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Article 
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Yuanyuan Zhang, Longquan Yong *, Yijia Chen, Jintao Yang and Mengnan Zhang 

School of Mathematics and Computer Science, Shaanxi University of Technology, Hanzhong 723001, China 

* Correspondence: yonglongquan@126.com 

Abstract: To address the issues of uneven initial distribution and limited search accuracy in the 

traditional Divergent Quantum-inspired Differential Search (DCS) algorithm, a hybrid multi-strategy 

variant, termed DQDCS, is proposed. This improved version overcomes these limitations by 

integrating the refined set strategy and clustering process for population initialization, along with the 

Double Q-learning model to balance exploration and exploitation This enhanced version replaces the 

conventional pseudo-random initialization with a refined set generated through a clustering process, 

thereby significantly improving population diversity. A novel position update mechanism is 

introduced based on the original Equation, enabling individuals to effectively escape from local 

optima during the iteration process. Additionally, the Tables Reinforcement Learning model (Double 

Q-learning model) is integrated into the original algorithm to balance the probabilities between 

exploration and exploitation, thereby accelerating the convergence towards the global optimum. The 

effectiveness of each enhancement is validated through ablation studies, and the Wilcoxon rank-sum 

test is employed to assess the statistical significance of performance differences between DQDCS and 

other classical algorithms. Benchmark simulations are conducted using the CEC2019 and CEC2022 

test functions, as well as two well-known constrained engineering design problems. The comparison 

includes both recent state-of-the-art algorithms and improved optimization methods. Simulation 

results demonstrate that the incorporation of the refined set and clustering process, along with the 

Tables Reinforcement Learning model (Double Q-learning model) mechanism, leads to superior 

convergence speed and higher optimization precision. 

Keywords: differentiated creative search algorithm; refined set; clustering process;  

Double Q-learning; mechanical optimization 

 

1. Introduction 

Optimization theory and its practical applications are undergoing unprecedented 

transformation in contemporary industrial practice, with their core value lying in the targeted 

enhancement of key system performance indicators. Driven by the continuous expansion of 

engineering frontiers and the rapid advancements in computational science, classical optimization 

paradigms—such as Newton’s method and gradient descent—have increasingly revealed their 

limitations [1–3]. Applied to modern engineering problems with high dimensionality and strong 

nonlinearity, these methods often face exponential time complexity, making exact solutions 

practically infeasible. This practical challenge has catalyzed the vigorous development of 

metaheuristic optimization techniques. These algorithms, inspired by natural phenomena or social 

behavior [4,5], offer promising alternatives by delivering global or high-accuracy approximate 

solutions under acceptable computational costs. The balance between solution quality and 

computational efficiency makes modern metaheuristic algorithms—such as Genetic Algorithms (GA) 

[6], Particle Swarm Optimization (PSO) [7], and Ant Colony Optimization (ACO) [8]—powerful tools 

with wide-ranging applicability. These methods have demonstrated exceptional performance in 

solving complex optimization problems across various interdisciplinary domains, including 

intelligent manufacturing, logistics scheduling, and financial modeling [9-11]. 
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As a vital branch of metaheuristic algorithms, swarm intelligence optimization techniques have 

attracted increasing attention in the academic community in recent years. These algorithms emulate 

the cooperative behavior of biological populations—such as the flock migration model in Particle 

Swarm Optimization (PSO), the mating behavior pattern in Butterfly Optimization Algorithm (BOA) 

[12], and the deep-sea migration strategy in the Salp Swarm Algorithm (SALP) [13]—demonstrating 

distinctive computational advantages. Their simple and intuitive structural design, rapid 

convergence, and multimodal optimization capabilities enable excellent adaptability in solving 

complex, nonlinear, and high-dimensional engineering optimization problems. Notably, bio-inspired 

optimization paradigms are undergoing continuous innovation. Modern engineering design 

methodologies have accelerated the iterative process through parallel search mechanisms and have 

adopted dynamic balance strategies to coordinate exploration and exploitation. These approaches 

have delivered significant application value in improving mechanical system performance, reducing 

operational costs, and optimizing resource allocation efficiency. For instance, Houssein et al. [14] 

proposed a dimension learning-enhanced equilibrium optimizer that constructs multi-level feature 

interaction mechanisms, significantly improving the lesion segmentation accuracy of COVID-19 lung 

CT images, particularly in low-contrast regions. Alkayem et al. [15] developed an adaptive pseudo-

inverse stochastic fractal search algorithm that employs intelligent dimensionality reduction 

strategies within the solution space, enabling robust detection of subtle defects in complex steel 

structure damage assessments and greatly enhancing diagnostic reliability. Abdollahzadeh et al. [16] 

introduced the Panthera Optimization (PO) algorithm, which simulates jaguar-inspired intelligent 

behavior for designing exploration–exploitation mechanisms. By integrating a hyper-heuristic phase 

transition strategy, the algorithm adaptively balances optimization stages according to problem 

characteristics, thereby substantially improving the capability to solve complex optimization 

problems. Liu et al. [17] integrated the Q-learning mechanism from reinforcement learning to 

dynamically hybridize the Aquila Optimizer (AO) with the Improved Arithmetic Optimization 

Algorithm (IAOA). By reconstructing the mathematical acceleration function, they achieved a better 

balance between global search and local exploitation, while optimizing the reward model to enhance 

decision-making efficiency. Zhu et al. [18] combined the global exploration capability of the Black-

Winged Kite Algorithm (KA), the local optimization strength of Particle Swarm Optimization (PSO), 

and the mutation strategy of Differential Evolution (DE) to balance search abilities, effectively 

preventing premature convergence and significantly improving both the convergence speed and 

solution accuracy in high-dimensional optimization problems. However, with the increasing 

complexity of engineering optimization tasks—characterized by multi-constraint coupling and high-

dimensional nonlinearity—current swarm intelligence algorithms have begun to exhibit theoretical 

limitations when handling non-convex solution spaces and adapting to dynamic environments. In 

particular, for complex system designs involving strong time-varying properties and multi-objective 

conflicts, challenges arise in ensuring convergence stability and maintaining well-distributed 

solution sets. 

The Differential Creative Search (DCS) algorithm [19] represents a cutting-edge advancement in 

the field of metaheuristic optimization. This algorithm introduces an innovative multi-stage co-

evolution framework, in which a heterogeneous knowledge transfer mechanism dynamically 

integrates population experience, while a dynamic solution space reconstruction strategy enhances 

adaptability to complex optimization problems. DCS demonstrates strong global convergence 

performance in tackling high-dimensional, non-convex, and multimodal engineering optimization 

tasks. Liu et al. [20] proposed a hybrid approach incorporating an opposition-based learning strategy 

along with an adaptive reset mechanism that balances fitness and distance. This design encourages 

low-performance individuals to migrate toward the vicinity of the optimal solution, thereby 

facilitating the exploration of promising regions in the search space. Cai et al. [21]improved the 

shortcomings of DCS algorithm through collaborative development mechanism and population 

evaluation strategy.However, DCS still suffers from limitations in terms of solution distribution bias 

and insufficient local convergence precision during iterations, which restrict its ability to effectively 
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explore the boundary regions of the search space and identify the global optimum. To address these 

challenges, we propose an improved initialization strategy that integrates a refined set with a 

clustering process to enhance the diversity of the initial population. Furthermore, we incorporate a 

Double Q-learning strategy using dual Q-tables, enabling a more effective balance between 

exploration and exploitation. This balance empowers the algorithm to explore unknown regions in 

complex environments more effectively, thereby reducing the risk of premature convergence to local 

optima. 

The main contributions of the proposed algorithm in this study are summarized as follows: 

(1) A novel algorithm is developed by integrating a refined set, a clustering process, and a 

Double Q-learning strategy into the Differential Creative Search (DCS) framework. Ablation studies 

are conducted to verify that each of these strategies contributes positively to the performance 

enhancement of the DCS algorithm. 

(2) The proposed DQDCS algorithm is benchmarked against ten state-of-the-art algorithms on 

the CEC2019 and CEC2022 test suites. Extensive simulations demonstrate the superior performance 

of DQDCS. Its improvements are visualized through convergence curves and box plots, and further 

validated by the Wilcoxon rank-sum test to confirm its overall effectiveness. 

(3) The DQDCS algorithm is applied to two real-world constrained engineering design 

problems: the design of hydrostatic thrust bearings and the Synchronous Optimal Pulse Width 

Modulation (SOPWM) problem in three-level inverters. In both cases, the goal is to minimize the 

objective function under complex constraints. The results show that DQDCS is particularly suitable 

for solving practical engineering optimization problems. 

The remainder of this study is organized as follows. Section 2 introduces the fundamentals of 

the Differential Creative Search (DCS) algorithm. Section 3 elaborates on the three enhancement 

strategies incorporated into DQDCS. Section 4 reports the experimental comparisons between 

DQDCS and other algorithms on the CEC2019 and CEC2022 benchmarks. Section 5 presents the 

application of DQDCS to practical engineering problems and offers a comprehensive analysis of the 

results. Finally, Section 6 concludes the study. 

2. Differentiated Creative Search Algorithm Thoughts and Process 

The Differentiated Creative Search (DCS) algorithm is a swarm intelligence-based optimization 

method, whose core framework integrates Differentiated Knowledge Acquisition (DKA) and 

Creative Realism (CR). A dual-strategy mechanism is employed to balance divergent and convergent 

thinking. In this framework, high-performing individuals adopt a divergent thinking strategy, 

utilizing existing knowledge and creative reasoning to conduct global exploration guided by the 

Linnik distribution. In contrast, the remaining individuals adopt a convergent thinking strategy, 

integrating feedback from both the team leader and peer members to perform local exploitation. This 

process involves local optimization informed by both elite and randomly selected individuals. The 

overall procedure of the DCS algorithm is summarized as follows. 

2.1. Initialization 

The initial population X is randomly generated, with each individual represented as a random 

solution. 

,1 ,2 ,3 ,[ , , ,..., ]i i i i i Dx x x x=X  satisfying the Equation (1). 

, (0,1) ( )i dx L U U L= +  −  (1) 

where U  and L  represent the lower and upper bounds of the d-th dimension, respectively, and 

(0,1)U  follows a uniform distribution on the interval (0,1) . 
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2.2. Differentiated Knowledge Acquisition 

Differentiated Knowledge Acquisition (DKA) emphasizes the rate at which new knowledge is 

acquired, exerting differential effects on individual agents. These effects are primarily manifested 

through the modification of the individual’s existing knowledge attributes or dimensional 

components. The parameter ,i t  denotes the quantified knowledge acquisition rate of the i-th 

individual at iteration t, as defined in Equation (2). 

( )( ) ( )

( )( )

, ,

,

,

1
0,1 1 ,       0,1

2

1
0,1 0 ,     otherwise

2

i t i t

i t

i t

U if U

U

 






   +  

= 
    + 

 (2) 

In Equation (2), ,i t  represents the coefficient associated with variable   for the individual at 

the t-th iteration, and is calculated using Equation (3). Here, 𝑁𝑃 denotes the population size, and ,i tR  

indicates the rank of the i-th individual at the beginning of iteration t. The influence of the DKA 

process on each component of iX  is described in Equation (4), where  ( )1,2,...,randj U D  

denotes an integer uniformly selected from the set  1,2,..., D , and D represents the dimensionality 

of the problem. 

, ,0.25 0.55i t i tR NP = +   (3) 

 ( )

( ), ,

,
,

1,2,...,

,     0.1     

,   
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i d i t rand

i d
i d

j U D

v if U or d j
v

x otherwise






  = 
= 
 

 (4) 

2.3. Convergent Thinking 

The strategy for low-performing individuals leverages the knowledge base of high performers 

and incorporates the stochastic contributions of two randomly selected team members into the 

solution proposed by the current individual. This process is described by Equation (5), where F 

denotes the inertia weight and bestX  represents the global best solution in the current population. 

( ) ( )2 1i best r i r iV F X F X X F X X=  −  − +  −  (5) 

iX  draws upon convergent thinking by integrating the information provided by team members 

1rX  and 2rX , thereby refining the knowledge of the team leader, bestX , as described by Equation 

(6). Here, the coefficient t  governs the extent to which peer influence shapes an individual’s social 

cognition within the team environment. It reflects the degree to which team dynamics affect 

individual perspectives. The value of t  decreases over time, as defined in Equation (7), where NFET 

and NFEmax denote the number of function evaluations in the current iteration and the maximum 

allowable number of function evaluations, respectively. 

( ) ( )2 , 1i best t r i i t r iV X X X X X  =  +  − +  −  (6) 

max0.1 0.518 (1 )t TNFE NFE =   −  
(7) 

Two random individuals, 
1rx  and 

2rx  , are selected, and a new candidate solution is generated 

by incorporating the best individual with stochastic components, as defined in Equation (8). 

, , 2, , , 1, ,( ) ( )i d best d t r d i d i t r d i dv x x x x x  =  +  − +  −  (8) 
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2.4. Divergent Thinking 

A random individual 
1rx  is selected, and a new candidate solution is generated using the 

Linnik distribution, as defined in Equation (9), where ( , )LK    denotes a random variable drawn 

from the Linnik distribution with parameters 0.618 =  and 0.05 = . 

, 1 ( , )i d rv x LK  = +  (9) 

2.5. Team Diversification 

As the team continues to evolve, it generates increasingly diverse ideas. To maintain diversity 

and adaptability, the DCS algorithm replaces underperforming members with newly generated 

individuals. The equation used to generate new individuals is provided in Equation (10). 

(0,1) ( )NPV L U U L= +  −  (10) 

2.6. Offspring Population 

For each individual ,i tX , a trial solution ,i tV  is generated. The decision to retain or replace the 

original solution is based on a comparison of their fitness values. If the trial solution ,i tV  exhibits 

superior fitness, it replaces the original solution ,i tX ; otherwise, the original solution is retained. 

This process is formulated in Equation (11). 

, , ,

, 1
,

  ,  ( )  ( )

 , otherwise

i t i t i t

i t
i t

V if f V f X
X

X
+


= 


 (11) 

In each iteration, all individuals , 1i tX +  in the newly generated population are evaluated, and 

the global best solution ,best tX  is subsequently updated. This process is formally defined in 

Equation (12). 

, 1 , 1 ,

, 1
,

  ,    ( ) ( )

  ,  otherwise

i t i t best t

best t
best t

X if f X f X
X

X

+ +

+


= 


 
(12) 

Algorithm 1 outlines the detailed steps of the DCS algorithm as described above. 

Algorithm 1 Particle swarm optimization 

Step 1: Random Initialization of the Population 

The initial population is generated randomly to ensure diversity in the solution space. 

Step 2: Fitness Evaluation 

The fitness of each individual is evaluated by computing its objective function value, which 

reflects the individual’s performance on the optimization problem. 

Step 3: Determination of the Number of High-Performance Individuals 

The number of top-performing individuals is determined based on a predefined proportion of 

the population. 

Step 4: Initialization of Iteration Counter and Parameters 

Set the iteration counter t=1, the number of function evaluations NFE=0, and the probability of 

population migration to 0.5. 

Step 5: Main Optimization Loop 

Continue the optimization process while NFE < NFEmax, repeating the position updating and 

fitness evaluation steps. 
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3. Hybrid Multi-Strategy Differentiated Creative Search Algorithm 

Firstly, the DCS algorithm initializes the population using pseudo-random numbers, which 

results in limited population diversity and a lack of target-oriented search in the early stages, thereby 

reducing optimization efficiency. Secondly, the algorithm relies heavily on the best-performing 

individual during position updates, making it susceptible to premature convergence and hindering 

its ability to escape local optima. These issues ultimately lead to reduced optimization accuracy and 

a slower convergence rate. 

To address these limitations, targeted strategies are introduced to enhance the algorithm’s 

overall performance. Previous studies have shown that the diversity of the initial population 

significantly influences the algorithm’s ability to converge rapidly and accurately. A higher degree 

of initial diversity allows the algorithm to explore a broader solution space during the search process, 

thereby increasing the likelihood of identifying the global optimum. 

To improve population diversity, generate higher-quality initial solutions, and effectively 

overcome the limitations of the basic DCS algorithm, a refined set strategy and clustering strategy 

are incorporated during the population initialization phase. Although the DCS algorithm enhances 

global exploration through its “creativity” mechanism, it lacks sufficient flexibility in dynamic 

environments, such as path planning with moving obstacles for UAVs (Unmanned Aerial Vehicles) 

or real-time demand changes in industrial scheduling. 

The incorporation of Double Q-learning allows the algorithm to interact continuously with the 

environment, facilitating real-time perception and autonomous decision-making. This enables the 

DCS algorithm to adapt its search strategy more precisely under dynamic conditions, thereby 

maintaining high operational efficiency. Furthermore, the learning capability of Double Q-learning 

enhances the algorithm’s generalization ability, enabling robust performance in unseen scenarios and 

increasing the practical value of intelligent optimization techniques. 

3.1. Refined Set Initialization 

Compared to traditional pseudo-random initialization, the refined set strategy achieves a more 

uniform distribution of the population across the search space through a carefully designed sampling 

method. This uniformity reduces the likelihood of the algorithm becoming trapped in local optima 

during the early stages of optimization. By promoting a broader distribution of individuals, the 

algorithm gains increased opportunities to explore diverse regions and identify superior solutions. 

The mathematical formulation of the refined set strategy is presented in Equations (13) and (14), 

where L and U represent the lower and upper bounds of the d-th dimension, respectively, and i 

indicates the index of the i-th individual. The parameter p denotes the smallest prime number that 

satisfies specific conditions, and ( )mod ,d i p  refers to the result of the modulo operation applied to 

d i  with respect to p. 

( )mod ,d i p
M

p


=  (13) 

, ( )i dx L M U L= +  −
 (14) 

3.2. Clustering Process 

After the population is generated using the refined set strategy, a clustering algorithm is applied 

for further enhancement. In this study, the k-means clustering method is adopted to allow the DCS 

algorithm to focus on salient features during the learning phase while minimizing the impact of low-

quality data. This process improves the algorithm’s generalization ability on unseen data, thereby 

increasing its robustness and stability in practical applications. The detailed implementation steps 

are presented as follows. 
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(1) Select the Cluster Centers 

Randomly select k points as the initial cluster centers 
1 2, ,..., ,kC C C  where 

( ),1 ,2 ,, ,...,j j j j DC c c c= . 

(2) Calculate the distance and assign individuals. 

For each individual 
ix  in the population, the Euclidean distance between 

ix  and each cluster 

center jC  is calculated. The individual 
ix  is then assigned to the cluster corresponding to the 

nearest cluster center. This is specifically expressed by Equation (15). 

( ) ( )
2

, ,1
,

D

i j i d j dd
d x C x c

=
= −  

(15) 

(3) Update the cluster centers. 

For each cluster, the cluster center is recalculated. Let the set of individuals in the j-th cluster be 

denoted as jS . The new cluster center ' 1

i j
j ix S

j

C x
S 

=   is computed as the mean of the individuals 

in jS , where 
jS  denotes the number of individuals in the set jS . 

(4) Iterative process. 

Repeat steps 2 and 3 until the cluster centers no longer undergo significant changes. 

(5) Density-based uniform selection. 

Calculate the local density of each individual i jx S , denoted as 

( )
2

,1
exp

k j

i k

i x S
cutj

d x x

dS




  
 = − 
   

  where cutd  is the truncation distance used in the density 

calculation. Individuals with moderate density are selected, and the final initialized population is 

given by Equation (16). 

1

k

final j jX U Selected==  (16) 

3.3. Double Q Tables Reinforcement Learning Model (Double Q-Learning Model) 

The Q-learning model consists of five fundamental components: the agent, environment, action, 

state, and reward. Its operational procedure can be succinctly described as a cyclical interaction of 

state transition, action selection mechanism, and reward feedback. In traditional Q-learning, a single 

Q-table is employed to store the estimated values of state–action pairs. However, this approach often 

suffers from issues such as overestimation bias and limited exploration capacity. To mitigate these 

limitations, Double Q-learning introduces two independent Q-tables, each of which is updated 

independently. This dual-table framework significantly reduces the estimation bias inherent in the 

single-table approach and enables a more balanced, robust evaluation of the learned policy. 

Let  1 2, ,..., ms s s=S  denote the set of environment states and  1 2, ,..., na a a=A  represent 

the set of actions that the agent can execute. In each iteration, the agent occupies a certain state sS

and selects an action aA  to perform. After executing the action, the environment provides a 

reward 1tr +  and a new state 1ts + . The reward is computed according to Equation (17), where 
newX  

denotes the solution at the new position, and ,1iX  represents the solution at the current position. 

Upon receiving this information, the agent evaluates the expected value ( ),t tQ s a  for each possible 

action. 

In Double Q-learning, either 1Q  or 2Q  is selected for updating with equal probability. The 

update equations are provided in Equations (18) and (19). In the equations, ts  represents the state 
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of the agent, ta  denotes the action executed by the agent, 1tr +  is the immediate reward obtained 

by the agent after executing the action, and   is the discount factor, which penalizes future 

rewards. When 0 = , Double Q-learning considers only the current reward; when 1 = , it 

prioritizes long-term rewards,   is the learning rate, typically within the interval  0,1 . Double Q-

learning maintains two Q-tables, traditional Q-learning, but with distinct update logic. Figure 1 

simplified illustration example of the operational process of Double Q-learning. The agent alternates 

between updating the two Q-tables and combines information from both when selecting actions, 

thereby reducing estimation bias and enhancing policy robustness. 

1 ,1( ) ( )t new ir f X f X+ = −  (17) 

( ) ( ) ( ) ( )1 1 1 2 1 1 1 1, , ,arg max , ,t t t t t t t t t
a

Q s a Q s a r Q s Q s a Q s a + + +

  
= + + −  

  
 (18) 

( ) ( ) ( ) ( )2 2 1 1 1 2 1 2, , ,arg max , ,t t t t t t t t t
a

Q s a Q s a r Q s Q s a Q s a + + +

  
= + + −  

  
 (19) 

In the DCS algorithm, the last individual is considered inefficient and updated using random 

initialization, which often results in low-quality solutions. To address this issue, Double Q-learning 

introduces two independent Q-tables and employs a dual Q-table mechanism to improve solution 

quality. This separation makes the calculation of target Q-values more reliable, helping to reduce 

estimation bias. 

 

Figure 1. Operation process of Double Q-learning. 

3.4. Ablation Experiment 

To evaluate the effectiveness of the proposed strategies, four representative test functions from 

the CEC2019 benchmark suite were selected. The performance of the refined set strategy, the 

clustering process strategy, their combination, and the Double Q-learning strategy was systematically 

compared. Each algorithm was executed for 500 iterations across 30 independent runs. Specifically, 

D1 adopts the refined set strategy, D2 employs the clustering process strategy, D3 integrates both the 

refined set and clustering process strategies, and D4 incorporates the Double Q-learning mechanism. 

The corresponding results are summarized in Table 1. Experimental results demonstrate that 

population initialization using the combined refined set and clustering process significantly enhances 

the algorithm’s capability to approach the global optimum. Moreover, the D4 variant, augmented 

with the Double Q-learning strategy, achieves the best overall fitness across all test functions. 
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Table 1. Ablation experiment results for each strategy. 

 DCS D1 D2 D3 D4 

F2 3.4322 3.322 3.2916 3.2725 3.1517 

F5 1.0297 1.0409 1.0297 1.017 1.0008 

F8 3.0423 3.0227 3.0233 2.8924 2.447 

F10 1.0044 1.0037 1 1.0035 1.0001 

 DCS D1 D2 D3 D4 

F2 3.4322 3.322 3.2916 3.2725 3.1517 

F5 1.0297 1.0409 1.0297 1.017 1.0008 

F8 3.0423 3.0227 3.0233 2.8924 2.447 

F10 1.0044 1.0037 1 1.0035 1.0001 

3.5. Hybrid Multi-Strategy DQDCS Algorithm 

The DQDCS algorithm integrates both the refined-point set strategy and a clustering-based 

approach, and further incorporates a Double Q-learning model to construct a multi-strategy hybrid 

optimization framework. The refined-point set is generated through mathematically guided 

sampling techniques to ensure a more uniform distribution of individuals across the search space, 

thereby replacing conventional pseudo-random initialization methods. Such a distribution promotes 

broader coverage of the solution space and mitigates early-stage search blind spots. A high-quality 

initial population enhances the algorithm’s ability to converge more reliably toward optimal 

solutions and reduces performance fluctuations caused by poor initial positioning. 

In contrast to purely random initialization, the refined-point set strategy employs structured 

sampling to diminish the randomness-induced variability in the initial population, thereby 

improving the algorithm’s robustness. Moreover, this strategy can be tailored to the specific 

characteristics of the optimization problem; for example, in constrained optimization scenarios, it 

helps ensure that the initial population satisfies constraint conditions, thus avoiding infeasible 

solutions and enhancing overall algorithmic stability. 

The clustering strategy divides the population into multiple subgroups, with each subgroup 

representing distinct regions or features of the search space. This structural partitioning aids in 

preserving diverse solution patterns throughout the optimization process, thereby reducing the risk 

of premature convergence to local optima. By maintaining diversity and promoting exploration, the 

algorithm is better positioned to locate the global optimum efficiently. 

By integrating the probability distributions and maximum values derived from two 

independent Q-tables, the Double Q-learning mechanism enables more balanced action selection 

between exploration and exploitation. Within the DQDCS algorithm, this dual-Q-table framework 

effectively mitigates the estimation bias commonly associated with single Q-table implementations 

and facilitates more comprehensive policy evaluation, thereby enhancing the algorithm’s global 

search capability. Specifically, Double Q-learning selects the optimal action based on the current state, 

which subsequently guides population updates. This approach allows for broader exploration during 

the early stages of optimization, while gradually shifting toward refined exploitation of promising 

regions in the later stages. So, the algorithm achieves accelerated convergence without compromising 

solution quality. The flowchart of the DQDCS algorithm is illustrated in Figure 2. 
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Figure 2. DQDCS flowchart. 

Algorithm 2 presents the pseudocode of the proposed DQDCS algorithm. 

Algorithm 2: DQDCS algorithm. 

Initialize the population using Equation (1);   

Evaluate fitness for all individuals;   

Determine the refined set via the clustering process;   

Initialize Q-tables to zero;   

Set key parameters: exploration threshold pc, golden ratio, η and φ values; 

while the number of function evaluations (nfe) < max_nfe do   

Sort the population by fitness;  

Identify the best solution 𝑥_best;   

Compute λt using Equation (7);   

for each individual i do 

Compute ηᵢ and φᵢ using Equations (2)–(3);   

Determine behavior category (high-, average-, or low-performing);   

if i is low-performing and rand < pc then   

Generate a new solution randomly;   

else if i is high-performing then   

Select r₁ ≠ i;  

Update selected dimensions using Equation (8);   

else  // average-performing  

Select r₁, r₂ ≠ i;  

Compute ωᵢ;  

Update selected dimensions using Equation (8);   

end if   

Apply reflection-based boundary handling;   

Evaluate fitness of the new solution;  

If improved, update position and fitness; 
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Compute reward from fitness change;   

Update Q₁ using Q₂ for value estimation (Equation 18);   

Update Q₂ using Q₁ similarly (Equation 19);  

end for   

Update the best solution and record convergence data;   

end while   

Return best solution, best fitness;   

3.6. Complexity Analysis of the Algorithm 

The implementation of the DQDCS algorithm involves certain design challenges, yet it 

maintains a relatively low computational complexity. The overall complexity is stage-dependent, as 

each phase—initialization, fitness evaluation, and solution generation—contributes differently to the 

total computational cost. 

In general, the DQDCS algorithm comprises three fundamental procedures: population 

initialization, fitness evaluation, and generation of new solutions. The main loop iterates for a 

maximum of Max_iter iterations, and in each iteration, operations are performed for each of the N 

search agents. 

The computational complexity of the initialization phase is O(N), owing to the refined set-based 

initialization method and clustering process. Additionally, the time complexity for fitness evaluation 

depends on the complexity of the objective function, denoted as O(F). Therefore, the overall 

computational complexity of the algorithm can be expressed as O(Max_iter × N × F). 

4. Simulation Environment and Result Analysis 

In the field of optimization, particularly in the study of evolutionary algorithms and 

metaheuristic methods, validating the effectiveness of proposed algorithms is of paramount 

importance, as these approaches are expected to address complex challenges encountered in real-

world applications. To assess their performance, standardized test cases or well-established 

benchmark problems are commonly employed. These benchmark evaluations offer a unified 

platform for objective comparison, enabling fair and consistent performance assessment across 

different algorithms and facilitating a rigorous analysis of their strengths and limitations. 

The experiments were conducted using MATLAB 2023 on a Windows 11 operating system. The 

CEC2019 [28] and CEC2022 [29] benchmark functions were employed to evaluate the performance of 

the DQDCS algorithm. These benchmark functions enable a systematic comparison between DQDCS 

and other state-of-the-art metaheuristic algorithms, thereby verifying the competitiveness and 

applicability of the proposed method in solving complex optimization problems. This evaluation 

framework ensures scientific rigor and provides clear directions for further algorithmic 

enhancements. 

Considering the inherent stochastic nature of metaheuristic algorithms, relying on a single run 

for each benchmark function may lead to unreliable conclusions. Therefore, multiple simulations 

were conducted for each algorithm, including the original Differentiated Creative Search algorithm 

(DCS) [19], the multi-strategy hybrid DQDCS algorithm [20], A Differentiated Creative Search 

Algorithm with Multi-Strategy Improvement (MSDCS), Chernobyl Disaster Optimizer (CDO) [22], 

Puma Algorithm [16], Waterwheel Plant Algorithm (WWAP) [24], Sub-Population Improved Grey 

Wolf Optimizer with Gaussian Mutation and Lévy Flight (SPGWO) [25], the Dung Beetle Optimizer 

(DBO) [26], Nonlinear Randomly Reuse-Based Mutated Whale Optimization Algorithm 

(NRRMWOA) [27], and the Adaptive Spiral Flying Sparrow Search Algorithm (ASFSSA) [23]. The 

detailed experimental results are presented as follows. 
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4.1. The CEC2019 Benchmark Functions Are Employed for Performance Evaluation 

The CEC2019 benchmark functions are specifically designed to evaluate and compare the 

performance of optimization algorithms. It encompasses a diverse set of challenging optimization 

problems, including multimodal, high-dimensional, and dynamic characteristics, thereby closely 

simulating real-world complexities. Given the inherent stochastic nature of metaheuristic algorithms, 

a single run per benchmark function is insufficient to reliably demonstrate an algorithm’s 

effectiveness. To enhance the reliability and fairness of performance evaluation, each algorithm was 

independently tested 100 times on each benchmark function, with a maximum of 500 iterations per 

run. 

4.1.1. Optimization Accuracy Analysis 

To accurately evaluate and compare the performance on the CEC2019 benchmark functions, the 

experimental results are summarized in terms of the best, mean, and standard deviation (Std) values. 

In the result tables, the best mean values, which serve as key performance indicators, are highlighted 

with underlining. The detailed outcomes are presented in Table 1. 

As shown in the statistical results in Table 2, the proposed DQDCS algorithm consistently 

achieves the best values on all functions from F1 to F10. Moreover, it obtains the best mean 

performance on F1 and F3–F10 compared to other competing algorithms. In addition, the DQDCS 

achieves the smallest standard deviation on functions F3, F5, F6, F8, and F9, demonstrating superior 

robustness. These findings indicate that DQDCS not only offers stable performance but also exhibits 

highly competitive exploration capability among the compared algorithms. 

Table 1. Experimental results on the CEC2019 benchmark functions. 

Function Algorithm Best Mean Std 

F1 DCS 1 1.1746 0.066539 

 DQDCS 1 1.0129 0.017456 

 MSDCS 1.0001 54.4005 138.3435 

 CDO 1 1.2 0 

 Puma 1 103218.6127 227810.8443 

 WWPA 1.6834 238.3049 583.4071 

 SPGWO 1 3656.3391 8551.4486 

 DBO 1 414533.6708 721175.8267 

 NRRMWOA 180.8782 785017.9378 1311767.1446 

 SABO 1 5.7741 21.3505 

 ASFSSA 1 1 0 

F2 DCS 3.4322 33.4401 48.401 

 DQDCS 3.1517 32.8329 49.4357 

 MSDCS 5.1132 9.6797 4.1544 

 CDO 5 5 0 

 Puma 4.2328 4.7036 0.37262 

 WWPA 5.2001 8.3147 3.6477 

 SPGWO 63.7169 259.0299 142.4842 

 DBO 4.2752 384.2964 194.8378 

 NRRMWOA 11.9124 721.1422 965.2022 

 SABO 4.5993 8.7857 5.9168 

 ASFSSA 4.2189 4.3289 0.18135 

F3 DCS 2.2424 2.9371 0.4211 

 DQDCS 1.0004 2.0439 0.2884 

 MSDCS 11.7269 12.4015 0.34845 
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 CDO 4.7096 5.8612 0.64681 

 Puma 1.4656 2.1404 0.57859 

 WWPA 8.0688 10.1437 0.86708 

 SPGWO 2.4504 3.2425 0.74601 

 DBO 1.4091 3.9766 1.8562 

 NRRMWOA 1.4106 4.9893 1.953 

 SABO 5.7387 6.9026 0.57406 

 ASFSSA 1.0134 3.6414 1.5732 

F4 DCS 5.1848 7.2552 1.0675 

 DQDCS 5.01 5.5951 1.8712 

 MSDCS 85.6623 136.8029 21.366 

 CDO 63.5432 71.4357 5.479 

 Puma 5.9748 13.0409 5.7055 

 WWPA 116.9494 142.2562 13.0633 

 SPGWO 4.0021 14.8937 9.5953 

 DBO 11.0965 23.7472 8.109 

 NRRMWOA 17.0311 43.543 18.719 

 SABO 35.1635 45.1917 7.9818 

 ASFSSA 7.9865 41.071 29.6237 

F5 DCS 1.0297 1.0793 0.047848 

 DQDCS 1.0008 1.0577 0.034179 

 MSDCS 76.1748 153.0113 42.5413 

 CDO 53.7219 72.8935 4.7508 

 Puma 1.0271 1.1604 0.096242 

 WWPA 122.0759 173.3345 21.0507 

 SPGWO 1.1723 1.5255 0.22175 

 DBO 1.0442 1.1462 0.06739 

 NRRMWOA 1.2785 1.5229 0.17431 

 SABO 1.7572 2.9426 0.93688 

 ASFSSA 1.0615 1.1646 0.072103 

F6 DCS 1.0004 1.9302 1.0947 

 DQDCS 1.0029 1.4685 0.73351 

 MSDCS 9.6249 14.1852 1.4021 

 CDO 7.8188 9.4417 0.90669 

 Puma 1.004 1.7517 0.89464 

 WWPA 11.2646 12.8644 0.87031 

 SPGWO 1.281 2.1444 0.92531 

 DBO 2.0546 4.6142 1.7611 

 NRRMWOA 4.9513 7.5365 1.5727 

 SABO 2.8428 4.748 0.97675 

 ASFSSA 1.0009 2.6429 1.1644 

F7 DCS 119.6257 591.2146 214.4368 

 DQDCS 80.447 347.2542 160.8203 

 MSDCS 1910.947 2563.8317 271.9363 

 CDO 1174.9817 1493.4973 180.7765 

 Puma 126.3932 605.3863 286.0483 

 WWPA 2117.4231 2407.1589 144.384 

 SPGWO 342.6493 736.2504 217.0422 

 DBO 417.6764 786.1656 309.1151 

 NRRMWOA 499.5293 1150.2235 299.2043 
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 SABO 1214.0837 1760.7036 189.8127 

 ASFSSA 293.3793 800.6022 282.4334 

F8 DCS 3.0423 3.5322 0.56543 

 DQDCS 2.447 3.365 0.022699 

 MSDCS 4.654 5.2571 0.0764 

 CDO 3.757 4.2063 0.20053 

 Puma 2.4307 3.6169 0.41838 

 WWPA 4.9553 5.2467 0.10746 

 SPGWO 1.3278 3.4054 0.52501 

 DBO 2.9084 3.8775 0.4717 

 NRRMWOA 3.5071 4.3747 0.35839 

 SABO 3.8848 4.5332 0.23968 

 ASFSSA 3.1381 4.0752 0.33229 

F9 DCS 1.0463 1.1288 0.052384 

 DQDCS 1.0067 1.0426 0.040301 

 MSDCS 3.8863 5.3393 0.61068 

 CDO 3.6548 4.1862 0.14797 

 Puma 1.0823 1.1672 0.051977 

 WWPA 4.4026 5.2377 0.37346 

 SPGWO 1.073 1.1543 0.040058 

 DBO 1.1722 1.2769 0.08308 

 NRRMWOA 1.1824 1.3798 0.15444 

 SABO 1.1224 1.2898 0.066172 

 ASFSSA 1.0916 1.1801 0.075728 

F10 DCS 1.0044 20.2372 4.5283 

 DQDCS 1.0001 19.9929 4.4706 

 MSDCS 21.6494 21.6499 0.0010212 

 CDO 21.2731 21.4023 0.061844 

 Puma 20.9615 21.0133 0.027353 

 WWPA 21.2641 21.6966 0.13883 

 SPGWO 21.2315 21.3923 0.081047 

 DBO 21 21.2387 0.18582 

 NRRMWOA 20.996 21.0539 0.086024 

 SABO 20.8947 21.3333 0.15323 

4.1.2. Convergence Curve Analysis 

To facilitate a more intuitive comparison of the convergence behavior across different functions 

in the CEC2019 benchmark functions, convergence curves for the DQDCS algorithm and ten other 

competing algorithms were plotted. As shown in Figure 3, the horizontal axis represents the number 

of iterations, while the vertical axis denotes the fitness value. It can be observed that the DQDCS 

algorithm demonstrates superior convergence accuracy on functions F1 through F7, F9, and F10. 

Notably, it is capable of approaching the optimal value at the early stages of the search process, 

particularly on functions F1 and F10, where the curves converge almost linearly to the optimum. 

These results indicate that the DQDCS algorithm exhibits relatively strong performance, and that the 

incorporation of multi-strategy enhancements is both feasible and effective in improving 

optimization precision. 
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Figure 3. Convergence curve of CEC2019 benchmark tests. 

4.1.2. Boxplot Analysis 

To compare the performance of different algorithms across multiple runs—particularly in terms 

of stability and robustness—boxplots are employed as an evaluation tool. As shown in Figure 4, for 

the DQDCS algorithm, the median values for functions F3, F4, F6, F7, and F9 are located near the 

lower boundaries of the boxes, indicating a right-skewed (positively skewed) distribution. This 

suggests that the majority of runs yielded relatively favorable results. Moreover, no outliers are 

observed in functions F1, F4, F5, F7, and F9, and only a few outliers appear in F2, F3, F6, F8, and F10, 

demonstrating that DQDCS exhibits stronger robustness compared to the other algorithms. 
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Figure 4. Boxplots of CEC2019 benchmark functions. 

4.1.3. Wilcoxon Rank-Sum Test 

In this subsection, the Wilcoxon rank-sum test [30], a non-parametric statistical test, was 

employed to evaluate the significant differences between two algorithms. The objective is to verify 

whether there exists a significant difference between the DQDCS algorithm and the other ten 

comparison algorithms, thereby assessing the optimization performance of DQDCS. A p-value below 

0.05 indicates the rejection of the null hypothesis, signifying a significant difference between the two 

algorithms. Table 2 presents the p-values obtained from the Wilcoxon rank-sum test conducted 

between DQDCS and the other ten representative comparison algorithms when solving the CEC2019 

benchmark. As shown in Table 2, DQDCS outperforms the other comparison algorithms in solving 

the CEC2019 functions, with p-values between DQDCS and each of the comparison algorithms being 

lower than 0.05. The results unequivocally emphasize that DQDCS exhibits significant differences 

compared to the other algorithms in the majority of the functions, highlighting its distinct advantage 

in solution performance. 

Table 2. Wilcoxon rank-sum test results for CEC2019 benchmark. 

DQDCS 

vs. 
DCS MSDCS CDO Puma WWPA SPGWO DBO NRRMWOA SABO ASFSSA 

F1 
6.39E-

05 
1.83E-04 

1.82E-

04 

1.72E-

04 

1.83E-

04 
1.13E-02 

4.52E-

02 
1.83E-04 

1.83E-

04 
6.39E-05 

F2 
6.39E-

05 
3.30E-04 

1.83E-

04 

1.83E-

04 

1.83E-

04 
1.40E-01 

6.40E-

02 
1.83E-04 

2.46E-

04 
8.75E-05 

F3 
2.11E-

02 
1.83E-04 

7.30E-

03 

5.83E-

04 

1.83E-

04 
2.80E-03 

2.57E-

02 
5.83E-04 

5.80E-

03 
1.73E-02 

F4 
1.13E-

02 
1.83E-04 

1.83E-

04 

2.11E-

02 

1.83E-

04 
2.11E-02 

4.31E-

01 
2.20E-03 

1.83E-

04 
1.01E-03 

F5 
6.40E-

03 
1.83E-04 

1.83E-

04 

1.83E-

04 

1.83E-

04 
1.83E-04 

1.40E-

02 
1.13E-02 

1.83E-

04 
1.83E-04 

F6 
1.83E-

04 
4.40E-04 

1.83E-

04 

1.83E-

04 

7.69E-

04 
1.83E-04 

1.73E-

02 
2.20E-03 

1.83E-

04 
1.83E-04 

F7 
2.46E-

04 
1.83E-04 

1.83E-

04 

3.76E-

02 

1.83E-

04 
7.69E-04 

4.52E-

02 
5.80E-03 

1.83E-

04 
5.80E-03 

F8 
1.73E-

02 
1.83E-04 

3.76E-

02 

4.52E-

02 

1.82E-

04 
1.40E-02 

4.40E-

04 
2.57E-02 

1.83E-

04 
7.69E-04 

F9 
7.57E-

03 
1.83E-04 

1.83E-

04 

5.80E-

03 

1.83E-

04 
3.39E-02 

2.57E-

02 
4.52E-02 

7.69E-

04 
2.20E-03 
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F10 
2.43E-

02 
1.83E-04 

1.83E-

04 

1.71E-

03 

1.83E-

04 
1.83E-04 

2.83E-

03 
4.59E-03 

4.40E-

04 
7.76E-04 

4.2. The CEC2022 Benchmark Functions Are Employed for Performance Evaluation 

The CEC2022 benchmark functions are a standardized set of problems used to assess the 

performance of optimization algorithms in research and development. These test functions simulate 

various aspects of real-world optimization problems, including local minima, maxima, global optima, 

and a range of complexities such as nonlinearity and discontinuities. By validating algorithms on 

these diverse test sets, it ensures that the algorithms exhibit high robustness and stability when 

confronted with different challenging scenarios. This approach helps avoid the issue of algorithms 

performing exceptionally well in specific environments while failing in others, thereby enhancing the 

generality and reliability of the algorithm. For a comprehensive evaluation, the complex functions 

described in the CEC2022 test suite are used to assess the effectiveness of the DQDCS algorithm. The 

number of iterations is set to 500, and 100 independent tests are conducted for each benchmark 

function. 

4.2.1. Optimization Accuracy Analysis 

To visually observe and compare the results of the CEC2022 benchmark functions, the following 

table presents the optimal values (Best), mean values (Mean), and standard deviations (Std) for each 

test function. In these tables, the mean value is used as the performance indicator, and the best mean 

values are underlined. These results are provided in Table 3 below. 

From the statistical results in Table 3, it can be observed that for test functions F1 to F3, DQDCS 

achieved the best mean values and found the optimal solutions when compared to the other 

algorithms. Moreover, when searching for the optimal values of functions F1 to F3, DQDCS exhibited 

the lowest standard deviation among all algorithms. 

For test functions F4 to F8, DQDCS found the optimal solutions for functions F5 to F8. It achieved 

the best mean values across all algorithms for functions F6, F7, and F8. Additionally, for function F4, 

DQDCS outperformed DCS in terms of the mean value, and DQDCS also achieved lower standard 

deviations than the other algorithms in functions F4, F5, and F7. 

In the case of test functions F9 to F12, DQDCS found the optimal solutions for functions F11 and 

F12. For functions F9, F10, and F12, DQDCS achieved the best mean values across all algorithms. For 

function F11, DQDCS outperformed DCS in terms of the mean value. Furthermore, DQDCS exhibited 

the lowest standard deviation in functions F10 and F12, and its standard deviation was lower than 

that of DCS in functions F9 and F11. 

Table 3. Testing results of CEC2022 benchmark functions. 

Function Algorithm Best Mean Std 

F1 DCS 300 301 3.8519e-13 

 DQDCS 300 300 6.8317e-14 

 MSDCS 10766.7503 10766.7571 0.013964 

 CDO 7490.1964 20512.7673 13607.6136 

 Puma 300.0023 301.2711 2.5835 

 WWPA 8455.8816 236150.7116 1491237.9285 

 SPGWO 304.8303 797.5061 1028.1107 

 DBO 300 361.9946 341.4715 

 NRRMWOA 358.8157 3032.3131 2230.1134 

 SABO 1195.7814 3379.0063 1311.4349 

 ASFSSA 309.4622 586.0842 281.7238 

F2 DCS 400 405.5275 3.4253 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 April 2025 doi:10.20944/preprints202504.2357.v1

https://doi.org/10.20944/preprints202504.2357.v1


 19 of 34 

 

 DQDCS 400.0035 403.425 3.6114 

 MSDCS 750.1737 2491.5488 960.6972 

 CDO 570.9415 835.2859 49.4592 

 Puma 400 406.3943 7.2844 

 WWPA 972.5671 3270.4214 1414.9336 

 SPGWO 400.5352 415.7896 14.3696 

 DBO 400.0218 424.2427 29.16 

 NRRMWOA 400.0781 422.0518 27.9517 

 SABO 404.4744 448.4682 21.9722 

 ASFSSA 400.0102 413.4404 19.3205 

F3 DCS 600 600 3.5703e-07 

 DQDCS 600.0001 600.0005 3.2297e-07 

 MSDCS 643.6113 682.7551 10.18 

 CDO 627.5045 634.8725 3.539 

 Puma 600 600 0.00026748 

 WWPA 662.8221 687.3778 7.5308 

 SPGWO 600.0541 600.4967 0.68095 

 DBO 600 601.7739 2.6285 

 NRRMWOA 601.6986 621.4008 11.8169 

 SABO 603.078 612.0294 7.4192 

 ASFSSA 600 602.2958 6.5591 

F4 DCS 803.5611 809.1824 2.9573 

 DQDCS 801.7438 809.0859 1.0729 

 MSDCS 867.3885 896.995 4.0671 

 CDO 828.5143 845.4771 6.2154 

 Puma 806.9647 818.357 6.8807 

 WWPA 864.4186 887.3275 8.2043 

 SPGWO 800.3831 800.9999 6.6974 

 DBO 807.9597 829.8866 10.517 

 NRRMWOA 809.95 835.8238 14.4457 

 SABO 819.7184 838.0276 8.1862 

 ASFSSA 811.9395 829.6198 5.4414 

F5 DCS 900 900 2.2852e-14 

 DQDCS 900 900 2.0549e-14 

 MSDCS 2066.3081 2246.8891 21.1599 

 CDO 1248.3716 1377.5434 69.9206 

 Puma 900 900.3861 0.57066 

 WWPA 1860.8209 2380.0621 185.2868 

 SPGWO 900 900.0042 10.5999 

 DBO 900 916.4121 57.1606 

 NRRMWOA 906.326 1253.0823 278.8837 

 SABO 901.1913 925.9241 16.9796 

 ASFSSA 901.7282 1398.8497 174.1701 

F6 DCS 1800.0368 1805.6947 1.5327 

 DQDCS 1800.0238 1801.939 2.0455 

 MSDCS 70252227.0095 207374163.4593 33963697.1425 

 CDO 15167928.0263 157093751.8526 240080753.4813 

 Puma 1807.9235 2063.024 734.8686 

 WWPA 8608986.8261 185293465.0815 73329210.9276 

 SPGWO 1960.6464 5799.1861 2292.3454 
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 DBO 1895.1412 4731.5419 2375.8384 

 NRRMWOA 1846.6869 3977.1499 2076.5281 

 SABO 2459.4489 20110.6228 11920.7947 

 ASFSSA 1930.1248 5432.4366 1903.6817 

F7 DCS 2027.974 2049.2777 14.7551 

 DQDCS 2000.229 2001.6385 2.837 

 MSDCS 2337.8697 2447.3738 69.1571 

 CDO 2231.4056 2300.052 30.0378 

 Puma 2151.4621 2192.5272 43.688 

 WWPA 2306.8139 2451.1073 90.2488 

 SPGWO 2034.3498 2057.4032 25.2011 

 DBO 2032.3433 2090.2749 34.7803 

 NRRMWOA 2101.6025 2198.9024 60.3948 

 SABO 2105.6682 2178.9918 37.0986 

 ASFSSA 2030.9544 2094.5985 29.2648 

F8 DCS 2222.0212 2225.7348 5.0729 

 DQDCS 2200.7186 2208.8764 7.0158 

 MSDCS 2846.8452 3952.5994 1101.3132 

 CDO 2243.644 2251.946 6.6606 

 Puma 2226.3281 2353.5188 125.6302 

 WWPA 2551.5422 2917.5036 244.8562 

 SPGWO 2224.4404 2229.9677 4.8594 

 DBO 2233.7582 2301.6076 63.7515 

 NRRMWOA 2237.5665 2262.526 34.2888 

 SABO 2278.1633 2356.1119 64.2682 

 ASFSSA 2222.1835 2227.1796 4.6573 

F9 DCS 2529.2844 2529.2844 0 

 DQDCS 2480.7821 2480.2942 0.027562 

 MSDCS 3371.8015 3996.9709 412.0453 

 CDO 3151.4652 3426.8386 126.0153 

 Puma 2480.7976 2480.8202 0.017425 

 WWPA 3370.7773 4492.3652 979.6033 

 SPGWO 2481.1805 2500.7716 22.002 

 DBO 2480.9125 2496.6431 20.4099 

 NRRMWOA 2481.1486 2491.6469 14.7268 

 SABO 2603.3814 2699.6239 46.6498 

 ASFSSA 2480.7813 2480.8064 0.067892 

F10 DCS 2500.3438 2515.1856 46.6588 

 DQDCS 2500.1542 2503.504 18.4699 

 MSDCS 6937.0014 7963.4014 476.9702 

 CDO 4832.6414 5873.0597 506.4387 

 Puma 2500.638 2515.0468 45.15 

 WWPA 7228.1772 7552.068 210.5838 

 SPGWO 2500.5073 3312.8457 742.2508 

 DBO 2500.8157 2930.6677 678.0253 

 NRRMWOA 2501.3194 4062.9987 1135.7437 

 SABO 2858.03 5556.1544 1635.5186 

 ASFSSA 2500.7384 2630.7374 410.1658 

F11 DCS 2600 2646.5043 108.0761 

 DQDCS 2600 2639 103.2576 
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 MSDCS 5105.1466 5105.1769 0.082861 

 CDO 3329.1224 3343.2781 5.6324 

 Puma 2600.0001 2637.3103 118.4636 

 WWPA 3712.7414 4917.2808 262.7002 

 SPGWO 2601.1884 2904.431 130.4169 

 DBO 2600 2814.9987 171.69 

 NRRMWOA 2600.698 2901.0184 130.9309 

 SABO 2832.4972 3233.2798 104.4736 

 ASFSSA 2600 2663.175 113.4852 

F12 DCS 2988.2699 3219.0423 181.9443 

 DQDCS 2700.6186 2722.0363 2.1318 

 MSDCS 3624.3346 4070.0287 301.5474 

 CDO 3478.4691 3508.6705 25.8794 

 Puma 2939.2542 2951.6242 13.3077 

 WWPA 2900.0048 2900.005 5.3612e-05 

 SPGWO 2937.2174 2955.9256 13.3377 

 DBO 2939.8499 2973.7347 40.5269 

 NRRMWOA 2958.0579 3044.9336 70.3033 

 SABO 2994.7804 3054.3338 38.4792 

 ASFSSA 2945.5917 2962.4681 13.8506 

4.2.2. Convergence Curve Analysis 

To more intuitively compare the optimization accuracy and convergence speed of various 

algorithms, the convergence curves for each algorithm based on the CEC2022 benchmark functions 

are presented in Figure 5. Figure 5 shows a comparison of the convergence curves for eleven 

algorithms, with the horizontal axis representing the number of iterations and the vertical axis 

representing fitness values. The DQDCS algorithm exhibits the highest convergence speed on 

functions F1, F4, F7, F8, F10, F11, and F12, achieving the highest convergence accuracy on functions 

F1 to F3 and F5 to F12. Furthermore, it almost finds the optimal value at the beginning, especially for 

functions F2, F8, F9, F10, and F12, where it converges to the optimal value in an almost linear manner. 

This further confirms that the DQDCS algorithm performs relatively well, and the multi-strategy 

improvements are effective and feasible in enhancing both the convergence speed and accuracy of 

the algorithm. 
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Figure 5. Convergence curve of CEC2022 benchmark tests. 

4.2.3. Boxplot Analysis 

In order to compare the performance of different algorithms, a box plot evaluation based on the 

CEC2022 benchmark functions was drawn to assess and compare the algorithms. As shown in Figure 

6, the DQDCS algorithm exhibits no outliers across functions F1 to F12, indicating superior robustness 

compared to the other algorithms. Furthermore, the box plots for functions F1 to F3 and F5 to F12 are 

relatively flat, suggesting that the DQDCS algorithm demonstrates stable data behavior. 
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Figure 6. Boxplots of CEC2022 benchmark functions. 

4.2.4. Wilcoxon Rank-Sum Test 

To further evaluate the effectiveness of the DQDCS algorithm, the Wilcoxon rank-sum test will 

be utilized. This test is ideal for comparing the performance of the original and improved algorithms, 

as it can assess significant differences between two independent samples, particularly when the data 

does not follow a normal distribution. A key advantage of the Wilcoxon rank-sum test is its non-

parametric nature, which makes it particularly effective for comparing two independent sets of 

samples without assuming a specific distribution, regardless of sample size. 

By conducting the Wilcoxon rank-sum test on the DQDCS algorithm and other algorithms based 

on the CEC2022 test set, the superiority and reliability of the DQDCS algorithm were further 

evaluated. The specific results are shown in Table 4. The p-value indicates the degree of significance 

between the two algorithms. When the p-value is less than 5%, the difference is considered 

significant; otherwise, it is not. The results presented in Table 4 indicate that the p-values are all less 

than 5%, which demonstrates a significant difference between DQDCS and the other comparison 

algorithms, further validating the superiority and effectiveness of the DQDCS algorithm. 

In conclusion, the DQDCS algorithm significantly enhances the overall performance of the DCS 

algorithm. When compared with other algorithms, it exhibits outstanding performance and strong 

overall capability. However, there are still some limitations in the DQDCS algorithm. For instance, 

the increased diversity in the initialization stage sacrifices some of the algorithm’s convergence speed. 

Additionally, when solving certain functions, the increased computational load leads to slight 

performance degradation. Therefore, there remains room for improvement. These results suggest 

that the hybrid multi-strategy approach is effective for most of the test functions, which aligns with 

the “No Free Lunch” theorem. 

Table 4. Wilcoxon rank-sum test results for CEC2022 benchmark functions. 

DQDCS 

vs. 
DCS 

MSDC

S 
CDO Puma WWPA 

SPGW

O 
DBO 

NRRMWO

A 
SABO 

ASFSS

A 

F1 
4.40E-

04 

1.83E-

04 

1.83E-

04 

1.83E-

04 

1.83E-

04 

7.69E-

04 

1.83E-

04 
4.40E-04 

1.83E-

04 

1.83E-

04 

F2 
3.61E-

03 

1.83E-

04 

1.83E-

04 

1.83E-

04 

1.83E-

04 

1.83E-

04 

8.90E-

03 
1.83E-04 

1.83E-

04 

1.83E-

04 

F3 
2.83E-

03 

1.83E-

04 

1.83E-

04 

1.83E-

04 

1.83E-

04 

2.20E-

03 

1.83E-

04 
1.83E-04 

1.83E-

04 

1.83E-

04 

F4 
9.11E-

03 

1.83E-

04 

1.83E-

04 

4.52E-

02 

1.83E-

04 

1.13E-

02 

2.20E-

03 
8.90E-03 

1.83E-

04 

5.21E-

03 

F5 
2.57E-

02 

1.83E-

04 

1.83E-

04 

1.83E-

04 

1.83E-

04 

1.01E-

03 

1.83E-

04 
1.83E-04 

1.83E-

04 

1.83E-

04 
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F6 
6.23E-

02 

1.83E-

04 

1.83E-

04 

1.83E-

04 

1.83E-

04 

1.73E-

02 

1.40E-

02 
2.20E-03 

1.83E-

04 

4.40E-

04 

F7 
3.12E-

02 

1.83E-

04 

1.83E-

04 

1.83E-

04 

1.83E-

04 

3.34E-

02 

2.83E-

03 
1.83E-04 

1.83E-

04 

6.40E-

02 

F8 
3.12E-

02 

1.83E-

04 

1.83E-

04 

4.40E-

04 

1.83E-

04 

2.20E-

03 

1.04E-

02 
1.83E-04 

1.83E-

04 

4.40E-

04 

F9 
1.83E-

04 

1.83E-

04 

1.83E-

04 

1.83E-

04 

1.83E-

04 

1.83E-

04 

2.80E-

03 
1.83E-04 

1.83E-

04 

1.83E-

04 

F10 
1.71E-

02 

1.83E-

04 

1.83E-

04 

2.21E-

03 

1.83E-

04 

1.73E-

02 

9.11E-

03 
1.83E-04 

1.83E-

04 

3.09E-

02 

F11 
4.52E-

02 

1.83E-

04 

1.83E-

04 

1.83E-

04 

1.83E-

04 

1.40E-

02 

2.20E-

03 
1.83E-04 

1.83E-

04 

1.83E-

04 

F12 
1.73E-

02 

1.83E-

04 

1.83E-

04 

1.01E-

03 

1.83E-

04 

7.69E-

04 

1.01E-

03 
2.46E-04 

1.83E-

04 

2.46E-

04 

5. Engineering Case Studies and Results Analysis 

In the research and development of metaheuristic optimization algorithms, the construction and 

refinement of algorithm performance evaluation systems have always been a central focus in the 

academic community. Traditional evaluation paradigms are often based on benchmark test function 

sets. While these functions provide a standardized testing environment and clear theoretical optimal 

solutions, they significantly differ from the complexities of real-world engineering problems, making 

it difficult to fully reflect the practical applicability of algorithms in real-world scenarios. In contrast, 

real-world engineering problems typically exhibit highly complex characteristics. First, the global 

optimal solution is difficult to determine in advance using analytical methods, and its existence and 

uniqueness often lack rigorous mathematical proof. Second, the problem space generally contains 

various complex constraints, such as nonlinear constraints, inequality constraints, and boundary 

conditions, which are interwoven and greatly increase the difficulty of solving the problem. These 

features make real-world engineering problems an ideal benchmark for testing the robustness, 

adaptability, and engineering practicality of optimization algorithms. 

From both the algorithm validation and engineering application perspectives, employing real-

world problems with actual engineering constraints as test cases holds irreplaceable significance for 

thoroughly evaluating the practical performance of optimization algorithms. This testing approach 

not only more accurately simulates the algorithm’s performance in real operational environments, 

but also effectively addresses the limitations of benchmark function tests in reflecting the 

generalization capability of algorithms. Based on this, this study carefully selects the design of static 

pressure thrust bearings [31] and the application of Synchronous Optimal Pulse Width Modulation 

(SOPWM) in three-level inverters [32]as typical test cases. This study aims to conduct a systematic 

empirical analysis to evaluate the effectiveness and superiority of the proposed algorithm in solving 

complex engineering optimization problems. 

The design of static pressure thrust bearings is a typical multidisciplinary optimization problem, 

involving fields such as fluid mechanics, materials science, and thermodynamics. The optimization 

of its design parameters requires balancing multiple performance metrics, including load-bearing 

capacity, stability, and energy consumption. On the other hand, the application of Synchronous 

Optimal Pulse Width Modulation (SOPWM) in three-level inverters focuses on the field of power 

electronics, aiming to find the optimal solution among several objectives, such as ensuring output 

voltage waveform quality, reducing switching losses, and suppressing harmonics. These two 

engineering cases are highly representative and complementary: on one hand, they encompass 

various constraints from different engineering fields, such as mechanical and power electronics, 
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which allows for a comprehensive assessment of the algorithm’s capability in handling complex 

constrained optimization problems; on the other hand, through in-depth analysis of real engineering 

data, the performance of the algorithm in terms of solution quality, efficiency, and convergence speed 

can be directly evaluated. The research results not only provide essential empirical evidence for 

further optimization of the algorithm, but also lay a solid theoretical and practical foundation for its 

broader application in various engineering domains. 

5.1. Static Pressure Thrust Bearing 

The primary objective of this design problem is to optimize the bearing power loss using four 

design variables, with the goal of minimizing the power loss. These design variables include the 

bearing radius ( )1R x , groove radius ( )0 2R x , oil viscosity ( )3x , and flow rate ( )4Q x . The problem 

involves seven nonlinear constraints, labeled 1 7-g g , which are defined in Equations (21)-(27). These 

constraints pertain to the load-carrying capacity W, the inlet oil pressure 0P  , and the oil film 

thickness h, as specified in Equations (28), (29), and (33), respectively. 

The objective function 
( )f x

 primarily includes the flow rate of the lubricant, inlet oil pressure, 

and the power loss function resulting from friction under specific constraints. The detailed 

formulation is provided in Equation (20). Additionally, the power loss caused by friction is closely 

related to the temperature rise of the lubricant and the oil film thickness. Figure 7 illustrates the 

structure of the static pressure thrust bearing. 

0

0.7
( ) f

QP
x Ef = +

 
(20) 

In the objective function ( )f x : Q  represents the flow rate of the lubricant oil; 0P denotes the 

inlet oil pressure; and fE  represents the power loss caused by friction. The constraints associated 

with the objective function are mainly composed of the following seven inequality constraints. 

1g ( ) 101000 0W= − x  (21) 

2 2 2

0

g ( ) 5000 0
( )

W

R R
= − 

−
x  (22) 

3 0g ( ) 50 0P= − x  (23) 

4

0

0.0307
( ) 0.001 ( ) 0

386.4 2

Q
g

P Rh
= − x  (24) 

5 0( ) 0g R R= − x  (25) 

6( ) 0.001 0g h= − x  (26) 

7 ( ) 0.001 0g h= − x  (27) 

2 2

0 0

0

2
ln( )

P R R
W

R

R

 −
=

 

(28) 

0 3
0

6
ln( )

Q R
P

Rh




=

 
(29) 

The temperature rise expression can be calculated using Equations (30) and (31). 
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2(10 559.7)PT = −  (30) 

6
10 10log log (8.122 10 0.8) 3.55

10.04
P

 + +
=  (31) 

The frictional power loss, fE , is given by Equation (32). 

9336 0.0307 0.5f Q TE =     (32) 

The film thickness, h, is defined as shown in Equation (33). 

4 4

02
2 750 2

( ) ( )
60 4 4f

R R

E
h

 
= −

 
(33) 

The remaining parameters are defined as shown in Equations (34) through (37).. 

1 16R   (34) 

01 16R   (35) 

6 6
1 10 16 10

− −
     (36) 

1 16Q   (37) 

 

Figure 7. Static pressure thrust bearing. 

To compare the performance of DQDCS with several classical algorithms, the population size 

was set to 30, the number of iterations to 200, and each algorithm was executed 30 times. The results 

of the static pressure thrust bearing design problem are presented in Table 5, where the best values 

are underlined for clarity. It can be observed that DQDCS ranks first in terms of best solution, 

variance, mean, and worst-case performance. Additionally, the median value of DQDCS ties for first 

place with DBO. In summary, DQDCS demonstrates superior overall performance in solving this 

engineering problem. 
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Table 5. Optimization results of static pressure thrust bearing. 

name x1 x2 x3 x4 worst best std mean median 

DCS 
1.597278

28E-05 

1.000237

75E+00 

1.479153

55E+01 

1.599424

42E+01 

1.0692343

0E+09 

1.072060

86E+09 

6.618253

27E+05 

1.070148

76E+09 

1.069974

30E+09 

DQDC

S 

1.600000

00E-05 

1.000000

00E+00 

1.480016

89E+01 

1.600000

00E+01 

1.0689475

3E+09 

1.069548

09E+09 

1.343124

64E+05 

1.068980

81E+09 

1.068947

53E+09 

MSDCS 
1.172910

46E-05 

1.791309

42E+00 

5.702740

04E+00 

1.594131

01E+01 

1.4013670

5E+09 

5.224191

87E+14 

1.194859

93E+14 

3.572127

82E+13 

1.179856

12E+11 

Puma 
1.600000

00E-05 

1.000000

00E+00 

1.480034

74E+01 

1.600000

00E+01 

1.0689614

5E+09 

1.128254

63E+09 

1.373995

96E+07 

1.076133

84E+09 

1.070445

85E+09 

CDO 
1.600000

00E-05 

1.000000

00E+00 

1.481636

17E+01 

1.600000

00E+01 

1.0704719

1E+09 

1.159975

03E+09 

2.152313

79E+07 

1.097746

25E+09 

1.096652

75E+09 

WWPA 
4.733963

90E-01 

1.601236

65E+06 

3.942983

47E+05 

3.916716

59E+05 

-

2.2271615

2E+11 

2.357966

66E+10 

5.375501

87E+10 

1.524059

39E+10 

1.155278

59E+09 

SPGW

O 

1.600000

00E-05 

1.000000

00E+00 

1.480124

44E+01 

1.600000

00E+01 

1.0690444

8E+09 

1.323191

48E+09 

5.655559

37E+07 

1.082973

69E+09 

1.070126

21E+09 

DBO 
1.600000

00E-05 

1.000000

00E+00 

1.480016

89E+01 

1.600000

00E+01 

1.0689475

3E+09 

1.478694

24E+09 

9.159516

02E+07 

1.089552

20E+09 

1.068947

53E+09 

NRRM

WOA 

1.600000

00E-05 

1.000000

00E+00 

1.480015

72E+01 

1.600000

00E+01 

1.0689476

4E+09 

1.109668

92E+09 

1.114082

74E+07 

1.076305

14E+09 

1.071662

85E+09 

SABO 
1.600000

00E-05 

1.000000

00E+00 

1.481456

09E+01 

1.600000

00E+01 

1.0702990

5E+09 

1.493537

81E+09 

1.440181

13E+08 

1.189854

05E+09 

1.125828

85E+09 

ASFSS

A 

1.600000

00E-05 

1.000000

00E+00 

1.480024

42E+01 

1.600000

00E+01 

1.0689519

1E+09 

1.071080

86E+09 

6.868351

60E+05 

1.069489

01E+09 

1.069297

58E+09 

5.2. Application of SOPWM (Synchronous Optimal Pulse Width Modulation) in Three-Level Inverter 

Synchronous Optimal Pulse Width Modulation (SOPWM) is an advanced technique used for 

controlling medium-voltage (MV) drives . It significantly reduces the switching frequency without 

introducing additional distortion, thereby decreasing switching losses and improving the 

performance of inverters. Within one fundamental period, the switching angles are computed to 

minimize current distortion simultaneously. SOPWM can be transformed into a scalable constrained 

optimization problem. For inverters with different voltage levels, the application of SOPWM in three-

level inverters can be described as follows. The primary objective of this problem is to minimize the 

current distortion 𝑓, subject to the constraints g and h, as described by Equations (38) to (41). Figure 8 

illustrates the structure of the SOPWM application in a three-level inverter. 

( ) ( ) ( )( )
2

4

k 1

4

cos
N

ii

k

k s i k
f

k

−

=

−
=
 


 (38) 

5,7,11,13,...,97,k =  (39) 

,max

.

s

m

f
N

f

 
=  
 

 (40) 
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( ) ( )
1

1
i

s i
+

= −  (41) 

The constraint on the relationship between adjacent switching angles is defined by Equation 

(42). Specifically, it requires that the difference between two consecutive switching angles must 

exceed a threshold 
510− . This is intended to ensure a certain degree of regularity and stability in the 

variation of switching angles, thereby preventing potential control issues caused by excessively close 

switching angles. The constraint condition ( )h i  involves a modulation-related parameter m, and is 

expressed by Equation (43).This condition states that, under specific circumstances, the sum of cosine 

terms involving ( )s i  and ( )i  must be equal to m . It serves to constrain the switching angles 

and other related parameters to ensure compliance with the operational requirements of the system. 

Equation (44) defines the constraint on the switching angle i , restricting its values to the range 

between 0 and 
2


. This limitation is established based on the physical characteristics and operational 

requirements of the inverter, ensuring that the switching angle varies within a reasonable range. Such 

a constraint is essential for maintaining proper inverter functionality and achieving optimal 

performance. 

 

Figure 8. SOPWM for 3-level inverters. 

The proposed improved algorithm is compared against several classical algorithms using a 

population size of 30 and 200 iterations, with each algorithm executed 30 times. The experimental 

results for the application of Synchronous Optimal Pulse Width Modulation (SOPWM) in a three-

level inverter are presented in Table 6, where the best values are underlined for clarity. As observed, 

DQDCS achieves the best rank in terms of the optimal value and standard deviation, ranks second in 

both mean and median values, and ranks fourth in the worst-case performance. Taken together, these 

results demonstrate that DQDCS exhibits the best overall performance in solving this problem. 

5
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Table 6. Optimization results of SOPWM for 3-level inverters. 

name x1 x2 x3 x4 worst best std mean 
medi

an 

DCS 
5.56990820

E-01 

1.55691929

E+00 

1.55632264

E+00 

1.57069023

E+00 

9.95709896

E-01 

1.00272898

E+00 

1.67135890

E-03 

9.98300957

E-01 

9.98148422

E-01 

DQDCS 
5.56423139

E-01 

1.57079633

E+00 

1.57037521

E+00 

1.57079633

E+00 

9.95405132

E-01 

9.95440460

E-01 

7.97475504

E-06 

9.95408550

E-01 

9.95405849

E-01 

MSDCS 
3.98818649

E-01 

1.41758251

E+00 

1.49139957

E+00 

1.54923355

E+00 

1.61761236

E+00 

1.05741270

E+02 

3.01338199

E+01 

2.76842562

E+01 

1.86908292

E+01 

Puma 
5.56414603

E-01 

1.57079633

E+00 

1.57037818

E+00 

1.57079633

E+00 

9.95405129

E-01 

9.95580896

E-01 

5.19507407

E-05 

9.95430761

E-01 

9.95406675

E-01 

CDO 
5.55834510

E-01 

1.57079633

E+00 

1.57079633

E+00 

1.57079633

E+00 

9.95593045

E-01 

1.14082188

E+00 

6.15210384

E-02 

1.05110186

E+00 

1.00665276

E+00 

WWPA 
2.85068113

E+03 

1.48395345

E+04 

1.57150650

E+04 

7.21160329

E+04 

1.48895835

E+00 

7.80431264

E+01 

1.82177239

E+01 

1.19310968

E+01 

4.09729542

E+00 

SPGWO 
5.56714311

E-01 

1.57079633

E+00 

1.57027734

E+00 

1.57079633

E+00 

9.95418349

E-01 

1.16755946

E+00 

6.26457711

E-02 

1.02849798

E+00 

9.95582535

E-01 

DBO 
5.56418317

E-01 

1.57079633

E+00 

1.57037750

E+00 

1.57079633

E+00 

9.95405127

E-01 

1.16755679

E+00 

3.97313485

E-02 

1.00687810

E+00 

9.95580896

E-01 

NRRM

WOA 

5.56416113

E-01 

1.57079633

E+00 

1.57037874

E+00 

1.57079633

E+00 

9.95405128

E-01 

1.16755772

E+00 

5.29815832

E-02 

1.01263761

E+00 

9.95405148

E-01 

SABO 
5.55660648

E-01 

1.57079633

E+00 

1.57079633

E+00 

1.57079633

E+00 

9.95581236

E-01 

9.96458735

E-01 

2.43692395

E-04 

9.95726761

E-01 

9.95624926

E-01 

ASFSSA 
5.56418323

E-01 

1.57079633

E+00 

1.57037750

E+00 

1.57079633

E+00 

9.95405127

E-01 

1.20665475

E+00 

7.59187361

E-02 

1.04151473

E+00 

9.95508388

E-01 

5.3. Analysis of CPU Running Time for Each Algorithm 

The CPU running time of an algorithm is a critical performance metric, directly affecting both 

the efficiency and responsiveness of a program. By analyzing time complexity, we can quantify the 

algorithm’s running time under various input sizes. Time complexity represents the number of CPU 

cycles required for the algorithm’s execution, assisting in predicting performance in large data 

environments. The CPU running time is influenced not only by the algorithm itself but also by factors 

such as hardware architecture, compiler optimizations, and the operating environment. Practical 

testing and performance benchmarking enable the validation of theoretical analysis and provide a 

foundation for algorithm optimization. 

Therefore, a comprehensive analysis of CPU running time serves as an essential tool for 

algorithm selection and system design. By comparing the CPU running times of different algorithms 

under identical conditions, the most efficient solution can be identified. As shown in Figure 9, the 

DQDCS algorithm ranks third in CPU running time when applied to the static pressure bearing 

problem. It significantly outperforms the original DCS algorithm, with shorter running times 

reducing hardware load, extending equipment lifespan, and lowering operational costs. 

Moreover, the DQDCS algorithm also ranks third in CPU running time for solving the SOPWM 

(Synchronous Optimal Pulse Width Modulation) problem in a three-level inverter, as depicted in 

Figure 10. The reduced CPU running time contributes to lower energy consumption, particularly in 

large-scale computations, resulting in savings in both electricity and hardware resources. 
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In summary, the DQDCS algorithm demonstrates excellent performance when addressing 

specific engineering problems, with its shorter CPU running time bringing significant economic and 

environmental benefits to real-world applications. These results further validate the importance of 

algorithm optimization and provide valuable insights for future algorithm design and enhancement. 

Through an in-depth analysis and comparison of CPU running times, we can select the most suitable 

algorithm for various computationally intensive tasks, thereby ensuring optimal resource utilization 

while maintaining computational efficiency. 

 

Figure 9. Comparison charts of CPU running times of various algorithms for static pressure thrust bearing. 

 

Figure 10. Comparison charts of CPU running times of various algorithms for SOPWM for 3-level inverters. 

6. Conclusions 

A novel variant of the Differential Creative Search (DCS) algorithm, termed DQDCS, is proposed 

to address the issue of uneven optimization performance in engineering applications. This improved 

version integrates a refined set-based clustering process and a Double Q-learning mechanism. By 

leveraging a uniformly distributed initial population derived from the refined set and clustering 

process, the algorithm significantly reduces the risk of premature convergence to local optima in the 

early search phase, introducing a diverse set of individuals characterized by high randomness and 

non-determinism. The Double Q-learning strategy is employed to effectively balance exploration and 
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exploitation, enhancing the algorithm’s ability to escape local optima and substantially improving 

search efficiency and convergence accuracy. 

Comparative simulation experiments were conducted between DQDCS, the original DCS, and 

several other state-of-the-art algorithms using both standard benchmark functions and constrained 

engineering optimization problems. The results demonstrate that DQDCS offers superior 

optimization speed and accuracy, maintaining its ability to avoid local optima even in later stages of 

the search. Specifically, DQDCS achieved 19 first-place rankings across the CEC2019 and CEC2022 

benchmark functions, indicating robust and consistent performance. Furthermore, in the static thrust 

bearing design problem and the SOPWM (Synchronous Optimal Pulse Width Modulation) 

application in three-level inverters, DQDCS consistently ranked first in overall performance, 

validating its effectiveness for solving real-world engineering optimization tasks. 

Future research will focus on extending the application of the DQDCS algorithm to electro-

hydraulic servo control and autonomous robotic arm control. Emphasis will be placed on the in-

depth integration of reinforcement learning with DQDCS to further enhance algorithmic 

performance. Additionally, future work will explore the development of hybrid metaheuristic 

algorithms incorporating multiple strategies or novel mathematical concepts to improve population 

diversity, balance global and local search capabilities, and avoid premature convergence. These 

efforts aim to improve optimization accuracy and accelerate convergence speed. 
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