circumscribed n-simplex volume (39) is a complex, bivalued
function of n, whereas both branches are left-handed and convergent to zero with n approaching
negative infinity. For 0 <n <1 it is smaller than the volume of the inscribed n-ball (cf. Table 2). It is
zero for n=-k, k € N and real for n=—(2k + 1)/2, k € N. For the principal branch and D =1 it
amounts
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~

v ~ i2k 2(4k+1)/2 (2k _1)(1—2k)/4
(~(2k+1)/2)sCB _ . ~
F(lzzkj(Zk L . (40)

~0.7,0.5618,0.4251,0.3172,0.2353, ...

Re(V)[

051

1
n 2 +3 +4 +5 +6 15

o ISR IR n
Figure 5. Graphs of volumes (V) of regular n-simplices (red) circumscribed about unit diameter n-
balls and volumes of unit diameter n-balls (blue) for n = [0, 6] (inset for n = [-30, 0]).

Furthermore for n =—1/2 and for n = —(2k + 3)/4, k € N, the real part the volume (39) is equal to the
imaginary part up to a modulus. For n =—1/2 V _y2sce = (1 — i)z~ 0.5642(1 — i). Otherwise, for the
principal branch and D = 1 it amounts

y (L) () 20 (2 1)

(~(2k+3)/4)scB 1—2k R
r (4) (2K +3) 28 L@

~
~

~ {~0.3549,-0.3359,0.2996,0.2626,—0.2283,...} (L+i) (i)~

Re(S) [ Re(S..)

0 i i i i i j
= +2 +3 +4 +5 6 0 1 £ +3 +4 5 n

Figure 6. Graphs of surfaces (S) of regular n-simplices (red) circumscribed about unit diameter n-balls
and surfaces of unit diameter n-balls (blue) for n = [0, £6] (inset for n = [-30, 0].
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Similarly, the surface (23) of a regular circumscribed n-simplex with edge length Ascg (38) is

(n+2)/2 (n+1)/2
n n+1 1 n2x>1
(n+1) n_l{ “2)

Secg = ,

* r(n+1)2" +1 n<1

as shown in in Figure 6. For n < 1 the circumscribed n-simplex surface formula (42) branches, and for
0 <n < 1litissmaller than the surface of the inscribed n-ball. For n < 0 is complex with both branches
being right-handed towards negative infinity or the branch point. It is zero for n = —k, k € Ny and real

forn =—(2k + 1)/2, k € N, achieving local maximum at n = —7/2. For the principal branch and D = 1 it
amounts

ik W2 (o) )R
(—(2k+1)/2)SCB z
[ 122K gk 4 1) . (43)
2

~-2.1,-2.809,-2.976,-2.854,-2.588,....

S

Its real part is equal to the imaginary part up to a modulus for n = —1/2 and for n = —(2k + 3)/4, k € I.
Forn=-1/2 Scizsce = (-1 + i)/\/n. Otherwise, for the principal branch and D = 1 it amounts

(L+i) (=) 204 (2K —1) 2"
(~(2k+3)/4)scB — z
F(l 42kj(2k 3) (2k-5)/8 | (44)

~{-0.8873,~1.1755,1.3484,1.4443,~1.4842,~1.4828,...} (1+1) (i)~

S

The surface (42) is initially divergent to achieve local modulus maximum of about 2.9757 at
n~-3.4997 (numerical), and local real maximum of about —2.976 at n=—7/2, and then becomes
convergent to zero with n approaching negative infinity.

5.2 n-Orthoplices Inscribed in and Circumscribed About n-Balls
The diameter Dgco 0f an n-ball circumscribed about an n-orthoplex (BCO) is known [8] to be

Doo =+2A, (45)

where A is the edge length. Hence, the edge length Ao g Of an n-orthoplex inscribed inside an n-ball
(OIB) with diameter D is

1
=—D, 46
Aoie NA (46)
so that its volume (25) becomes
V 1 D" 47)
% r(n+l)
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as shown in in Figure 7. The inscribed n-orthoplex volume formula (47) is real for n € R, where for
n=-k, k € N, its zero values are given in the sense of a limit of a function (cf. (21)), and forO<n<1
it is larger than the volume of the circumscribing n-ball (cf. Table 2).

Re(V)[
Re(V) . ‘ 1k . |
15+ N | | . | |
19 05t
0.5+

0 +1 + i i i [ il
? = 4 5 6 0 41 0 3 +4 15 n

Figure 7. Graphs of volumes (V) of n-orthoplices (green) inscribed in unit diameter
n-balls and volumes of unit diameter n-balls (blue) for n = [0, +6].

Similarly, the surface (26) of the inscribed n-orthoplex with edge length A given by (46)
becomes

2n%? [1 nx1
:—Dn_ 1 48
o8 I'(n+1) +1 n<1 (48)

as shown in in Figure 8. For n <1 inscribed n-orthoplex surface (48) branches, for n<0,n ¢ Z it is
imaginary and oscillatory divergent with n approaching negative infinity, and for n<-1, n € Z, its
zero values are given in the sense of a limit of a function.

Re(S) [

2l +2 £3 +4 45 16 2 0 +1 2 +3 +4 +5 n

Figure 8. Graphs of surfaces (S) of n-orthoplices (green) inscribed in unit diameter n-balls
and surfaces of unit diameter n-balls (blue) for n = [0, +6].

The diameter Dgo of an n-ball inscribed inside an n-orthoplex (BIO) is known [8] to be
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2
A (49)

where A is the edge length. Hence, the edge length Aocs of an n-orthoplex circumscribed about an n-
ball (OCB) with diameter D is

A =4/=D, (50)

so that its volume (25) becomes
n/2

VOCB - r(n+1) D ' (51)
as shown in Figure 9. Circumscribed n-orthoplex volume (51) is a singlevalued function, is complex
for n <0, crossing the quadrants of the complex plane in the order {Re(Vocg) >0, Im(Vocs) < 0},
{Re(Vocs) > 0, Im(Vocs) > 0}, {Re(Voce) <0, Im(Vocs) >0}, and {Re(Vocs) <0, Im(Vocg) < 0}. It
oscillates and is initially convergent to achieve local modulus maximum of about 0.1181 at
n ~—3.4976 (numerical) and then becomes divergent with n approaching negative infinity. For n = —k,
k € N, its zero values are given in the sense of a limit of a function. For 0 <n <1 it is smaller than the
volume of the inscribed n-ball (cf. Table 2). For n=—(2k + 1)/2, k € N, the real part of the volume
(51) equals the imaginary part up to a modulus, achieving local maximum at n~-7/2 and for D=1

amounts
v (i) ()T
(-(2k+1)/2)0c8 71 _ 9k Y
F(ZJ(Zk +1) B . (52)
~{0.4744,~0.1472,0.0952, - 0.0835,0.0888,— 0.1084, ...} (1+i)(~i)"
Re(V)[ Re(V..)
Re(V)

15+

05

+1 _
n +2 +3 +4 45 16 2 -1

0 T
Figure 9. Graphs of volumes (V) of n-orthoplices (green) circumscribed about unit diameter n-balls
and volumes of unit diameter n-balls (blue) for n = [0, +6].
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_2 L
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0 _ -5
o £2 £3 +4 +5 16 2 0 £ ) +3 +4 +5 n

Figure 10. Graphs of surfaces (S) of n-orthoplices (green) circumscribed about unit diameter n-balls
and surfaces of unit diameter n-balls (blue) for n = [0, +6].

Similarly, the surface (26) of the circumscribed n-orthoplex with edge length A given by (50)
becomes

n/2+1 1 n>1
_.2n DM{ (53)

°® I (n+1) +1 n<1’

as shown in Figure 10. Circumscribed n-orthoplex surface (53) is a bivalued function for n<1, is
complex for n<0, crossing the quadrants of the complex plane in the order {Re(Socs) <0,
Im(Soce) > 0}, {Re(Socs) <0, IM(Soce) <0}, {Re(Socs) >0, IM(Socs) <0}, and {Re(Socs) >0,
Im(Socg) > 0}. It oscillates and is initially convergent to achieve local modulus maximum of about
0.6244 at n = —1.5 (numerical), and then becomes divergent with n approaching negative infinity. For
n<-1,n e Z, its zero values are given in the sense of a limit of a function (cf. (21)). ForO<n < 1litis
smaller than the surface of the inscribed n-ball (cf. Table 3). Furthermore its real part is equal to the
imaginary part up to a modulus for n = —(2k + 1)/2, k € Np. It achieves local maximum at n = —3/2 and
for the principal branch and D = 1 and amounts

(L4+i) (=) 22D (2K 1)

S =
(—(2k+1)/2)0CB _
r(l 2kj

~
~

2
~{0.4744,-0.4415,0.4759,-0.5846,0.7989, ...} (1+i) (i)

(54)

5.3 n-Cubes Inscribed in and Circumscribed About n-Balls

The edge length Accg of an n-cube circumscribed about an n-ball (CCB) corresponds to the
diameter D of this n-ball. Thus, the volume of this cube is simply

Ve, =D, (55)

and the surface is
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Sces =2nD"M. (56)

However, the edge length Acig of an n-cube inscribed inside an n-ball (CIB) of diameter D is
Acis = D/An, which is singular for n = 0 and complex for n < 0, rendering [1] the following volume and
the surface of an n-cube inscribed in an n-ball
Ve =n"?D", (57)

n

_op@izpnt (58)

nCIB —

S

The reflection relation can be obtained setting m = —n in (57), yielding [1] the volume and the
surface

V, g =i"m™?D ", (59)

m

SmC|B — _2im+lm(3+m)/2 D—m—l, (60)
which are complex for m € R. Volumes (57) and (59) correspond to each other [1] forn<0,n e R
and for n = 2k, k € Z, as shown in Figure 11. Surfaces (58) and (60) correspond to each other [1] for
neR,n<0,and forn=2k -1, k € Z, as shown in Figure 12.

For n > 0 (by convention 0° := 1) the inscribed n-cube volume (57) is real, complex if n <0,
becoming real if n is negative and even and imaginary if n is negative and odd, and divergent with n
approaching negative infinity. For 0 <n <1 it is larger than the volume of the circumscribing n-ball.
For n > 0 the inscribed n-cube surface (58) is real, complex if n < 0, becoming real if n is negative and
odd and imaginary if n is negative and even, and divergent with n approaching negative infinity.

| Re(V)[ I;29(\/05)
‘
Re(V) : 1L f
15+ \
|
1 05¢ ~ ] i)
05— \ “
0 \

0 +1 +5 n

Figure 11. Graphs of volumes (V) of n-cubes (pink) inscribed in unit diameter n-balls
with the reflection relation (dotted) and volumes of unit diameter n-balls (blue) for n = [0, £6].
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Figure 12. Graphs of surfaces (S) of n-cubes (pink) inscribed in unit diameter n-balls
with the reflection relation (dotted) and volumes of unit diameter n-balls (blue) for n = [0, £6].

54  Summary

The principal branches of the volumes and surfaces of the omnidimensional polytopes,
discussed in this section, are summarized in Table 1, where n-balls are defined in terms of their

diameters, which concept is closer to the concept of the edge length of a polytope. Further properties

of these polytopes are listed in Tables 2-5.

Table 1. Volumes and surfaces of regular n-simplices, n-orthoplices, and n-cubes inscribed in and

circumscribed about an n-balls.

inscribed in n-ball (IB) circumscribed about n-ball (CB)
(V) volume/D" (S) surface/D™* (V) volume/D" (S) surface/D" "
-n/2 (n+1)/2 4-n)/2 (n+1)/2 /2 (n+1)/2 n+2)/2 (n+1)/2
© n"*(n+1) o n*"2(n+1) o | N (n+1) o n"?2 (n+1) "
I'(n+1)2" I(n+1)2"* I'(n+1)2" (n+1)2"
0) # @) 2n** @ n"? @) 2n"? @
I'(n+1) r'(n+1) I'(n+1) I'(n+1)
(€) n"? 2nC"/2 o) 10 2n®
(1) one branch, (2) two branches.

It was shown [1] that the following metric independent relation holds between volumes (57) of

n-cubes inscribed in an n-ball

V &V

nCIB Y (-n)CIB

— Dnn—n/ZinD—nnn/Z — in .

-17/24 -

(61)



https://doi.org/10.20944/preprints202209.0089.v4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2022

d0i:10.20944/preprints202209.0089.v4

Similar metric independent relations can be derived for volumes and surfaces of the remaining

omnidimensional convex polytopes

vy :—(1+n)w(l—n)wsin[ﬂ(n+1)],

ns ¥ (-n)s N
—in (1) 2 (1-n)""2sin[ 7 (n +1)]
VnSIBV(—n)SIB - . ’
i (24n) " (2-n) " sin[ 2 (n+1)]
VnSCBV(—n)SCB - n ’
—sin| z(n+1)
VnoV(—n)o :VnOIBV(—n)OIB - I:ﬂ_n ] ’

—i " sin[;r(n+1)]’

zn

V ocsV

noCB Y (-n)ocB —

where we used m = n + 1 and Euler's reflection formula

F(n+1)T(-n+1)=T(m)T'(2-m) =T (m)[(1-m)(1-m)=———

and

S5 a2 (2—n)=2

(2-n)cIB —

_—n"2(n+1)(2-n)"*(3-n)sin[ z(n+1)]

snSS(Z—n)S - 72-(1_ n)

_n@n/2 (n +1)(n+1)/2 (2 _ n)n/Z (3_ n)(3*")/2 sin [ﬂ.(n +1):|
SnSIBS(Z—n)SIB = z(1-n) '

_nv2 (n +1)(”+1)/2 (2 _ n)(z—")/2 (3_ n)(3—“)/2 sin I:”(n +1)]
SnSCBS(Z—n)SCB - 7[(1_ n) ’

~4n*?(2-n)"*sin[ z(n+1)]
Snos(z,n)o = SnOIBS(Z—n)OIB = 72'(1— n)
—4n"2 (2-n)*"?sin[ 7 (n+1)]
Snoce S(Z—n)OCB - = (1_ n)
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where we have also used m = n + 1 and Euler's reflection formula

-zn(1-n)(2-n) |
sin[ z(n+1)]

Knowing the volume (30) and surface (31) of n-balls in complex dimensions we can extend (in
a way correct) the relations SysSp-ns = 4Re(i"™) (24) and 271V, s = 4Re(i") (27) between n-ball
surfaces and volumes in in integer dimensions, disclosed in the prior research [1]. Simple two products
of respectively (30) for-n=-a —iband (31) for2 —n=2—a—ib and yield

r(n+1)r(3-n)=r(m)r(1-m)(1-m)(2-m)(3-m)= (74)

2sin(zn/2) —2sin| z(n/2+1
VieV(-me = 7(;; 2)_ [ﬂ(n ) : (75)

SeSizme = 4sin(7n/2) =—4sin[ z(n/2+1)]. (76)

(2-n)

Relations (61)-(76) are shown in Figure. 13. Curiously, the imaginary part of the surface
relations (68)-(73), and (76) vanishes for 0 <n <2,

L8 éRe(V)
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02f/ | / \
73 —

Figure 13. Metric independent relations between volumes (V) and surfaces (S) of omnidimensional
convex polytopes and n-balls (SIB - red, SCB - dark red, S - red doted, OIB - green, OCB - dark green,
O - green dotted, CIB - magenta, CCB - dark magenta, B - blue).

Also the following relations (principal branch, where applicable)

VHSCB — nn , (77)
VnSIB
SnSCB — nnfl’ (78)
SnSIB
VnOCB :VnCCB — nn/2 (79)
VnOIB VnCIB
SnOCB _ SnCCB _ n(nfl)/2 (80)

SnOIB SnCIB

relating formulas (39), (35); (42), (36); (51), (47); (55), (57); (53), (48); and (56), (58) with each other,
can be easily obtained. Notably, as n-cube is dual to n-orthoplex, the ratios of their volumes and
surfaces circumscribed about n-balls to, respectively, volumes and surfaces inscribed in n-balls are the
same.

Also the following particular symmetries between n = —1/2 and n = 1/2 hold for (35), (36); (39),
(42); (47), (48); (51), (53); (57), (58); and (55), (56) (principal branch, where applicable)

Vivzse =250125eD Viyzse =252 (81)
Viwzsce = ScyzsceDr Vwzsee = SwzsceD- (82)
Viwzor =1V28(yz00D: Viyzion =V2Sz108D (83)
Vievgoce = Saz0ePr Vizoce = SrzjoceD- (84)

-20/24 -

d0i:10.20944/preprints202209.0089.v4


https://doi.org/10.20944/preprints202209.0089.v4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2022

d0i:10.20944/preprints202209.0089.v4

V(—:I/2)CIB = \/ES(*—I/2)CIB D, V(1/2)CIB = \/Es(l/z)cm D, (85)
\/(—J/Z)CCB = _S(—]/Z)CCB D, V(]/Z)CCB = S(]/Z)CCB D, (86)

3733

where denotes a complex conjugate.

Behavior of volumes of regular n-simplices inscribed in and circumscribed about n-balls, n-
orthoplices circumscribed about n-balls, and n-cubes inscribed in n-balls, around n =0, illustrated in
Figure 14 supports the semiaxis hypothesis: the singularity is alleviated.

Re(V)
15 ........................... ...........................................

14

13

12
11

KT ;

0.9

08 .........................

0.7

06F ...............

05 ' —

0 iO 1 i() 2 iO 3 +0.4
Figure 14. Graphs of the real part of volumes (V) of unit edge length regular n- S|mpI|ces inscribed in
(red) and circumscribed about (black) n-balls, n-orthoplices circumscribed about n-balls (green), and

n-cubes inscribed in n-balls (pink) in the vicinity of n = 0.

Table 2. Particular values of volumes of omnidimensional polytopes inscribed in and circumscribed
about unit diameter n-balls (principal branch only).

n —-3/2 -1 -1/2 0 3 3/2
Vg 0.331 2/m = 0.637 0.867 1 1.039 0.908
_j3¥* ﬁ ~ 3¥4 55/4
d 0.399(1+i) d i
292 1—\/__| ~ 33/4 55/4
VSCB 34 ~0.7 0 T 1 ~0.909 Wiy - ~1.133
3r 0.564(1—i) V27 32" x
-1 1 2 4
—~-0.282 — ~0.564 —~1.128 —~0.752
Vois ~ 0 N 1 Nr N
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n —312 -1 —172 0 v 1 32
1+i ~ 1-i N 2%/4 25/4

Vocs 2Y4o¥/4 \/; ~ 0 oV J; ~ 1 \/_; r 1 m =~
0.147(1+i) 0.474(1-1i) 0.949 1.02
(i-1)3% (1+i) -

Veis 2% i 27 - 1| 2%~1189 | 1 S ~0.738
0.958(i-1) 0.595(i+1) 3

Vees 1 1 1 1 1 1 1

Table 3. Particular values of surfaces of omnidimensional polytopes inscribed in and circumscribed
about unit diameter n-balls (principal branch only).

n —3/2 -1 ~1/2 0 1/2 1 312
Sg —0.992 —4/n~—-1.273 —0.867 0 1.039 2 2.723
_i311/4 & - 33/4 31/455/4
Ssie 2z 0 Jr 2 o| 2z 2 2z
-5.787i 0.199(1+i) 0.643 2.776
_23/2 —1+i _ 33/4 33/455/4
Secs TN 0 Jr 0 Nl 2 PN
21 0.564(-1+i) 0.909 3.4
392§ ~ —_I N \/E 23/2J§
Sois m - 0 2 0 Jz ~ 2 N ~
1.036i ~0.399i 0.798 2.764
—(1+ i)?f/4 N (—1+i) B 294 25/493/4
Socs e 0 N 0 N 2 N
~0.442(L+1) ~0.474(-1+1i) 0.949 3.059
(1+i)3”* 1-i
Seis T 2 2 0| 2%=~o0841 | 2 3%Vt £ 2711
3.521(L+i) 0.42(1-i)
Scce -3 -2 -1 0 1 2 3

Table 4. Volumes of omnidimensional polytopes inscribed in and circumscribed about unit diameter
n-balls (n € R unless stated otherwise; “no complex” means that the relation is real or imaginary; for
n — —oo all relations are oscillatory divergent).

n bival. complex real imaginary Zero div./conv.
Ve (16) no neR no n=-2k k e Ny
Vs (20) no nz::,kei 0,n—
n=_Lne n<-1,ng¢?Z —00, N — —©
-1<n<0 n=-k keN
VSIB (35) n<o (RH) n>0neR
n<0 n=—(k+1)/2,ke N __ 0, N — 0
Vscs (39) (LH) n>0neck n=—kkeN 0,1 —> —o0
Vo (25)
Vors (47) no neR no 0,1 — o0
no
Vocs (51) n<0 n=—-k keN —00, N — —©
0cB (LH) n>0,neR
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n bival. complex real imaginary Zero div./conv.
Ve no nekR const
n=-2k,keN n=-2k-1, 0,n— o
Ve (57) n<o0 n>o0ner ke 1o no o, N > —o0
Veeg (55) no neR no const

Table 5. Surfaces of omnidimensional polytopes inscribed in and circumscribed about unit diameter n-
balls (n € R unless stated otherwise; “no complex” means that the relation is real or imaginary; for
n — —oo all relations are oscillatory divergent, with the exception of Sc and Sccg).

n bival. complex real imaginary Zero div./conv.
S (19) no no neR no n=-—2k ke Ny
Ss (23) n=—k keN n<0,ng?Z 0,n—> o
-1<n<0 - hRE —00, N — —o0
Ssiz (36) (RH) n>0,neR n<-1,ng¢Z
n<o0 n=—(k+1)/2,ke N 00, N — o0
Ssce (42) n<i (LH) n>0,neR no n=-kkeNo| O,n—>-o
So (26)
Sor_(48) " n=—kkel n<Onez 0,1 — o
Soce (53) ?LT—I? nz0nek no TN o
Sc¢ no nekR no n=0 %, N =0
—00, N — —®©
n=-4k—-1,k e Ny n=-4k-3 0,n—
Scis (58) no n<0 n>0,neR k e N no —00, N — —o0
_ 0, N — oo
Scee (56) no neR no n=0 o> o0

6. Conclusions

The recurrence relations (2), (3), (5), and (9), (10), (13), (14) defining volumes and surfaces of
the omnidimensional polytopes and n-balls can be expressed by the gamma function (16), (19); (20),
(23); (25), (26) and thus are continuous for n € C. For n=—-2k — 2, k € Ny in the case of n-balls, and
forn=-k—1, k € Ny in the case of n-simplices and n-orthoplices their values are given in the sense of
a limit of a function. The starting points for fractional dimensions are given due to the continuity of the
gamma function.

In the negative dimensions the volume of an n-simplex is a bivalued function. Thus, the surfaces
of n-simplices and n-orthoplices are also bivalued functions for n<1. Moreover, as the gamma
function is a function of a complex argument and value, these volumes and surfaces inherit this
gamma function property.

Applications of these formulas to the omnidimensional polytopes inscribed in and
circumscribed about an n-balls revealed the properties of these geometric objects in negative, real
dimensions. In particular for 0 <n <1 the volumes of the omnidimensional polytopes are larger than
volumes of circumscribing n-balls, while their volumes and surfaces are smaller than volumes of
inscribed n-balls. It was shown that certain products (61)-(76) and quotients (77)-(80) of volumes and
surfaces of the omnidimensional polytopes and n-balls are independent on the gamma function.
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The results of this study could perhaps be applied in linguistic statistics, where the dimension in
the distribution for frequency dictionaries is chosen to be negative [10], in fog computing, where n-
simplex is related to a full mesh pattern, n-orthoplex is linked to a quasi-full mesh structure, and n-
cube is referred to as a certain type of partial mesh layout [11], and in molecular physics and
crystallography. Perhaps the menagerie of rational numbers discovered in this study is related to the 2-
dimensional quantum hall effect.
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