Pre prints.org

Article Not peer-reviewed version

‘Lifting the Blanket’: Why Wholesale
Electricity in Southeast European (SEE)
Interconnected Countries is
Systematically Higher than in the Rest of
Europe? Using Machine Learning
Methods of Causality Discovery (Causal
Structure Learning, CSL) and Rolling
Correlations to Reveal the ‘Real’ Causes
of Price Surges

GEORGIOS PAPAIOANNOU ", Panagiotis G PAPAIOANNOU , Christos Dikaiakos

Posted Date: 22 July 2025
doi: 10.20944/preprints2025071867v1

Keywords: Electricity wholesale electricity prices surge in SEE; Local causality structure; Markov blanket;
Bayesian tool; wholesale Electricity prices; spot price volatility spillover

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of
(=] Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/4607811
https://sciprofiles.com/profile/4609756

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 d0i:10.20944/preprints202507.1867.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from
any ideas, methods, instructions, or products referred to in the content.

Article

‘Lifting the Blanket: Why Wholesale Electricity in
Southeast European (SEE) Interconnected Countries
is Systematically Higher than in the Rest of Europe?
Using Machine Learning Methods of Causality
Discovery (Causal Structure Learning, CSL) and
Rolling Correlations to Reveal the ‘Real’ Causes of
Price Surges

George P. Papaioannou *%, Panayotis G. Papaioannou 2t and Christos Dikaiakos 3*

1 Center for Research and Applications in Nonlinear Systems (CRANS), Department of Mathematics, University of
Patras, Patras 26 500, Greece (former director of research & technology of ADMIE SA (Greek TSO))

2 Post Doc Researcher, Stochastic Modelling and Applications Laboratory, Athens University of Economics
and Business (AUEB), Athens, Greece

3 PhD University of Patras; Christos

* Correspondence: gpthespies@gmail.com; Tel.: +30-6972420181

t These authors contributed equally to this work.

Abstract

We investigate the key factors that shape the dynamic evolution of Day-Ahead spot prices of seven European
interconnected electricity markets of the Core Capacity Calculation Region, Core CCR (Austria AT, Hungary HU,
Slovenia SI, Romania RO), the Southeast CCR (Bulgaria BG, Greece GR) and the Greece-Italy CCR, GRITR (Italy),
with emphasis on price surges and discrepancies observed in SEE CCR markets, during the period 2022-2024. The
high differences in the prices of the two groups, has generated political reactions from the countries that ‘suffer’
from these price discrepancies, as shown by the intense reactions of the governments of the affected countries
and other institutions, as the sending of letters of Prime Ministers European Commission President). By applying
Machine Learning (ML) approaches, as Markov Blanket (MB) and Local, causal structures learning (LCSL), we
are able of ‘revealing’ the entire path of volatility spillover of spot price as well as the Cross-Border Transfer
Availabilities (CBTA) between the countries involved, from north to south, thus uncovering i.e. ‘lifting the
blanket’, to discover the ‘true’ structure” of the path of causalities, responsible for the price disparity. The above
methods are supported by the ‘mainstream” approach of computing the correlation of the spot price and CBTA’s
volatility curves of all markets, to detect volatility spillover effects across markets. The main findings of this
hybrid approach are: a) the volatility of Austrian market’s spot price and its CBTAs with DE, CZ, and SI, ‘uncovered’
to be a pivotal market, behaving as a ‘transmitter’ of spot price and cross-border activity volatility, over its entire connection
path with SEE CCR markets, which finally ‘receive’ the volatility disturbances, causing their price surge, b) the combination
of weather and geopolitical factors with the limited interconnectivity of SEE markets, seem to have exacerbated the impact
of the Flow-based Market coupling method (FBMC) used in the Core CCRs, on the prices of SEE CCR’s countries that
rely on the Net Transfer Capacity -NTC- mechanism, by inducing non-intuitive flows, thus challenging the
reliability of European Target’s model (based on FBMC) in protecting SEE markets from “unexpected-unfair-

irrational” price surge.

Keywords: Electricity wholesale electricity prices surge in SEE; Local causality structure; Markov blanket;

Bayesian tool; wholesale Electricity prices; spot price volatility spillover
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1. Introduction

1.1. Price Disparity in Electricity Markets of Southeastern Europe (SEE) and Political Reactions

In this paper we present a ML approach in detecting the most critical and causal factors responsible
for causing an unprecedented electricity spot prices surge, a phenomenon also called ‘European
regional electricity crisis’, appeared mainly in Bulgaria (BG), Greece (GR), by analyzing the entire
path of their interconnections with the ‘core” countries of Austria, AT, Hungary (HU), Slovenia (SI)
and Romania (RO), as well as the Greece- Italy interconnection. We note here that AT, HU, SI and RO
are members of the Core CCR (Core Capacity Calculation Region) while BG and GR constitute the
Southeast European SEE CCR (regions in which specific methodologies are used to compute cross-
zonal capacities, see section 3).

The "huge’ price disparity mainly in Bulgaria and Greece, and in Romania against the rest of the
Core countries, challenges the capacity and success of the European electricity Target model, as we
will see below. There are a variety of the factors that are behind this disparity, both ‘apparent and
hidden’, as climatic, geopolitical and structural (generation mix, networks, interconnections),
described in section 3. The above countries that have been strongly affected took several initiatives
to ease the pressure this disparity has imposed on their electricity Day-ahead prices. Among other
reactions, they have prepared a proposal for the formation of a permanent intervention mechanism that
would be triggered any time electricity prices turn extremely high in their markets, especially in cases
where their region is disconnected from the rest of the core energy markets. A characteristic example
of such reactions, is the letter of the Greek Prime Minister sent to European Commission President,
to propose a set of measures [1]. Similar reactions were recently reported, as in Romania and in North
Macedonia in which also an examination has initiated of the reasons for the huge price disparity.
Another characteristic reaction is that of the Romanian Minister of Energy who sated that the country
would ask the EU for compensation for this high price difference, but however listing several
problems related to geopolitics (due to war in Ukraine), weather, power generation mix, and
interconnections of his country with AT and other Core CCRs. Also at ministerial level, Greece,
Bulgaria and Romania sat at the same table on 11t September 2024, with the three countries agreeing
on the diagnosis of the problem. The three energy ministries drafted a text that was sent to the
Commission, asking for flexibility from the relevant EU Directive for the implementation of a claw-
back mechanism against high deviations in electricity prices. According to their draft text, this
mechanism could be activated occasionally, for the imposition of a cap on the compensation of power
plants and the recovery of excess revenues per technology, just as was done during the 2022 energy
crisis. We point out here, however, that this mechanism (the request), in practice, cancels in practice the
result of the Day-Ahead (DA) market price clearing methodology (the cornerstone of the European Target
model), i.e. cancels the system’s marginal price, which pays all units under this model, to contain large
discrepancies. However, this objective seems to be very ambitious, as any modification on the core
structure of the target model is a very crucial issue, and it needs the agreement of all involved markets’
‘shareholders. As the Greek Prime minister said [1], ‘I do not expect that there will be immediate
solutions to the problem, but at least let someone seriously deal with it, to highlight it, so that we can
make sure that we do not have such distortions again in the future’.

1.2. Relating SEE CCR’s Price Discrepancies with Europe’s Target model (TM). Is Its Algorithm an
Incomprehensible Black Box?

After detecting the underlying crucial factors that have caused the discrepancies mentioned, it
would be extremely interesting to examine whether these factors relate to the structural
characteristics of the European Target model and more importantly, how this model has been
performed in the case of the price surge mentioned. In fact, there are criticisms against the operational
algorithm of the model, because at times, it seems that the algorithm has disconnected SEE countries
from the rest of the European markets, turning the region into an energy island! The algorithm is based
on the current mode of operation of electricity markets, which is different in Core CCRs and SEE CCRs,
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in respect of the way the auailable capacities in the zonal bidding-zones are calculated. More specifically,
SEE CCR countries trade according to the net transfer capacity (NTC) mechanism, while the Core CCRs
countries use the flow-based market coupling (FBMC) system (ACER 2024 report, [2]). A description of
the above two mechanisms, the critical role they play in the formation of price surge in the SEE CCR,
is given in sections 3 and 3.1. A notable ‘malfunction’ of the application of FBMC, as described in
section 3.1, is the production of counterintuitive power flows, that have drastically limited imports
into high-demand regions like HU and RO, starting a price spike diffusion to ‘downstream’ BG and
GR countries, a phenomenon challenging strongly the robustness of Europe’s ambitious TM, aiming
at ensuring a fair and ‘homogeneous’ price landscape.

1.3. Characteristic Events in SEE CCR’s Markets, Core and Regional Structural Distortions

We give some critical events indicating the suffering of the SEE & RO electricity markets from
extremely high prices. Due to exports to the North, in the evening (20:00) of 12 September 2024 in
Greece, the maximum price was 485.60 euros per megawatt hour, while in Bulgaria 558.09
euros/MWh, in Romania 678.5 euros/MWh and in Hungary 667.75 euros/MWh (see Supplementary
material C (table C3) for the maximum prices in the evening, hour 20:00, of 12t September 2024). For
comparison, in the same period, in the Czech Republic the maximum price reached 242.87
euros/MWh and in Austria (a self-sufficient and net exporter market due to RES), at 256.15
euros/MWh. Thus, a price discrepancy (difference) of 161% against Hungary is observed which is not
a conjunctural spread but rather seems to be a permanent phenomenon, not accepted in an environment
of coupled markets. It is as if Greece and Bulgaria, two neighboring coupled market, have a price
difference of more than 100 euros per megawatt hour, an unacceptable fact that challenges the way the
Target Model operates in this region. Thus, intensive skepticism is diffused among the members of the
SEE CCRs, based on such critical events as above, that the Core CCR countries, using a variety of
‘mechanisms’ in the Target Model’s FBMC approach can inhibit the normal energy outflows from their
borders, reducing the capacity of cross-border transfer availability (CBTA). This occurred in the case of
Hungary (HU), leaving the corridor between GR, BG and RO to meet Kiev's increased needs. This
view is shared by the Greek and other governments in the region, as well as by other institutions as
the president of the Greek Union of Industrial Consumers. It is broadly accepted that the ‘typical’
European electricity market is known to have some structural deficiencies-distortions that affect severely
the competitiveness of EU’s member states (due to ‘systemically’ higher energy cost) [3], however due to the
Ukraine crisis these distortions became more pronounced. Even at the borders of member states, for
short distances, there exist price differences of 200, 300 or even 500 euros/MWh. The ‘mechanisms’
mentioned above refer to the advantages of the FBMC method in comparison to the Net Transfer
Capacity (NTC) approach (in which cross-border transactions must cover at least 70% of
interconnection capacity), followed by the SSE CCR countries (section 3). The ‘mechanisms’ are
considered responsible for the reduction or even zeroing, via a specific mathematical algorithm (characterized
by the politicians as a black-box), of the capacity of cross-border interconnections. Besides the ‘core’ structural
distortions emerging from the TM’s application on the region of the suffering markets, there are also
other ones having regional effects. For example, in the interconnection of Greek and Italian electricity
markets a ‘mechanism’ seems to exist, making almost systematically the Greek spot price to increase
during the hours of peak demand. For example, in the evenings, constant electricity exports to Greece
take place, making the cross-border transfer capacity between the two countries relatively
‘inadequate’ since the installed cable of 500 MW (at the time this report is written) becomes congested,
and consequently disconnected from the system. Even more strange, the traditionally more expensive Italian
wholesale market becomes cheaper than the Greek one. As an example, on 12%September, at hour 20:00, the
maximum price in the Italian energy exchange was 155.8 Euros/MWh, while the corresponding price in the
Greek one reached at 485.60, a deviation of 212%!!

The rest of the paper is structured as follows: in section 2 we provide a short literature review on
the Markov Blanket-based causal feature selection accompanied by a description of Bayesian
Analysis and Causality Structure Learning (CSL) approaches in electricity markets (extra information
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is also provided in section 5). The crucial role of the power cross-border transfer availability between
the markets analyzed, and especially its calculation method in Core CCR and SEE CCR counties, is
discussed adequately in section 3. The description of data sets used, their summary statistics and
correlation analysis of the market’s variables, is given in section 4. An extensive methodology of the
MB and LCSL tools is provided in section 5, which also contains practical issues in applying these
methods in the field of electricity market analysis. The approach of rolling volatility of the crucial
factors (extracted by the above tools) in causing the spot price surge as well as the volatility spillover
effects in SEE markets, is described in section 6. Section 7 provides the empirical results of both CSL
and rolling volatility methods, with extensive comments, and finally in section 8 we include a
discussion, the conclusions and policy recommendations.

2. Literature Review on Markov Blanket-Based Causal Feature Selection

From our intensive literature review, we manage to locate a few specific research papers that
apply Markov Blanket-based causal feature selection directly to energy market analysis. First, we have
found several foundational works that discuss, in general, the use of Markov Blankets in causal
discovery and feature selection, while in section 2.2 we provide how MB has been adapted to energy
market studies.

In the work of [4], the authors demonstrate how a generic feature-selection algorithm that
returns strongly relevant variables can be transformed into a causal structure-learning algorithm. The
authors prove this under the Faithfulness assumption for the data distribution. [5], provide a
comprehensive review of feature selection and causal discovery research, summarizing theoretical
results and presenting methods to enhance the scalability of discovery algorithms. A paper that
discusses the use of Markov blankets in Bayesian networks for feature selection, addressing
challenges when data distributions violate the faithful condition, and in which the authors propose
the concept of representative sets to improve feature selection robustness, is the work by [6]. The
study of [7] introduces a causal feature selection method based on an extended Markov blanket,
aiming to reduce the number of features while retaining key ones. Experimental results demonstrate
the method's effectiveness. The article of [8] explores the intersection of causal inference and feature
selection, emphasizing the role of Markov blanket discovery algorithms in both fields. It discusses
methods to enhance the efficiency of these algorithms. [9] summarize research on feature selection
via the induction of Markov blankets over the past decade, providing insights into various algorithms
and their applications. These papers mentioned above do not specifically address energy market
analysis, however their methodologies have been adapted to study causal relationships and feature
selection within that domain (see below). Applying Markov Blanket-based methods, in combination
with LCSL methods to energy market data could help identify key factors influencing market
dynamics, such as the dynamics of SEE price surges, by focusing on the most relevant variables and
their causal interdependencies. Some areas on which MB has been successfully applied, are : a)
healthcare: in predicting a disease, the Markov Blanket can identify the strongest causal factors (e.g.,
symptoms, genetic markers, lifestyle factors) while excluding irrelevant variables, b) in finance: for
predicting stock prices, it can reveal key economic indicators, market trends, and company
performance metrics that directly influence price movements, c) in marketing: in customer churn
prediction, it can highlight the most influential factors (e.g. satisfaction scores, service usage
patterns) while excluding noise.

Application of Bayesian Analysis and Causality Structure Learning Approaches in Electricity Markets

However, to the best of our knowledge, only a few papers dealing with the application of MB
on analyzing energy markets were found in our literature review. [10] used a causality-based FS
approach for data-driven dynamic security assessment of power systems. Their work describes how
a probabilistic graphical model (of DAG type), tree augmented naive bays structures, and an
approximate MB, are used in building an online dynamic security assessment (DSA) framework. [11]
have built an alternative approach to predictive modeling for energy demands, based on learning
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causality structure using demand date from an Argentinian electricity company. An improved, non-
causal, feature selection algorithm of electricity price forecasting, using Support Vector Machine
(SVM), is introduced by [12]. In their paper, the FS algorithm consists of threshold based mutual
information (MI) (see section 5.2), together with inequality correlations of symmetrical uncertainty
and pairwise evaluation methods, to perform electricity price forecasting.

In [13] the authors have presented a Bayesian inference approach to unveil supply curves in
electricity markets. In their study they introduced this approach, for revealing the aggregate supply
curve in a day-ahead electricity market. Their proposed algorithm relies on Markov Chain Monte
Carlo and Sequential Monte Carlo methods, and they argue that the major advantage of this approach
is that it provides a complete model of the uncertainty of the aggregate supply curve, through an
estimate of its posterior distribution. The authors have shown, in a small case study, that it is possible
to reveal accurately the aggregate supply curve with no prior information on rival participants,
information that can be used by a price-maker producer to devise an optimal bidding strategy.

In [14], the authors have applied Bayesian Belief Networks in the modelling of wholesale
electricity price formation, specifically in power systems with a high penetration of non-firm
renewable generation. Their work links the mathematical Bayesian representation to established
statistical and computational approaches using a functional supply-side wholesale electricity market
pricing model and introduces a novel validation method employing volatility analysis to assess the
case study’s performance. Their work is valuable in examining the transition of electricity generation
from firm to non-firm renewable generation, a factor that creates changes in wholesale electricity
price dynamics, therefore challenging existing modeling approaches due to the stochastic nature of
wind and solar as the primary energy source. They showed that constructing robust pricing models
essential for optimizing financial performance in today’s electricity markets, can be greatly facilitated
by using their Bayesian Belief Networks approach.

The aim of the paper in [15], is the study of Bayesian forecasting of electricity prices traded on
the German continuous intraday market which fully incorporates parameter uncertainty. Their target
variable was the IDFull price index, and the model’s forecasts were provided in terms of posterior
predictive distributions. They validated the results, using the exceedingly volatile electricity prices
of 2022. The IDFull index is the weighted average price of all continuous trades executed during the
full trading session of any EPEX SPOT continuous contract. This index includes the entire market
liquidity and thus represents the obvious continuous market price references for each contract.

In [16] researchers have used Bayesian networks for analysis and prediction, to understand the
causal relationships between variables such as consumption, greenhouse emissions, investment in
renewables and investment in fossil fuels, towards making a reliable energy policy focusing mainly
on renewable energy sector, and not only by observing energy scenarios in various economic or social
conditions. In their paper have presented expert models using the capabilities of Bayesian networks
in the renewable energy sector, considering renewables in Germany and Italy, using the tool
BayesiaLab (a powerful desktop application-Windows/Mac/Unix- for knowledge management, data
mining, analytics, predictive modeling and simulation, all based on the paradigm of Bayesian
networks), with supervised learning, on a data set consisted of the consumption rate of geothermal
and hydro energy sectors. They have found that, as oil prices grow, greenhouse emissions will decrease,
and that the precision of the expert model is no less than 90%.

In the paper [17], the authors have provided for the first time a complete literature review in the
application of Bayesian networks in renewable energy systems, for which the implementation of
conventional methods does not solve the problems associated with the complexities of these systems.
According to the authors, recently, Artificial Intelligence techniques such as Artificial Neural
Networks, Fuzzy Logic and Genetic Algorithms, have been widely used to deal with these problems
in the field of Renewable Energy. However, the degree of uncertainty that is involved in these
methods needs Bayesian Networks since this is one of the most effective theories to face them. In their
work, they present the state of art of the applications of Bayesian Networks in Renewable Energy,
such as, solar thermal, photovoltaic, wind, geothermal, hydroelectric energies and biomass, including
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related topics such as energy storage, smart grids and energy assessment. They have found that the
main applications were in forecasting, fault diagnosis, maintenance, operation, planning, sizing and
risk management, and they argue that Bayesian Networks constitute a powerful and versatile tool
for the field of Renewable Energy.

With the rapid development of the economy, fully leveraging the priority role of electricity is of
great significance for accelerating the modernization of electricity, continuously meeting the growing
demand for electricity and social production and consumption and promoting socio-economic
development. Among them, the role of electricity marketing is becoming increasingly prominent.
How to fully mine and utilize the large amount of power marketing data accumulated by electric
power enterprises over the years, to provide reliable support for the analysis and research of power
marketing decisions. Bayesian network is a graphical pattern used to represent the continuous
probability distribution of a set of variables, which provides causal information to discover potential
relationships between data, and because of these characteristics, it is widely used in data mining.

In the work of [18], researchers apply Bayesian network to the analysis and research of power
marketing decisions and establishes a Bayesian network suitable for power marketing decision-
making for customer value evaluation, providing reliable support for marketing decision-making.
They emphasized the ability of Bayesian network of making good decision models, based on their
feature of making graphical patterns used to represent the continuous probability distribution of a
set of variables, which provides causal information to discover potential relationships between data.

3. Power Cross-Border Transfer Availability in Core and Southeast Europe
Capacity Calculation Regions (CCRs) and Its Impact on the SEE Markets Spot in
Prices

Between 2022 and 2024, cross-border electricity transfer availability in Central Eastern and
Southeastern Europe (CEE and SEE) significantly influenced wholesale electricity prices, particularly
in the SEE region. Cross zonal trading opportunities are critical in curbing Day-Ahead or spot price
volatilities. Due to insufficient cross-border transfer availability in year 2023, an explosion in negative
DA prices (see Figure 5 and Tables 4-6 in this paper) occurred, because a low electricity demand
coincided with an increased renewable supply in each bidding zone!. According to Figure 1 of
ACER’s 2024 report [2] , Greece (GR) exhibited zero occurrences of spot negative prices, BG 11, RO
32, HU 74, AT 111, SI 96 and IT-South zero negative prices, emphasizing the need for the markets
with negative prices, for local flexibility and the criticality of the cross-zonal transmission capacity
(measured by CBTAs in our data set). Another crucial parameter as well as a proxy for the level of
implementation of a ‘really successful’ integration of the EU power systems, related to the cross-
border capacity, is the price convergence of bidding zones within Capacity Calculation Regions (CCR),
in the wholesale market. During 2023, GR-IT CCR the price convergence (% of hours) was moderate?
(16%) and full (28%), while in 2022 the values were 8% and 28% respectively [2]. According to the
same report, the most crucial factors explaining the price convergence are the differences in the
generation mixes, the way the implicit market coupling in DA markets is implemented and finally, and
most important for the targets of our study, the level of transmission capacity available for cross-zonal trade
(our CBTA variable). Thus, detecting the most crucial factors shaping the price surge and discrepancy
between Core markets (AT, SI, HU and RO) and the SEE markets of BG and GR, is strongly linked to
the above crucial factors in explaining price convergence, between the Core Capacity Calculation
Region (Core CCR) of the core markets and the SEE CCR markets, two CC regions using different
capacity calculation methods?, the Flow-Based (FB) in Core CCR and Coordinated Net Transfer Capacity

1 Biding zone: the largest geographical area where energy exchange can take place between players without capacity
calculation.

2 Full:<1l Euro/MWh, Moderate: 1-10 Euro/MWh, Low: >10 Euro/MWh)

3 Two possible methods the EU rules allow for TSOs to calculate the capacity made available for trade between EU bidding zones in a
coordinated manner: the coordinated net transfer capacity (CNTC) approach and the flow-based (FB) approach. The CNTC approach,
can be applied in regions where cross-zonal exchanges are less interdependent, therefore no significant added value is expected to be gained
from adopting the FB approach. The FB approach is defined as the default in areas of the transmission grid where the exchanges across
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(CNTC), in the SEE CCR (the CBTAs in our data set are calculated by the CNTC methods, used by the TSO
of the specific region). Table 1 (our elaboration based on data from [2]) informs about the
implementation status of the Regional Capacity Calculation methodologies, for the markets analyzed
in the present work. In 2023, the level of cross-zonal capacity offered, on average, in the biding zone
borders of Core, GRIT and SEE CCRs, for the spot market is: 2100 MW Core, 2090 GRIT and 1200
MW SEE.

We now give some information, based also on [2], about the yearly evolution of transmission
capacities available for cross zonal trade in the Day-Ahead market, that we consider to be very related
to this analysis. More specifically, the level of interconnectivity of Member States calculated as the
yearly average offered import capacity of every Member State as a percentage of peak electricity demand,
and the yearly average offered export capacity of every Member State as a percentage of peak generation.
Table 2 provides such information, from which we observe that the markets of Core CCRs show
significantly larger levels of connectivity than the SEE CCRs and the GRIT CCR. This important
information shows that the Core CCR markets included in flow-based market coupling in 2024 (also
in 2022 and 2023) exhibit a considerable increase in their levels of interconnectivity, as measured by
the above two measures. In general, as we have already mentioned, FB market coupling generally
offers more exchange possibilities than NTC calculation, because it incorporates the modelling of the
underlying electricity network in the allocation of cross-zonal capacities. The maximum import and
export capacities in FB regions on a given bidding zone border are dependent on other exchanges in
the region, which is not the case for NTC values, which are simultaneously feasible on all bidding
zone borders. FB optimization-oriented approach leads to available capacities on specific network
elements being allocated where they generate most socio-economic welfare.

Table 1. Implementation status of the Regional Capacity Calculation methodologies, for the markets analyzed

in this report (Based on data in [2]).

Capacity Calculation Calculation Day Ahead
Region (CCR) approach Regulation” Implementation Status
Capacity Allocation and
Core: AT, HU, SI, RO FB Coupling Congestion Management Mostly
(CACM)
Coordinated net Capacity Allocation and
GRIT: GR, IT Transfer capacity Congestion Management Mostly
CNTC (CACM)
Coordinated net Capacity Allocation and
SEE: BG, GR Transfer capacity Congestion Management Mostly
CNTC (CACM)

*Note: Article 34 of regulation (EU), 2015/1222

To ensure that cross-zone capacity offered to the market is always efficiently allocated, all EU
bidding zones borders, are now included in the Single DA-Coupling (SDAC) and the Single Intraday
Coupling (SIDC), a very significant progress. In 2029, the EU Electricity Regulation [54], has ‘forced’
TSOs to offer the market a minimum level of cross-zonal capacity (CZC), considering however each
TSO’s operational security limits. In 2020 a 70% minimum was imposed for implementing the requirement,
without risking system security, allowing also the TSOs to opt for a transitional period. In this research
paper, we assume that the way each TSO in the above CCRs (Core and SEE) have reacted to this 70% minimum
of cross-zonal capacity has affected the dynamic evolution of the CBTAs of each market analyzed and

consequently the spot price discrepancy between Core and SEE CCRs.

bidding zone borders are highly interdependent, and models only a subset of network constraints, the so-called critical network elements
with contingency (CNECs) (a line or transformer either within a bidding zone or between bidding zones). An optimized allocation of cross-
zonal capacities at the level of the capacity calculation region is therefore allowed, by the price coupling mechanism that can allocate the
capacity made available on each CNEC to the electricity exchanges that generate the largest ‘added social value’.
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Table 2. Level of interconnectivity of Member States in the day-ahead market measured as the average yearly
import capacity as a percentage of peak demand and peak generation, in 2024.

Capacity Calculation. As % of peak As % of peak
Region (CCR) demand (2024) Generation (2024)
Core: AT, HU, SI, RO 75,102, 224, 47 53,129, 273, 34
GRIT: GR, IT 11,13 11,4
SEE: BG, GR 32,11 29,11

Limited Cross-Border Capacity and Market Fragmentation

The minimum 70% requirement translates in practice into the margin made available for cross-zonal
trade MACZT), which is so a proxy for the level of integration of EU national day-ahead electricity
markets. MACZT corresponds to the portion of capacity of a given CNEC that is made available for
cross-zonal trade by the TSOs. The current level of optimization of the cross-zonal electricity
transmission infrastructure across European spot markets, as well as the degree of the 70%
implementation requirement is assessed by a MACZT monitoring report. However, despite EU
regulations mandating that at least 70% of cross-border transmission capacity be available for
electricity trading by the end of 2025, many regions in both Core CCR and SEE CCR, fell short. For
example, based on the ACER’s report 2024 [2], during 2023, from the Core regions, only SI has
achieved a value 97% of MACZT > 70% , (i.e. the % of hours when the minimum hourly MACZT
was above 70% ), while the values of this index for other markets, in the same period, were: for AT
20% < MACZT<50%, for HU only 6% for MACZT > 70 and 61% in the range 50% <
MACZT<70%, and RO 95% in the range 20% < MACZT<50%.

Regarding the SEE CCR, encompassing the bidding zone borders Romania-Bulgaria and
Bulgaria-Greece, in which the CNTC method is applied, the percentage of hours when the relative
MACZT was above the minimum 70% requirement or within predefined ranges, in 2023, are as
follows (ACER, 2024) : a) Bulgaria : for BG>GR and GR>BG no limiting element in the Member State,
b) Greece: for BG>GR, 44% in range MACZT = 70%, 43% in range 20% < MACZT<50%, while for
GR>BG, 75% in range MACZT = 70% and 14% in range 50% < MACZT<70% , and finally c)
Romania: for BG>RO only 9% in MACZT = 70%, 53% in 20% < MACZT<50% and 21% in
MACZT<20%, while for RO>BG only 18% in MACZT = 70%, 45% in range 20% < MACZT<50%,
21 % in range 50% < MACZT<70% and finally 14% in MACZT<20%. The above-mentioned report
also presents the percentage of hours when the limiting CNEC was, from the perspective of every
Member State, located in the neighboring Member State, and therefore the TSO had no limiting CNEC
to report. The report shows that this was particularly evident in the case of Bulgaria, for which the
limiting CNEC on the Bulgaria—Greece and Bulgaria-Romania borders is often located in Greece and
Romania, respectively. It is worth mentioning that in 2020, the SEE CCR achieved this 70% minimum target
only 8% of the time, indicating substantial underutilization of interconnectors.

While the above information shows the extent to which Member States in the SEE region offered
a minimum of 70% MACZT on its limiting CNECs in 2023, it does not include any information
regarding the reasons for deviating below 70%. During the capacity validation period, reductions of
capacity may be sent by either TSO on each bidding zone. During 2023 most limitations in the SEE
CCR have been requested by the Bulgarian TSO, affecting so the MACZT results of the Greek and
Romanian TSOs. A very important finding from comparing the Core and SEE CCRs adaptation in
the 70% requirement is that the capacity calculation methodology implemented in the latter region
does not have any specific provision in order the calculated capacities to adjust accordingly to comply
with the minimum cross-zonal capacity requirements, Of course, such a provision must consider the
remedial action potential in each market of the region. Due to this, a relatively poorer performance is
observed in the SEE CCR in 2023. According to ACER’s 2024 report, Greece has requested a
derogation in applying the requirement. Specifically, the derogation requested by the Greek TSO
does not include a commitment on the levels of MACZT offered but sets a minimum value of 15% of
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the MCCC, a commitment that in Greece has been largely met in 2023. The same cannot be said about
Romania’s action plan linear trajectory value of 43% of the MACZT in 2023.

For the Greece-Italy CCR, the Percentage of hours when the minimum hourly MACZT was
above 70% or within predefined ranges in the GRIT CCR for each Member State and oriented bidding
zone border — 2023 (% of hours) are as follows: a) for GR: 78% in range MACZT > 70%, for both
GR>IT-South and IT-South>GR, while for b)ltaly, 76% in range MACZT = 70%, for IT-South>GR.
We note here that the GRIT CCR contains the internal Italian bidding zone borders and the DC
bidding zone border with Greece, thus the impact of exchanges with third countries is considered
limited. Additionally, thanks to the grid structural specifications, the impact of exchanges across
other borders within the region is considered negligible (ACER, 2024).

From the above we conclude that SEE CCR’s limited capacity may have hindered electricity
imports during periods of high demand, contributing to price spikes. Furthermore, the SEE region's
reliance on the Net Transfer Capacity (NTC) mechanism, as opposed to the Flow-Based Market
Coupling (FBMC) used in Central and Western Europe, exacerbated market fragmentation. FBMC's
complex algorithms (a critical feature of the Target model) sometimes resulted in counterintuitive
power flows, limiting imports into high-demand regions like Hungary and Romania, and leading
to significant price disparities.

Figures 1 and 2 show the time series of CBTAs of Austria’s CBTAs with Hungary, Slovenia, Italy
and Germany-Luxembourg, and between Romania and Bulgaria (RO-BG, BG-RO), Greece and
Bulgaria (GR-BG, BG-GR), respectively. In Figure 3 we show the DA prices of the markets involved
in the previous cross-border transactions, for a visual inspection of how these prices have been
affected by CBTAs. In July 2024 (see Figure 1), reduced imports to Hungary occurred, a notable event
highlighting FBMC's shortcomings. More specifically, after July 8, FBMC allocations from Western
Europe to Hungary decreased by approximately 1,200-1,300 MW during peak evening hours (19:00—-
24:00). This reduction was not due to maintenance or physical grid constraints but stemmed from
FBMC'’s algorithmic decisions. Consequently, Hungary's HUPX market (Hungarian Power
exchange, https://hupx.hu) experienced price surges up to €940/MWh, while neighboring Austria's
prices remained around €61/MWHM, illustrating a stark disparity across an internal EU border (see
Figure 3). Almost concurrently, counterintuitive flows to Romania happened (see Figure 2). Romania
faced reduced imports from Bulgaria due to maintenance on the BG>RO interconnector, decreasing
capacity from 1,700 MW to 1,200 MW. To compensate, FBMC facilitated increased imports from
Hungary. However, this led to situations where Romania's OPCOM market (the Romanian Electricity
and Gas Market Operator) had prices up to €250/MWh lower than Hungary's HUPX, despite
importing electricity from Hungary. Such non-intuitive flows strained Hungary’s market further and
underscored FBMC's limitations in addressing regional demand effectively.
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Figure 1. The cross-border transfer availabilities (CBTAs) between HU and AT, SI and AT, IT and AT, and DE
and AT. (All countries are in the Core CCR). Total flows, i.e. (+) from HU to AT and (-) from AT to HU.
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Figure 2. The cross-border transfer availability (CBTA) between RO and BG, and between GR and BG countries.
(RO is in the Core CCR, and GR and BG in the SEE CCR).
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Figure 3. DA-prices of AT, HU (Core CCR), and BG, GR (SEE CCR) markets.

Several external factors have also enhanced the impact of limited cross-border capacity. More
specifically, climate events such as record-high temperatures and droughts in SEE regions have
reduced hydropower output and increased electricity demand for cooling, stressing the already
constrained grid. Additionally, geopolitical tensions as the Russia-Ukraine conflict, disrupted energy
supplies, with Ukraine, as we already mentioned, transitioning from an electricity exporter to an
importer, increasing demand on neighboring countries' grids. Finally, infrastructure limitations, as
delays in returning key power plants, like Bulgaria's Kozloduy nuclear plant, to full operation,
reduced available generation capacity (the plant disrupted one of its two reactors, for a period until
November 30, 2024, with the consequence the regional system to have 1 GW less). These factors have
contributed to unprecedented wholesale electricity price spikes in the SEE region. Based on Figure 3,
in August 2024, Greece's electricity prices more than doubled from €60 to €130 per megawatt-hour
(MWh). Hungary (HU) experienced prices as high as €940/MWh during peak hours, while
neighboring Austria (AT) saw prices around €61/MWh, highlighting severe regional disparities.
Romania (RO) and Bulgaria (BG) also faced significant price increases, with day-ahead market prices
reaching €700/MWh and €500/MWh, respectively. The findings above have stressed the importance
of the interactions of volatilities of spot prices and CBTAs, that are enhanced further by the combined
influences of external factors, geopolitical tensions and infrastructure limitations (as the limited
interconnectivity of SEE countries, emerging from their reliance on the Net Transfer Capacity (NTC)
mechanism, contrasting with FBMC's application in Central Europe, a critical discrepancy that
hinders seamless integration and efficient electricity distribution). All these findings challenge the
status of the current policy, an issue discussed in section 8.

4. Data Sets, Preprocessing, Summary (Descriptive) Statistics, Correlation
Analysis and Cross-Border Transfer Availability

We use data downloaded from ENTSO-E Transparency platform (transparency@entsoe.eu), for
our set of seven electricity markets, including Austria (AT), Bulgaria (BG), Romania (RO), Slovenia
(SI), Greece (GR), Hungary (HU), and Italy (South bidding zone) (ITsouth), from January 2022 to
October 4, 2024. We analyze hourly wholesale price data expressed in in Euro/Mwh. The countries
under analysis are shown in Figure 4, which also depicts the borders where the calculation of the
Capacity from the interfaces changes from Net Transfer Capacity (NTC) to Flow Based (FB) [2]. The
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dataset covers the period from 1.1.2022 to 4.10.2024, their missing values have been filled
appropriately, with frequency converted from originally 15 minutes to hourly data. Thus, the size of
dataset is 24194. Figure 5 shows the time series of hourly spot prices of all markets for the period of
1st January 2022 to 4 October 2024, and Figure 6 the time series of Greek DA hourly spot prices. Two
distinct periods of high spot prices and volatility, in all markets of our analysis, are observed in Figure
5. The first is from early spring (March) of 2022 to December 2022, with a pronounced upward and
downward price oscillations, and a peak price occurring on 30 of July (1041 Euro/MWHh). The second
period covers the summer of 2024, ending approximately at the end of August 2024. We describe
shortly at this point the main drivers that seem to be the prevailing factors in shaping the price
dynamics shown in Figure 5. For the 2022 price surge the main drivers are : a) gas crisis from Russia’s
Invasion of Ukraine, since Russian pipeline gas flows into Europe plummeted, TTF gas prices spiked
over €300/MWh in late August 2022, and finally power prices in gas-dependent regions soared as
gas-fired generation costs increased dramatically, b) high CO, Prices, EU ETS prices sustained levels
above €70—€90/tonne, resulting to elevated variable costs for gas, coal, and lignite units, c) low Hydro
and Renewables output, due to severe drought conditions reduced hydro output in parts of the
Balkans, also low renewables increased reliance on thermal generation, d) nuclear and thermal
Outages, since extensive nuclear outages in France reduced regional supply, and as a consequence
raising cross-border demand into the SEE region, e) strong market interconnections, i.e. tight
markets in Italy, Austria, and Germany that quickly impacted neighboring SEE countries via cross-
border flows, and finally f) risk premiums and volatility, since market uncertainty drove elevated
forward prices and risk premiums, spilling over into day-ahead markets. Thus, in the March-April
2022 period, these drivers are responsible for spot prices in the region to frequently exceed €300-
€400/MWHh, while in peak hours during crisis events, sometimes surpassed €500-€800/MWh.

Similarly, for the second period, in 2024, of high spot price volatility, the main drivers are: 1)
Stabilized but Elevated Gas Prices : TTF gas prices ranged ~€25-€35/MWHh in 2024, far below 2022
peaks but above historical norms, and LNG markets remained tight due to global competition, 2)
Extreme heatwaves : repeated heatwaves across Southern and Eastern Europe, increased cooling
demand, and lower river levels affected hydro generation and thermal plant cooling capacity, 3)
Reduced nuclear and hydro generation : France’s nuclear fleet partially recovered but still faced
outages, and Balkan hydro production again stressed by droughts, 4) Transmission Constraints:
cross-border congestion, particularly toward Italy, constrained SEE import potential, 5) Sustained
CO; Prices, EU ETS prices in the range of €65—€85/tCO,, and finally 6) High Solar Penetration: major
solar capacity expansions in Italy, Greece, Bulgaria, and Romania, depressed midday prices but
triggered steep evening ramps.
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Figure 4. Left: definition of the bidding zone review regions as per Article 3 (2) of the BZR Methodology
(Adopted from ACER 2024, [2]) and Right: ENTSO-E, 2025, Interconnections Grid. The left picture shows the
Core and SEE CC regions and the right their interconnection lines.
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Figure 5. Time series of hourly spot prices of all markets for the period of 1st January 2022 to 4 October 2024,

with quarter boundaries, and values of price spikes at specific dates.
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Figure 6. Time series of Greek DA hourly spot prices for the entire period of 1st January 2022 to 4 October 2024,
with quarter boundaries, and values of price spikes at specific dates. On 4t September 2024, at 21:00, the
electricity spot hourly Greek price reached 942 Euro/Mwh.

Table 3. Shows the data set of all fundamental variables considered in our work, collected for each of the seven
electricity markets. Descriptive statistics for the hourly spot prices, for each market, are given in Tables 4, 5, 6,
and 7 (for each separate year and for the entire period 2022-24, respectively). List of all sixty-seven (67)
fundamental variables considered in our work, for all electricity markets. In bold letters, the DA spot prices of

the markets under analysis.

Nod
(Var(i)alfle) Name Description Unit
E MW
1 AT_DA _price DA Electricity price, Austria uro}(
2 AT _actTotal_Load Actual Total Load, Austria MW
3 AT _foreTotal_Load Forecasted Total Load, Austria MW
4 AT_actGas Gas power production, Austria MW
5 AT _Solar_Fct Solar forecst. Power product. , Austria MW
6 AT_Hydro_Actual Hydro Power Forecasted, Austria MW
E MW
7 BG_DA_price DA Electricity price, Bulgaria uro}{
BG_actTotal_Load Actual Total Load, Bulgaria MW
9 BG_foreTotal_Load Forecasted Total Load, Bulgaria MW
10 BG_actGas Gas power production, Bulgaria MW
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11 BG_Wind_Fct Wind forecast generated power, Bulgaria MW
12 BG_Solar_Fct Solar forecast. Power product., Bulgaria MW
13 BG_Hydro_Actual Hydro Power production, actual, Bulgaria MW
14 BG_actual_Lignite Lignite act power production, Bulgaria MW
E MW
15 GR_DA_price DA Electricity price, Greece uro}{l
16 GR_actTotal_Load Actual Total Load, Greece MW
17 GR_foreTotal_Load Forecasted Total Load, Greece MW
18 GR_actGas Gas power production, Greece MW
19 GR_Wind_Fct Wind forecast generated power, Greece MW
20 GR_Solar_Fct Solar forecast. Power product., Greece MW
21 GR_Hydro_Actual Hydro Power production, actual, Greece MW
22 GR—HydrOJ;t orage_Act Hydro Power act consumption, Greece MW
23 GR_actual_Lignite Lignite act power production, Greece MW
E MW
24 HU_DA_price DA Electricity price, Hungary urol:
25 HU_actTotal_Load Actual Total Load, Hungary MW
26 HU_foreTotal_Load Forecasted Total Load, Hungary MW
27 HU_actGas Gas act.power production, Hungary MW
28 HU_Wind_Fct Wind forecast generated power, Hungary MW
29 HU_Solar_Fct Solar forecast. Power product.,, Hungary MW
30 HU_Hydro_Actual Hydro Power production, actual, Hungary MW
31 HU_actual_Lignite Lignite act power production, Hungary MW
E MW
32 ITS_DA _price DA Electricity price, Italy (South) uroﬁ
33 IT actTotal_Load Actual Total Load, Italy MW
34 IT_foreTotal_Load Forecasted Total Load, Italy MW
35 IT_actGas Gas power production, Italy MW
36 IT_Wind_Fct Wind forecast generated power, Italia MW
37 IT_Solar_Fct Solar forecast. Power production., Italia MW
38 IT_Hydro_Actual Hydro Power production, actual, Italia MW
39 RO_DA _price DA Electricity price, Romania Euro}{MW
40 RO_actTotal_Load Actual Total Load, Romania MW
41 RO_foreTotal_Load Forecasted Total Load, Romania MW
42 RO_actGas Gas power production, Romania MW
43 RO_Wind_Fct Wind forecast generated power, Romania MW
44 RO_Solar_Fct Solar forecast. Power product., Romania MW
45 RO_Hydro_Actual Hydro Power production, actual, Romania MW
46 RO_actual_Lignite Lignite act. power production, Romania MW
E MW
47 SI_DA _price DA Electricity price, Slovenia uro}{l
48 SI_actTotal_Load Actual Total Load, Slovenia MW
49 SI_foreTotal_Load Forecasted Total Load, Slovenia MW
50 SI_actGas Gas power production, Slovenia MW
51 SI_Solar_Fct Solar forecast. Power product., Slovenia MW
52 SI_Hydro_Actual Hydro Power production, actual, Slovenia MW
53 SI_actual_Lignite Lignite act power production, Slovenia MW
54 GR_BG Cross Border Transfer, GR-BG MW
55 BG_GR Cross Border Transfer, BG-GR MW
56 IT_GR Cross Border Transfer, IT-GR MW
57 GR_IT Cross Border Transfer, GR-IT MW
58 RO_BG Cross Border Transfer, RO-BG MW
59 BG_RO Cross Border Transfer, BG-RO MW
60 SLIT Cross Border Transfer, SI-IT MW
61 IT_SI Cross Border Transfer, IT-SI MW
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62 AT-CH Cross Border Transfer, AT-CH MW
63 AT-CZ Cross Border Transfer, AT-CZ MW
64 AT-DELU Cross Border Transfer, AT-DELU (Austria to Germany- MW
Luxembourg)
65 AT-ITNorth Cross Border Transfer, AT-ITNorth MW
66 AT-SI Cross Border Transfer, AT-SI MW
67 AT-HU Cross Border Transfer, AT-HU MW
Table 4. Descriptive statistics of hourly spot prices, for all markets, 2022-4"" October 2024.
2022-Oct.2024
Statistics HU RO BG GR ITSouth SI AT
min -500.0 -106.30 -45.00 -1.02 0.00 -500.00 -500.00
max 1047.10 1021.60 950.00 942.00 870.00 1023.00 919.60
mean 161.89 159.40 154.75 170.61 180.85 159.71 151.06
median 120.96 119.74 119.28 130.63 134.06 117.90 111.30
mode 0.0 0.0 0.0 100 100 0.0 0.0
Std 128.53 128.13 119.10 117.57 120.71 126.31 122.89
prctile25 84.18 83.13 83.09 92.77 104.08 82.86 78.46
prctile75 204.15 200.63 197.51 223.07 220.00 203.50 189.10
iqr 119.97 117.50 114.42 130.30 115.92 120.64 110.64
Table 5. Descriptive statistics of hourly spot prices, for all markets, 2022.
2022
Statistics HU RO BG GR ITSouth SI AT
min 0.0 0.0 0.0 -0.01 0.0 0.0 0.0
max 1047.10 964.20 936.30 936.30 870.00 879.30 919.60
mean 271.62 265.26 253.20 279.86 295.77 274.43 261.36
median 237.20 232.58 225.08 249.28 257.23 240.01 224.00
mode 138.41 138.41 138.41 200.00 650.00 220.00 190.00
Std 139.88 142.95 131.20 116.10 131.03 137.00 138.47
prctile25 178.25 165.31 163.27 206.89 206.43 185.03 169.09
prctile75 345.26 342.15 320.14 339.31 370.00 343.24 336.98
iqr 167.00 176.84 156.86 132.42 163.56 164.20 167.88
Table 6. Descriptive statistics of hourly spot prices, for all markets, 2023.
2023
Statistics HU RO BG GR ITSouth SI AT
min -500.0 -23.18 -1.10 0.0 0.0 -500.0 -500.0
43747
max 436.89 400.00 383.82 298.20 426.18 437.47
mean 106.79 103.71 103.82 119.09 125.03 104.30 102.11
median 104.48 102.72 102.74 112.47 120.94 103.38 101.91
mode 0.0 122 122 100 100 120 0.0
Std 48.43 50.78 50.33 50.18 37.69 45.33 44.40
prctile25 83.75 79.26 79.20 93.00 103.47 83.21 82.09
prctile75 133.56 132.56 132.54 141.33 145.30 130.95 128.84
iqr 49.81 53.30 53.34 48.33 41.83 47.74 46.75
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Table 7. Descriptive statistics of hourly spot prices, for all markets, 01-01-2024 to 4" October 2024.
2024 (up to 4 October)

Statistics HU RO BG GR ITSouth SI AT
min -149.98 -106.36 -45.00 -1.02 0.0 -105.88 -426.42
max 999.0 1021.6 950.00 942.0 252.1 1022.3 555.7

mean 90.15 93.53 92.37 94.79 103.24 81.85 70.48
median 81.85 85.00 85.00 88.67 102.84 79.72 74.21
mode 0.0 0.0 0.0 0.04 100.0 0.0 0.0

Std 7891 78.66 74.06 64.93 31.22 56.02 37.19
prctile25 60.49 61.65 61.42 69.53 88.84 58.90 55.13
prctile75 104.98 108.01 107.49 108.11 115.59 101.82 91.20
iqr 4449 46.35 46.06 38.58 26.75 4291 36.07

4.1. Boxplots, Aggregated and Hourly-Wised Summary Statistics of Spot Prices

The boxplot comparison of hourly electricity prices across the seven markets reveals notable
differences in both price levels and variability. Figures 7 and 8 show, for comparison purposes, the
boxplots of the distribution of AT and RO DA prices, hourly-wise i.e. for each separate hour H1 to
H24. The boxplots of the rest of the markets are given in Supplementary material D. The same
information, quantitatively, as well as other descriptive statistics, is provided in Tables A1-A7, of
Supplementary material A. From the figures we see that, for the price levels, Romania (RO) shows
consistently higher spot prices than Austria (AT) across almost all hours. The median prices in
Romania are around 200-300 EUR/MWh, while Austria's median prices mostly range between 100—

200 EUR/MWHh. Regarding volatility and outliers, Romania exhibits greater price volatility, indicated
by wider interquartile ranges (IQRs), a larger number of extreme outliers (red pluses), often
surpassing 800-1000 EUR/MWHh, while Austria also shows outliers but with lower frequency and

magnitude compared to Romania. For the daily hourly trends, AT’s prices are relatively stable
throughout the day, and slight increases in the morning (8-11) and evening (18-21) hours, reflecting
typical demand patterns, and finally price distribution is narrower, suggesting a more stable market.
RO’s prices tend to spike during evening hours (19-22), both in terms of median and outliers.
Morning hours (7-10) also show noticeable increases in median price and spread, and prices are
lowest and least volatile between 1-5 AM, consistent with low demand. Now, regarding negative
prices, Austria exhibits occasional negative prices, especially in the afternoon hours (13-17), a fact
that could be due to high renewable (e.g., solar) generation exceeding demand, grid constraints or
export limitations. Romania, in contrast, does not display negative prices, suggesting tighter supply
conditions or less flexible generation mix, and possibly lower penetration of renewables or less
dynamic market adjustments. Table 8 below gives a summary of the comments above.

Table 8. Summary of differences of AT and RO spot hourly price boxplots .

Aspect Austria (AT) Romania (RO)
Median Prices Lower (~100-200 EUR/MWh) Higher (~200-300+ EUR/MWh)
Volatility Lower Higher
Outliers Present but moderate Frequent and extreme (>1000 EUR/MWh)
Negative Prices Occasionally present None observed
Peak Price Hours Mornings and evenings Spikes during mornings and especially evenings
Market Behavior More stable and flexible Higher stress and supply volatility

Table 9 presents summary statistics across the entire datasets (not just by hour) (we have computed
mean, median, standard deviation (St.dev.), interquartile range (IQR) etc., per market, aggregating
all 24 hours. This gives us a general picture of volatility and price level without the hourly resolution.
The indicators (statistics) (average daily price, standard deviation, average daily peak-of-peak
spread, skewness and kurtosis and frequency of extreme prices, e.g. > 90th percentile) help us rank
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the markets more broadly, without dissecting hour-by-hour details (which are, however. shown in
Figures 4-10 and Tables A1-A7 of Supplement A). The note at the bottom of Table 7 explains the
indicators shown.

Thus, based on Table 9, the Italian and Greek markets (ITS and GR) exhibit the highest mean and
median prices, suggesting a generally more expensive electricity supply, while Slovenian and Austrian
markets (SI and AT) have the lowest medians (117.9 and 111.3 respectively), indicating more
affordable rates. Greek market displays the wider interquartile range (IQR=120.6), reflecting greater
variability in hourly prices and potentially higher market volatility (even though has the lowest aggregated
st.dev). In contrast, AT and BG markets have a relatively narrow IQR, pointing to more stable and
predictable pricing. Romanian and Bulgarian markets have the largest Peak-Off-Peak (PoP) spreads (95.3
and 94.1) followed by Hungarian and Greek markets (86.1 and 76.43). The largest CV (coefficient of
variation, a volatility measure) is presented by TA and RO markets, followed by HU and GR markets.
Additionally, skewed distributions in markets TA, BG, HU, ITS and RO hint at asymmetric pricing
behavior, showing a tendency for upward price spikes. The table shows no differences between the
markets for the frequency of extreme points, and HU exhibits the highest price, followed by SI and
RO markets. From Table 10 we observe that the Greek and Italian markets have the highest total
number of hourly price outliers.

Table 9. Aggregated summary statistics for market comparison (per market analysis).

Peak-Off-
Marke avgPric mec:lianPr St.Dev IOR minPric maxPric cv peak Extreme- skewnes kurtosi
t e ice e e Spread FreqPct s s
(PoPS)

AT 151.067 111.315 122.897110.645-500.000 919.640 0.814 59.608 9.995 1.841  7.233
BG 154.763 119.295 119.108114.435 -45.000 950.010 0.770 94.164 9.995 1.802  7.339
GR 170.618 130.650 117.579130.290 -1.020 942.000 0.689 76.433 9.999 1.604 6496
HU 161.898 120.970 128.535119.975-500.000 1047.100 0.794 86.169 9.999 1.811  7.179
ITS 180.862 134.070 120.720115.925 0.000 870.000 0.667 59.204 9.999 1.842 6.816
RO 159.411 119.750 128.138117.520-106.3601021.610 0.804 95.312 9.999 1.849  7.267
SL  159.725 117.910 126.317120.660-500.000 1022.270 0.791 74.068 9.999 1.757  6.853

Note: IQR : interquartile range, CV: Coefficient of Variation=std/mean, PoPS: Peak-off-peak spread i.e. avg
price (7-10pm) - avg price (2-5am), Extreme-Freq Pct : frequency of extreme prices (%>90 percentile)

Table 10. Average and total (across all hours) number of hourly price outliers.

Average number

Market ) Total number of outliers
of Outliers

AT 20.13 483

BG 26 630

GR 31 767
HU 27.1 651
ITS 30.5 733

RO 28 672

SI 24.6 592
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Boxplot of Austrian (AT) DA price distribution, 2022-Oct2024
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Figure 7. Box plot of the distribution of the Austrian (AT) DA prices, 2022-Oct2024.

Boxplot of Romanian (RO) DA price distribution, 2022-Oct2024
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Figure 8. Box plot of the distribution of the Romanian (RO) DA prices, 2022-Oct2024.

4.2. Correlation Analysis of All Raw Data, 2022-Oct2024

Even though correlation analysis is not capable of revealing any causalities, profound or hidden,
its result can serve as a useful, albeit rough guide of the ‘interactions’ between the variables involved.
We use correlation analysis (Figure 9a-d) to ‘detect’: a) strong regional spot price interactions, b)
price-fuel correlations, c) North-South correlation gradient (strength), d) cluster of markets and
finally e) the role of local fuels. High correlations between neighboring countries’ Day-Ahead (DA) prices
(e.g., AT-DA-price, HU-DA-price, SI-DA-price) suggest significant market coupling or shared supply-
demand fundamentals. These strong correlations may reflect cross-border electricity trade, similar
weather conditions or economic patterns, and coordinated market operations within the EU internal
electricity market. Regarding price-fuel correlations, we observe that GR-Gas, AT-Gas, HU-Gas,
and SL-Gas have medium to small positive correlations with DA prices in their respective countries,
while this fact is not observed in BG, IT and RO markets. This results in natural gas being a relatively
marginal fuel, especially during price-setting hours, highlighting the influence, to some degree, of gas
prices on electricity pricing in these markets. Now, as far as the strength or gradient of correlations, from
north to south markets, we observe a decrease in correlation strength between prices from Core CCR
(AT, HU, SI RO) to SEE CCR markets (GR, IT). For example, the average spot prices correlation
between AT and HU, SI and RO markets, is higher than in AT and GR, BG markets (0.94 and 0.86
respectively). The same is observed between the mean correlation of prices of HU, SL and RO
markets, with the mean value between HU and GR markets (0.965 and 0.915). This could indicate
transmission bottlenecks, different generation mixes (e.g., higher renewable share in some markets),
or regulatory or market structure differences. The figures show also clustered Markets countries like
AT, HU, SI, and RO that form a highly correlated cluster, indicating a tightly interconnected sub-
region, while GR and IT are more loosely connected, possibly due to their geographical positioning
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and more, in general, isolated grid conditions. For the role of local fuels play, we observe that hydro and
lignite generation in BG and GR markets are only locally correlated with their own DA prices, which
implies a local dependency on these two fuels for power generation. The two markets show similar
local dependency of their own prices on their RES (wind and solar generations).

We observe also that the cross-border transfer availabilities (CBTAs) RO-BG (between Romania
and Bulgaria), BG-RO, GR-BG, and BG-GR exhibit the largest, negative correlations with the spot
prices. Instead of trying to explain these findings, we refer to section 7.3 where we present the results
of rolling volatility spillover of spot prices and CBTAs, between all pairs of markets. More specifically,
we have computed the correlations of the rolling volatility curves of both spot prices and CBTAs, of
all markets, and have analyzed their volatility spillover from one market to another, thus enhancing
further the causality structure learning findings of section 7.1 (MB and LCSL results).
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Figure 9. a: Heat map of all possible correlations between pairs of AT, BG, GR markets’ fundamental parameters,
excluding CBTA. b: Heat map of all correlations between pairs of HU, ITS, RO markets’ fundamental parameters,
excluding CBTA. c: Heat map of all correlations between pairs of SI market’s fundamental parameters, excluding

CBTA. d: Heat map of correlations between pairs of all DA prices and Cross Border Transfer (CBT) availability.

5. Methodology

In section 5.1 we provide a short review for Global, Local Causal structure learning, and Markov
Blanket learning, emphasizing their differences and the fields they are applied, although we do not
use Global causal structure learning in the present work. Sections 5.2-5.4 then present the necessary
mathematical background (definitions and key propositions without proofs), with emphasis on
Markov Blanket learning, and finally sections 5.5-5.8 provide information on the practical aspects of
the applied algorithms.

5.1. The Difference Between Global, Local Causal Structure Learning, and Markov Blanket Learning

Causal structure learning involves discovering the causal relationships among variables in a
dataset. The three main approaches—Global Causal Structure Learning (GCSL), Local Causal Structure
Learning (LCSL), and Markov Blanket Learning (MBL) differ in their scope and methodology. In the
GCSL, the goal is to learn the entire causal graph over all variables in the dataset, using various
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approaches such as constraint-based, score-based, or hybrid methods to infer the global causal
structure. Constraint-based method uses conditional independence tests (e.g., Parent Child -PC-
algorithm, FCI), while the score-based one optimizes a scoring function (e.g., BIC, Bayesian scores)
over possible graphs (e.g., GES). Finally, the hybrid method combines both approaches (e.g., Max-
Min Hill-Climbing, MMHC). The advantages of GCLS are the fact that it provides a complete causal
structure (it provides ‘the big picture” of the problem under analysis, and it can infer direct and
indirect causal effects. However, it is computationally expensive, especially for high-dimensional
data, and it requires strong assumptions (e.g., causal sufficiency, faithfulness). This is the reason (as
well as the advantages of LCSL listed below) we do not use this method in this work. The transition
from local to global learning plays an essential role in Bayesian network (BN) structure learning.
Mainstream algorithms for this type of learning were based on first constructing the skeleton of a
DAG (directed acyclic graph) by learning the MB (Markov blanket) or PC (parents and children) of
each variable in a data set and then orienting edges in the skeleton. Since it requires expensive
computational resources (especially with a large-sized BN, resulting in inefficient local-to-global
learning algorithms), [6] developed an efficient local-to-global learning approach using feature
selection, using the well-known Minimum-Redundancy and Maximum-Relevance (MRMR) feature
selection approach for learning a PC set of a variable, and proposed the efficient F2SL (feature
selection-based structure learning) approach to local-to-global BN structure learning, the algorithm
adopted in our preset work.

One the opposite, in LCSL the goal is to learn causal relationships for a subset of variables (e.g., the
most crucial variable around a target variable). We focused on this method, since our main target is to
detect the most relevant factors that shape the dynamics (especially the surge) of spot prices target
variables. The most crucial variables coincide with the set of members detected in the MB. LCSL identifies
MB’s members direct causes and effects without reconstructing the entire causal graph, using
methods as local constraint-based methods (e.g., HITON, Grow-Shrink, see Table 11), and local score-
based methods. Advantages of this learning method include that it is more scalable than global learning,
and focuses on relevant variables, therefore reducing noise. However, LCSL does not capture the full
causal structure (across all European interconnected markets) and may miss indirect causal effects,
however avoiding both these “defects’, is beyond the purpose of our analysis.

We applied Local causal structure learning (LCSL) in our dataset to discover and distinguish the
direct causes and direct effects of all seven DA spot prices, the chosen target variables. Since the
mainstream LCSL algorithms need to perform an exhaustive subset search within the currently
selected variables for PC (i.e., parents and children) discovery, to speed up and make the process
more efficient, several algorithms have been developed. Examples are the work of [19], proposing the
LCS FS model and the Causal Markov Blanket, CMB [18] is the algorithm adopted in our study.

In the MB learning, the goal is to identify the Markov Blanket of a target variable, which consists
of Parents (direct causes), Children (direct effects), and Spouses (other parents of the target’s
children). It uses conditional independence tests or local structure learning to identify the minimal
set of variables that render the target variable conditionally independent from all others. A plethora
of methods exist, such as HITON-MB, IAMB, Fast-IAMB, PCMB, InterTAMBnPC (see also Table 8).
This learning approach is efficient for feature selection and reduces dimensionality while preserving
relevant information. However, it does not provide a full causal graph and is sensitive to sample size
and independence test accuracy. Therefore, we can use Global Learning when the entire causal
structure is needed (e.g., causal discovery), Local Learning when only a subset of causal relationships
is relevant and Markov Blanket Learning when feature selection is needed (e.g., as in machine
learning, predictive modeling). In our present work we have adopted the combination of MB and LCSL and
the InterAMBnPC algorithm [32] for MB learning.

In the application of Markov Blanket Learning in detecting causalities in electricity markets the
main goal, as already mentioned, is the ‘revealing’ of a subset of variables, i.e. Markov Blanket of a
target variable (e.g., electricity price in a specific market) consisting of the direct causes (parents) —
Fundamental drivers (e.g., demand, supply, weather, fuel prices, interconnector flows, i.e. CBTAs),
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direct effects (children) — Downstream impacts (e.g., price fluctuations in neighboring markets), and
finally spouses (other parents of the target’s children) — Variables that influence price through
shared dependencies. Therefore, by identifying the MB of a spot price, we can determine the most
relevant factors affecting price fluctuations while filtering out irrelevant variables. MB is particularly
useful for feature selection (reducing dimensionality), predictive modeling (improving forecasting),
and identifying key influences of price changes (this is the case in our paper). We stress here that MB
learning alone does not establish causal direction beyond identifying relevant variables. The challenges with
using only MB learning are: a) no explicit causal structure as the learning tell us which variables are
important but not necessarily the cause-effect relationships, b) it does not capture indirect effects,
since some causes may influence price via intermediate variables, which MB learning might miss,
and c) the method does not consider temporal causality, since spot prices are dynamic and evolve
over time, and MB learning typically works on static datasets. To overcome these problems and
properly discover causal relationships, as we have pointed out, we combine MBL with LCSL and
mainstream time series analysis, as the rolling volatility of spot prices and CBTAs, to capture the
volatility spillover effects due to interaction of the markets. The steps of our workflow are described
as follows:

Step 1: MB Learning (Feature Selection). We used the algorithm IAMB, to identify the most
relevant fundamental variables affecting DA electricity prices, thus reducing further the
dimensionality of the dataset and focusing only on key drivers.

Step 2: Causal Discovery on the MB Selected Variables, we applied LCSL (CMB algorithm) to
the wholesale DA price variables to determine direct causal relationships.

Step 3: We validated the results by using the results of volatility spillover as well as consulting
experts in the electricity markets field working in the Greek TSO and other European institutions (see
affiliations of authors), to ensure that our findings align with real energy market dynamics (domain
knowledge).

5.2. A Short Mathematical Background in Bayesian Network (BN), Markov Blanket (MB) and Causal
Feature Selection (CFS)

We provide here the necessary, short background theoretical information (notation and
definitions etc.), based on the works of [6, 20] which describe in a rigorous mathematical approach
all the theoretical basis (all related theorems and their proofs).

We symbolize with C our Target Variable (TV) (or Class attribute, CA) of interest. Let ¢ represent
the distinct TV values (or labels), as c={ ¢;,¢,...co} , and F = {F,,F,, ... F,} the set of all distinct
features. Let also that D is a training dataset, D={(d;, ¢;),1 < i < m,¢; € c}, with m the number of
instances, d; the i-th instance i.e. a n-dimensional vector defined on F, and ¢; a label of the TV
associated with d;. To facilitate our presentation, let V =F U{C} = {V,V,, ..., V,41} the set of all
variables under consideration in our analysis, where V;=F/(1<i<n),and V,,; =C . Let V \
Viindicate the set V \{ V;}, that is, all features excluding V; , VV;€V. To consider conditionality, let
use V; 4 v IS are conditionally independent given S, i #j, and S EV{V,V;}, and the
expression V; (not ) V;1S, to denote that V; is conditionally dependent on V; given S.

Definition 1 (Conditional Independence). Two distinct variables  V;,V; €V are said to be
conditionally independent given a subset of variables S €V \ {V;,V; } (i.e, V; L V;1S), if and only
if P (V;,V;18) = P( V;1S)P( V;1S). Otherwise, V;,V;are conditionally dependent given S, V; (not )
V;lS.

5.3. Bayesian Network, Markov Blanket, and Causal Feature Selection

We provide basic knowledge at this point associated with causal feature selection (CFS),
including the basics of BN, MB, and why we choose causal feature selection. Suppose that P (V) is the
joint probability distribution over the set of all variables V, and G = (V, E) represents a directed acyclic
graph (DAG) having nodes V and edges E, where an edge represents the direct dependence relationship
between two variables.
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InaDAG, V; »V; symbolizes that V;isa parentof V; and V; isa child of V;.

Definition 2 [20]. The triplet V, G, P(V)is called a BN, if the Markov condition as defined below
(definition 3) is valid:

Definition 3 (Markov Condition) [20]. For a DAG G, the Markov condition holds in G, if and
only if, every node of G is independent of any subset of its non-descendants conditioned on its
parents. Thus, the joint probability over a set of variables V is encoded by a BN which decomposes P
(V) into the product of the conditional probability distributions of the variables given their parents in
G.

Let P,(V;) be the set of parents of V; in G. Then, P(V) can be written as

P(Vy,Va, .. Vnyq) = H?:11P(Vi|Pa(Vi)) D

In this paper, we consider a CBN, a BN in which anedge V; - V; indicates that V;is a direct
causeof V; [20,21]. In the definition 4 below, we give the key concepts and assumptions associated
with BNs and MBs.

Definition 4 (Faithfulness) [20]. Suppose that a BN <V, G, P (V)>, then G is faithful to P(V) if and
only if every conditional independence present in P is entailed by G and the Markov condition. P(V)
is faithful if and only if G is faithful to P (V).

Definition 5 (Causal Sufficiency) [20]. Causal sufficiency assumes that any common cause of two
or more variables in Vis also in V.

Definition 6 (d-Separation) [20]. In a path mof a DAG G, V; and Vare said to be blocked
by a set of nodes S cV;, if and only if: (a) 7t contains a chain

Vi—V,—V; or the opposite direction V;«V,«V; (Chain)
or a fork
Vi<V,— V; (Fork)
such that the middle node V,, isin S, or (b) the path 7 contains a v-structure
Vi— Vy« V; (v-structure)

such that V,, ¢S holds and no descendants of V,arein S. A set S is said to d-separateV;from V;if and
only if S blocks every path from V; toV;

Theorem 1 [20, 21]. Given a BN <V,G, P (V )>, under the faithfulness assumption, d-separation
captures all conditional independence relations that are encoded in G, which implies that V;  and
Vi
given S in P(V). The theorem concludes the equivalence of conditional independence in data
distribution and d-separation in the corresponding DAG, under the assumption of faithfulness.

Definition 7 Markov Blanket (MB). [20]. The Markov Blanket (MB) of a variable in a BN is
unique and consists of its parents (direct causes), children (direct effects), and spouses (other parents
of the variable’s children), provided that the faithfulness assumption is valid.

The relation between PC in a BN, and how to identify spouses are given by proposition 1 and 2
respectively and are the basis of designing CFS algorithms.

Proposition 1 [21]. In a BN, there is an edge between the pair of nodesV; and V}, if and only if
they are dependent (i.e. V; (not ) V;1S), forallSESV\{V;, VL

Proposition 2 [21]. In a BN, assuming that V; is adjacent to V;, V; is adjacent to V,,, and
V; is not adjacent to V, (e.g., V;— V;<-V,), if VS SV \ {V,V; V, }, V; 4 V;1S) and V; (not )
V; 1Su{V;} hold, then V; is a spouse of V.

The cornerstone of causal and non-causal feature selection is the concept of Mutual Information
(MI), introduced initially in machine learning by [22] and later by [23, 24], and used then as an

in G are d-separated by S <V \{V;, V}}, if and only if V; and V; are conditionally independent

additional concept in explaining feature relevance, in non-causal FS [25]. The conditional MI between
Xand Y given another feature Z is given by:
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1(X;Y|Z) = HX|Z) — (H(X|YZ) =

P(x,
Yzez P(2) erx_erP(z,ylz)log P(xl(;)JI/’I(Z;IZ) @)

It is based on the concept of Sannon’s entropy: H(X)=-Y, P(x)logP(x) (3)
of a variable X, and on the conditional entropy of X after observing the values of Y

HX1Y) =-%, P(y) Zx P(x]y) logP(x]y) (4)

In equations (3) ana (4), P(x) is the prior probability of X=x (the value x that the variable X takes)
and similarly P(Y) is the posterior probability of Y=y, in the context of Bayes Rule, so the MI between
Xand Y is

P(x,
106GY) = HX) = HXIY) = Sy P(6,Y)log 5roos (5)

Using (2), then in the context of non-causal FS, a feature F; is strongly relevant to C if and only if

5.4. The Objective Function of Optimal Feature Selection Problem, Based on the MI Concept

The problem of finding a subset S* ¢ F , given a dataset D containing C and F, in a feature

selection context is formulated as follows

S* = argmaxscpP(C|S) (6)
i.e. try to find a subset S* of features that maximizes the conditional probability of C. Equation (6),
using equation (2) is written finally as

S* = argmaxscpl(C;S) (7)

It is shown, in the literature provided, that the feature set Sx defined in Equation (7) is the set of
features that leads to the minimal Bayes error rate. Recently, [26] has shown that for a given classification
problem, the minimum classification error attainable, by any classifier, is called its Bayes error rate. In
this work we adopt the approach of [25] in choosing the Bayes error rate for justifying Equation (7)
since, according to the associated literature, this error is the tightest possible classifier-independent
lower-bound, since it depends only on the predictor features and the Target variable (class attribute).
In setting the lower and upper bounds on the Bayes error rate, [27, 28, 29] have finally made the
connection of the Shannon conditional entropy [30] to the Bayes error rate, a crucial step in rigorously
formulating CFS approach in ML.

In general, Feature selection (FS) is used in model building as well as data understanding and is
a process of identifying a subset of features (predictor variables) from the original set of features. FS
is more pressing now, in the era of big data, since the handling of ‘inherently ubiquitous’ high-
dimensional datasets is very difficult. FS has become the cornerstone behind any efficient classification
model. There is a plethora of FS methods that fall into three categories: a) Filter, b) Wrapper and c)
embedded methods. The two last methods are classifier dependent while filter methods are classifier
or prediction model independent.

Strongly relevant features, weakly relevant features and irrelevant features are the types of features
that characterize the relevance of given predictors with a class attribute (also called target variable) [31].
The aim of the FS is to identify the strongly relevant features of the Target variable, and this is
achieved by first ranking the features according to their relevance to the Target variable and then by
using an iterative process, selecting for inclusion the most relevant features [32].

In this paper, the method used for MB (the CMB) uses an emerging, very efficient FS filter
method in identifying a Markov blanket (MB) of the class attribute or Target variable [33], a concept
invented by Pearl [20] in the framework of Bayesian network (BN). The components of the MB of a
variable are of its parents (direct causes), children (direct effects), and spouses (other parents of this
variable’s children). A medical example of using this method is given in figure SB1, in
Supplementary Material B.
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The LCS has the advantage that causality is connected to the capacity of the related models to
generate better and more interpretable predictions. The MB (filter) selection approach is also called
causal feature selection (CFS) [6] (a term also used in this work) to better understand the mechanisms
behind the wholesale (spot) electricity prices of the SEE markets, and more specifically the causes
that are behind their ‘extreme’ values (strong price disparities). CFS approach is an approach that has
been shown to be theoretically optimal, in comparison with a non-causal FS.

5.5. The Markov Blanket (MB), a Tool for Causal Feature Selection to Reveal the Strongest Factors
Influencing DA Electricity Prices

The Markov Blanket, as defined previously (definition 7), a concept from Bayesian networks and
the associated probabilistic graphical models, is a powerful tool able to identify the set of variables
that shield a target variable from the influence of all others, a tool particularly useful in causal feature
selection. We explain here how it is used in the CFS of the DA (spot) electricity price, our Target
variable, symbolized as TV-SpotElectP. From definition 7, the components of the MB of this variable
will be: the Parents i.e. Variables that directly cause the dynamics of TV-SpotElectP, the Children i.e.
variables directly caused (affected) by TV-SpotElectP, and finally the Co-parents (Spouses) i.e. other
variables that cause (affect) TV-SpotElectP’s children. Together, these components determine the
smallest set that makes TV-SpotElectP conditionally independent of all other variables in the system.
The steps followed in using MB for feature selection are a) building a probabilistic Graphical Model i.e.
using data to construct a probabilistic graphical model, such as a Bayesian network, that encodes the
conditional dependencies between variables, b) identify the Markov Blanket i.e. applying a variety of
algorithms (see Table 8) to identify the Markov Blanket of the target variable, which will include
the most causally relevant features for TV-SpotElectP, c) analyzing the Markov Blanket i.e. examining
the MB'’s that are directly or indirectly causally related to TV-SpotElectP, i.e. the strongest factors
influencing target variable (the absence of a variable from the blanket implies it is irrelevant or
redundant for predicting our target variable , given the variables in the blanket). We list here some
of the advantages of using the MB, namely the causal relevance (since MB focuses on features with
causal influence on the target, avoiding spurious correlations), the minimal feature set (Mb identifies
the smallest set of variables needed for accurate prediction of target variable), and finally the fact that
MB provides interpretable models(by isolating causally relevant factors, it simplifies interpretation of
the model). Thus, our paper contributes towards enhancing the limited number of papers in which
MB is used in the analysis of energy issues.

5.6. Practical Aspects in Applying the MB CFS Approach to Understand Price Surges in SEE Electricity
Markets and a Suggested Workflow

We describe here the steps we have followed in applying this approach to our work: in step 1
we define our target variable, i.e. the TV-SpotElectP, the wholesale prices. In step 2 we identify
candidate variables. We have considered factors potentially influencing price surges, such as: a)
Energy Supply Factors: Gas prices, coal prices, renewable energy generation, and imports/exports
(Cross-border Transfer availability, CBTA), b) Load Factors: actual and forecasted load, of each
market, c) Market Dynamics: Market coupling approaches with neighboring countries, via CBTA (see
section 3), d) Policy Factors: we have considered relevant publicly available information, for each
country, policies such as subsidies, taxes, and EU Emissions Trading System (ETS) costs, only in cases
that we think can support interpreting our models results. Then, in step 3, we construct a Probabilistic
Graphical Model. We use data to construct a Bayesian network or a similar probabilistic graphical
model, if this is possible, that represents conditional dependencies between variables in each market,
based on its assumptions, and in step 4, we ‘discover’ the Markov Blanket, by using a plethora of
algorithms (see Table 8), i.e. we identify the MB for a given target variable. This will include Parents
(Variables directly causing price surges), Children (Variables influenced by price surges), and Co-parents
(Variables that jointly influence the children of price surges). We interpret results, in the final stage:
Variables in the Markov Blanket are the strongest factors influencing electricity price surges, for example, if
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guas prices, renewable generation, and market coupling are in the Markov Blanket, these are causally relevant,
while other variables are conditionally independent given the blanket. Finally, we use LCSL approach to
‘capture’ the causality directions between the variables identified by MB. Figure 10 presents the work
flow we followed in using CFS MB approach to energy market analysis.

Work flow Define the target variable
(DA electricity prices)

Collect relevant data
(Gas, Coal generation, load,
hydro gen., hydro storage, Cross -
Border Transfer avail. (CBTA) etc.

l

Construct a probabilistic Graphical model
(representing the conditional dependencies of the variables)

!

Identify MB (apply algorithms to determine the set
of variables that directly influence the target
variable) and apply LCSL to detect directed

cuialities
Interpret the results using market’s expert opinion & results of additional mainstream
Methods (e.g. price and CBTAs volatility spillover across entire interconnection path)

Figure 10. The workflow in using the CFS MB approach detecting the most crucial predictors (features) that
affect hourly spot prices in the DA electricity markets analyzed.

The steps in the workflow are:

o Define the Target Variable: in our case, electricity price surges in all
seven markets.

e  Collect Relevant Data: Gather data on potentially influencing
factors, such as fuel prices, demand and supply metrics, policy
changes, and geopolitical events.

e  Construct a Probabilistic Graphical Model: Use the collected data
to build a model that represents the conditional dependencies
between variables.

o Identify the Markov Blanket MB: Apply algorithms to determine the
set of variables that directly influence the target variable.

e  Use LCSL methodology to identify the direct causalities between
the member-variables of the MB

o Interpret the Results: Analyze the identified factors to understand
their causal impact on electricity price surges, using results from
volatility spillovers, and opinions form the market experts.

5.7. Justification of Using Causal Discovery and Feature Selection Approach Instead of a Typical Regression
Model

At this point, we think that we must provide the reasons for adopting the MB approach instead
of other “mainstream’ approaches as regression modeling. We list the advantages of the Markov
Blanket Approach: first, this method focuses on Causal Relationships: the Markov Blanket isolates
variables with a direct or indirect causal impact on price surges, reducing noise from spurious
correlations. As an example, if coal (lignite) prices are conditionally independent of price surges given gas
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prices, the model excludes coal prices as a key factor. Second, the approach defines a Minimal Feature Set:
it identifies the smallest set of variables needed to explain the target, leading to simpler, more
interpretable models. Third, the approach exhibits Robustness to Multicollinearity: unlike regression,
which can struggle with multicollinearity (e.g., between gas prices and renewable generation), the Markov
Blanket approach accounts for conditional dependencies. Fourth, it handles Nomnlinear and Complex
Interactions: Probabilistic graphical models capture nonlinear relationships and interactions between
variables, which are common in electricity markets. From our literature review, Table 11 has
emerged, summarizing all the previous advantages of MB over a regression approach

Table 11. Comparison of MB with Regression Approaches.

Aspect Markov Blanket Regression

Focus Causal relationships Statistical associations

May include spurious or redundant

Feature Selection Identifies causally relevant variables .
variables

Resolves through conditional

Handling Multicollinearity Struggles without feature engineering

independence
Produces a minimal set of explanator Includes all statistically significant
Model Complexity . P y . ysig
variables variables
Interpretability Provides clear causal explanations Explains variance but not causality
. Requires conditional independence Assumes linearity (in linear
Assumptions . .
assumption regression)

Performance in High . - L
. . & Effective for sparse causal structures  May be overfit without regularization
Dimensions

To facilitate reader’s interpretation, we provide below a simple example of a possible indicative
result among other possible results described in section 7. Example: explaining DA price surges in
SEE electricity markets by using MB. Let the result of Markov Blanket Approach is as follows: MB
Identifies gas prices, renewable generation, and EU ETS costs as causally relevant. The interpretation is
that Gas prices directly cause price surges, renewable generation mitigate surges, and ETS costs amplify them.
Other variables (e.g., coal prices) are conditionally independent given these factors. In a traditional
regression approach the expected result is gas prices, renewable generation, coal prices, and
industrial demand are statistically significant predictors. In the interpretation of the result of this
method we may be aware that the method may overemphasize the role of coal prices due to
multicollinearity with gas prices, leading to less clear causal insights.

Therefore, since our goal is to identify ‘true” causal drivers of price surges, i.e. a causal inference
target, then it is better to prefer the MB Approach. Also, this approach is preferred in the case of
Complex Interactions i.e. when relationships between variables are nonlinear or involve interactions
(complex inference). Finally, the MB is strongly more effective in causality inference in the case of
high-dimensional data, i.e. when dealing with many potential predictors, since the MB simplifies the
feature set. Finally, to complete the comparison of MB with regression, regression is preferable when
the goal is simply to predict price surges, not explain them, or when linear relationships prevail in the
dynamics, i.e. when relationships between variables are linear and well understood, and finally when
data size or quality is insufficient for reliable causal discovery. Thus, in conclusion, the MB excels in
revealing the strongest causal factors behind electricity price surges, providing a more interpretable
and causally grounded analysis compared to regression. While regression is a powerful predictive
tool, it is less suited for uncovering causal mechanisms in complex systems like electricity markets.

5.8. Algorithms Associated with Causal Discovery and Feature Selection (CFS) and MB

CFS is the methodology to find the Markov Blanket (MB) of the target variable in a CBN context
[34], in which an edge X —Y indicates that X is a direct cause (parent) of Y, and Y is a direct effect
(child) of X, therefore the MB of the target variable consists of the parents, children, and the spouses
(i.e. other parents of the children), and offers a complete picture around the local causal structure
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(LCS). Most important, from a statistical point of view, the blanket represents a minimal set of
features that makes the target variable statistically independent from all the other features conditioned on the
MB [20]. The minimal set of features, determined by MB, is also the optimally found subset for the
purpose of classification as well as a holistic interpretation of the predictors that strongly affect the
target variable [32].

[35] invented the first sound MB discovery algorithm, GS (Growing-Shrinking) for BN structure
learning, that replaced the KS model [36] who were the first to introduce MBs to feature selection,
but with the problem of not being able to secure the finding of the actual MB. Another generation of
improved algorithms for optimal FS are the Incremental Association-based MB (IAMB) family of
algorithms, such as IAMB, inter-IAMB, IAMBNPC [36], and Fast-IAMB [37]. A list of the algorithms
for global causal structure FS learning is given in the following Table 12:

Table 12. List of algorithms associated with Markov Blanket (MB), Global and Local Causal Structure Learning

(GCS-LCS).
Global Causal Structure Learning (GCS) algorithms

Acronym Title of algorithm Reference
GSBN Grow/Shrink Bayesian network [35]
GES Greedy Equivalence Search [53]
PC PC [21]
MMHC Max-Min Hill-Climbing [32]
PCstable PC-stable [43]
F2SL_c Feature Selection-based Structure Learning using independence tests [6]
F2SL_s Feature Selection-based Structure Learning using score functions [6]

Local Causal Structure (LCS) learning algorithms
PCDbyPCD PCD-by-PCD [42]
MBbyMB MB-by-MB [44]
CMB Causal Markov Blanket [18]
LCSFS Local Causal Structure Learning by Feature Selection [19]
Markov blanket (MB) learning algorithms

GS Grow/Shrink algorithm [35]
IAMB Incremental Association-Based Markov Blanket [45]
Inter]AMB Inter-IAMB [36]
InterlAMBnPC Inter-IAMBnPC [32]
FastIAMB Fast-JAMB [37]
FBED Forward-Backward selection with Early Dropping [46]
MMMB Min-Max MB [45]
HITONMB HITON-MB [47]
PCMB Parents and children-based MB [48]
IPCMB Iterative Parent-Child based search of MB [9]
MBOR MB search using the OR condition [49]
STMB Simultaneous MB discovery [50]
BAMB Balanced MB discovery [51]
EEMB Efficient and Effective MB [52]
MBES MB by Feature Selection [51]
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Figure 11. A schematic representation of the Global Causal Structure, Local Causal structure and Markov
Blanket.

In Figure 12 we show a schematic representation of the Causal feature selection process, adopted
in this work. There are three layers, data, algorithmic and applications. Figure 12 shows a schematic
representation of GCS, LCS learning and MB approaches.

A schematic representation of the Causal feature
selection (CFS) used in this paper, using MB and

LCS learning approaches
Data Layer Data Algorithmic Layer APIs Evatiation
* Discrete sy * Markov Blanket Learning (MBL) —  Layer
* Continuous + Local Causal Structure Learning (LCSL) - Accuracy
+ Efficiency

Figure 12. A schematic representation of Causal feature selection and discovery, used in this work.

6. Rolling Volatility of DA prices and Their Correlation to ‘Grasp” Spillover
Effects

The spillover of electricity price volatility across 24 countries in the European Union has been
recently studied by [38], during the period 2014-2024. Six of the markets analyzed in our paper are
included (Bulgaria is missing) in their study, in which the [39, 40,41] measure is used to capture the
volatility spillover between AT, HU, GR, BG, RO, and IT, and their findings are used here to support
our findings. They developed both a static and a dynamic assessment of spillover effects and
directional decomposition between individual markets. Their main findings, that are very related to
our study, show that a very large amount of the volatility (about 73 percent of the forecast error
variation) is explained by cross-variance shares, meaning that only 27 percent can be attributed to shocks
within each market, therefore cross-border volatility spillovers dominate the behavior in national electricity
markets in Europe, an effect that has increased over time. Instead of using the Diebold-Yilmaz (DY)
[39,40,41] approach (our objective in our paper is different), we have computed the rolling volatility
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(standard deviation) of DA prices of all markets, using a window of 720 hours (a month), as well as the
correlations between all pairs of the rolling volatility curves.

We can combine the above correlation information, with several methods like visual cluster
maps or a table comparing structural plus weather similarities, or clustering these markets
statistically e.g., via a dendrogram (see Figure 24) to capture the clustering processes. Figure 24 shows
the dendrogram method of clustering process, that uses K-means extracted features, based on the
correlation matrix of the rolling volatility curves of the hourly spot prices and CBTAs of these
countries so we can extract conclusions about the price volatility spillover. This is a very important
step, since we connect a linear statistical measure, the correlation of rolling volatilities of the most
crucial factors identified via nonlinear methods (MB and LCS), with economic and structural
reasoning to extract insightful conclusions about how volatility spillovers affect the spot prices surge. Now,
a natural question is what do volatility correlation values really tell us? When we correlate rolling
volatilities of spot prices, we're essentially measuring how synchronous the “intensity of risk” or price
variability is across markets over time—not just price levels, but how similar the volatility dynamics are.
Therefore, a) high correlation in volatility indicates co-movement in risk or uncertainty across markets, b)
suggests common drivers, such as weather conditions, shared fuel price shocks (e.g., gas prices),
interconnected grid events, and finally policy or regulation changes affecting multiple markets. On
the other hand, low correlation in volatility means that volatility is idiosyncratic, driven by local factors,
like domestic generation mix, internal grid congestion and country-specific demand patterns or
weather anomalies. Table 13 summarizes possible interpretations of the high and low correlation of
volatilities between two markets.

Table 13. Possible interpretations of high and low correlation of volatilities between two markets.

Conditions” Interpretation
Markets share weather patterns Likely weather-driven common volatility (hydro/wind output variability)
Markets are strongly interconnected Likely volatility transmission via power flows/coupling mechanisms
Markets have similar generation mixes Fuel-driven spillovers (e.g., gas price shocks affect both)

*Note: Real examples of market conditions are the results in Figure 24 and Table 13, in the results section.

In case we see low volatility correlation despite interconnection, it may suggest that one market is
isolated in volatility terms (e.g., due to internal constraints or pricing mechanisms), market resilience
or decoupling— volatility is not transmitting effectively, and finally asymmetric spillovers — one
market is a transmitter but the other absorbs differently.

Even though correlation is symmetric, we can try to infer directional spillover tendencies, thus we
overlay indicative correlation patterns with structural asymmetries, as in Table 14.

Table 14. Relating spot price volatility correlation patterns with structural asymmetries.

Scenario Implication

Market A has persistent high volatility, and others show

delayed rise A is likely a volatility transmitter

Market A is small but strongly correlated with a larger hub Possibly price-taking market with imported volatility

Physical/market coupling is crucial for volatility

Markets with weak coupling show weak correlation .
transmission

For example, we see that the interconnections BG-RO and GR-BG exhibit high volatility
correlation, thus we likely observe volatility co-movement due to weather and grid interconnection,
possibly bidirectional spillovers. Similarly, we see that GR volatility is correlated more with BG than
with IT, despite physical ties with IT, market coupling with BG dominates volatility transmission.
Therefore, our conclusion is that clustered Volatility Patterns ‘resemble” or somehow ‘coincide” with
volatility Spillover Zones.
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The Clustering tool Dendrogram, in Our Context

A dendrogram (see Figure 21) is a tree-like diagram that shows how electricity markets (based
on their volatility correlation similarities) cluster together — from most similar to least one. The
dendrogram is useful to us because it helps us group structurally similar markets without relying
only on market rules — it’s data-driven, i.e. it can validate or challenge existing market integration
assumptions (measured by the interconnectivity level, section 3). It reveals how volatility spillovers
operate naturally, beyond algorithmic models like FBMC, and finally is powerful in highlighting
hidden market coupling dynamics or stress-induced decoupling. The Y-axis shows the labels of spot
prices and CBTAs. The X-Axis shows the distance or dissimilarity metric we have computed as —
Distance = sqrt(2*(1 - correlation)). Therefore, lower distance = higher correlation — more similar
volatilities, and higher distance = less correlated — less similar volatilities. Regarding dendrogram’s
branches and merging points, the closer two markets merge at the bottom, the more similar they are
in terms of volatility behavior, and markets that merge early (at low height) — high correlation of
volatility patterns — structurally similar, while markets that only join clusters at higher levels are
more volatility divergent.

7. Empirical Results

7.1. Markov Blanket Learning

7.1.1. MB Analysis of DA Prices as Target Variable

As already mentioned, Markov Blanket discovery helps reduce the search space by selecting the
most relevant variables. We present in Table 14 the results of applying the MB IAMBnPC algorithm
on our dataset, choosing as target variable each DA-price, for each year to detect the evolution of the
dominant factors (members of the MB) that affect the price over the period of our analysis. Also, in
Figures 13a, 13b and 14, we present the annual DAGs for MB results graphically, learned by the
IAMBNPC algorithm, setting as target variables the DA prices of the Austrian (AT), Greek (GR) and
Italian (IT) markets. Similar figures can be drawn for the other markets but not shown in this report.

For the Austrian DA price, during 2022, we observe in Figure 13a that the set of the MB members
consists of the DA prices of the two directly interconnected neighboring markets of HU and SI, as
well as Italy’s price (a rather surprising result), and the cross-border transfer availabilities (CBTAs)
of Austria with its neighboring Czech, Germany-Luxembourg and Slovenia (AT-CZ, AT-DELU and
AT-SI). The AT-SI CBTA is present also in 2023, during which the RO-BG CBTA is also included,
together with two Bulgarian power generation variables (Gas and Hydro), the HU and SI spot prices,
and the SI hydro generation. Thus, it seems that the RO-BG CBTA has affected the price in HU which
in turn has affected the AT price, which is also affected by the SI price. In 2024, we see that AT-DELU
and GR-BG CBTAs are in the MB set, together with SI and GR(?) spot prices, AT’s solar and hydro
power generations, GR’s hydro power, and IT gas and HU lignite power generations. The presence
of AT-DELU CBTA in 2022, 2023 and 2024 indicates the significance of this variable in shaping the
dynamics of AT spot price. We point out that the FBMC approach is implemented to optimize the
cross-border electricity flows between AT, DELU, SI, HU and RO (section 3).

In the Greek case (Figure 13b) we observe that nodes (variables) 7(BG-DAp), 19(GR-Wind),
20(GR-Solar), 22(GR-HydroStrg) and 32(ITS-DAp) are present in years 2022-2024, indicating that
these factors (generation types in combination with Bulgarian and Italian spot prices) are dominant
in shaping the price for the entire period of analysis. Node 39 (RO-DAp) is present in both 2022 and
2024, while node 54(GR-IT, CBTA) affect the dynamics of Greek spot price during 2023. The directions
of the influence these factors exert on the Greek price is not shown in the MB DAG, but in the learned
local structure DAG’s, shown below. To conserve space in this manuscript, we do not show similar
figures as Figures 14 and 15 for the other spot markets, since the constituents of the corresponding
MBs are given in Table 10.
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In the Italian case (Figure 14), factors-nodes 47 (SI-DAp) Slovenia’s price, 36(ITS-Wind) Italy’s
wind power generation and 15 (GR-DAp) the Greek spot price, are the dominant factors affecting the
South Italian spot price during the whole period (2022-2024), while the Astria’s price 1(AT-DAp)
affects strongly Italy’s price in 2022 and 2024. The power generation via natural gas in Italy, 35 (ITS-
Gas) affects Italy’s spot price in 2023 and 2024 years, while during 2024 new factors enter the scene,
as 38(IT-Hydro), and the CBTAs 58(RO-BG) and 62(AT-CH). The last node 62, is the cross-border
transfer availability between Austria (AT) and Switzerland (CH). What is important from the above
cases is that the AT market’s spot price and its CBTAs with some of the neighboring markets, seem
to have played a crucial role in shaping the price dynamics in the SEE CC region.

Table 14. Results of Markov Blanket (MB) CSL, of all wholesale prices, for each year by applying the IAMBnPC

algorithm. Critical factors as nodes or components of the MB.

Causal structure learning by Markov Blanket (MB) (IAMBnPC algorithm)
Target Variable: AT-DA-p (1")
Year 2022 2023 2024 2022-2024
Nodes (Comp. of MB) 24,32,47,63,64,66 10,13,24,47,52,58,66 5,6,15,22,31,35,45,47,53,54,64  4,32,47,50,66
Target Variable: BG-DA-p (7)

Nodes (Comp. of MB) 15,19,21,39,42,46 _ 1528,31,39,53,66 15,39,47,50,62 15,19,21,35,39,64
Target Variable: GR-DA-p (15)
Nodes (Comp. of MB) 7, 19,20,22,32,39 7,14,19,20,22,32,54 7,19,20,32,39 1,7,14,19,20,32
Target Variable: HU-DA-p (24)
Noil;sl(\i;?p. 1,35,39,43,47 1,13,27,39,47,52 7,27,39, 47 1,27,38,39,43,47,66

Target Variable: ITS-DA-p (32)
Nodes(Comp. 1,4,7,15,23,30,36,47 10,15,26,35,36,37,47  1,15,18,35,36,38,47,58, 1,7,15,27,36,47,58
Of MB) 60, 63 52, 63 62 59
Target Variable: RO-DA-p (39)

Nodes(Comp.

Of MB) 7,15,24,43,56,62 7,12,24,43 7,15,23,24,47 7,23,24,32,43
Target Variable: SI-DA-p (47)
Nodes(Comp.
Of MB) 1,5,24,64 1,24, 35, 65 1,7,24,32,50 1,7,24,32,46,50

Note: for the full name of nodes & description, see Table 1. * Indicate the number of the variable in the Table 1

Disturbances in the volatility of its spot price and CBTAs seem to ‘propagate’ through the entire
path from AT to SEE countries, causing ultimately their price surge. Since the AT, SI, HU, DELU and
RO countries are in the Core CCR in which the flow-based (FB) coupling approach (a feature of the
Target Model) is used in calculating the capacity availability for trade, the connection of the
performance of the Target model with the issue of SEE markets price surge is now evident.
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Figure 13. a: DAG of the MB causal structure learned by the JAMBnPC algorithm, for AT-DA price target
variable, for years 2022 to Oct. 2024. DAG is based on Table 14 that contains the nodes (members) of the NB, for
each year and each target variable (spot price). b: DAG of the MB causal structure learned by the IAMBnPC
algorithm, for GR-DA price target variable, for years 2022 to Oct. 2024. DAG is based on Table 14 that contains

the nodes (members) of the NB, for each year and each target variable (spot price).

SI-DAp

Target variable : ITS-DAp
Markov Blanket (MB) Causal Structure DAG, learned by IAMBnPC algorithm
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Figure 14. DAG of the MB causal structure, learned by the IAMBnPC algorithm, for ITS-DA price target variable,
for years 2022 to Oct. 2024. DAG is based on Table 14 that contains the nodes (members) of the NB, for each year
and each target variable (spot price).
7.2. Local Causal Structure Learning LCSL Results

Having determined the Markov Blanket for each spot price, we proceed to determine the causal

relationships within it (i.e. between its members).

Table 15. Results of the Local Causal Structure Learning (LCSL) using the CMB algorithm.

Local Causal structure learning LCSL:

algorithm CMB
Target Variable: AT-DA-p (17)
Year 2022 2023 2024
Parents 63, 64 5,24, 47, 58, 60, 64 567,22, 251 2} 35,47, 55,
Children 24, 32,47, 66 4,39 ’
Spouses - - i
Target Variable: BG-DA-p (7)
Parents 1, 6,15,19, 35,39, 42 46 5,15, 31, 52, 60, 66 24,39
Children - 28, 39 15,21, 50
Spouses - - -
Target Variable: GR-DA-p (15)
Parents 7,19,32,39,47 7,10, 14, 19,22,32,37,54 7,19, 20, 32, 39, 45, 46
Children 22,44 - 5
Spouses - - -

Target Variable: HU-DA-p (24)

Parents 1,18, 39, 43 1,13, 22, 25,29, 39, 47,52 39

Children 47 7,27,29,43,47, 55
Spouses - i -
Target Variable: ITS-DAp (32)

Parents 7,61 5,7,15,29,35,36,47,52,63 1,15, 18,36,38,47
Children1,10,15,23,30,36,47,56,60,63 25 35, 58, 62
Spouses - - -

Target Variable: RO-DAp (39)
Parents 7,15,24,43,56 1,5,7,35 7,15,24,47
Children 62, 67 24 23,43
Spouses - - -

Target Variable: SI-DAp (47)
Parents 31,35 32,38
Children 11238 1,24, 39, 65 1,7,24,37,50

24,32, 64 e T

Spouces -

Notes: for the full name of nodes & description, see Table 1. Numbers in bold
indicate variables included in the Markov Blanket (MB) but now equipped with
direction arrows. * Indicate the number of the variable in Table 1.

We used the CMB algorithm [15], a very suitable method for real-world noisy data, as well as
very large data matrices (in our case, the data matrices have 8761 rows and 67 columns, for full year
hourly values). Table 15 summarizes the results. The table contains the MB found components, but
now with directions, and extends the results including further variables in the DAG, due to the
inhered wider ‘lenses’ of the LCS learning model.

From Table 15 we see that in 2022 the parents (direct causes) of Austria’s spot price, AT-DAp, are
the Austria’s CBTAs with CZ and DELU (AT-CZ, AT-DELU) i.e. AT-DAp is the child of these two
cross border availabilities, which are also members of its MB (see Table 14). Thus, these two CBTAs
seem to be the ‘initiators’ of the price volatility disturbances that ‘propagates’ through the entire
path from the Core CCR to the SEE CCR. In this year, AT-DAp has the spot prices of HU, ITS and
SI, and the AT-SI CBTA as its children. AT-Solar, HU-DAp, SI-DAp and the RO-BG, SI-IT and AT-
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DELU cross-border transfer availability cause Austria’s price in 2023, which in turn causes the level
of the Austria’s Gas generated power (AT-actGAS) and the price of RO, the parents of which in these
year, as will be shown in the analysis of RO market, are AT’s spot price and Solar power generation.
In 2024, AT-DAp has no direct effect (child) and is affected by a several factors: its parents are
Austria’s Solar and Hydro generated power, BG price, Greece’s Hydro, Hungary’s Gas and lignite
power production, Italy’s Gas generated power, Slovenia’s spot price and lignite generation, and
finally the GR-BG cross-border trading. Figure 15 depicts graphically the results above.

Target Variable: AFDAp , Local Causal Structure Learning : DAG network, learned by CMB algorithm

AT-CZ 83 | AT-DELU gq AT-Solar HU-DAp | 24 RO-BG \ — 2023

\ ﬁ;ﬁp . \\: ]/47 ] -
2022 N4 S wow G &
/.:/ N _ / | o -~ al.Ju'-|:£|.|.|

HU-DAR [ g4 | | a | 85
SI-DAp
= ITS-DAp AT-SI RD-DAP._u 1 | 4 | AT-Gas
— GR-Hydro HU-Gas HU-lignite s SI-DAp Si-Lignite GR-BG
AT-Hydro 22 ) k1] 35 a7 | 53 | 54
AT-Solar 7 . 3 o o £
8 |
[ & .
B4
AT-DELU
2024 ¢ A
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Figure 15. DAG of the LCSL (local causal structure), learned by the CMB algorithm, for AT-DA price target
variable, for years 2022 to Oct. 2024 (Green boxes are used for CBTAs).

Bulgaria’s spot price (BG-DAp) in 2022 is affected by (its parents are) the spot prices of AT, GR
and RO (AT-DAp, GR-DAp, RO-DAp), and the AT-Hydro, GR-wind, IT-Gas, and finally RO- Gas
and Lignite. BG-DAp has no direct effects (child) this period. In 2023, AT-Solar, GR-DAp, HU-
Lignite, SI-Hydro, CBTAs SI-IT and AT-SI are parents of Bulgaria’s spot price, which in turn has
direct effects (children) the HU-wind power generation and Romania’s spot price (RO-DAp).
During 2024, HU and RO spot prices are the causes of Bulgaria’s price, which affects (has children)
the Greece’s spot price and hydro generation, and Slovenia’s Gas generated power.

In 2022, Greek spot price has as parents the spot prices of Bulgaria’s, Romania’s, Italy’s and
Slovenia’s spot prices (BG-DAp, RO-DAp, ITS-DAp, SI-DAp), and Greece’s wind generated power,
and affects Greece’s and Romania’s hydro power generation. During 2023, Bulgaria’s price and gas
and lignite generated power, Greece’s levels in wind power and hydro storage, and finally Italy’s
price and solar generation are the causes of GR-DAp, which in turn has no children (effects). Italy’s,
Bulgaria’s and Romania’s spot prices, Greece’s wind and solar power generation, and Romania’s
hydro and lignite generations are the causes of Greece’s spot price in 2024, which in turn has no direct
effects.

Hungaria’s spot price (HU-DAp), in 2022, has as parents the spots prices AT-DAp, RO-DAp and
Greece’s Gas power generation, and Romania’s wind power generation and has direct effect
(children) the SI-DAp. Austria’s, Romania’s and Slovenian spot prices, Bulgaria’s, Greece’s and
Slovenia’s Hydro power generations, and HU load and Solar generation, are the causes of HU-DAp,
in 2023, which in turns has no direct effects. RO-DAp causes the Hungarian spot price in 2024, which
has direct effects the BG and SI spot prices, HU gas and solar power generation, the RO wind
generation and finally the CBTA BG-GR.

The Italian spot price in 2022, was affected by (caused by) BG’s price and CBTA IT-SI, and has
caused AT’s, SI's, GR’s spot prices, BG’s gas generation, GR'’s lignite, HU’s hydro and Italy’s wind
power generation, as well as the cross-border transfer availabilities SI-IT, IT-GR and AT-CZ. In 2023,
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BG’s, GR’s and SI's spot prices, HU’s and AT’s Solar generations, IT’s gas and wind generations, SI's
hydro generation, and the AT-CZ CBTA were its parent (caused by). AT’s and GR’s spot prices, GR’s
gas generation, and IT’s hydro and wind generations were the parents of Italy’s spot price in 2024,
which caused the CBTAs RO-BG and AT-CH, and IT’s gas generation.

In 2022, Romania’s spot price was caused by BG’s, GR’s and HU’s spot prices, as well as by RO’s
wind generation, and the CBTAs AT-CH, AT-HU, and IT-GR, while ha no directs effects. Its parents
in 2023 were the AT’s, BG’s spot prices, and AT’s Solar and IT’s Gas power generations, and has
directly affected the Hungarian price. With parents in 2024 the BG’s, GR’s, HU’s and SI's spot prices,
it has directly affected the GR’s and RO’s lignite generations

The parents of Slovenian spot price in 2022, were AT’s price, BG’s Solar and IT’s hydro
generations, and has affected the HU’s and IT’s prices as well as the CBTA AT-DELU. In 2023, its
parents were the AT’s, HU’s, RO’s prices and the CBTA AT-IT North. In 2024, AT’s, BG’s HU’s spot
prices as well as SI’ gas generation were its parents.

7.3. Results of Rolling Price Volatility Correlation and Cluster Analysis for Studying Spillover effects

Figures 16 and 17 show the rolling volatility curves of all DA prices, Figures 18 and 19 the rolling
volatility of all CBTA, and Figures 20 and 21 the correlation of rolling volatilities and their dendrogram
depicting the clustering process, respectively.
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Figure 16. Rolling volatility of AT, BG, GR, and HU DA prices using a window of 720 hours (month).

In Figure 16 we observe a relative resemblance in the dynamic behavior of spot price volatility
of AT, BG, HU, are almost similar. More specifically, the volatility curves trend initially upwards
during the third quarter of 2022, and then downwards in the 4t quarter of 2022, although in the case
of AT and HU we see a rather oscillating behavior before the end of the 34 quarter. In the case of ITS
and RO prices (Figure 17), the downward volatility is strongly oscillating. The volatilities of all spot
prices remain low during the 1st and 2" quarters of 2023, trending upwards reaching their peak
values in the 3¢ quarter, trending downwards in the 4 quarter of 2023, remaining at very slow values
during the 2nd and 34 quarters of 2024, and finally trending upwards and reaching peak values during
the 3 quarter of 2024. We can therefore observe clearly in Figures 16 and 17, the decoupling in
volatility terms, in the summer 2024: GR, BG, RO and HU have high volatility probably because of
the difference in prices between day and night. On the other hand, the volatility of prices in IT and
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AT is relatively low, while SI's volatility is somewhere in the middle. Looking at the other time
periods of our analysis, from 2022- Oct.2024, we observe identical volatility shapes.

In Figures 18 and 19, we show the curves of the rolling volatility of cross-border trading, CBTA,
between the markets shown in the figures. During 2022, the volatility of CBTA between Austria and
Switzerland (AT-CH) exhibits strong oscillations, with peaks in the middle of the 24 and 3 quarters,
as well as at the ends of the 1t and 4t quarters. In 2023, the volatility is constantly at a high level in
the 1t quarter, shows a V shape in the second, and drops in the third, while increasing during the 4t
quarter, taking its peak value at the end of 15t quarter of 2024.
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Figure 17. Rolling volatility of ITS, RO and SI DA prices using a window of 720 hours (month).

A strong increase in volatility is observed during 2" and 3 quarters of 2024, reaching its lowest
value near the end of August 2024, followed by an abrupt upward trend at the end of 3 quarter of
2024. The rolling volatility of the CBTA between AT and CZ exhibits an strong decrease at the end of
2022 2rd quarter, remaining constantly at a very low value up to the 2023 1¢t quarter, followed by a
lasting increase up to the end of 3+ quarter of 2023, after which a dropping and an increasing behavior
is observed in the 4 quarter, then remaining constant for the rest of the periods. The rolling volatility
CBTA between Austria and Germany (AT-DE), shows an abrupt decrease and then increase in 2022
Q1, remains constant during 2022 Q2 and Q3, drops and increase fast in 2022 Q4, and remains
constant at a high value for the rest of 2023-24 period. The rolling volatility of CBTA between Austria
and North Italy (AT-ITN), exhibits a constant dropping in the first three quarters of 2022, increases to
a peak value in the middle of 2022 Q4, followed by a fast dropping and then is trending upward with
oscillations, for the rest of the periods. The rolling volatility of CBTA between Austria and Hungary
(AT-HU), is low in the first three quarters of 2022, followed by a upward trending and reaching a
peak value in 2022 Q4, and finally exhibits an upward oscillating trend up to the 1st quarter of 2024,
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Figure 18. Rolling volatility of AT-CH, AT-CZ, AT-DE Cross Border Transfer Availability (CBTA) using a
window of 720 hours (month).
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Figure 19. Rolling volatility of AT-ITNorth, AT-S], AT-HU Cross Border Transfer Availability (CBTA) using a

window of 720 hours (month).

7.3.1. Correlation of Rolling Volatility Curves and Their Clustering Process

The interaction of all rolling volatility curves, described previously, is shown in Figure 20, where
the correlation of rolling volatility curves of all DA prices and all CBTAs (using a window of 720
hours-1 month), is shown. Using the information above, and in combination with the results of
CBTA'’s rolling volatility correlation, Figure 20, we can ‘capture’ the dynamics of the volatility
spillover, trying to detect significant decoupling in volatility patterns that may indicate cross-border
disruptions that cause the increase in the spot prices in this region. In Figure 20 we observe a relative
heterogeneity in the context of correlation of rolling volatility, across markets: the Italian and Austrian
markets are shown to have lower correlation of price volatility (see ‘orange” upper-left cells in Figure
20). For example, volatility correlation of ITS with HU (0.69), SL (0.75), AT (0.80), RO (0.74) and BG
(0.74), GR(0.74) markets, indicating that the correlations (a linear measure) of price volatilities are
lower between geographically distant and unconnected (directly) markets. However, we observe that
RO and BG markets, although distant and not directly connected with the IT market, exhibit larger
correlations with ITS than with HU market, and comparable with SI market. This ‘strange’ result is
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justified by the ‘weaknesses of this linear measure, as well as from the results of the MB and LCS
learning, sections 7.1 and 7.2. From the MB and LCS analysis (see Tables 14 and 15), the GR-DA price
(15) has parents the BG-DA price (7), whose parent is the RO-DA price (39), as well as the ITS-DA
price (32). The moderate correlations of price volatility of RO-DA and BG-DA prices with the Italian
price is due to this indirect connection, reflecting their nonlinear correlation, ‘captured’ via MB
analysis. The correlations of price volatility between the directly connected markets are the highest, as shown
in Figure 20 (yellow and orange cells, in the upper-left portion of the figure).

Thus, markets AT, HU, RO, BG seem to be the best candidates for volatility transmitters, and since
AT is the first market in the entire interconnection path, seems to be the most critical market, most
likely the initiator of the propagation of the price surges in SEE region. This is shown below, by
examining the volatility spillover across markets via a dendrogram (see Figure 21) of the correlation of
volatility values.

The highest correlations of price volatility of the Greek market are with the RO and BG (~0.948
and ~0.95 respectively), and smaller but statistically significant ones with all other markets. The
results of the rolling volatility shown in the figures are consistent with the results of the MB and LCS
learning which effectively contribute to capturing both linear and nonlinear spillover mechanisms of the
price volatility of all markets directly and indirectly connected.

We then examine how the spot price volatility correlation of the two groups of countries, the
group DE/AT/HU and the group RO/BG/GR, are compared. For the first group the correlations are
corr(ATp-Hup) = 0.65, corr(ATp-BGp) = 0.72, corr(ATp-GRp) = 0.69 and ATp-ROp) =0.70, so the mean
correlation of the group is 0.69. Similarly, corr(ROp-GRp) =0.77, corr(ROp-BGp) =0.98, corr(GRp-BGp)
=0.957, giving a mean volatility of 0.90. Thus, the rolling spot volatility within SEE CCR group (BG, GR)
and RO increases, driven by shared scarcity shock. We also observe a drop in the volatility correlation between
the two groups, from 0.90 to 0.69, indicating that the SEE CCR countries become their own self-contained
volatility bubble, while core markets experience minimal impact (at least temporarily) (all above correlations
are statistically significant).

We examine and compare now the volatility correlations between spot prices and CBTA, in each
of the two groups. We observe statistically significant negative volatility correlations in pairs of AT-
CH cross-border trading and the spot prices: corr(ATp-(AT-CH)) = -0.353, corr(BGp-(AT-CH))=-
0,56, corr(GRp-(AT-CH)) = -0.48, corr(Hup-(AT-CH)) = -0.64, corr(ROp-(AT-CH)) = -0.59, corr(SIp-
(AT-CH) =-0.65. Similar negative volatility correlations between Austrias’” CBTAs with other central
Europe (core) countries and SEE spot prices, are observed. Thus, when Austria decreases its CBTA with
countries that are interconnected with SEE countries, causes their spot prices to increase  substantially.
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Figure 20. Correlation of rolling volatility curves of all DA prices and CBTA using a window of 720 hours
(month).

How are the above results of the rolling volatility spillover related to the Target's model
expected ‘behavior’? We know that Target Model + Flow-Based Allocation — Market Distortion. The
Target Model’s flow-based market coupling (FBMC) assumes "physical feasibility optimization” but in
practice, its algorithms allocate cross-border capacities not just based on price signals but also on pre-
set constraints and priorities. Since, as we know, flows were redirected to Switzerland (CH) and
Ukraine, then SEE markets became de facto semi-isolated, losing competitive imports from cheaper
markets (DE/AT/HU). As a result, we can conclude that price and volatility in SEE spike due to a) supply
scarcity, b) loss of arbitrage smoothing and c) increased reliance on local (often more expensive) generation.
This finding however, raises a new relative question: Is there strategic behavior/ “price game”? This
is subtle. While it's unlikely that Germany/Austria/Hungary are explicitly “playing a price game”,
the structure of FBMC allows passive gain from structural decoupling:

e  When interconnection is “algorithmically blocked”, SEE CCR
market prices surge, but DE/AT/HU can export at higher prices via
different paths (or even import cheap and export expensive).

e  If cross-zonal capacities are not allocated efficiently, this can create
rent-seeking arbitrage opportunities, especially for dominant
players (e.g., traders, utilities) in the core.

Therefore, our answer could be yes! However, this may not be malicious intent, but the
algorithmic structure enables economic rents to concentrate in the core zone, leaving SEE markets
overexposed.

7.3.2. The Dendrogram of the Clustering Process

Figure 21 shows the twenty (20) hierarchically formed clusters in a dendrogram, shown also in
Table 16. We describe shortly the process of clustering of the correlations of spot prices and CBTAs
volatilities, to shed further light on the way they interact: RO-DAp and BG-DAp cluster first (cluster
1), by the first U-shaped lines connecting RO and BG in the hierarchical tree. The height of U-shaped
lines corresponds to the lower distance (~0.30) between the two data points, i.e. to the highest
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correlation between their rolling price volatilities. The next cluster (cluster 2) is that between HU spot
price and the previously formed cluster of RO and BG prices, with a distance slightly larger than
before, i.e. HU price has a lower correlation between its volatility, or the spillover of volatility
between HU and the two markets of BG and RO is lower than the spillover of volatility between BG

and RO.
Hierarch. Clustering of spot price rolling volatility correlations 2022 Oct24
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Figure 21. Dendrogram showing the clusters of the rolling volatility of DA prices and CBTA. Numbers show the
hierarchical position of the clusters, characterized as leaders, early and late followers. The highest strength of

volatility spillover is shown by the leader clusters.

The next cluster (cluster 3) is formed between the previously clusters of (RO-BG) and HU-(RO-
BG) with GR price, where the height of U is considerably larger (~0.35), indicating that the correlation
of price volatilities between the markets of the two previous clusters and GR is lower, i.e. the strength
of the volatility spillover between the GR and (RO-BG) and HU-(RO-BG). The process of clustering
continues similarly, so the next cluster (4) is between the CBTA between Greece and Bulgaria,
followed next by the cluster (5) between the spot prices of SI and the spot prices of cluster 3. Then
cluster 6 is between ITS (Italy South) and Austria (AT) spot prices. Thus, interestingly, the spillover
of volatility between AT and ITS prices is weaker than the spillover between BG and GR CBTAs, a
very interesting finding. Table 16 shows the hierarchical steps from cluster 1 to cluster 14 of the
clustering process. The cluster 8 made by CBTAs of AT-HU and AT-SI) with cluster 9 (BG-RO and (BG-
GR and GR-BG) is pivotal, since it emphasizes strongly how the CBTAs of AT, HU, SI, BG, RO, and
GR markets interact with, i.e. how the volatility of Austria’s CBTA spills over to the markets of BG
and GR. The clustering of the AT-CH and RO-BG CBTAs (cluster 12) also enhances the strong interaction
between the AT and CH markets with the two SEE markets of BG and RO! Similarly, CBTAs between Austria’s
and Germany’s (AT-DE) and Austria’s and Czechoslovakia’s (AT-CZ) electricity markets (cluster 15), also
indicates that the Austrian market is a pivotal market, more importantly it is a ‘transmitter’ of price and cross-
border activity volatility, between markets that are located ‘up-stream” and ‘down-stream’ in its connection
path with SEE markets that receive the price and CBTA volatility disturbances that cause their price surge.
Table 16 shows the hierarchy of the clustering process. Clusters 1, 2, 3,5,6 and 7 refer to pairs of several
DA prices while the rest to the pairs of CBTAs. From all the above and looking carefully at Figure 21
and table 16, we will try to make further distinction between the markets, based on the hierarchy of
their clustering process. More specifically, we identify markets as leaders, early and late followers,
according to the priority of clustering patterns. Also, we identify Bridge markets, the ones that connect
the Central Volatility Zones markets with the South Volatility Zones markets. Therefore, based on Figure 21
and Table 16, the leaders are the clusters 1, 2, 3, 4, 5, and 6, formed mainly by the spot prices and the
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CBTAs BG-GR and GR-BG, while early followers are the clusters 7, 8, 9, 10, formed only by cross-
border trading availabilities (CBTAs), and finally late followers, formed by clusters 11, 12, 13, 14, 15
and 16, also by clusters formed only by CBTAs. Clusters 17-20 (not shown) indicate clusters of
markets interactions with negligible spillover effects. It is obvious that the markets involved in the
early followers volatility patterns can also be the bridge markets.

From the dendrogram and specifically the leader clusters we observe the intensive volatility
spillover between BG and RO spot prices, as well as the intensive volatility spillover between the spot
prices of HU and BG, HU and RO, and between GR, BG and RO. The volatility spillover of cross-
border transfer availability between BG and GR is also intensive. Intensive is also the volatility
spillover of AT and ITS prices (cluster 6), which affects all the previous spot prices. The conclusion
here is that the volatility of spot prices of three Core CCR markets (HU, AT and RO), is diffused
towards and affects severely both the spot prices as well as the CBTAs of BG and GR. The spillover
of volatility is lower between the spot prices or CBTAs of the markets belonging to early clusters, e.g.
the CBTAs IT-SI, AT-HU and AT-SI, also the CBTA BG-RO with BG and GR, which also is diffused
and affects the spot prices of the SEE CCR markets of Greece and Bulgaria. Therefore, the clustering
process shown in the dendrogram creates a structure of interactions between the pairs of quantities in
the clusters (mainly leaders & early followers), a ‘suitable background’ in which if crucial events occur can
‘fire’ the formation of price spikes and surges, that can propagate towards the RO, BG and GR markets. Thus,
if a disturbance in prices or CBTAs take place in the ‘upstream’ (say AT, HU) of this ‘background’, the induced
volatilities diffuse to ‘downstream’ markets of BG and GR.

Under the light of the results, we examine the period 2023-2024, and specifically how the
Electricity flows (indicated by the dendrogram above) between Austria (AT), Czechoslovakia (CZ),
Switzerland (CH) and Germany (DE), in a cascading mode, have affected the dynamics of flows to
Hungary and then to SEE CCR countries Bulgaria, Greece and Romania (a Core CCR member).
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Table 16. The hierarchy of the clustering process.
Fluster Market fundamentals Fluster Market fundamentals

hierarchy hierarchy

BG-RO cbta with cluster
1st cluster ROp-BGp 9th cluster 4
2nd cluster HUp with cluster 1 10t cluster IT-SI cbta with SI-IT
31 cluster GRp with cluster 2 11 cluster cluster 8 with 9
4t cluster BG-GR cbta with GR- 12t cluster RO-BG with GR-IT

BG cbta

5t cluster SIp with cluster 3 13th cluster IT-GR cbta with cluster 7
6™ cluster ITSp with ATp 14 cluster AT-ITNorth Cﬁa with cluster
7% cluster cluster 6 with 5 15t cluster AT-DE with AT-CZ cbta
8™ cluster AT-HU SCIb (t:;t‘:lth AT- 16% cluster cluster 10 with 14

An important question then is raised, regarding possible supply disruptions not naturally
occurred but ‘artificially’, because of an algorithmic idiosyncrasy of the relevant mechanism. More
specifically, by “artificially disrupted” we mean disrupted not by real physical constraints (like lines
overloaded) but algorithmically by the market coupling rules incorporated in the Target Model,
especially flow-based market coupling (FBMC)), that can even redirect flows toward ‘wrong’ countries.
The complexity of the interactions described by the dendrogram above, that have created a ‘suitable
background’ awaiting for crucial events to happen to generate price spikes and surges, can be
revealed by summarizing the situation as follows. The background is that Germany, Austria,
Switzerland, and Czechia are tightly interconnected and were historically considered a "copperplate”
(no internal congestion). Switzerland is not in the EU Target Model (due to political reasons), but
physically it’s important. Since October 1, 2018, Germany and Austria are split into separate bidding
zones because of loop flows that affected Eastern Europe, especially Hungary. As already mentioned,
Flow-Based Market Coupling (FBMC) is now active in the Core region (which includes AT, CZ, DE,
HU, RO, etc.) since June 8, 2022. We now shortly review what happened in 2023-2024. Due to
excessive renewable generation (i.e. surpluses especially in Germany) and market prices differences
(especially after the Ukraine war energy crisis), electricity was flowing massively from North and
Central Europe toward the South-East. Hungary (HU) became a critical transit and bottleneck
country. Constraints on cross-border flows between DE-CZ, DE-AT, and AT-HU, have become
dominant in the calculation. Some flows were redirected* or "allocated differently”: flows that "were
supposed or wanted” to go to HU, RO, BG were sometimes "virtually” limited because of congestion elsewhere
(even if the physical lines HU-RO were not full). Ukraine’s interconnection with EU (via ENTSO-E
synchronization) after February 2022 allowed for commercial exchanges — mainly export from EU to Ukraine.
So, the natural question that now oppressively is raised is: was this redirection an artificial one? In
a sense, we answer yes, based on the findings above and the following scenario-argument: under the flow-
based allocation, if an export from Germany to Romania/Hungary uses critical branches (lines) that are
already congested (say in CZ or AT), then the market coupling limits how much can be sent, even if
locally the HU-RO line is not congested. Meanwhile, exports to Ukraine (through Slovakia or
Hungary) could still happen because they use different critical branches, or because their allocated
flow factor is lower. This means that even if physically we could have sent more toward Romania, the
algorithm limited it — not because of real-time physical overload, but because of calculated capacity

4 Commercial flows are redirected (e.g. to Ukraine) because of different impact factors, PTDFs
(Power Transfer Distribution Factors) determine how much a MW transfer from A to B uses each
line. RAM (Remaining Available Margin) is the headroom left on a line. If a transfer Germany —
Romania "uses" too much of a congested line in Austria or Czechia, it's limited. Export Germany
— Ukraine (via Slovakia) might "use" less congested lines (or different ones) — so it's allowed.
The core flow-based domain thus shapes what trades can happen.
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margins. Figure 22 shows the physical connections: DE (Germany), AT (Austria), CZ (Czechia), CH
(Switzerland), HU (Hungary), RO (Romania), BG (Bulgaria), GR (Greece), UA (Ukraine), as well as
how flows were meant to go toward RO and SEE CCR (HU — RO — BG — GR). Most importantly,
it depicts also how algorithmic flow-based rules limited flows toward SEE but allowed flows to
Ukraine. Specifically, it shows that normally electricity should flow DE — CZ — SK — HU — RO
— BG — GR (the right path), but the TM’s algorithm for flow-based market coupling (FBMC)
‘realized” a congestion in CZ and AT (mainly because Germany’s renewable surpluses heavily loaded
internal grids), resulting therefore in limited electricity transfers toward HU and further into RO/BG,
regardless the fact that the HU—RO line was physically free. However, export HU—UA (Ukraine)
was allowed because it had a lower impact on congested lines (different PTDF, see footnote 4).
Therefore, RO and SEE CRR markets (BG, GR) sometimes due to limited-reduced electricity imports
exhibited higher prices. Table 17 provides a short visual summary of the results of Figure 22.

Physical & Commercial flows, 2023-2024
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Nu L(-’ . = intended flow
HU—-RO congested algorithmically (limited by DE-CZ, . IFonlh.nucally limited
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Figure 22. Physical and commercial flows diagram, 2023-2024.

Table 17. provides a short visual summary of the figure above. Short visual summary.

From To Flow status Reason
DE - CZ — HU — .. Congestion upstream (DE-CZ,
RO BG Limited ( X)) AT)
HU — UA (Ukraine) Allowed (E) Lower congestion impact
ket i - -
DE/AT — CH No market coupling Switzerland outside EU
(@) market

7.3.3. The Behavior of the Target Model in the Issue of SEE Markets’ Price Surge

Based on the results depicted in Figure 22 and Table 17, we ask whether the European Target model
has failed in our case, in the sense that it has not prevented the prices surge in SEE countries in the
period 2023-2024. Having accepted in the previous section that the flow redirection was ‘artificial’,
we further dig into it carefully, since the answer seems to be nuanced, not a simple “yes’ or ‘no’. First,
a summary of what the European Target Model (ETM) was supposed to do is shown in Table 18.
TM’s Flow-Based Market Coupling (FBMC) mechanism plays a crucial role in the performance of the
model when applied in practice, since it models the real physics of the grid better than simple border-
based allocations. An evaluation of the TM'’s performance in dealing with the wholesale price
discrepancies and surges in SEE CCR markets is given in the comments of Table 18. Therefore, our
answer to the question is partly yes. Table 18 shows a detailed evaluation of the TM’s performance, in
the case of SEE prices surge.

Table 18. Detailed evaluation of the performance of the European TM, in the case of SEE spot price surge.
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Aspect Result in 2023-24 Comments
Price convergence X Failed Prices in SEE diverged strongly from Core (DE/AT/CZ)
Grid physical realism Worked FBMC realistically modeled grid congestions
Market integration X Partially failed SEE countries were semi-isolated
Security of supply Generally OK No blackouts, but expensive
Efficient capacity use X Not optimal Some capacities underused (especially HU-RO)

As a conclusion, although TM’s FBMC algorithm obeyed its design rules, price convergence and
"social welfare" goals were not achieved for SEE CCR markets, a finding of strategic consequences, as the
need for Europe to split large bidding zones further (e.g., Germany into north/south zones, now a real
fact) (ENTSO-e, 2025, [52]), as many experts have systematically argued. Another strategic
consequence is the need to invest massively in North—South transmission corridors (e.g., from Poland to
Romania, from Austria to Hungary and further ‘downstream’ to South). Also, considering all the
TM’s ‘malfunctions’ generated due to exports to Ukraine, mentioned previously, it is urgent for
Europe review priority treatment of Ukraine export vs internal EU flows in critical times, on a higher
strategic level, considering also the need of adjusting flow-based rules to better protect the markets in
vulnerable regions like SEE CCRs markets. Conclusion: the European Target Model worked mechanically,
but failed strategically for SEE countries in 2023-2024 — it did not deliver price convergence or fair market
integration for them under stress.

8. Discussion - Conclusions and Policy Recommendations

The findings in section 7 have shown that by applying a combination of ML methods (Markov
Blanket, MB, and Local Causal Structure- LCS- learning approaches) with a mainstream approach, the
analysis of volatility spillover effects between pairs of markets analyzed in this paper, has been proved
to be a powerful tool for causal feature descovery, helping to reveal the strongest factors influencing
(causing) the dynamic evolution of the surges of DA electricity prices occurred in the SSE CCR
countries, in the period of 2023-2024.

By focusing on causally relevant features, the tool improves model interpretability and predictive
performance while avoiding overfitting caused by irrelevant or redundant variables. We have shown
how Markovian Blanket, a causal feature selection and discovery approach, has revealed the
strongest factors in explaining the price surges in SEE electricity markets. We have also shown why
this approach is better than a typical regression approach, in our case. Using the Markov Blanket for
causal feature selection and discovery to explain price surges in SEE electricity markets has proved
to provide us with a robust framework for identifying the strongest explanatory factors, (out of a
‘large’ number of possible market parameters), focusing on causal relationships rather than mere
associations. We believe that via these causal interactions we finally managed to shed some light on
the ‘real” factors that shape the DA electricity price surges in the Southeast European countries.

To further enhance our results, we computed the rolling volatility curves of all crucial variables
included in the MB sets, for each market, and their correlations to detect volatility spillovers, across
the entire path of the spot prices and CBTAs, from north to south markets, to detect how ‘volatility
disturbances have propagated. The combination of MB-LCS learning and Volatility Spillover analysis
revealed the “partial failure’ of the European Target Model's capacity to protect the price surge in SEE
markets, i.e. we have found that TM facilitates cross-border price crisis diffusion.

Our findings have successfully explained how the transformation, via the target model, of a local
problem of supply-demand imbalance into an electricity price problem (due to energy exchange market
inflation) and then the spillover-diffusion of this problem to the entire path of the interconnected
countries (DE-LU -AT-HU—-RO—BG—GR), has challenged the effectiveness and reliability of the
target model, as a mechanism designed to ‘homogenize’ prices and more importantly in mitigating
price surges in a network of coupled electricity markets, thus its contribution to the energy transition
target is seriously criticized.
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8.1. Policy Issues and Future Directions

As we have already pointed out in section 4, several factors seem to have exacerbated FBMC'’s
challenges in the case of SEE CCR’s countries: a) the limited interconnectivity, since these countries often
rely on the Net Transfer Capacity (NTC) mechanism, contrasting with FBMC's application in Core
CCR'’s countries. Thus, this discrepancy seems to hinder their seamless integration into the European
‘core body’ power system, b) infrastructure constraints, as the delays in returning key power plants,
maintenance on critical interconnectors, such as the BG>RO line, further strained the system, and
finally c) external (weather) pressures, as climate events, like heatwaves, have increased electricity
demand, while geopolitical tensions, notably Ukraine's shift from exporter to importer, added
pressure on neighboring grids.

We conclude that while FBMC is designed to enhance market efficiency and integration, its
current implementation has, in certain scenarios, failed to protect SEE markets from spot price surges
and discrepancies compared to Central European markets. The July 2024 events exemplify how
algorithmic decisions, without adequate consideration of regional specificities and infrastructure
limitations, can lead to significant market distortions. Addressing these challenges requires a
reevaluation of FBMC's application in SEE, improved infrastructure, and enhanced coordination
among regional stakeholders.

Based on the results of the study, and specifically on the ‘response’ of the Target model (TM) to
the systematic discrepancies of spot prices between Core CCR and SEE CCR markets, we have
already addressed the challenges imposed on TM due to its ‘partial failure’ in dealing with this issue.
Therefore, to strengthen Target Model's capacity in successfully handling a future prices problem in
Southeast Europe, we propose several measures that seem to be necessary. First, the need for
accelerating market coupling, i.e. enhance cross-border market integration and expand interconnection
capacity, as well as investing in regional grid infrastructure to reduce bottlenecks, are immediate
actions to be taken. Secondly, the diversification of energy sources, via prioritizing the deployment of
renewables, particularly wind and solar, to reduce reliance on volatile fossil fuels, and supporting
energy storage solutions and demand-side management, are also urgent actions. Regulatory and
Institutional Reforms are also needed, to strengthen market competition and reduce the dominance of
state-owned utilities in the region under analysis, as well as a need to harmonize regulations to align
with EU standards and foster investor confidence. The Target model must adopt crisis-preparedness
mechanisms, i.e. developing tools to address price volatility, such as capacity mechanisms, strategic
reserves, and demand response programs. The model must also facilitate coordination of regional efforts
to manage energy security and supply risks. As a conclusion, the Target Model has not failed outright,
but its shortcomings in Southeast Europe highlight the need for targeted reforms and investments.
Addressing structural weaknesses and accelerating market integration are critical to ensuring that
the region can fully benefit from the model while mitigating the impacts of future energy crises.

8.2. Need for an EU-Wide Systemic Approach in Decision Making

It is profound from all above that the EU needs stronger governance — a system that allows it
more input into decisions made by individual countries that could have regional effects, such as
planned outages. Therefore, a strong request is for more EU regulatory oversight, an EU-wide regulator
for electricity that can have a systemic-holistic as well as ‘concurrent’ view of all interconnected and
interacted markets. Another crucial issue, revealed by this price surges is that the decision for
exporting to Ukraine has created a strong impact, that however is felt only by some countries without
sufficient electricity transfers within the EU. Thus, it seems that there is a need for re-designing
electricity market for options for Greece to ‘claw back windfall (unexpected) profits from generators and
protect consumers during this shock’, as the Greek Prime Minister stated. Thus, Greece, Bulgaria and
Romania have expressed jointly the need their interconnection projects to be funded from profits from the
wholesale electricity markets. Greece already charges a windfall (unexpected) tax on energy companies
and directs the proceeds in the form of subsidies to vulnerable consumers. In the current framework
the EU allows market interventions but with a substantial lag, i.e. after a prolonged period of high
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prices. The three badly affected from the prices surges countries, Greece, Romania and Bulgaria, have
expressed their request for a mechanism that will enable them to react faster to the price spikes. The
price disparities also have revealed the need for the EU to enhance electricity interconnectors, so in case
these disparities between countries reach extreme levels make the related interconnection projects
strongly justifiable due to enhanced cost-benefit considerations. Thus, the three Balkan countries
have requested that part of their revenues from electricity markets be invested in the development of the grids
enhancing and their cross-border transfer availability (CBTA).

8.3. Potential Limitations, Challenges & How to Overcome Them

We list at this point some possible limitations in our work as well as the actions we have taken
to strengthen further the reliability of our findings: a) Data Quality: Causal discovery needs high-
quality, time-synchronized data. In this study we used reliable and tested data provided by the
European organization ENTSO-E, as well as regulatory reports for Greece and other SEE markets, b)
Latent Confounders: we could extend the current study by applying Bayesian methods to account for
unobserved effects like political risks, a work left for future consideration, c) Computational Complexity:
the algorithms used in this work are very efficient in handling very large datasets, even larger than
those used in our work.
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