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* Correspondence: yonglongquan@126.com

Abstract: To address the issues of uneven initial distribution and limited search accuracy in the
traditional Divergent Quantum-inspired Differential Search (DCS) algorithm, a hybrid multi-strategy
variant, termed DQDCS, is proposed. This improved version overcomes these limitations by
integrating the refined set strategy and clustering process for population initialization, along with the
Double Q-learning model to balance exploration and exploitation This enhanced version replaces the
conventional pseudo-random initialization with a refined set generated through a clustering process,
thereby significantly improving population diversity. A novel position update mechanism is
introduced based on the original Equation, enabling individuals to effectively escape from local
optima during the iteration process. Additionally, the Tables Reinforcement Learning model (Double
Q-learning model) is integrated into the original algorithm to balance the probabilities between
exploration and exploitation, thereby accelerating the convergence towards the global optimum. The
effectiveness of each enhancement is validated through ablation studies, and the Wilcoxon rank-sum
test is employed to assess the statistical significance of performance differences between DQDCS and
other classical algorithms. Benchmark simulations are conducted using the CEC2019 and CEC2022
test functions, as well as two well-known constrained engineering design problems. The comparison
includes both recent state-of-the-art algorithms and improved optimization methods. Simulation
results demonstrate that the incorporation of the refined set and clustering process, along with the
Tables Reinforcement Learning model (Double Q-learning model) mechanism, leads to superior
convergence speed and higher optimization precision.

Keywords: differentiated creative search algorithm; refined set; clustering process;
Double Q-learning; mechanical optimization

1. Introduction

Optimization theory and its practical applications are undergoing unprecedented
transformation in contemporary industrial practice, with their core value lying in the targeted
enhancement of key system performance indicators. Driven by the continuous expansion of
engineering frontiers and the rapid advancements in computational science, classical optimization
paradigms—such as Newton’s method and gradient descent—have increasingly revealed their
limitations [1-3]. Applied to modern engineering problems with high dimensionality and strong
nonlinearity, these methods often face exponential time complexity, making exact solutions
practically infeasible. This practical challenge has catalyzed the vigorous development of
metaheuristic optimization techniques. These algorithms, inspired by natural phenomena or social
behavior [4,5], offer promising alternatives by delivering global or high-accuracy approximate
solutions under acceptable computational costs. The balance between solution quality and
computational efficiency makes modern metaheuristic algorithms —such as Genetic Algorithms (GA)
[6], Particle Swarm Optimization (PSO) [7], and Ant Colony Optimization (ACO) [8] —powerful tools
with wide-ranging applicability. These methods have demonstrated exceptional performance in
solving complex optimization problems across various interdisciplinary domains, including
intelligent manufacturing, logistics scheduling, and financial modeling [9-11].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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As a vital branch of metaheuristic algorithms, swarm intelligence optimization techniques have
attracted increasing attention in the academic community in recent years. These algorithms emulate
the cooperative behavior of biological populations—such as the flock migration model in Particle
Swarm Optimization (PSO), the mating behavior pattern in Butterfly Optimization Algorithm (BOA)
[12], and the deep-sea migration strategy in the Salp Swarm Algorithm (SALP) [13] —demonstrating
distinctive computational advantages. Their simple and intuitive structural design, rapid
convergence, and multimodal optimization capabilities enable excellent adaptability in solving
complex, nonlinear, and high-dimensional engineering optimization problems. Notably, bio-inspired
optimization paradigms are undergoing continuous innovation. Modern engineering design
methodologies have accelerated the iterative process through parallel search mechanisms and have
adopted dynamic balance strategies to coordinate exploration and exploitation. These approaches
have delivered significant application value in improving mechanical system performance, reducing
operational costs, and optimizing resource allocation efficiency. For instance, Houssein et al. [14]
proposed a dimension learning-enhanced equilibrium optimizer that constructs multi-level feature
interaction mechanisms, significantly improving the lesion segmentation accuracy of COVID-19 lung
CT images, particularly in low-contrast regions. Alkayem et al. [15] developed an adaptive pseudo-
inverse stochastic fractal search algorithm that employs intelligent dimensionality reduction
strategies within the solution space, enabling robust detection of subtle defects in complex steel
structure damage assessments and greatly enhancing diagnostic reliability. Abdollahzadeh et al. [16]
introduced the Panthera Optimization (PO) algorithm, which simulates jaguar-inspired intelligent
behavior for designing exploration—exploitation mechanisms. By integrating a hyper-heuristic phase
transition strategy, the algorithm adaptively balances optimization stages according to problem
characteristics, thereby substantially improving the capability to solve complex optimization
problems. Liu et al. [17] integrated the Q-learning mechanism from reinforcement learning to
dynamically hybridize the Aquila Optimizer (AO) with the Improved Arithmetic Optimization
Algorithm (IAOA). By reconstructing the mathematical acceleration function, they achieved a better
balance between global search and local exploitation, while optimizing the reward model to enhance
decision-making efficiency. Zhu et al. [18] combined the global exploration capability of the Black-
Winged Kite Algorithm (KA), the local optimization strength of Particle Swarm Optimization (PSO),
and the mutation strategy of Differential Evolution (DE) to balance search abilities, effectively
preventing premature convergence and significantly improving both the convergence speed and
solution accuracy in high-dimensional optimization problems. However, with the increasing
complexity of engineering optimization tasks —characterized by multi-constraint coupling and high-
dimensional nonlinearity —current swarm intelligence algorithms have begun to exhibit theoretical
limitations when handling non-convex solution spaces and adapting to dynamic environments. In
particular, for complex system designs involving strong time-varying properties and multi-objective
conflicts, challenges arise in ensuring convergence stability and maintaining well-distributed
solution sets.

The Differential Creative Search (DCS) algorithm [19] represents a cutting-edge advancement in
the field of metaheuristic optimization. This algorithm introduces an innovative multi-stage co-
evolution framework, in which a heterogeneous knowledge transfer mechanism dynamically
integrates population experience, while a dynamic solution space reconstruction strategy enhances
adaptability to complex optimization problems. DCS demonstrates strong global convergence
performance in tackling high-dimensional, non-convex, and multimodal engineering optimization
tasks. Liu et al. [20] proposed a hybrid approach incorporating an opposition-based learning strategy
along with an adaptive reset mechanism that balances fitness and distance. This design encourages
low-performance individuals to migrate toward the vicinity of the optimal solution, thereby
facilitating the exploration of promising regions in the search space. Cai et al. [21]improved the
shortcomings of DCS algorithm through collaborative development mechanism and population
evaluation strategy.However, DCS still suffers from limitations in terms of solution distribution bias
and insufficient local convergence precision during iterations, which restrict its ability to effectively
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explore the boundary regions of the search space and identify the global optimum. To address these
challenges, we propose an improved initialization strategy that integrates a refined set with a
clustering process to enhance the diversity of the initial population. Furthermore, we incorporate a
Double Q-learning strategy using dual Q-tables, enabling a more effective balance between
exploration and exploitation. This balance empowers the algorithm to explore unknown regions in
complex environments more effectively, thereby reducing the risk of premature convergence to local
optima.

The main contributions of the proposed algorithm in this study are summarized as follows:

(1) A novel algorithm is developed by integrating a refined set, a clustering process, and a
Double Q-learning strategy into the Differential Creative Search (DCS) framework. Ablation studies
are conducted to verify that each of these strategies contributes positively to the performance
enhancement of the DCS algorithm.

(2) The proposed DQDCS algorithm is benchmarked against ten state-of-the-art algorithms on
the CEC2019 and CEC2022 test suites. Extensive simulations demonstrate the superior performance
of DQDCS. Its improvements are visualized through convergence curves and box plots, and further
validated by the Wilcoxon rank-sum test to confirm its overall effectiveness.

(38) The DQDCS algorithm is applied to two real-world constrained engineering design
problems: the design of hydrostatic thrust bearings and the Synchronous Optimal Pulse Width
Modulation (SOPWM) problem in three-level inverters. In both cases, the goal is to minimize the
objective function under complex constraints. The results show that DQDCS is particularly suitable
for solving practical engineering optimization problems.

The remainder of this study is organized as follows. Section 2 introduces the fundamentals of
the Differential Creative Search (DCS) algorithm. Section 3 elaborates on the three enhancement
strategies incorporated into DQDCS. Section 4 reports the experimental comparisons between
DQDCS and other algorithms on the CEC2019 and CEC2022 benchmarks. Section 5 presents the
application of DQDCS to practical engineering problems and offers a comprehensive analysis of the
results. Finally, Section 6 concludes the study.

2. Differentiated Creative Search Algorithm Thoughts and Process

The Differentiated Creative Search (DCS) algorithm is a swarm intelligence-based optimization
method, whose core framework integrates Differentiated Knowledge Acquisition (DKA) and
Creative Realism (CR). A dual-strategy mechanism is employed to balance divergent and convergent
thinking. In this framework, high-performing individuals adopt a divergent thinking strategy,
utilizing existing knowledge and creative reasoning to conduct global exploration guided by the
Linnik distribution. In contrast, the remaining individuals adopt a convergent thinking strategy,
integrating feedback from both the team leader and peer members to perform local exploitation. This
process involves local optimization informed by both elite and randomly selected individuals. The
overall procedure of the DCS algorithm is summarized as follows.

2.1. Initialization

The initial population X is randomly generated, with each individual represented as a random
solution.
X = [Xi,l' Xi2:%i 35 Xin] satisfying the Equation (1).

Xqg=L+U0)xU -L) 1)

where U and L represent the lower and upper bounds of the d-th dimension, respectively, and
U(0,1) follows a uniform distribution on the interval (0,1).
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2.2. Differentiated Knowledge Acquisition

Differentiated Knowledge Acquisition (DKA) emphasizes the rate at which new knowledge is
acquired, exerting differential effects on individual agents. These effects are primarily manifested
through the modification of the individual’s existing knowledge attributes or dimensional
components. The parameter 7;; denotes the quantified knowledge acquisition rate of the i-th

individual at iteration t, as defined in Equation (2).

L vne). 15

M=\ _ 2)
> ([U(0.)x @ ]+0), otherwise
In Equation (2), ¢; represents the coefficient associated with variable ¢ for the individual at
the t-th iteration, and is calculated using Equation (3). Here, NP denotes the population size, and R;;
indicates the rank of the i-th individual at the beginning of iteration t. The influence of the DKA
process on each component of X; is described in Equation (4), where Jianq ~U({1, 2,..., D})

denotes an integer uniformly selected from the set {l, 2,..., D} , and D represents the dimensionality

¢ =0.25+0.55x /R, /NP 3)

jrang ~U ({1.2....,D})

T Vi,d’ |f U(Ol)snl,t or d:jrand (4)
14, otherwise

of the problem.

2.3. Convergent Thinking

The strategy for low-performing individuals leverages the knowledge base of high performers
and incorporates the stochastic contributions of two randomly selected team members into the
solution proposed by the current individual. This process is described by Equation (5), where F
denotes the inertia weight and X,y represents the global best solution in the current population.

VizFxXbest—(Fxsz—Xi)-l-Fx(Xrl—Xi) (5)

X; drawsupon convergent thinking by integrating the information provided by team members
Xi1 and X,,, thereby refining the knowledge of the team leader, X, as described by Equation
(6). Here, the coefficient /4 governs the extent to which peer influence shapes an individual’s social
cognition within the team environment. It reflects the degree to which team dynamics affect
individual perspectives. The value of /4 decreases over time, as defined in Equation (7), where NFEr

and NFEmax denote the number of function evaluations in the current iteration and the maximum
allowable number of function evaluations, respectively.

Vi=wxxbest+ﬂtx(xl‘2_xi)+a}"tx(xr1_xi) ©

4 =0.1x0.518x (1— [NFE; /NFE 5, ) )

Two random individuals, X, and X, , are selected, and a new candidate solution is generated

by incorporating the best individual with stochastic components, as defined in Equation (8).

Vid =@ Xoestd T A - (Kr2g = Xa) +@ip - Xepg —Xig) (8)
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2.4. Divergent Thinking

A random individual X, is selected, and a new candidate solution is generated using the
Linnik distribution, as defined in Equation (9), where LK(a,0) denotes a random variable drawn

from the Linnik distribution with parameters « =0.618 and o =0.05.

Vig =X + LK(a,0) )

2.5. Team Diversification

As the team continues to evolve, it generates increasingly diverse ideas. To maintain diversity
and adaptability, the DCS algorithm replaces underperforming members with newly generated
individuals. The equation used to generate new individuals is provided in Equation (10).

Vip =L+U(0,1)x (U -L) (10)

2.6. Offspring Population

For each individual X, a trial solution V; is generated. The decision to retain or replace the
original solution is based on a comparison of their fitness values. If the trial solution V; exhibits
superior fitness, it replaces the original solution X;; otherwise, the original solution is retained.
This process is formulated in Equation (11).

Xi,t+1={Vi‘t AFF(V) < F(X0)

Xt , otherwise (11)

In each iteration, all individuals X, ,; in the newly generated population are evaluated, and
the global best solution Xpeg ¢ is subsequently updated. This process is formally defined in
Equation (12).

o X TG < f Kaesty) (12)
P ) X et » Otherwise

Algorithm 1 outlines the detailed steps of the DCS algorithm as described above.

Algorithm 1 Particle swarm optimization

Step 1: Random Initialization of the Population

The initial population is generated randomly to ensure diversity in the solution space.

Step 2: Fitness Evaluation

The fitness of each individual is evaluated by computing its objective function value, which
reflects the individual’s performance on the optimization problem.

Step 3: Determination of the Number of High-Performance Individuals

The number of top-performing individuals is determined based on a predefined proportion of
the population.

Step 4: Initialization of Iteration Counter and Parameters

Set the iteration counter t=1, the number of function evaluations NFE=0, and the probability of
population migration to 0.5.

Step 5: Main Optimization Loop

Continue the optimization process while NFE < NFEmax, repeating the position updating and
fitness evaluation steps.
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3. Hybrid Multi-Strategy Differentiated Creative Search Algorithm

Firstly, the DCS algorithm initializes the population using pseudo-random numbers, which
results in limited population diversity and a lack of target-oriented search in the early stages, thereby
reducing optimization efficiency. Secondly, the algorithm relies heavily on the best-performing
individual during position updates, making it susceptible to premature convergence and hindering
its ability to escape local optima. These issues ultimately lead to reduced optimization accuracy and
a slower convergence rate.

To address these limitations, targeted strategies are introduced to enhance the algorithm’s
overall performance. Previous studies have shown that the diversity of the initial population
significantly influences the algorithm’s ability to converge rapidly and accurately. A higher degree
of initial diversity allows the algorithm to explore a broader solution space during the search process,
thereby increasing the likelihood of identifying the global optimum.

To improve population diversity, generate higher-quality initial solutions, and effectively
overcome the limitations of the basic DCS algorithm, a refined set strategy and clustering strategy
are incorporated during the population initialization phase. Although the DCS algorithm enhances
global exploration through its “creativity” mechanism, it lacks sufficient flexibility in dynamic
environments, such as path planning with moving obstacles for UAVs (Unmanned Aerial Vehicles)
or real-time demand changes in industrial scheduling.

The incorporation of Double Q-learning allows the algorithm to interact continuously with the
environment, facilitating real-time perception and autonomous decision-making. This enables the
DCS algorithm to adapt its search strategy more precisely under dynamic conditions, thereby
maintaining high operational efficiency. Furthermore, the learning capability of Double Q-learning
enhances the algorithm’s generalization ability, enabling robust performance in unseen scenarios and
increasing the practical value of intelligent optimization techniques.

3.1. Refined Set Initialization

Compared to traditional pseudo-random initialization, the refined set strategy achieves a more
uniform distribution of the population across the search space through a carefully designed sampling
method. This uniformity reduces the likelihood of the algorithm becoming trapped in local optima
during the early stages of optimization. By promoting a broader distribution of individuals, the
algorithm gains increased opportunities to explore diverse regions and identify superior solutions.

The mathematical formulation of the refined set strategy is presented in Equations (13) and (14),
where L and U represent the lower and upper bounds of the d-th dimension, respectively, and i
indicates the index of the i-th individual. The parameter p denotes the smallest prime number that
satisfies specific conditions, and mod(d x i,p) refers to the result of the modulo operation applied to

d xi with respect to p.

M = mod(d xi, p) 13)
p
Xig=L+Mx(U -L) (14)

3.2. Clustering Process

After the population is generated using the refined set strategy, a clustering algorithm is applied
for further enhancement. In this study, the k-means clustering method is adopted to allow the DCS
algorithm to focus on salient features during the learning phase while minimizing the impact of low-
quality data. This process improves the algorithm’s generalization ability on unseen data, thereby
increasing its robustness and stability in practical applications. The detailed implementation steps
are presented as follows.


https://doi.org/10.20944/preprints202504.2357.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 April 2025 d0i:10.20944/preprints202504.2357.v1

7 of 34

(1) Select the Cluster Centers

Randomly select k points as the initial cluster centers C,,C,,..,C,, where
C ;=(C;1:Cj 21 Cjp) -
(2) Calculate the distance and assign individuals.

For each individual X in the population, the Euclidean distance between X, and each cluster

center C; is calculated. The individual X is then assigned to the cluster corresponding to the

nearest cluster center. This is specifically expressed by Equation (15).

d(xi’Cj):\/Z(?:l(Xi,d —Cja )2 (15)

(3) Update the cluster centers.

For each cluster, the cluster center is recalculated. Let the set of individuals in the j-th cluster be

denoted as S i The new cluster center C'j = iz o % is computed as the mean of the individuals

S|
in S ;» where |Sj| denotes the number of individuals in the set S -

(4) Iterative process.
Repeat steps 2 and 3 until the cluster centers no longer undergo significant changes.
(5) Density-based uniform selection.

Calculate the local density of each individual X, €S P denoted  as

d

cui

1 d(x,%) ’
P =— exp| — —J where d_, is the truncation distance used in the densit
i |S | X €S, cut Yy
j t

calculation. Individuals with moderate density are selected, and the final initialized population is
given by Equation (16).

X e =U | Selected, (16)

3.3. Double Q Tables Reinforcement Learning Model (Double Q-Learning Model)

The Q-learning model consists of five fundamental components: the agent, environment, action,
state, and reward. Its operational procedure can be succinctly described as a cyclical interaction of
state transition, action selection mechanism, and reward feedback. In traditional Q-learning, a single
Q-table is employed to store the estimated values of state-action pairs. However, this approach often
suffers from issues such as overestimation bias and limited exploration capacity. To mitigate these
limitations, Double Q-learning introduces two independent Q-tables, each of which is updated
independently. This dual-table framework significantly reduces the estimation bias inherent in the
single-table approach and enables a more balanced, robust evaluation of the learned policy.

Let S= {51,52,...,Sm} denote the set of environment states and A= {al, a2,...,an} represent
the set of actions that the agent can execute. In each iteration, the agent occupies a certain state se S
and selects an action ae A to perform. After executing the action, the environment provides a
reward l,;1 and anew state S;;q. The reward is computed according to Equation (17), where X,

denotes the solution at the new position, and X;, represents the solution at the current position.

Upon receiving this information, the agent evaluates the expected value Q (St =N ) for each possible
action.

In Double Q-learning, either Q or Q, is selected for updating with equal probability. The

update equations are provided in Equations (18) and (19). In the equations, S; represents the state
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of the agent, d denotes the action executed by the agent, I 1 is the immediate reward obtained

by the agent after executing the action, and ; is the discount factor, which penalizes future
rewards. When } =0 , Double Q-learning considers only the current reward; when )/:1 , it
prioritizes long-term rewards, & is the learning rate, typically within the interval [O,l] . Double Q-

learning maintains two Q-tables, traditional Q-learning, but with distinct update logic. Figure 1
simplified illustration example of the operational process of Double Q-learning. The agent alternates
between updating the two Q-tables and combines information from both when selecting actions,
thereby reducing estimation bias and enhancing policy robustness.

M= F (X)) = F(X,,) (17)

Qu(sa)=Q(sa)+a| hy +7Q, (Sm,arg:“ale(3t+1'a)J_Q1(3t’at )} (18)

Q (s a)=Q (s )+ rt+1+7Q1[st+1,ar9£naXQz(st+1,a)j—Qz(st,at)} (19)

In the DCS algorithm, the last individual is considered inefficient and updated using random
initialization, which often results in low-quality solutions. To address this issue, Double Q-learning
introduces two independent Q-tables and employs a dual Q-table mechanism to improve solution
quality. This separation makes the calculation of target Q-values more reliable, helping to reduce
estimation bias.

Reward 71 o

Action a,
[ Agent w f environment j

) Update Q1 or Q2 Table k

State s;

Str1
Figure 1. Operation process of Double Q-learning.

3.4. Ablation Experiment

To evaluate the effectiveness of the proposed strategies, four representative test functions from
the CEC2019 benchmark suite were selected. The performance of the refined set strategy, the
clustering process strategy, their combination, and the Double Q-learning strategy was systematically
compared. Each algorithm was executed for 500 iterations across 30 independent runs. Specifically,
D1 adopts the refined set strategy, D2 employs the clustering process strategy, D3 integrates both the
refined set and clustering process strategies, and D4 incorporates the Double Q-learning mechanism.
The corresponding results are summarized in Table 1. Experimental results demonstrate that
population initialization using the combined refined set and clustering process significantly enhances
the algorithm’s capability to approach the global optimum. Moreover, the D4 variant, augmented
with the Double Q-learning strategy, achieves the best overall fitness across all test functions.
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Table 1. Ablation experiment results for each strategy.

DCS D1 D2 D3 D4
F2 3.4322 3.322 3.2916 3.2725 3.1517
F5 1.0297 1.0409 1.0297 1.017 1.0008
F8 3.0423 3.0227 3.0233 2.8924 2.447
F10 1.0044 1.0037 1 1.0035 1.0001

DCS D1 D2 D3 D4
F2 3.4322 3.322 3.2916 3.2725 3.1517
F5 1.0297 1.0409 1.0297 1.017 1.0008
F8 3.0423 3.0227 3.0233 2.8924 2.447
F10 1.0044 1.0037 1 1.0035 1.0001

3.5. Hybrid Multi-Strategy DQDCS Algorithm

The DQDCS algorithm integrates both the refined-point set strategy and a clustering-based
approach, and further incorporates a Double Q-learning model to construct a multi-strategy hybrid
optimization framework. The refined-point set is generated through mathematically guided
sampling techniques to ensure a more uniform distribution of individuals across the search space,
thereby replacing conventional pseudo-random initialization methods. Such a distribution promotes
broader coverage of the solution space and mitigates early-stage search blind spots. A high-quality
initial population enhances the algorithm’s ability to converge more reliably toward optimal
solutions and reduces performance fluctuations caused by poor initial positioning.

In contrast to purely random initialization, the refined-point set strategy employs structured
sampling to diminish the randomness-induced variability in the initial population, thereby
improving the algorithm’s robustness. Moreover, this strategy can be tailored to the specific
characteristics of the optimization problem; for example, in constrained optimization scenarios, it
helps ensure that the initial population satisfies constraint conditions, thus avoiding infeasible
solutions and enhancing overall algorithmic stability.

The clustering strategy divides the population into multiple subgroups, with each subgroup
representing distinct regions or features of the search space. This structural partitioning aids in
preserving diverse solution patterns throughout the optimization process, thereby reducing the risk
of premature convergence to local optima. By maintaining diversity and promoting exploration, the
algorithm is better positioned to locate the global optimum efficiently.

By integrating the probability distributions and maximum values derived from two
independent Q-tables, the Double Q-learning mechanism enables more balanced action selection
between exploration and exploitation. Within the DQDCS algorithm, this dual-Q-table framework
effectively mitigates the estimation bias commonly associated with single Q-table implementations
and facilitates more comprehensive policy evaluation, thereby enhancing the algorithm’s global
search capability. Specifically, Double Q-learning selects the optimal action based on the current state,
which subsequently guides population updates. This approach allows for broader exploration during
the early stages of optimization, while gradually shifting toward refined exploitation of promising
regions in the later stages. So, the algorithm achieves accelerated convergence without compromising
solution quality. The flowchart of the DQDCS algorithm is illustrated in Figure 2.
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Premium Points and K-
Means of Population by
formula (1) and (16

Initialize Q-
Table

Average Low
performing performing

High perforing

Divergent s

S ‘Team
thinking by, diversification
formula (9) A

Offspring
Population by
formula (12

Calculate Reward
Tl

Update Q-Table b
formula (17) and
18

Figure 2. DQDCS flowchart.

Algorithm 2 presents the pseudocode of the proposed DQDCS algorithm.

Algorithm 2: DQDCS algorithm.
Initialize the population using Equation (1);

Evaluate fitness for all individuals;
Determine the refined set via the clustering process;
Initialize Q-tables to zero;
Set key parameters: exploration threshold pc, golden ratio, 1 and ¢ values;
while the number of function evaluations (nfe) < max_nfe do
Sort the population by fitness;
Identify the best solution x_best;
Compute Arusing Equation (7);
for each individual i do
Compute nji and i using Equations (2)—(3);
Determine behavior category (high-, average-, or low-performing);
if i is low-performing and rand < pc then
Generate a new solution randomly;
else if i is high-performing then
Select r; # i;
Update selected dimensions using Equation (8);
else // average-performing
Selectry, 12 #1;
Compute wj;
Update selected dimensions using Equation (8);
end if
Apply reflection-based boundary handling;
Evaluate fitness of the new solution;
If improved, update position and fitness;
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Compute reward from fitness change;
Update Q, using Q- for value estimation (Equation 18);
Update Q, using Q; similarly (Equation 19);
end for
Update the best solution and record convergence data;
end while
Return best solution, best fitness;

3.6. Complexity Analysis of the Algorithm

The implementation of the DQDCS algorithm involves certain design challenges, yet it
maintains a relatively low computational complexity. The overall complexity is stage-dependent, as
each phase —initialization, fitness evaluation, and solution generation —contributes differently to the
total computational cost.

In general, the DQDCS algorithm comprises three fundamental procedures: population
initialization, fitness evaluation, and generation of new solutions. The main loop iterates for a
maximum of Max_iter iterations, and in each iteration, operations are performed for each of the N
search agents.

The computational complexity of the initialization phase is O(N), owing to the refined set-based
initialization method and clustering process. Additionally, the time complexity for fitness evaluation
depends on the complexity of the objective function, denoted as O(F). Therefore, the overall
computational complexity of the algorithm can be expressed as O(Max_iter x N x F).

4. Simulation Environment and Result Analysis

In the field of optimization, particularly in the study of evolutionary algorithms and
metaheuristic methods, validating the effectiveness of proposed algorithms is of paramount
importance, as these approaches are expected to address complex challenges encountered in real-
world applications. To assess their performance, standardized test cases or well-established
benchmark problems are commonly employed. These benchmark evaluations offer a unified
platform for objective comparison, enabling fair and consistent performance assessment across
different algorithms and facilitating a rigorous analysis of their strengths and limitations.

The experiments were conducted using MATLAB 2023 on a Windows 11 operating system. The
CEC2019 [28] and CEC2022 [29] benchmark functions were employed to evaluate the performance of
the DQDCS algorithm. These benchmark functions enable a systematic comparison between DQDCS
and other state-of-the-art metaheuristic algorithms, thereby verifying the competitiveness and
applicability of the proposed method in solving complex optimization problems. This evaluation
framework ensures scientific rigor and provides clear directions for further algorithmic
enhancements.

Considering the inherent stochastic nature of metaheuristic algorithms, relying on a single run
for each benchmark function may lead to unreliable conclusions. Therefore, multiple simulations
were conducted for each algorithm, including the original Differentiated Creative Search algorithm
(DCS) [19], the multi-strategy hybrid DQDCS algorithm [20], A Differentiated Creative Search
Algorithm with Multi-Strategy Improvement (MSDCS), Chernobyl Disaster Optimizer (CDO) [22],
Puma Algorithm [16], Waterwheel Plant Algorithm (WWAP) [24], Sub-Population Improved Grey
Wolf Optimizer with Gaussian Mutation and Lévy Flight (SPGWO) [25], the Dung Beetle Optimizer
(DBO) [26], Nonlinear Randomly Reuse-Based Mutated Whale Optimization Algorithm
(NRRMWOA) [27], and the Adaptive Spiral Flying Sparrow Search Algorithm (ASFSSA) [23]. The
detailed experimental results are presented as follows.

d0i:10.20944/preprints202504.2357.v1
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4.1. The CEC2019 Benchmark Functions Are Employed for Performance Evaluation

The CEC2019 benchmark functions are specifically designed to evaluate and compare the
performance of optimization algorithms. It encompasses a diverse set of challenging optimization
problems, including multimodal, high-dimensional, and dynamic characteristics, thereby closely
simulating real-world complexities. Given the inherent stochastic nature of metaheuristic algorithms,
a single run per benchmark function is insufficient to reliably demonstrate an algorithm’s
effectiveness. To enhance the reliability and fairness of performance evaluation, each algorithm was
independently tested 100 times on each benchmark function, with a maximum of 500 iterations per

run.

4.1.1. Optimization Accuracy Analysis

To accurately evaluate and compare the performance on the CEC2019 benchmark functions, the
experimental results are summarized in terms of the best, mean, and standard deviation (Std) values.
In the result tables, the best mean values, which serve as key performance indicators, are highlighted
with underlining. The detailed outcomes are presented in Table 1.

As shown in the statistical results in Table 2, the proposed DQDCS algorithm consistently
achieves the best values on all functions from F1 to F10. Moreover, it obtains the best mean
performance on F1 and F3-F10 compared to other competing algorithms. In addition, the DQDCS
achieves the smallest standard deviation on functions F3, F5, F6, F8, and F9, demonstrating superior
robustness. These findings indicate that DQDCS not only offers stable performance but also exhibits
highly competitive exploration capability among the compared algorithms.

Table 1. Experimental results on the CEC2019 benchmark functions.

Function Algorithm Best Mean Std
F1 DCS 1 1.1746 0.066539
DQDCS 1 1.0129 0.017456
MSDCS 1.0001 54.4005 138.3435
CDO 1 12 0
Puma 1 103218.6127 227810.8443
WWPA 1.6834 238.3049 583.4071
SPGWO 1 3656.3391 8551.4486
DBO 1 414533.6708 721175.8267
NRRMWOA 180.8782 785017.9378 1311767.1446
SABO 1 5.7741 21.3505
ASFSSA 1 1 0
F2 DCS 3.4322 33.4401 48.401
DQDCS 3.1517 32.8329 49.4357
MSDCS 5.1132 9.6797 4.1544
CDO 5 5 0
Puma 4.2328 4.7036 0.37262
WWPA 5.2001 8.3147 3.6477
SPGWO 63.7169 259.0299 142.4842
DBO 4.2752 384.2964 194.8378
NRRMWOA 11.9124 721.1422 965.2022
SABO 4.5993 8.7857 5.9168
ASFSSA 4.2189 4.3289 0.18135
F3 DCS 2.2424 2.9371 0.4211
DQDCS 1.0004 2.0439 0.2884

MSDCS

11.7269

12.4015

0.34845
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CDO 4.7096 5.8612 0.64681
Puma 1.4656 2.1404 0.57859
WWPA 8.0688 10.1437 0.86708
SPGWO 2.4504 3.2425 0.74601
DBO 1.4091 3.9766 1.8562
NRRMWOA 1.4106 4.9893 1.953
SABO 5.7387 6.9026 0.57406
ASFSSA 1.0134 3.6414 1.5732
F4 DCS 5.1848 7.2552 1.0675
DQDCS 5.01 5.5951 1.8712
MSDCS 85.6623 136.8029 21.366
CDO 63.5432 71.4357 5.479
Puma 5.9748 13.0409 5.7055
WWPA 116.9494 142.2562 13.0633
SPGWO 4.0021 14.8937 9.5953
DBO 11.0965 23.7472 8.109
NRRMWOA 17.0311 43.543 18.719
SABO 35.1635 45.1917 7.9818
ASFSSA 7.9865 41.071 29.6237
F5 DCS 1.0297 1.0793 0.047848
DQDCS 1.0008 1.0577 0.034179
MSDCS 76.1748 153.0113 42.5413
CDO 53.7219 72.8935 4.7508
Puma 1.0271 1.1604 0.096242
WWPA 122.0759 173.3345 21.0507
SPGWO 1.1723 1.5255 0.22175
DBO 1.0442 1.1462 0.06739
NRRMWOA 1.2785 1.5229 0.17431
SABO 1.7572 2.9426 0.93688
ASFSSA 1.0615 1.1646 0.072103
Fé6 DCS 1.0004 1.9302 1.0947
DQDCS 1.0029 1.4685 0.73351
MSDCS 9.6249 14.1852 1.4021
CDO 7.8188 9.4417 0.90669
Puma 1.004 1.7517 0.89464
WWPA 11.2646 12.8644 0.87031
SPGWO 1.281 2.1444 0.92531
DBO 2.0546 4.6142 1.7611
NRRMWOA 49513 7.5365 1.5727
SABO 2.8428 4.748 0.97675
ASFSSA 1.0009 2.6429 1.1644
F7 DCS 119.6257 591.2146 214.4368
DQDCS 80.447 347.2542 160.8203
MSDCS 1910.947 2563.8317 271.9363
CDO 1174.9817 1493.4973 180.7765
Puma 126.3932 605.3863 286.0483
WWPA 2117.4231 2407.1589 144.384
SPGWO 342.6493 736.2504 217.0422
DBO 417.6764 786.1656 309.1151
NRRMWOA 499.5293 1150.2235 299.2043
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SABO 1214.0837 1760.7036 189.8127
ASFSSA 293.3793 800.6022 282.4334
F8 DCS 3.0423 3.5322 0.56543
DQDCS 2.447 3.365 0.022699
MSDCS 4.654 5.2571 0.0764
CDO 3.757 4.2063 0.20053
Puma 2.4307 3.6169 0.41838
WWPA 4.9553 5.2467 0.10746
SPGWO 1.3278 3.4054 0.52501
DBO 2.9084 3.8775 0.4717
NRRMWOA 3.5071 4.3747 0.35839
SABO 3.8848 4.5332 0.23968
ASFSSA 3.1381 4.0752 0.33229
F9 DCS 1.0463 1.1288 0.052384
DQDCS 1.0067 1.0426 0.040301
MSDCS 3.8863 5.3393 0.61068
CDO 3.6548 4.1862 0.14797
Puma 1.0823 1.1672 0.051977
WWPA 4.4026 5.2377 0.37346
SPGWO 1.073 1.1543 0.040058
DBO 1.1722 1.2769 0.08308
NRRMWOA 1.1824 1.3798 0.15444
SABO 1.1224 1.2898 0.066172
ASFSSA 1.0916 1.1801 0.075728
F10 DCS 1.0044 20.2372 4.5283
DQDCS 1.0001 19.9929 4.4706
MSDCS 21.6494 21.6499 0.0010212
CDO 21.2731 21.4023 0.061844
Puma 20.9615 21.0133 0.027353
WWPA 21.2641 21.6966 0.13883
SPGWO 21.2315 21.3923 0.081047
DBO 21 21.2387 0.18582
NRRMWOA 20.996 21.0539 0.086024
SABO 20.8947 21.3333 0.15323

4.1.2. Convergence Curve Analysis

To facilitate a more intuitive comparison of the convergence behavior across different functions

optimization precision.

in the CEC2019 benchmark functions, convergence curves for the DQDCS algorithm and ten other
competing algorithms were plotted. As shown in Figure 3, the horizontal axis represents the number
of iterations, while the vertical axis denotes the fitness value. It can be observed that the DQDCS
algorithm demonstrates superior convergence accuracy on functions F1 through F7, F9, and F10.
Notably, it is capable of approaching the optimal value at the early stages of the search process,
particularly on functions F1 and F10, where the curves converge almost linearly to the optimum.
These results indicate that the DQDCS algorithm exhibits relatively strong performance, and that the
incorporation of multi-strategy enhancements is both feasible and effective in improving
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Figure 3. Convergence curve of CEC2019 benchmark tests.

4.1.2. Boxplot Analysis

To compare the performance of different algorithms across multiple runs —particularly in terms
of stability and robustness —boxplots are employed as an evaluation tool. As shown in Figure 4, for
the DQDCS algorithm, the median values for functions F3, F4, F6, F7, and F9 are located near the
lower boundaries of the boxes, indicating a right-skewed (positively skewed) distribution. This
suggests that the majority of runs yielded relatively favorable results. Moreover, no outliers are
observed in functions F1, F4, F5, F7, and F9, and only a few outliers appear in F2, F3, F6, F8, and F10,
demonstrating that DQDCS exhibits stronger robustness compared to the other algorithms.
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Figure 4. Boxplots of CEC2019 benchmark functions.

4.1.3. Wilcoxon Rank-Sum Test

In this subsection, the Wilcoxon rank-sum test [30], a non-parametric statistical test, was
employed to evaluate the significant differences between two algorithms. The objective is to verify
whether there exists a significant difference between the DQDCS algorithm and the other ten
comparison algorithms, thereby assessing the optimization performance of DQDCS. A p-value below
0.05 indicates the rejection of the null hypothesis, signifying a significant difference between the two
algorithms. Table 2 presents the p-values obtained from the Wilcoxon rank-sum test conducted
between DQDCS and the other ten representative comparison algorithms when solving the CEC2019
benchmark. As shown in Table 2, DQDCS outperforms the other comparison algorithms in solving
the CEC2019 functions, with p-values between DQDCS and each of the comparison algorithms being
lower than 0.05. The results unequivocally emphasize that DQDCS exhibits significant differences
compared to the other algorithms in the majority of the functions, highlighting its distinct advantage
in solution performance.

Table 2. Wilcoxon rank-sum test results for CEC2019 benchmark.

DQDCS
DCS MSDCS CDO Puma WWPA SPGWO DBO NRRMWOA SABO  ASFSSA
VS.
6.39E- 1.82E- 172E-  1.83E- 4.52E- 1.83E-
F1 1.83E-04 1.13E-02 1.83E-04 6.39E-05
05 04 04 04 02 04
6.39E- 1.83E- 183E-  1.83E- 6.40E- 2.46E-
F2 3.30E-04 1.40E-01 1.83E-04 8.75E-05
05 04 04 04 02 04
2.11E- 730E- 583E-  1.83E- 2.57E- 5.80E-
F3 1.83E-04 2.80E-03 5.83E-04 1.73E-02
02 03 04 04 02 03
1.13E- 1.83E- 2.11E-  1.83E- 431E- 1.83E-
F4 1.83E-04 2.11E-02 2.20E-03 1.01E-03
02 04 02 04 01 04
6.40E- 1.83E- 1.83E-  1.83E- 1.40E- 1.83E-
F5 1.83E-04 1.83E-04 1.13E-02 1.83E-04
03 04 04 04 02 04
1.83E- 1.83E- 1.83E-  7.69E- 1.73E- 1.83E-
F6 4.40E-04 1.83E-04 2.20E-03 1.83E-04
04 04 04 04 02 04
2.46E- 1.83E- 376E-  183E- 4.52E- 1.83E-
F7 1.83E-04 7.69E-04 5.80E-03 5.80E-03
04 04 02 04 02 04
1.73E- 376E-  452E-  1.82E- 4.40E- 1.83E-
F8 1.83E-04 1.40E-02 2.57E-02 7.69E-04
02 02 02 04 04 04
7.57E- 1.83E- 5.80E-  1.83E- 2.57E- 7.69E-
F9 1.83E-04 3.39E-02 4.52E-02 2.20E-03

03 04 03 04 02 04
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2.43E- 1.83E-  1.71E- 1.83E- 2.83E- 4.40E-
F10 1.83E-04 1.83E-04 4.59E-03 7.76E-04
02 04 03 04 03 04

4.2. The CEC2022 Benchmark Functions Are Employed for Performance Evaluation

The CEC2022 benchmark functions are a standardized set of problems used to assess the
performance of optimization algorithms in research and development. These test functions simulate
various aspects of real-world optimization problems, including local minima, maxima, global optima,
and a range of complexities such as nonlinearity and discontinuities. By validating algorithms on
these diverse test sets, it ensures that the algorithms exhibit high robustness and stability when
confronted with different challenging scenarios. This approach helps avoid the issue of algorithms
performing exceptionally well in specific environments while failing in others, thereby enhancing the
generality and reliability of the algorithm. For a comprehensive evaluation, the complex functions
described in the CEC2022 test suite are used to assess the effectiveness of the DQDCS algorithm. The
number of iterations is set to 500, and 100 independent tests are conducted for each benchmark
function.

4.2.1. Optimization Accuracy Analysis

To visually observe and compare the results of the CEC2022 benchmark functions, the following
table presents the optimal values (Best), mean values (Mean), and standard deviations (Std) for each
test function. In these tables, the mean value is used as the performance indicator, and the best mean
values are underlined. These results are provided in Table 3 below.

From the statistical results in Table 3, it can be observed that for test functions F1 to F3, DQDCS
achieved the best mean values and found the optimal solutions when compared to the other
algorithms. Moreover, when searching for the optimal values of functions F1 to F3, DQDCS exhibited
the lowest standard deviation among all algorithms.

For test functions F4 to F8, DQDCS found the optimal solutions for functions F5 to F8. It achieved
the best mean values across all algorithms for functions F6, F7, and F8. Additionally, for function F4,
DQDCS outperformed DCS in terms of the mean value, and DQDCS also achieved lower standard
deviations than the other algorithms in functions F4, F5, and F7.

In the case of test functions F9 to F12, DQDCS found the optimal solutions for functions F11 and
F12. For functions F9, F10, and F12, DQDCS achieved the best mean values across all algorithms. For
function F11, DQDCS outperformed DCS in terms of the mean value. Furthermore, DQDCS exhibited
the lowest standard deviation in functions F10 and F12, and its standard deviation was lower than
that of DCS in functions F9 and F11.

Table 3. Testing results of CEC2022 benchmark functions.

d0i:10.20944/preprints202504.2357.v1

Function Algorithm Best Mean Std
F1 DCS 300 301 3.8519%¢-13
DQDCS 300 300 6.8317e-14
MSDCS 10766.7503 10766.7571 0.013964
CDO 7490.1964 20512.7673 13607.6136
Puma 300.0023 301.2711 2.5835
WWPA 8455.8816 236150.7116 1491237.9285
SPGWO 304.8303 797.5061 1028.1107
DBO 300 361.9946 341.4715
NRRMWOA 358.8157 3032.3131 2230.1134
SABO 1195.7814 3379.0063 1311.4349
ASFSSA 309.4622 586.0842 281.7238
F2 DCS 400 405.5275 3.4253
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DQDCS 400.0035 403.425 3.6114
MSDCS 750.1737 2491.5488 960.6972
CDO 570.9415 835.2859 49.4592
Puma 400 406.3943 7.2844
WWPA 972.5671 3270.4214 1414.9336
SPGWO 400.5352 415.7896 14.3696
DBO 400.0218 424.2427 29.16
NRRMWOA 400.0781 422.0518 27.9517
SABO 404.4744 448.4682 21.9722
ASFSSA 400.0102 413.4404 19.3205
F3 DCS 600 600 3.5703e-07
DQDCS 600.0001 600.0005 3.2297e-07
MSDCS 643.6113 682.7551 10.18
CDO 627.5045 634.8725 3.539
Puma 600 600 0.00026748
WWPA 662.8221 687.3778 7.5308
SPGWO 600.0541 600.4967 0.68095
DBO 600 601.7739 2.6285
NRRMWOA 601.6986 621.4008 11.8169
SABO 603.078 612.0294 7.4192
ASFSSA 600 602.2958 6.5591
F4 DCS 803.5611 809.1824 2.9573
DQDCS 801.7438 809.0859 1.0729
MSDCS 867.3885 896.995 4.0671
CDO 828.5143 845.4771 6.2154
Puma 806.9647 818.357 6.8807
WWPA 864.4186 887.3275 8.2043
SPGWO 800.3831 800.9999 6.6974
DBO 807.9597 829.8866 10.517
NRRMWOA 809.95 835.8238 14.4457
SABO 819.7184 838.0276 8.1862
ASFSSA 811.9395 829.6198 5.4414
F5 DCS 900 900 2.2852e-14
DQDCS 900 900 2.0549e-14
MSDCS 2066.3081 2246.8891 21.1599
CDO 1248.3716 1377.5434 69.9206
Puma 900 900.3861 0.57066
WWPA 1860.8209 2380.0621 185.2868
SPGWO 900 900.0042 10.5999
DBO 900 916.4121 57.1606
NRRMWOA 906.326 1253.0823 278.8837
SABO 901.1913 925.9241 16.9796
ASFSSA 901.7282 1398.8497 174.1701
F6 DCS 1800.0368 1805.6947 1.5327
DQDCS 1800.0238 1801.939 2.0455
MSDCS 70252227.0095 207374163.4593 33963697.1425
CDO 15167928.0263 157093751.8526 240080753.4813
Puma 1807.9235 2063.024 734.8686
WWPA 8608986.8261 185293465.0815 73329210.9276
SPGWO 1960.6464 5799.1861 2292.3454
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DBO 1895.1412 4731.5419 2375.8384
NRRMWOA 1846.6869 3977.1499 2076.5281
SABO 2459.4489 20110.6228 11920.7947
ASFSSA 1930.1248 5432.4366 1903.6817
F7 DCS 2027.974 2049.2777 14.7551
DQDCS 2000.229 2001.6385 2.837
MSDCS 2337.8697 2447.3738 69.1571
CDO 2231.4056 2300.052 30.0378
Puma 2151.4621 2192.5272 43.688
WWPA 2306.8139 2451.1073 90.2488
SPGWO 2034.3498 2057.4032 25.2011
DBO 2032.3433 2090.2749 34.7803
NRRMWOA 2101.6025 2198.9024 60.3948
SABO 2105.6682 2178.9918 37.0986
ASFSSA 2030.9544 2094.5985 29.2648
F8 DCS 2222.0212 2225.7348 5.0729
DQDCS 2200.7186 2208.8764 7.0158
MSDCS 2846.8452 3952.5994 1101.3132
CDO 2243.644 2251.946 6.6606
Puma 2226.3281 2353.5188 125.6302
WWPA 2551.5422 2917.5036 244.8562
SPGWO 2224.4404 2229.9677 4.8594
DBO 2233.7582 2301.6076 63.7515
NRRMWOA 2237.5665 2262.526 34.2888
SABO 2278.1633 2356.1119 64.2682
ASFSSA 2222.1835 2227.1796 4.6573
F9 DCS 2529.2844 2529.2844 0
DQDCS 2480.7821 2480.2942 0.027562
MSDCS 3371.8015 3996.9709 412.0453
CDO 3151.4652 3426.8386 126.0153
Puma 2480.7976 2480.8202 0.017425
WWPA 3370.7773 4492.3652 979.6033
SPGWO 2481.1805 2500.7716 22.002
DBO 2480.9125 2496.6431 20.4099
NRRMWOA 2481.1486 2491.6469 14.7268
SABO 2603.3814 2699.6239 46.6498
ASFSSA 2480.7813 2480.8064 0.067892
F10 DCS 2500.3438 2515.1856 46.6588
DQDCS 2500.1542 2503.504 18.4699
MSDCS 6937.0014 7963.4014 476.9702
CDO 4832.6414 5873.0597 506.4387
Puma 2500.638 2515.0468 45.15
WWPA 7228.1772 7552.068 210.5838
SPGWO 2500.5073 3312.8457 742.2508
DBO 2500.8157 2930.6677 678.0253
NRRMWOA 2501.3194 4062.9987 1135.7437
SABO 2858.03 5556.1544 1635.5186
ASFSSA 2500.7384 2630.7374 410.1658
F11 DCS 2600 2646.5043 108.0761
DQDCS 2600 2639 103.2576
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MSDCS 5105.1466 5105.1769 0.082861
CDO 3329.1224 3343.2781 5.6324
Puma 2600.0001 2637.3103 118.4636
WWPA 3712.7414 4917.2808 262.7002
SPGWO 2601.1884 2904.431 130.4169
DBO 2600 2814.9987 171.69
NRRMWOA 2600.698 2901.0184 130.9309
SABO 2832.4972 3233.2798 104.4736
ASFSSA 2600 2663.175 113.4852
F12 DCS 2988.2699 3219.0423 181.9443
DQDCS 2700.6186 2722.0363 2.1318
MSDCS 3624.3346 4070.0287 301.5474
CDO 3478.4691 3508.6705 25.8794
Puma 2939.2542 2951.6242 13.3077
WWPA 2900.0048 2900.005 5.3612e-05
SPGWO 2937.2174 2955.9256 13.3377
DBO 2939.8499 2973.7347 40.5269
NRRMWOA 2958.0579 3044.9336 70.3033
SABO 2994.7804 3054.3338 38.4792
ASFSSA 2945.5917 2962.4681 13.8506

4.2.2. Convergence Curve Analysis

To more intuitively compare the optimization accuracy and convergence speed of various
algorithms, the convergence curves for each algorithm based on the CEC2022 benchmark functions
are presented in Figure 5. Figure 5 shows a comparison of the convergence curves for eleven
algorithms, with the horizontal axis representing the number of iterations and the vertical axis
representing fitness values. The DQDCS algorithm exhibits the highest convergence speed on
functions F1, F4, F7, F8, F10, F11, and F12, achieving the highest convergence accuracy on functions
F1 to F3 and F5 to F12. Furthermore, it almost finds the optimal value at the beginning, especially for
functions F2, F§, F9, F10, and F12, where it converges to the optimal value in an almost linear manner.
This further confirms that the DQDCS algorithm performs relatively well, and the multi-strategy
improvements are effective and feasible in enhancing both the convergence speed and accuracy of
the algorithm.
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Figure 5. Convergence curve of CEC2022 benchmark tests.

4.2.3. Boxplot Analysis

In order to compare the performance of different algorithms, a box plot evaluation based on the
CEC2022 benchmark functions was drawn to assess and compare the algorithms. As shown in Figure
6, the DQDCS algorithm exhibits no outliers across functions F1 to F12, indicating superior robustness
compared to the other algorithms. Furthermore, the box plots for functions F1 to F3 and F5 to F12 are
relatively flat, suggesting that the DQDCS algorithm demonstrates stable data behavior.
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Figure 6. Boxplots of CEC2022 benchmark functions.

4.2.4. Wilcoxon Rank-Sum Test

To further evaluate the effectiveness of the DQDCS algorithm, the Wilcoxon rank-sum test will
be utilized. This test is ideal for comparing the performance of the original and improved algorithms,
as it can assess significant differences between two independent samples, particularly when the data
does not follow a normal distribution. A key advantage of the Wilcoxon rank-sum test is its non-
parametric nature, which makes it particularly effective for comparing two independent sets of
samples without assuming a specific distribution, regardless of sample size.

By conducting the Wilcoxon rank-sum test on the DQDCS algorithm and other algorithms based
on the CEC2022 test set, the superiority and reliability of the DQDCS algorithm were further
evaluated. The specific results are shown in Table 4. The p-value indicates the degree of significance
between the two algorithms. When the p-value is less than 5%, the difference is considered
significant; otherwise, it is not. The results presented in Table 4 indicate that the p-values are all less
than 5%, which demonstrates a significant difference between DQDCS and the other comparison
algorithms, further validating the superiority and effectiveness of the DQDCS algorithm.

In conclusion, the DQDCS algorithm significantly enhances the overall performance of the DCS
algorithm. When compared with other algorithms, it exhibits outstanding performance and strong
overall capability. However, there are still some limitations in the DQDCS algorithm. For instance,
the increased diversity in the initialization stage sacrifices some of the algorithm’s convergence speed.
Additionally, when solving certain functions, the increased computational load leads to slight
performance degradation. Therefore, there remains room for improvement. These results suggest
that the hybrid multi-strategy approach is effective for most of the test functions, which aligns with
the “No Free Lunch” theorem.

Table 4. Wilcoxon rank-sum test results for CEC2022 benchmark functions.

DQDCS MSDC SPGW NRRMWO ASFSS
DCS CDO Puma WWPA DBO SABO
vs. S (@] A A
4.40E- 1.83E- 1.83E- 1.83E- 1.83E- 7.69E- 1.83E- 1.83E- 1.83E-
F1 4.40E-04
04 04 04 04 04 04 04 04 04
3.61E- 1.83E- 1.83E- 1.83E- 1.83E- 1.83E- 8.90E- 1.83E- 1.83E-
F2 1.83E-04
03 04 04 04 04 04 03 04 04
2.83E- 1.83E- 1.83E- 1.83E- 1.83E- 2.20E- 1.83E- 1.83E- 1.83E-
F3 1.83E-04
03 04 04 04 04 03 04 04 04
9.11E- 1.83E- 1.83E- 4.52E- 1.83E- 1.13E- 2.20E- 1.83E- 5.21E-
F4 8.90E-03
03 04 04 02 04 02 03 04 03
2.57E- 1.83E- 1.83E- 1.83E- 1.83E- 1.01E- 1.83E- 1.83E- 1.83E-
F5 1.83E-04

02 04 04 04 04 03 04 04 04
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6.23E- 1.83E- 1.83E- 1.83E- 1.83E- 1.73E- 1.40E- 1.83E- 4.40E-
F6 2.20E-03
02 04 04 04 04 02 02 04 04
3.12E- 1.83E- 1.83E- 1.83E- 1.83E- 3.34E- 2.83E- 1.83E- 6.40E-
F7 1.83E-04
02 04 04 04 04 02 03 04 02
3.12E- 1.83E- 1.83E- 4.40E- 1.83E- 2.20E- 1.04E- 1.83E- 4.40E-
F8 1.83E-04
02 04 04 04 04 03 02 04 04
1.83E- 1.83E- 1.83E- 1.83E- 1.83E- 1.83E- 2.80E- 1.83E- 1.83E-
F9 1.83E-04
04 04 04 04 04 04 03 04 04
1.71E- 1.83E- 1.83E- 2.21E- 1.83E- 1.73E- 9.11E- 1.83E- 3.09E-
F10 1.83E-04
02 04 04 03 04 02 03 04 02
4.52E- 1.83E- 1.83E- 1.83E- 1.83E- 1.40E- 2.20E- 1.83E- 1.83E-
F11 1.83E-04
02 04 04 04 04 02 03 04 04
1.73E- 1.83E- 1.83E- 1.01E- 1.83E- 7.69E- 1.01E- 1.83E- 2.46E-
F12 2.46E-04
02 04 04 03 04 04 03 04 04

5. Engineering Case Studies and Results Analysis

In the research and development of metaheuristic optimization algorithms, the construction and
refinement of algorithm performance evaluation systems have always been a central focus in the
academic community. Traditional evaluation paradigms are often based on benchmark test function
sets. While these functions provide a standardized testing environment and clear theoretical optimal
solutions, they significantly differ from the complexities of real-world engineering problems, making
it difficult to fully reflect the practical applicability of algorithms in real-world scenarios. In contrast,
real-world engineering problems typically exhibit highly complex characteristics. First, the global
optimal solution is difficult to determine in advance using analytical methods, and its existence and
uniqueness often lack rigorous mathematical proof. Second, the problem space generally contains
various complex constraints, such as nonlinear constraints, inequality constraints, and boundary
conditions, which are interwoven and greatly increase the difficulty of solving the problem. These
features make real-world engineering problems an ideal benchmark for testing the robustness,
adaptability, and engineering practicality of optimization algorithms.

From both the algorithm validation and engineering application perspectives, employing real-
world problems with actual engineering constraints as test cases holds irreplaceable significance for
thoroughly evaluating the practical performance of optimization algorithms. This testing approach
not only more accurately simulates the algorithm’s performance in real operational environments,
but also effectively addresses the limitations of benchmark function tests in reflecting the
generalization capability of algorithms. Based on this, this study carefully selects the design of static
pressure thrust bearings [31] and the application of Synchronous Optimal Pulse Width Modulation
(SOPWM) in three-level inverters [32]as typical test cases. This study aims to conduct a systematic
empirical analysis to evaluate the effectiveness and superiority of the proposed algorithm in solving
complex engineering optimization problems.

The design of static pressure thrust bearings is a typical multidisciplinary optimization problem,
involving fields such as fluid mechanics, materials science, and thermodynamics. The optimization
of its design parameters requires balancing multiple performance metrics, including load-bearing
capacity, stability, and energy consumption. On the other hand, the application of Synchronous
Optimal Pulse Width Modulation (SOPWM) in three-level inverters focuses on the field of power
electronics, aiming to find the optimal solution among several objectives, such as ensuring output
voltage waveform quality, reducing switching losses, and suppressing harmonics. These two
engineering cases are highly representative and complementary: on one hand, they encompass
various constraints from different engineering fields, such as mechanical and power electronics,
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which allows for a comprehensive assessment of the algorithm’s capability in handling complex
constrained optimization problems; on the other hand, through in-depth analysis of real engineering
data, the performance of the algorithm in terms of solution quality, efficiency, and convergence speed
can be directly evaluated. The research results not only provide essential empirical evidence for
further optimization of the algorithm, but also lay a solid theoretical and practical foundation for its
broader application in various engineering domains.

5.1. Static Pressure Thrust Bearing

The primary objective of this design problem is to optimize the bearing power loss using four
design variables, with the goal of minimizing the power loss. These design variables include the

bearing radius R(X, ), groove radius Ry (X, ), oil viscosity £(X;),and flow rate Q(X,). The problem
involves seven nonlinear constraints, labeled 0, - §,, which are defined in Equations (21)-(27). These

constraints pertain to the load-carrying capacity W, the inlet oil pressure P, , and the oil film

thickness 5, as specified in Equations (28), (29), and (33), respectively.

The objective function f (%) primarily includes the flow rate of the lubricant, inlet oil pressure,
and the power loss function resulting from friction under specific constraints. The detailed
formulation is provided in Equation (20). Additionally, the power loss caused by friction is closely
related to the temperature rise of the lubricant and the oil film thickness. Figure 7 illustrates the
structure of the static pressure thrust bearing.

f(x) = ‘g_PYO LE; 20)

In the objective function f(X): Q represents the flow rate of the lubricant oil; P, denotes the

inlet oil pressure; and E; represents the power loss caused by friction. The constraints associated

with the objective function are mainly composed of the following seven inequality constraints.

0,(x) =W -101000<0 (21)
W

0,(x)=50-P, <0 (23)

B 0.0307 , Q
9,(x)=0.001 386.4P, R = (24)
9s(X)=R-R, <0 (25)
0;(x)=h-0.001<0 (26)
g,(x)=h—0.001<0 (27)

W- 7Py R*—R?

2 In(RB) (28)

GluQ |n( )

~ zh®

The temperature rise expression can be calculated using Equations (30) and (31).

(29)
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AT =2(10° —559.7) (30)
logso 10910 (8.122x10° 12+ 0.8) + 3.55
p 109w Guo ( H ) (31)
10.04
The frictional power loss, E¢ , is given by Equation (32).
E¢ = 9336Q x 0.0307 x 0.5AT (32)
The film thickness, h, is defined as shown in Equation (33).
27 %750, 2zu R* R,
h=( ey CASRAS (33)
60 E: 4 4
The remaining parameters are defined as shown in Equations (34) through (37)..
1<R<16 (34)
1<R, <16 (35)
1x10° < 4<16x10° (36)
1<Q<16 (37)
Bearing pad
— Lubrication
Supply gap
Rotating
component

Bearing surface

Bearing surface

Figure 7. Static pressure thrust bearing.

To compare the performance of DQDCS with several classical algorithms, the population size
was set to 30, the number of iterations to 200, and each algorithm was executed 30 times. The results
of the static pressure thrust bearing design problem are presented in Table 5, where the best values
are underlined for clarity. It can be observed that DQDCS ranks first in terms of best solution,
variance, mean, and worst-case performance. Additionally, the median value of DQDCS ties for first
place with DBO. In summary, DQDCS demonstrates superior overall performance in solving this
engineering problem.
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Table 5. Optimization results of static pressure thrust bearing.

name bal X2 X3 X4 worst best std mean median

1.597278  1.000237  1.479153 1.599424  1.0692343  1.072060  6.618253 1.070148 1.069974

DCS
28E-05 75E+00 55E+01 42E+01 0E+09 86E+09 27E+05 76E+09 30E+09

DQDC  1.600000 1.000000  1.480016  1.600000  1.0689475  1.069548  1.343124  1.068980  1.068947

S 00E-05 00E+00 89E+01 00E+01 3E+09 09E+09 64E+05 81E+09 53E+09
1172910  1.791309  5.702740 1.594131 14013670  5.224191 1.194859  3.572127  1.179856
MSbes 46E-05 42E+00 04E+00 01E+01 5E+09 87E+14 93E+14 82E+13 12E+11
1.600000  1.000000 1.480034 1.600000 1.0689614  1.128254  1.373995 1.076133 1.070445
fuma 00E-05 00E+00 74E+01 00E+01 5E+09 63E+09 96E+07 84E+09 85E+09
1.600000  1.000000 1.481636 1.600000  1.0704719  1.159975  2.152313 1.097746 1.096652
P 00E-05 00E+00 17E+01 00E+01 1E+09 03E+09 79E+07 25E+09 75E+09
4733963  1.601236  3.942983 3916716 ) 2357966  5.375501 1.524059 1.155278
WWPA 2.2271615
90E-01 65E+06 47E+05 59E+05 B 66E+10 87E+10 39E+10 59E+09

SPGW  1.600000  1.000000 1.480124 1.600000 1.0690444  1.323191 5.655559 1.082973 1.070126
O 00E-05 00E+00 44E+01 00E+01 8E+09 48E+09 37E+07 69E+09 21E+09
1.600000  1.000000 1.480016 1.600000 1.0689475  1.478694  9.159516 1.089552 1.068947
po 00E-05 00E+00 89E+01 00E+01 3E+09 24E+09 02E+07 20E+09 53E+09
NRRM  1.600000  1.000000 1.480015 1.600000 1.0689476  1.109668 1.114082 1.076305 1.071662
WOA  00E-05 00E+00 72E+01 00E+01 4E+09 92E+09 74E+07 14E+09 85E+09
1.600000  1.000000 1.481456 1.600000 1.0702990  1.493537  1.440181 1.189854 1.125828
SABO 00E-05 00E+00 09E+01 00E+01 5E+09 81E+09 13E+08 05E+09 85E+09
ASFSS  1.600000  1.000000 1.480024 1.600000 1.0689519  1.071080  6.868351 1.069489 1.069297

A 00E-05 00E+00 42E+01 00E+01 1E+09 86E+09 60E+05 01E+09 58E+09

5.2. Application of SOPWM (Synchronous Optimal Pulse Width Modulation) in Three-Level Inverter

Synchronous Optimal Pulse Width Modulation (SOPWM) is an advanced technique used for
controlling medium-voltage (MV) drives . It significantly reduces the switching frequency without
introducing additional distortion, thereby decreasing switching losses and improving the
performance of inverters. Within one fundamental period, the switching angles are computed to
minimize current distortion simultaneously. SOPWM can be transformed into a scalable constrained
optimization problem. For inverters with different voltage levels, the application of SOPWM in three-
level inverters can be described as follows. The primary objective of this problem is to minimize the
current distortion f, subject to the constraints g and #, as described by Equations (38) to (41). Figure 8
illustrates the structure of the SOPWM application in a three-level inverter.

AZ () Esleos(er) o5
T

k=5,7,1113,...,97, (39)

N = s,max (40)
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s(i)=(-1)" (41)

The constraint on the relationship between adjacent switching angles is defined by Equation
(42). Specifically, it requires that the difference between two consecutive switching angles must

exceed a threshold 107> . This is intended to ensure a certain degree of regularity and stability in the
variation of switching angles, thereby preventing potential control issues caused by excessively close
switching angles. The constraint condition h(i) involves a modulation-related parameter m, and is
expressed by Equation (43).This condition states that, under specific circumstances, the sum of cosine
terms involving S(i) and @ (|) must be equal to M. It serves to constrain the switching angles
and other related parameters to ensure compliance with the operational requirements of the system.

Equation (44) defines the constraint on the switching angle «;, restricting its values to the range

b1
between 0 and 5 This limitation is established based on the physical characteristics and operational

requirements of the inverter, ensuring that the switching angle varies within a reasonable range. Such
a constraint is essential for maintaining proper inverter functionality and achieving optimal
performance.

SOPWM |— PWM signals

|—> Gate driver

+Ve

0 -S(Epﬂm—’
A 403

= Vdc

Figure 8. SOPWM for 3-level inverters.

The proposed improved algorithm is compared against several classical algorithms using a
population size of 30 and 200 iterations, with each algorithm executed 30 times. The experimental
results for the application of Synchronous Optimal Pulse Width Modulation (SOPWM) in a three-
level inverter are presented in Table 6, where the best values are underlined for clarity. As observed,
DQDCS achieves the best rank in terms of the optimal value and standard deviation, ranks second in
both mean and median values, and ranks fourth in the worst-case performance. Taken together, these
results demonstrate that DQDCS exhibits the best overall performance in solving this problem.

() =a,, - -10°>0,i=12,..,N -1 (42)
h(i):m—is(i)cos(ai):o (43)

o<ai<%,i:1,2,...,N (44)
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Table 6. Optimization results of SOPWM for 3-level inverters.
medi
name X1 X2 X3 X4 worst  best std mean
an
556990820 155691929 155632264 157069023  9.95709896  1.00272898  1.67135890  9.98300957  9.98148422
DCS E-01 E+00 E+00 E+00 E-01 E+00 E-03 E-01 E-01
556423139 157079633 157037521 157079633  9.95405132  9.95440460  7.97475504  9.95408550  9.95405849
DQDCS E-01 E+00 E+00 E+00 E-01 E-01 E-06 E-01 E-01
398818649 141758251 149139957 154923355  1.61761236  1.05741270  3.01338199  2.76842562  1.86908292
MSDCS E-01 E+00 E+00 E+00 E+00 E+02 E+01 E+01 E+01
556414603  1.57079633 157037818 157079633  9.95405129  9.95580896  5.19507407  9.95430761  9.95406675
Puma
E-01 E+00 E+00 E+00 E-01 E-01 E-05 E-01 E-01
555834510  1.57079633 157079633 157079633  9.95593045  1.14082188  6.15210384  1.05110186  1.00665276
CDO E-01 E+00 E+00 E+00 E-01 E+00 E-02 E+00 E+00
285068113 148395345 157150650  7.21160329 148895835  7.80431264  1.82177239 119310968  4.09729542
WWPA E+03 E+04 E+04 E+04 E+00 E+01 E+01 E+01 E+00
556714311 157079633 157027734 157079633  9.95418349  1.16755946  6.26457711  1.02849798  9.95582535
SPGWO E-01 E+00 E+00 E+00 E-01 E+00 E-02 E+00 E-01
DBO 556418317 157079633 157037750 157079633  9.95405127  1.16755679  3.97313485  1.00687810  9.95580896

E-01 E+00 E+00 E+00 E-01 E+00 E-02 E+00 E-01

NRRM 556416113  1.57079633  1.57037874  1.57079633  9.95405128  1.16755772  5.29815832  1.01263761  9.95405148

WOA E-01 E+00 E+00 E+00 E-01 E+00 E-02 E+00 E-01
555660648 157079633  1.57079633  1.57079633  9.95581236  9.96458735  2.43692395  9.95726761  9.95624926

SABO E-01 E+00 E+00 E+00 E-01 E-01 E-04 E-01 E-01
ASFSSA 556418323 157079633  1.57037750  1.57079633  9.95405127 120665475  7.59187361  1.04151473  9.95508388

E-01 E+00 E+00 E+00 E-01 E+00 E-02 E+00 E-01

5.3. Analysis of CPU Running Time for Each Algorithm

The CPU running time of an algorithm is a critical performance metric, directly affecting both
the efficiency and responsiveness of a program. By analyzing time complexity, we can quantify the
algorithm’s running time under various input sizes. Time complexity represents the number of CPU
cycles required for the algorithm’s execution, assisting in predicting performance in large data
environments. The CPU running time is influenced not only by the algorithm itself but also by factors
such as hardware architecture, compiler optimizations, and the operating environment. Practical
testing and performance benchmarking enable the validation of theoretical analysis and provide a
foundation for algorithm optimization.

Therefore, a comprehensive analysis of CPU running time serves as an essential tool for
algorithm selection and system design. By comparing the CPU running times of different algorithms
under identical conditions, the most efficient solution can be identified. As shown in Figure 9, the
DQDCS algorithm ranks third in CPU running time when applied to the static pressure bearing
problem. It significantly outperforms the original DCS algorithm, with shorter running times
reducing hardware load, extending equipment lifespan, and lowering operational costs.

Moreover, the DQDCS algorithm also ranks third in CPU running time for solving the SOPWM
(Synchronous Optimal Pulse Width Modulation) problem in a three-level inverter, as depicted in
Figure 10. The reduced CPU running time contributes to lower energy consumption, particularly in
large-scale computations, resulting in savings in both electricity and hardware resources.
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In summary, the DQDCS algorithm demonstrates excellent performance when addressing
specific engineering problems, with its shorter CPU running time bringing significant economic and
environmental benefits to real-world applications. These results further validate the importance of
algorithm optimization and provide valuable insights for future algorithm design and enhancement.
Through an in-depth analysis and comparison of CPU running times, we can select the most suitable
algorithm for various computationally intensive tasks, thereby ensuring optimal resource utilization
while maintaining computational efficiency.

13% 14%

7%

9% 4%
o

I DCs
I DQDCS
I MSDCS
[ cpo
[ IPuma
[IsaBO
[ ]ASFssA
[ Iwwra
[CIspGgwo
[ 0BO 30%
I NRRMWOA

9%

Figure 9. Comparison charts of CPU running times of various algorithms for static pressure thrust bearing.
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Figure 10. Comparison charts of CPU running times of various algorithms for SOPWM for 3-level inverters.

6. Conclusions

A novel variant of the Differential Creative Search (DCS) algorithm, termed DQDCS, is proposed
to address the issue of uneven optimization performance in engineering applications. This improved
version integrates a refined set-based clustering process and a Double Q-learning mechanism. By
leveraging a uniformly distributed initial population derived from the refined set and clustering
process, the algorithm significantly reduces the risk of premature convergence to local optima in the
early search phase, introducing a diverse set of individuals characterized by high randomness and
non-determinism. The Double Q-learning strategy is employed to effectively balance exploration and
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exploitation, enhancing the algorithm’s ability to escape local optima and substantially improving
search efficiency and convergence accuracy.

Comparative simulation experiments were conducted between DQDCS, the original DCS, and
several other state-of-the-art algorithms using both standard benchmark functions and constrained
engineering optimization problems. The results demonstrate that DQDCS offers superior
optimization speed and accuracy, maintaining its ability to avoid local optima even in later stages of
the search. Specifically, DQDCS achieved 19 first-place rankings across the CEC2019 and CEC2022
benchmark functions, indicating robust and consistent performance. Furthermore, in the static thrust
bearing design problem and the SOPWM (Synchronous Optimal Pulse Width Modulation)
application in three-level inverters, DQDCS consistently ranked first in overall performance,
validating its effectiveness for solving real-world engineering optimization tasks.

Future research will focus on extending the application of the DQDCS algorithm to electro-
hydraulic servo control and autonomous robotic arm control. Emphasis will be placed on the in-
depth integration of reinforcement learning with DQDCS to further enhance algorithmic
performance. Additionally, future work will explore the development of hybrid metaheuristic
algorithms incorporating multiple strategies or novel mathematical concepts to improve population
diversity, balance global and local search capabilities, and avoid premature convergence. These
efforts aim to improve optimization accuracy and accelerate convergence speed.
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