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Abstract 

We investigate the key factors that shape the dynamic evolution of Day-Ahead spot prices of seven European 

interconnected electricity markets of the Core Capacity Calculation Region, Core CCR (Austria AT, Hungary HU, 

Slovenia SI, Romania RO), the Southeast CCR (Bulgaria BG, Greece GR) and the Greece-Italy CCR , GRITR (Italy), 

with emphasis on price surges and discrepancies observed in SEE CCR markets, during the period 2022-2024. The 

high differences in the prices of the two groups, has generated political reactions from the countries that ‘suffer’ 

from these price discrepancies, as shown by the intense reactions of the governments of the affected countries 

and other institutions, as the sending of letters of Prime Ministers European Commission President). By applying 

Machine Learning (ML) approaches, as Markov Blanket (MB) and Local, causal structures learning (LCSL), we 

are able of ‘revealing’ the entire path of volatility spillover of spot price as well as the Cross-Border Transfer 

Availabilities (CBTA) between the countries involved, from north to south, thus uncovering i.e. ‘lifting the 

blanket’, to discover the ‘true’ structure’ of the path of causalities, responsible for the price disparity. The above 

methods are supported by the ‘mainstream’ approach of computing the correlation of the spot price and CBTA’s 

volatility curves of all markets, to detect volatility spillover effects across markets.  The main findings of this 

hybrid approach are: a) the volatility of Austrian market’s spot price and its CBTAs with DE, CZ, and SI, ‘uncovered’ 

to be a pivotal market, behaving as a ‘transmitter’ of spot price and cross-border activity volatility, over its entire connection 

path with SEE CCR markets, which finally ‘receive’ the volatility disturbances, causing their price surge, b) the combination 

of weather and geopolitical factors with the limited interconnectivity of SEE markets, seem to have exacerbated the impact 

of the Flow-based Market coupling method (FBMC) used in the Core CCRs,  on the prices of SEE CCR’s countries that 

rely on the Net Transfer Capacity -NTC- mechanism, by inducing non-intuitive flows, thus challenging the 

reliability of European Target’s model (based on FBMC) in protecting SEE markets from ‘unexpected-unfair-

irrational’ price surge. 

Keywords: Electricity wholesale electricity prices surge in SEE; Local causality structure; Markov blanket; 

Bayesian tool; wholesale Electricity prices; spot price volatility spillover 
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1. Introduction  

1.1. Price Disparity in Electricity Markets of Southeastern Europe (SEE) and Political Reactions 

In this paper we present a ML approach in detecting the most critical and causal factors responsible 

for causing an unprecedented electricity spot prices surge, a phenomenon also called ‘European 

regional electricity crisis’, appeared mainly in Bulgaria (BG), Greece (GR), by analyzing the entire 

path of their interconnections with the ‘core’ countries of Austria, AT, Hungary (HU), Slovenia (SI) 

and Romania (RO), as well as the Greece- Italy interconnection. We note here that AT, HU, SI and RO 

are members of the Core CCR (Core Capacity Calculation Region) while BG and GR constitute the 

Southeast European SEE CCR (regions in which specific methodologies are used to compute cross-

zonal capacities, see section 3). 

The ‘huge’ price disparity mainly in Bulgaria and Greece, and in Romania against the rest of the 

Core countries, challenges the capacity and success of the European electricity Target model, as we 

will see below. There are a variety of the factors that are behind this disparity, both ‘apparent and 

hidden’, as climatic, geopolitical and structural (generation mix, networks, interconnections), 

described in section 3. The above countries that have been strongly affected took several initiatives 

to ease the pressure this disparity has imposed on their electricity Day-ahead prices. Among other 

reactions, they have prepared a proposal for the formation of a permanent intervention mechanism that 

would be triggered any time electricity prices turn extremely high in their markets, especially in cases 

where their region is disconnected from the rest of the core energy markets. A characteristic example 

of such reactions, is the letter of the Greek Prime Minister sent to European Commission President, 

to propose a set of measures [1]. Similar reactions were recently reported, as in Romania and in North 

Macedonia in which also an examination has initiated of the reasons for the huge price disparity. 

Another characteristic reaction is that of the Romanian Minister of Energy who sated that the country 

would ask the EU for compensation for this high price difference, but however listing several 

problems related to geopolitics (due to war in Ukraine), weather, power generation mix, and 

interconnections of his country with AT and other Core CCRs. Also at ministerial level, Greece, 

Bulgaria and Romania sat at the same table on 11th September 2024, with the three countries agreeing 

on the diagnosis of the problem. The three energy ministries drafted a text that was sent to the 

Commission, asking for flexibility from the relevant EU Directive for the implementation of a claw-

back mechanism against high deviations in electricity prices. According to their draft text, this 

mechanism could be activated occasionally, for the imposition of a cap on the compensation of power 

plants and the recovery of excess revenues per technology, just as was done during the 2022 energy 

crisis. We point out here, however, that this mechanism (the request), in practice, cancels in practice the 

result of the Day-Ahead (DA) market price clearing methodology (the cornerstone of the European Target 

model), i.e. cancels the system's marginal price, which pays all units under this model, to contain large 

discrepancies. However, this objective seems to be very ambitious, as any modification on the core 

structure of the target model is a very crucial issue, and it needs the agreement of all involved markets’ 

‘shareholders. As the Greek Prime minister said [1], ‘I do not expect that there will be immediate 

solutions to the problem, but at least let someone seriously deal with it, to highlight it, so that we can 

make sure that we do not have such distortions again in the future’. 

1.2. Relating SEE CCR’s Price Discrepancies with Europe’s Target model (TM). Is Its Algorithm an 

Incomprehensible Black Box? 

After detecting the underlying crucial factors that have caused the discrepancies mentioned, it 

would be extremely interesting to examine whether these factors relate to the structural 

characteristics of the European Target model and more importantly, how this model has been 

performed in the case of the price surge mentioned. In fact, there are criticisms against the operational 

algorithm of the model, because at times, it seems that the algorithm has disconnected SEE countries 

from the rest of the European markets, turning the region into an energy island! The algorithm is based 

on the current mode of operation of electricity markets, which is different in Core CCRs and SEE CCRs, 
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in respect of the way the available capacities in the zonal bidding-zones are calculated. More specifically, 

SEE CCR countries trade according to the net transfer capacity (NTC) mechanism, while the Core CCRs 

countries use the flow-based market coupling (FBMC) system (ACER 2024 report, [2]). A description of 

the above two mechanisms, the critical role they play in the formation of price surge in the SEE CCR, 

is given in sections 3 and 3.1. A notable ‘malfunction’ of the application of FBMC, as described in 

section 3.1, is the production of counterintuitive power flows, that have drastically limited imports 

into high-demand regions like HU and RO, starting a price spike diffusion to ‘downstream’ BG and 

GR countries, a phenomenon challenging strongly the robustness of Europe’s ambitious TM, aiming 

at ensuring a fair and ‘homogeneous’ price landscape.  

1.3. Characteristic Events in SEE CCR’s Markets, Core and Regional Structural Distortions 

We give some critical events indicating the suffering of the SEE & RO electricity markets from 

extremely high prices. Due to exports to the North, in the evening (20:00) of 12 September 2024 in 

Greece, the maximum price was 485.60 euros per megawatt hour, while in Bulgaria 558.09 

euros/MWh, in Romania 678.5 euros/MWh and in Hungary 667.75 euros/MWh (see Supplementary 

material C (table C3) for the maximum prices in the evening, hour 20:00, of 12th September 2024). For 

comparison, in the same period, in the Czech Republic the maximum price reached 242.87 

euros/MWh and in Austria (a self-sufficient and net exporter market due to RES), at 256.15 

euros/MWh. Thus, a price discrepancy (difference) of 161% against Hungary is observed which is not 

a conjunctural spread but rather seems to be a permanent phenomenon, not accepted in an environment 

of coupled markets. It is as if Greece and Bulgaria, two neighboring coupled market, have a price 

difference of more than 100 euros per megawatt hour, an unacceptable fact that challenges the way the 

Target Model operates in this region. Thus, intensive skepticism is diffused among the members of the 

SEE CCRs, based on such critical events as above, that the Core CCR countries, using a variety of 

‘mechanisms’ in the Target Model’s FBMC approach can inhibit the normal energy outflows from their 

borders, reducing the capacity of cross-border transfer availability (CBTA). This occurred in the case of 

Hungary (HU), leaving the corridor between GR, BG and RO to meet Kiev's increased needs. This 

view is shared by the Greek and other governments in the region, as well as by other institutions as 

the president of the Greek Union of Industrial Consumers. It is broadly accepted that the ‘typical’ 

European electricity market is known to have some structural deficiencies-distortions that affect severely 

the competitiveness of EU’s member states (due to ‘systemically’ higher energy cost) [3], however due to the 

Ukraine crisis these distortions became more pronounced. Even at the borders of member states, for 

short distances, there exist price differences of 200, 300 or even 500 euros/MWh. The ‘mechanisms’ 

mentioned above refer to the advantages of the FBMC method in comparison to the Net Transfer 

Capacity (NTC) approach (in which cross-border transactions must cover at least 70% of 

interconnection capacity), followed by the SSE CCR countries (section 3). The ‘mechanisms’ are 

considered responsible for the reduction or even zeroing, via a specific mathematical algorithm (characterized 

by the politicians as a black-box), of the capacity of cross-border interconnections. Besides the ‘core’ structural 

distortions emerging from the TM’s application on the region of the suffering markets, there are also 

other ones having regional effects. For example, in the interconnection of Greek and Italian electricity 

markets a ‘mechanism’ seems to exist, making almost systematically the Greek spot price to increase 

during the hours of peak demand. For example, in the evenings, constant electricity exports to Greece 

take place, making the cross-border transfer capacity between the two countries relatively 

‘inadequate’ since the installed cable of 500 MW (at the time this report is written) becomes congested, 

and consequently disconnected from the system. Even more strange, the traditionally more expensive Italian 

wholesale market becomes cheaper than the Greek one. As an example, on 12thSeptember, at hour 20:00, the 

maximum price in the Italian energy exchange was 155.8 Euros/MWh, while the corresponding price in the 

Greek one reached at 485.60, a deviation of 212%!! 

The rest of the paper is structured as follows: in section 2 we provide a short literature review on 

the Markov Blanket-based causal feature selection accompanied by a description of Bayesian 

Analysis and Causality Structure Learning (CSL) approaches in electricity markets (extra information 
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is also provided in section 5). The crucial role of the power cross-border transfer availability between 

the markets analyzed, and especially its calculation method in Core CCR and SEE CCR counties, is 

discussed adequately in section 3. The description of data sets used, their summary statistics and 

correlation analysis of the market’s variables, is given in section 4. An extensive methodology of the 

MB and LCSL tools is provided in section 5, which also contains practical issues in applying these 

methods in the field of electricity market analysis. The approach of rolling volatility of the crucial 

factors (extracted by the above tools) in causing the spot price surge as well as the volatility spillover 

effects in SEE markets, is described in section 6. Section 7 provides the empirical results of both CSL 

and rolling volatility methods, with extensive comments, and finally in section 8 we include a 

discussion, the conclusions and policy recommendations.  

2. Literature Review on Markov Blanket-Based Causal Feature Selection 

From our intensive literature review, we manage to locate a few specific research papers that 

apply Markov Blanket-based causal feature selection directly to energy market analysis. First, we have 

found several foundational works that discuss, in general, the use of Markov Blankets in causal 

discovery and feature selection, while in section 2.2 we provide how MB has been adapted to energy 

market studies.  

In the work of [4], the authors demonstrate how a generic feature-selection algorithm that 

returns strongly relevant variables can be transformed into a causal structure-learning algorithm. The 

authors prove this under the Faithfulness assumption for the data distribution. [5], provide a 

comprehensive review of feature selection and causal discovery research, summarizing theoretical 

results and presenting methods to enhance the scalability of discovery algorithms. A paper that 

discusses the use of Markov blankets in Bayesian networks for feature selection, addressing 

challenges when data distributions violate the faithful condition, and in which the authors propose 

the concept of representative sets to improve feature selection robustness, is the work by [6]. The 

study of [7] introduces a causal feature selection method based on an extended Markov blanket, 

aiming to reduce the number of features while retaining key ones. Experimental results demonstrate 

the method's effectiveness. The article of [8] explores the intersection of causal inference and feature 

selection, emphasizing the role of Markov blanket discovery algorithms in both fields. It discusses 

methods to enhance the efficiency of these algorithms.  [9] summarize research on feature selection 

via the induction of Markov blankets over the past decade, providing insights into various algorithms 

and their applications. These papers mentioned above do not specifically address energy market 

analysis, however their methodologies have been adapted to study causal relationships and feature 

selection within that domain (see below). Applying Markov Blanket-based methods, in combination 

with LCSL methods to energy market data could help identify key factors influencing market 

dynamics, such as the dynamics of SEE price surges, by focusing on the most relevant variables and 

their causal interdependencies. Some areas on which MB has been successfully applied, are : a) 

healthcare: in predicting a disease, the Markov Blanket can identify the strongest causal factors (e.g., 

symptoms, genetic markers, lifestyle factors) while excluding irrelevant variables, b) in finance: for 

predicting stock prices, it can reveal key economic indicators, market trends, and company 

performance metrics that directly influence price movements, c) in marketing: in customer churn 

prediction, it can highlight the most influential factors (e.g., satisfaction scores, service usage 

patterns) while excluding noise. 

Application of Bayesian Analysis and Causality Structure Learning Approaches in Electricity Markets 

However, to the best of our knowledge, only a few papers dealing with the application of MB 

on analyzing energy markets were found in our literature review. [10] used a causality-based FS 

approach for data-driven dynamic security assessment of power systems. Their work describes how 

a probabilistic graphical model (of DAG type), tree augmented naïve bays structures, and an 

approximate MB, are used in building an online dynamic security assessment (DSA) framework. [11] 

have built an alternative approach to predictive modeling for energy demands, based on learning 
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causality structure using demand date from an Argentinian electricity company. An improved, non-

causal, feature selection algorithm of electricity price forecasting, using Support Vector Machine 

(SVM), is introduced by [12]. In their paper, the FS algorithm consists of threshold based mutual 

information (MI) (see section 5.2), together with inequality correlations of symmetrical uncertainty 

and pairwise evaluation methods, to perform electricity price forecasting. 

In [13] the authors have presented a Bayesian inference approach to unveil supply curves in 

electricity markets. In their study they introduced this approach, for revealing the aggregate supply 

curve in a day-ahead electricity market. Their proposed algorithm relies on Markov Chain Monte 

Carlo and Sequential Monte Carlo methods, and they argue that the major advantage of this approach 

is that it provides a complete model of the uncertainty of the aggregate supply curve, through an 

estimate of its posterior distribution. The authors have shown, in a small case study, that it is possible 

to reveal accurately the aggregate supply curve with no prior information on rival participants, 

information that can be used by a price-maker producer to devise an optimal bidding strategy. 

In [14], the authors have applied Bayesian Belief Networks in the modelling of wholesale 

electricity price formation, specifically in power systems with a high penetration of non-firm 

renewable generation. Their work links the mathematical Bayesian representation to established 

statistical and computational approaches using a functional supply-side wholesale electricity market 

pricing model and introduces a novel validation method employing volatility analysis to assess the 

case study’s performance. Their work is valuable in examining the transition of electricity generation 

from firm to non-firm renewable generation, a factor that creates changes in wholesale electricity 

price dynamics, therefore challenging existing modeling approaches due to the stochastic nature of 

wind and solar as the primary energy source. They showed that constructing robust pricing models 

essential for optimizing financial performance in today’s electricity markets, can be greatly facilitated 

by using their Bayesian Belief Networks approach. 

The aim of the paper in [15], is the study of Bayesian forecasting of electricity prices traded on 

the German continuous intraday market which fully incorporates parameter uncertainty. Their target 

variable was the IDFull price index, and the model’s forecasts were provided in terms of posterior 

predictive distributions. They validated the results, using the exceedingly volatile electricity prices 

of 2022. The IDFull index is the weighted average price of all continuous trades executed during the 

full trading session of any EPEX SPOT continuous contract. This index includes the entire market 

liquidity and thus represents the obvious continuous market price references for each contract. 

In [16] researchers have used Bayesian networks for analysis and prediction, to understand the 

causal relationships between variables such as consumption, greenhouse emissions, investment in 

renewables and investment in fossil fuels, towards making a reliable energy policy focusing mainly 

on renewable energy sector, and not only by observing energy scenarios in various economic or social 

conditions. In their paper have presented expert models using the capabilities of Bayesian networks 

in the renewable energy sector, considering renewables in Germany and Italy, using the tool 

BayesiaLab (a powerful desktop application-Windows/Mac/Unix- for knowledge management, data 

mining, analytics, predictive modeling and simulation, all based on the paradigm of Bayesian 

networks), with supervised learning, on a data set consisted of the consumption rate of geothermal 

and hydro energy sectors. They have found that, as oil prices grow, greenhouse emissions will decrease, 

and that the precision of the expert model is no less than 90%. 

In the paper [17], the authors have provided for the first time a complete literature review in the 

application of Bayesian networks in renewable energy systems, for which the implementation of 

conventional methods does not solve the problems associated with the complexities of these systems.  

According to the authors, recently, Artificial Intelligence techniques such as Artificial Neural 

Networks, Fuzzy Logic and Genetic Algorithms, have been widely used to deal with these problems 

in the field of Renewable Energy. However, the degree of uncertainty that is involved in these 

methods needs Bayesian Networks since this is one of the most effective theories to face them. In their 

work, they present the state of art of the applications of Bayesian Networks in Renewable Energy, 

such as, solar thermal, photovoltaic, wind, geothermal, hydroelectric energies and biomass, including 
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related topics such as energy storage, smart grids and energy assessment. They have found that the 

main applications were in forecasting, fault diagnosis, maintenance, operation, planning, sizing and 

risk management, and they argue that Bayesian Networks constitute a powerful and versatile tool 

for the field of Renewable Energy. 

With the rapid development of the economy, fully leveraging the priority role of electricity is of 

great significance for accelerating the modernization of electricity, continuously meeting the growing 

demand for electricity and social production and consumption and promoting socio-economic 

development. Among them, the role of electricity marketing is becoming increasingly prominent. 

How to fully mine and utilize the large amount of power marketing data accumulated by electric 

power enterprises over the years, to provide reliable support for the analysis and research of power 

marketing decisions. Bayesian network is a graphical pattern used to represent the continuous 

probability distribution of a set of variables, which provides causal information to discover potential 

relationships between data, and because of these characteristics, it is widely used in data mining. 

In the work of [18], researchers apply Bayesian network to the analysis and research of power 

marketing decisions and establishes a Bayesian network suitable for power marketing decision-

making for customer value evaluation, providing reliable support for marketing decision-making. 

They emphasized the ability of Bayesian network of making good decision models, based on their 

feature of making graphical patterns used to represent the continuous probability distribution of a 

set of variables, which provides causal information to discover potential relationships between data. 

3. Power Cross-Border Transfer Availability in Core and Southeast Europe 

Capacity Calculation Regions (CCRs) and Its Impact on the SEE Markets Spot in 

Prices  

Between 2022 and 2024, cross-border electricity transfer availability in Central Eastern and 

Southeastern Europe (CEE and SEE) significantly influenced wholesale electricity prices, particularly 

in the SEE region. Cross zonal trading opportunities are critical in curbing Day-Ahead or spot price 

volatilities. Due to insufficient cross-border transfer availability in year 2023, an explosion in negative 

DA prices (see Figure 5 and Tables 4–6 in this paper) occurred, because a low electricity demand 

coincided with an increased renewable supply in each bidding zone1. According to Figure 1 of 

ACER’s 2024 report [2] , Greece (GR) exhibited zero occurrences of spot negative prices, BG 11, RO 

32, HU 74, AT 111, SI 96 and IT-South zero negative prices, emphasizing the need for the markets 

with negative prices, for local flexibility and the criticality of the cross-zonal transmission capacity 

(measured by CBTAs in our data set). Another crucial parameter as well as a proxy for the level of 

implementation of a ‘really successful’ integration of the EU power systems, related to the cross-

border capacity, is the price convergence of bidding zones within Capacity Calculation Regions (CCR), 

in the wholesale market. During 2023, GR-IT CCR the price convergence (% of hours) was moderate2 

(16%) and full (28%), while in 2022 the values were 8% and 28% respectively [2].  According to the 

same report, the most crucial factors explaining the price convergence are the differences in the 

generation mixes, the way the implicit market coupling in DA markets is implemented and finally, and 

most important for the targets of our study, the level of transmission capacity available for cross-zonal trade 

(our CBTA variable). Thus, detecting the most crucial factors shaping the price surge and discrepancy 

between Core markets (AT, SI, HU and RO) and the SEE markets of BG and GR, is strongly linked to 

the above crucial factors in explaining price convergence, between the Core Capacity Calculation 

Region (Core CCR) of the core markets and the SEE CCR markets, two CC regions using different 

capacity calculation methods3, the Flow-Based (FB) in Core CCR and Coordinated Net Transfer Capacity 

 
1  Biding zone: the largest geographical area where energy exchange can take place between players without capacity 

calculation. 
2 Full:<1 Euro/MWh, Moderate: 1-10 Euro/MWh, Low: >10 Euro/MWh) 
3 Two possible methods the EU rules allow for TSOs to calculate the capacity made available for trade between EU bidding zones in a 
coordinated manner: the coordinated net transfer capacity (CNTC) approach and the flow-based (FB) approach. The CNTC approach, 
can be applied in regions where cross-zonal exchanges are less interdependent, therefore no significant added value is expected to be gained 
from adopting the FB approach.  The FB approach is defined as the default in areas of the transmission grid where the exchanges across 
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(CNTC), in the SEE CCR (the CBTAs in our data set are calculated by the CNTC methods, used by the TSO 

of the specific region). Table 1 (our elaboration based on data from [2]) informs about the 

implementation status of the Regional Capacity Calculation methodologies, for the markets analyzed 

in the present work. In 2023, the level of cross-zonal capacity offered, on average, in the biding zone 

borders of Core, GRIT and SEE CCRs, for the spot market is: 2100 MW Core, 2090 GRIT and 1200 

MW SEE. 

We now give some information, based also on [2], about the yearly evolution of transmission 

capacities available for cross zonal trade in the Day-Ahead market, that we consider to be very related 

to this analysis. More specifically, the level of interconnectivity of Member States calculated as the 

yearly average offered import capacity of every Member State as a percentage of peak electricity demand, 

and the yearly average offered export capacity of every Member State as a percentage of peak generation. 

Table 2 provides such information, from which we observe that the markets of Core CCRs show 

significantly larger levels of connectivity than the SEE CCRs and the GRIT CCR. This important 

information shows that the Core CCR markets included in flow-based market coupling in 2024 (also 

in 2022 and 2023) exhibit a considerable increase in their levels of interconnectivity, as measured by 

the above two measures. In general, as we have already mentioned, FB market coupling generally 

offers more exchange possibilities than NTC calculation, because it incorporates the modelling of the 

underlying electricity network in the allocation of cross-zonal capacities. The maximum import and 

export capacities in FB regions on a given bidding zone border are dependent on other exchanges in 

the region, which is not the case for NTC values, which are simultaneously feasible on all bidding 

zone borders. FB optimization-oriented approach leads to available capacities on specific network 

elements being allocated where they generate most socio-economic welfare. 

Table 1. Implementation status of the Regional Capacity Calculation methodologies, for the markets analyzed 

in this report (Based on data in [2]). 

Capacity Calculation 

Region (CCR) 

Calculation 

approach 

Day Ahead 

Regulation* Implementation Status 

Core: AT, HU, SI, RO FB Coupling 

Capacity Allocation and 

Congestion Management 

(CACM) 

Mostly 

GRIT: GR, IT 

Coordinated net 

Transfer capacity 

CNTC 

Capacity Allocation and 

Congestion Management 

(CACM) 

Mostly 

SEE: BG, GR 

Coordinated net 

Transfer capacity 

CNTC 

Capacity Allocation and 

Congestion Management 

(CACM) 

Mostly 

*Note: Article 34 of regulation (EU), 2015/1222 

To ensure that cross-zone capacity offered to the market is always efficiently allocated, all EU 

bidding zones borders, are now included in the Single DA-Coupling (SDAC) and the Single Intraday 

Coupling (SIDC), a very significant progress. In 2029, the EU Electricity Regulation [54], has ‘forced’ 

TSOs to offer the market a minimum level of cross-zonal capacity (CZC), considering however each 

TSO’s operational security limits. In 2020 a 70% minimum was imposed for implementing the requirement, 

without risking system security, allowing also the TSOs to opt for a transitional period. In this research 

paper, we assume that the way each TSO in the above CCRs (Core and SEE) have reacted to this 70% minimum 

of cross-zonal capacity has affected the dynamic evolution of the CBTAs of each market analyzed and 

consequently the spot price discrepancy between Core and SEE CCRs. 

  

 
bidding zone borders are highly interdependent, and models only a subset of network constraints, the so-called critical network elements 
with contingency (CNECs) (a line or transformer either within a bidding zone or between bidding zones). An optimized allocation of cross-
zonal capacities at the level of the capacity calculation region is therefore allowed, by the price coupling mechanism that can allocate the 
capacity made available on each CNEC to the electricity exchanges that generate the largest ‘added social value’. 
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Table 2. Level of interconnectivity of Member States in the day-ahead market measured as the average yearly 

import capacity as a percentage of peak demand and peak generation, in 2024. 

Capacity Calculation. 

Region (CCR) 

As % of peak 

demand (2024) 

As % of peak 

Generation (2024) 

   

Core: AT, HU, SI, RO 75, 102, 224, 47 53, 129, 273, 34 

GRIT: GR, IT 11, 13 11, 4 

SEE: BG, GR 32, 11 29, 11 

Limited Cross-Border Capacity and Market Fragmentation 

The minimum 70% requirement translates in practice into the margin made available for cross-zonal 

trade MACZT), which is so a proxy for the level of integration of EU national day-ahead electricity 

markets. MACZT corresponds to the portion of capacity of a given CNEC that is made available for 

cross-zonal trade by the TSOs. The current level of optimization of the cross-zonal electricity 

transmission infrastructure across European spot markets, as well as the degree of the 70% 

implementation requirement is assessed by a MACZT monitoring report.  However, despite EU 

regulations mandating that at least 70% of cross-border transmission capacity be available for 

electricity trading by the end of 2025, many regions in both Core CCR and SEE CCR, fell short. For 

example, based on the ACER’s report 2024 [2], during 2023, from the Core regions, only SI has 

achieved a value 97% of MACZT ≥ 70% , (i.e. the % of hours when the minimum hourly MACZT 

was above 70% ),  while the values of this index for other markets, in the same period, were: for AT   

20% ≤  MACZT<50%, for HU only  6% for MACZT > 70 and 61%  in the range 50% ≤ 

MACZT<70%, and RO 95% in the range 20% ≤ MACZT<50%.  

Regarding the SEE CCR, encompassing the bidding zone borders Romania-Bulgaria and 

Bulgaria-Greece, in which the CNTC method is applied, the percentage of hours when the relative 

MACZT was above the minimum 70% requirement or within predefined ranges, in 2023, are as 

follows (ACER, 2024) : a) Bulgaria : for BG>GR and GR>BG no limiting element in the Member State, 

b) Greece: for BG>GR,  44% in range MACZT ≥ 70%, 43% in range 20% ≤ MACZT<50%, while for 

GR>BG, 75% in range MACZT ≥ 70%  and 14% in range 50% ≤  MACZT<70% , and finally c) 

Romania: for BG>RO only 9%  in MACZT ≥ 70% , 53% in 20% ≤  MACZT<50% and 21% in 

MACZT<20%, while for RO>BG  only 18% in MACZT ≥ 70%, 45% in range 20% ≤ MACZT<50%, 

21 % in range 50% ≤ MACZT<70% and finally 14% in MACZT<20%. The above-mentioned report 

also presents the percentage of hours when the limiting CNEC was, from the perspective of every 

Member State, located in the neighboring Member State, and therefore the TSO had no limiting CNEC 

to report. The report shows that this was particularly evident in the case of Bulgaria, for which the 

limiting CNEC on the Bulgaria–Greece and Bulgaria–Romania borders is often located in Greece and 

Romania, respectively. It is worth mentioning that in 2020, the SEE CCR achieved this 70% minimum target 

only 8% of the time, indicating substantial underutilization of interconnectors. 

While the above information shows the extent to which Member States in the SEE region offered 

a minimum of 70% MACZT on its limiting CNECs in 2023, it does not include any information 

regarding the reasons for deviating below 70%. During the capacity validation period, reductions of 

capacity may be sent by either TSO on each bidding zone. During 2023 most limitations in the SEE 

CCR have been requested by the Bulgarian TSO, affecting so the MACZT results of the Greek and 

Romanian TSOs. A very important finding from comparing the Core and SEE CCRs adaptation in 

the 70% requirement is that the capacity calculation methodology implemented in the latter  region 

does not have any specific provision in order the calculated capacities to adjust accordingly to comply 

with the minimum cross-zonal capacity requirements, Of course, such a provision must consider the 

remedial action potential in each market of the region. Due to this, a relatively poorer performance is 

observed in the SEE CCR in 2023. According to ACER’s 2024 report, Greece has requested a 

derogation in applying the requirement. Specifically, the derogation requested by the Greek TSO 

does not include a commitment on the levels of MACZT offered but sets a minimum value of 15% of 
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the MCCC, a commitment that in Greece has been largely met in 2023. The same cannot be said about 

Romania’s action plan linear trajectory value of 43% of the MACZT in 2023. 

For the Greece-Italy CCR, the Percentage of hours when the minimum hourly MACZT was 

above 70% or within predefined ranges in the GRIT CCR for each Member State and oriented bidding 

zone border – 2023 (% of hours) are as follows: a) for GR: 78% in range MACZT ≥ 70%, for both 

GR>IT-South and IT-South>GR, while for b)Italy, 76% in range MACZT ≥ 70%, for IT-South>GR. 

We note here that the GRIT CCR contains the internal Italian bidding zone borders and the DC 

bidding zone border with Greece, thus the impact of exchanges with third countries is considered 

limited.  Additionally, thanks to the grid structural specifications, the impact of exchanges across 

other borders within the region is considered negligible (ACER, 2024).  

From the above we conclude that SEE CCR’s limited capacity may have hindered electricity 

imports during periods of high demand, contributing to price spikes. Furthermore, the SEE region's 

reliance on the Net Transfer Capacity (NTC) mechanism, as opposed to the Flow-Based Market 

Coupling (FBMC) used in Central and Western Europe, exacerbated market fragmentation. FBMC's 

complex algorithms (a critical feature of the Target model) sometimes resulted in counterintuitive 

power flows, limiting imports into high-demand regions like Hungary and Romania, and leading 

to significant price disparities.  

Figures 1 and 2 show the time series of CBTAs of Austria’s CBTAs with Hungary, Slovenia, Italy 

and Germany-Luxembourg, and between Romania and Bulgaria (RO-BG, BG-RO), Greece and 

Bulgaria (GR-BG, BG-GR), respectively. In Figure 3 we show the DA prices of the markets involved 

in the previous cross-border transactions, for a visual inspection of how these prices have been 

affected by CBTAs. In July 2024 (see Figure 1), reduced imports to Hungary occurred, a notable event 

highlighting FBMC's shortcomings. More specifically, after July 8, FBMC allocations from Western 

Europe to Hungary decreased by approximately 1,200–1,300 MW during peak evening hours (19:00–

24:00). This reduction was not due to maintenance or physical grid constraints but stemmed from 

FBMC's algorithmic decisions. Consequently, Hungary's HUPX market (Hungarian Power 

exchange, https://hupx.hu) experienced price surges up to €940/MWh, while neighboring Austria's 

prices remained around €61/MWh, illustrating a stark disparity across an internal EU border (see 

Figure 3). Almost concurrently, counterintuitive flows to Romania happened (see Figure 2). Romania 

faced reduced imports from Bulgaria due to maintenance on the BG>RO interconnector, decreasing 

capacity from 1,700 MW to 1,200 MW. To compensate, FBMC facilitated increased imports from 

Hungary. However, this led to situations where Romania's OPCOM market (the Romanian Electricity 

and Gas Market Operator) had prices up to €250/MWh lower than Hungary's HUPX, despite 

importing electricity from Hungary. Such non-intuitive flows strained Hungary's market further and 

underscored FBMC's limitations in addressing regional demand effectively. 
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Figure 1. The cross-border transfer availabilities (CBTAs) between HU and AT, SI and AT, IT and AT, and DE 

and AT. (All countries are in the Core CCR). Total flows, i.e. (+) from HU to AT and (-) from AT to HU. 

 

Figure 2. The cross-border transfer availability (CBTA) between RO and BG, and between GR and BG countries. 

(RO is in the Core CCR, and GR and BG in the SEE CCR). 
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Figure 3. DA-prices of AT, HU (Core CCR), and BG, GR (SEE CCR) markets. 

Several external factors have also enhanced the impact of limited cross-border capacity. More 

specifically, climate events such as record-high temperatures and droughts in SEE regions have 

reduced hydropower output and increased electricity demand for cooling, stressing the already 

constrained grid. Additionally, geopolitical tensions as the Russia-Ukraine conflict, disrupted energy 

supplies, with Ukraine, as we already mentioned, transitioning from an electricity exporter to an 

importer, increasing demand on neighboring countries' grids. Finally, infrastructure limitations, as 

delays in returning key power plants, like Bulgaria's Kozloduy nuclear plant, to full operation, 

reduced available generation capacity (the plant disrupted one of its two reactors, for a period until 

November 30, 2024, with the consequence the regional system to have 1 GW less). These factors have 

contributed to unprecedented wholesale electricity price spikes in the SEE region. Based on Figure 3, 

in August 2024, Greece's electricity prices more than doubled from €60 to €130 per megawatt-hour 

(MWh). Hungary (HU) experienced prices as high as €940/MWh during peak hours, while 

neighboring Austria (AT) saw prices around €61/MWh, highlighting severe regional disparities. 

Romania (RO) and Bulgaria (BG) also faced significant price increases, with day-ahead market prices 

reaching €700/MWh and €500/MWh, respectively. The findings above have stressed the importance 

of the interactions of volatilities of spot prices and CBTAs, that are enhanced further by the combined 

influences of external factors, geopolitical tensions and infrastructure limitations (as the limited 

interconnectivity of SEE countries, emerging from their reliance on the Net Transfer Capacity (NTC) 

mechanism, contrasting with FBMC's application in Central Europe, a critical discrepancy that 

hinders seamless integration and efficient electricity distribution). All these findings challenge the 

status of the current policy, an issue discussed in section 8.  

4. Data Sets, Preprocessing, Summary (Descriptive) Statistics, Correlation 

Analysis and Cross-Border Transfer Availability 

We use data downloaded from ENTSO-E Transparency platform (transparency@entsoe.eu), for 

our set of seven electricity markets, including Austria (AT), Bulgaria (BG), Romania (RO), Slovenia 

(SI), Greece (GR), Hungary (HU), and Italy (South bidding zone) (ITsouth), from January 2022 to 

October 4, 2024. We analyze hourly wholesale price data expressed in in Euro/Mwh. The countries 

under analysis are shown in Figure 4, which also depicts the borders where the calculation of the 

Capacity from the interfaces changes from Net Transfer Capacity (NTC) to Flow Based (FB) [2]. The 
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dataset covers the period from 1.1.2022 to 4.10.2024, their missing values have been filled 

appropriately, with frequency converted from originally 15 minutes to hourly data. Thus, the size of 

dataset is 24194. Figure 5 shows the time series of hourly spot prices of all markets for the period of 

1st January 2022 to 4 October 2024, and Figure 6 the time series of Greek DA hourly spot prices. Two 

distinct periods of high spot prices and volatility, in all markets of our analysis, are observed in Figure 

5. The first is from early spring (March) of 2022 to December 2022, with a pronounced upward and 

downward price oscillations, and a peak price occurring on 30th of July (1041 Euro/MWh). The second 

period covers the summer of 2024, ending approximately at the end of August 2024. We describe 

shortly at this point the main drivers that seem to be the prevailing factors in shaping the price 

dynamics shown in Figure 5. For the 2022 price surge the main drivers are : a) gas crisis from Russia’s 

Invasion of Ukraine, since Russian pipeline gas flows into Europe plummeted, TTF gas prices spiked 

over €300/MWh in late August 2022, and finally power prices in gas-dependent regions soared as 

gas-fired generation costs increased dramatically, b) high CO₂ Prices, EU ETS prices sustained levels 

above €70–€90/tonne, resulting to elevated variable costs for gas, coal, and lignite units, c) low Hydro 

and Renewables output, due to severe drought conditions reduced hydro output in parts of the 

Balkans, also low renewables increased reliance on thermal generation, d) nuclear and thermal 

Outages, since extensive nuclear outages in France reduced regional supply, and as a consequence 

raising cross-border demand into the SEE region, e) strong market interconnections, i.e. tight 

markets in Italy, Austria, and Germany that quickly impacted neighboring SEE countries via cross-

border flows, and finally f) risk premiums and volatility, since market uncertainty drove elevated 

forward prices and risk premiums, spilling over into day-ahead markets. Thus, in the March-April 

2022 period, these drivers are responsible for spot prices in the region to frequently exceed €300–

€400/MWh, while in peak hours during crisis events, sometimes surpassed €500–€800/MWh. 

Similarly, for the second period, in 2024, of high spot price volatility, the main drivers are: 1) 

Stabilized but Elevated Gas Prices : TTF gas prices ranged ~€25–€35/MWh in 2024, far below 2022 

peaks but above historical norms, and LNG markets remained tight due to global competition, 2) 

Extreme heatwaves : repeated heatwaves across Southern and Eastern Europe, increased cooling 

demand, and lower river levels affected hydro generation and thermal plant cooling capacity, 3) 

Reduced nuclear and hydro generation : France’s nuclear fleet partially recovered but still faced 

outages, and Balkan hydro production again stressed by droughts, 4) Transmission Constraints: 

cross-border congestion, particularly toward Italy, constrained SEE import potential, 5) Sustained 

CO₂ Prices, EU ETS prices in the range of €65–€85/tCO₂, and finally 6) High Solar Penetration: major 

solar capacity expansions in Italy, Greece, Bulgaria, and Romania, depressed midday prices but 

triggered steep evening ramps.  

 

Figure 4. Left: definition of the bidding zone review regions as per Article 3 (2) of the BZR Methodology 

(Adopted from ACER 2024, [2]) and Right: ENTSO-E, 2025, Interconnections Grid. The left picture shows the 

Core and SEE CC regions and the right their interconnection lines. 
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Figure 5. Time series of hourly spot prices of all markets for the period of 1st January 2022 to 4 October 2024, 

with quarter boundaries, and values of price spikes at specific dates. 

 

Figure 6. Time series of Greek DA hourly spot prices for the entire period of 1st January 2022 to 4 October 2024, 

with quarter boundaries, and values of price spikes at specific dates. On 4th September 2024, at 21:00, the 

electricity spot hourly Greek price reached 942 Euro/Mwh. 

Table 3. Shows the data set of all fundamental variables considered in our work, collected for each of the seven 

electricity markets. Descriptive statistics for the hourly spot prices, for each market, are given in Tables 4, 5, 6, 

and 7 (for each separate year and for the entire period 2022-24, respectively). List of all sixty-seven (67) 

fundamental variables considered in our work, for all electricity markets. In bold letters, the DA spot prices of 

the markets under analysis. 

Node 

(Variable) 
Name Description  Unit  

1 AT_DA_price DA Electricity price, Austria 
Euro/MW

h 

2 AT_actTotal_Load Actual Total Load, Austria MW 

3 AT_foreTotal_Load Forecasted Total Load, Austria MW 

4 AT_actGas Gas power production, Austria MW 

5 AT_Solar_Fct Solar forecst. Power product. , Austria MW 

6 AT_Hydro_Actual Hydro Power Forecasted, Austria MW 

7 BG_DA_price DA Electricity price, Bulgaria 
Euro/MW

h 

8 BG_actTotal_Load Actual Total Load, Bulgaria MW 

9 BG_foreTotal_Load Forecasted Total Load, Bulgaria MW 

10 BG_actGas Gas power production, Bulgaria MW 

E
u
ro

/M
W

h
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11 BG_Wind_Fct Wind forecast generated power, Bulgaria MW 

12 BG_Solar_Fct Solar forecast. Power product., Bulgaria MW 

13 BG_Hydro_Actual Hydro Power production, actual, Bulgaria MW 

14 BG_actual_Lignite Lignite act power production, Bulgaria MW 

15 GR_DA_price DA Electricity price, Greece 
Euro/MW

h 

16 GR_actTotal_Load Actual Total Load, Greece MW 

17 GR_foreTotal_Load Forecasted Total Load, Greece MW 

18 GR_actGas Gas power production, Greece MW 

19 GR_Wind_Fct Wind forecast generated power, Greece MW 

20 GR_Solar_Fct Solar forecast. Power product., Greece MW 

21 GR_Hydro_Actual Hydro Power production, actual, Greece MW 

22 
GR_Hydro_Storage_Act

ual 
Hydro Power act consumption, Greece MW 

23 GR_actual_Lignite Lignite act power production, Greece MW 

24 HU_DA_price DA Electricity price, Hungary 
Euro/MW

h 

25 HU_actTotal_Load Actual Total Load, Hungary MW 

26 HU_foreTotal_Load Forecasted Total Load, Hungary MW 

27 HU_actGas Gas act.power production, Hungary MW 

28 HU_Wind_Fct Wind forecast generated power, Hungary MW 

29 HU_Solar_Fct Solar forecast. Power product., Hungary MW 

30 HU_Hydro_Actual Hydro Power production, actual, Hungary MW 

31 HU_actual_Lignite Lignite act power production, Hungary MW 

32 ITS_DA_price DA Electricity price, Italy (South) 
Euro/MW

h 

33 IT_actTotal_Load Actual Total Load, Italy MW 

34 IT_foreTotal_Load Forecasted Total Load, Italy MW 

35 IT_actGas Gas power production, Italy MW 

36 IT_Wind_Fct Wind forecast generated power, Italia MW 

37 IT_Solar_Fct Solar forecast. Power production., Italia MW 

38 IT_Hydro_Actual Hydro Power production, actual, Italia MW 

39 RO_DA_price DA Electricity price, Romania 
Euro/MW

h 

40 RO_actTotal_Load Actual Total Load, Romania MW 

41 RO_foreTotal_Load Forecasted Total Load, Romania MW 

42 RO_actGas Gas power production, Romania MW 

43 RO_Wind_Fct Wind forecast generated power, Romania MW 

44 RO_Solar_Fct Solar forecast. Power product., Romania MW 

45 RO_Hydro_Actual Hydro Power production, actual, Romania MW 

46 RO_actual_Lignite Lignite act. power production, Romania MW 

47 SI_DA_price DA Electricity price, Slovenia 
Euro/MW

h 

48 SI_actTotal_Load Actual Total Load, Slovenia MW 

49 SI_foreTotal_Load Forecasted Total Load, Slovenia MW 

50 SI_actGas Gas power production, Slovenia MW 

51 SI_Solar_Fct Solar forecast. Power product., Slovenia MW 

52 SI_Hydro_Actual Hydro Power production, actual, Slovenia MW 

53 SI_actual_Lignite Lignite act power production, Slovenia MW 

54 GR_BG                  Cross Border Transfer, GR-BG MW 

55 BG_GR                  Cross Border Transfer, BG-GR MW 

56 IT_GR                  Cross Border Transfer, IT-GR MW 

57 GR_IT                  Cross Border Transfer, GR-IT MW 

58 RO_BG                  Cross Border Transfer, RO-BG MW 

59 BG_RO                  Cross Border Transfer, BG-RO MW 

60 SI_IT                  Cross Border Transfer, SI-IT MW 

61 IT_SI                  Cross Border Transfer, IT-SI MW 
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62 AT-CH Cross Border Transfer, AT-CH MW 

63 AT-CZ Cross Border Transfer, AT-CZ MW 

64 AT-DELU 
Cross Border Transfer, AT-DELU (Austria to Germany-

Luxembourg) 
MW 

65 AT-ITNorth Cross Border Transfer, AT-ITNorth MW 

66 AT-SI Cross Border Transfer, AT-SI MW 

67 AT-HU Cross Border Transfer, AT-HU MW 

Table 4. Descriptive statistics of hourly spot prices, for all markets, 2022-4th October 2024. 

2022-Oct.2024 

Statistics HU RO BG GR ITSouth SI AT 

min -500.0 -106.30 -45.00 -1.02 0.00 -500.00 -500.00 

max 1047.10 1021.60 950.00 942.00 870.00 1023.00 919.60 

mean 161.89 159.40 154.75 170.61 180.85 159.71 151.06 

median 120.96 119.74 119.28 130.63 134.06 117.90 111.30 

mode 0.0 0.0 0.0 100 100 0.0 0.0 

Std 128.53 128.13 119.10 117.57 120.71 126.31 122.89 

prctile25 84.18 83.13 83.09 92.77 104.08 82.86 78.46 

prctile75 204.15 200.63 197.51 223.07 220.00 203.50 189.10 

iqr 119.97 117.50 114.42 130.30 115.92 120.64 110.64 

Table 5. Descriptive statistics of hourly spot prices, for all markets, 2022. 

2022 

Statistics HU RO BG GR ITSouth SI AT 

min 0.0 0.0 0.0 -0.01 0.0 0.0 0.0 

max 1047.10 964.20 936.30 936.30 870.00 879.30 919.60 

mean 271.62 265.26 253.20 279.86 295.77 274.43 261.36 

median 237.20 232.58 225.08 249.28 257.23 240.01 224.00 

mode 138.41 138.41 138.41 200.00 650.00 220.00 190.00 

Std 139.88 142.95 131.20 116.10 131.03 137.00 138.47 

prctile25 178.25 165.31 163.27 206.89 206.43 185.03 169.09 

prctile75 345.26 342.15 320.14 339.31 370.00 343.24 336.98 

iqr 167.00 176.84 156.86 132.42 163.56 164.20 167.88 

Table 6. Descriptive statistics of hourly spot prices, for all markets, 2023. 

2023 

Statistics HU RO BG GR ITSouth SI AT 

min -500.0 -23.18 -1.10 0.0 0.0 -500.0 -500.0 

max 
437.47   

 
436.89 400.00 383.82 298.20   426.18   437.47 

mean 106.79  103.71   103.82   119.09   125.03   104.30   102.11 

median 
104.48   

 
102.72   102.74   112.47   120.94   103.38   101.91 

mode 0.0 122 122 100 100 120 0.0 

Std 48.43 50.78 50.33 50.18 37.69 45.33 44.40 

prctile25 83.75 79.26 79.20 93.00 103.47 83.21 82.09 

prctile75 133.56 132.56 132.54 141.33 145.30 130.95 128.84 

iqr 49.81 53.30 53.34 
48.33 

 
41.83 47.74 46.75 
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Table 7. Descriptive statistics of hourly spot prices, for all markets, 01-01-2024 to 4th October 2024. 

2024 (up to 4th October) 

Statistics HU RO BG GR ITSouth SI AT 

min -149.98 -106.36 -45.00 -1.02 0.0 -105.88 -426.42 

max 999.0 1021.6 950.00 942.0 252.1 1022.3 555.7 

mean 90.15 93.53 92.37 94.79 103.24 81.85 70.48 

median 81.85 85.00 85.00 88.67 102.84 79.72 74.21 

mode 0.0 0.0 0.0 0.04 100.0 0.0 0.0 

Std 78.91 78.66 74.06 64.93 31.22 56.02 37.19 

prctile25 60.49 61.65 61.42 69.53 88.84 58.90 55.13 

prctile75 104.98 108.01 107.49 108.11 115.59 101.82 91.20 

iqr 44.49 46.35 46.06 38.58 26.75 42.91 36.07 

4.1. Boxplots, Aggregated and Hourly-Wised Summary Statistics of Spot Prices 

The boxplot comparison of hourly electricity prices across the seven markets reveals notable 

differences in both price levels and variability. Figures 7 and 8 show, for comparison purposes, the 

boxplots of the distribution of AT and RO DA prices, hourly-wise i.e. for each separate hour H1 to 

H24. The boxplots of the rest of the markets are given in Supplementary material D. The same 

information, quantitatively, as well as other descriptive statistics, is provided in Tables A1–A7, of 

Supplementary material A. From the figures we see that, for the price levels, Romania (RO) shows 

consistently higher spot prices than Austria (AT) across almost all hours. The median prices in 

Romania are around 200–300 EUR/MWh, while Austria's median prices mostly range between 100–

200 EUR/MWh. Regarding volatility and outliers, Romania exhibits greater price volatility, indicated 

by wider interquartile ranges (IQRs), a larger number of extreme outliers (red pluses), often 

surpassing 800–1000 EUR/MWh, while Austria also shows outliers but with lower frequency and 

magnitude compared to Romania. For the daily hourly trends, AT’s prices are relatively stable 

throughout the day, and slight increases in the morning (8–11) and evening (18–21) hours, reflecting 

typical demand patterns, and finally price distribution is narrower, suggesting a more stable market. 

RO’s prices tend to spike during evening hours (19–22), both in terms of median and outliers. 

Morning hours (7–10) also show noticeable increases in median price and spread, and prices are 

lowest and least volatile between 1–5 AM, consistent with low demand. Now, regarding negative 

prices, Austria exhibits occasional negative prices, especially in the afternoon hours (13–17), a fact 

that could be due to high renewable (e.g., solar) generation exceeding demand, grid constraints or 

export limitations. Romania, in contrast, does not display negative prices, suggesting tighter supply 

conditions or less flexible generation mix, and possibly lower penetration of renewables or less 

dynamic market adjustments. Table 8 below gives a summary of the comments above. 

Table 8. Summary of differences of AT and RO spot hourly price boxplots . 

Aspect Austria (AT) Romania (RO) 

Median Prices Lower (~100–200 EUR/MWh) Higher (~200–300+ EUR/MWh) 

Volatility Lower Higher 

Outliers Present but moderate Frequent and extreme (>1000 EUR/MWh) 

Negative Prices Occasionally present None observed 

Peak Price Hours Mornings and evenings Spikes during mornings and especially evenings 

Market Behavior More stable and flexible Higher stress and supply volatility 

Table 9 presents summary statistics across the entire datasets (not just by hour) (we have computed 

mean, median, standard deviation (St.dev.), interquartile range (IQR) etc., per market, aggregating 

all 24 hours. This gives us a general picture of volatility and price level without the hourly resolution. 

The indicators (statistics) (average daily price, standard deviation, average daily peak-of-peak 

spread, skewness and kurtosis and frequency of extreme prices, e.g. > 90th percentile) help us rank 
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the markets more broadly, without dissecting hour-by-hour details (which are, however. shown in 

Figures 4–10 and Tables A1–A7 of Supplement A). The note at the bottom of Table 7 explains the 

indicators shown.  

Thus, based on Table 9, the Italian and Greek markets (ITS and GR) exhibit the highest mean and 

median prices, suggesting a generally more expensive electricity supply, while Slovenian and Austrian 

markets (SI and AT) have the lowest medians (117.9 and 111.3 respectively), indicating more 

affordable rates. Greek market displays the wider interquartile range (IQR=120.6), reflecting greater 

variability in hourly prices and potentially higher market volatility (even though has the lowest aggregated 

st.dev). In contrast, AT and BG markets have a relatively narrow IQR, pointing to more stable and 

predictable pricing. Romanian and Bulgarian markets have the largest Peak-Off-Peak (PoP) spreads (95.3 

and 94.1) followed by Hungarian and Greek markets (86.1 and 76.43). The largest CV (coefficient of 

variation, a volatility measure) is presented by TA and RO markets, followed by HU and GR markets. 

Additionally, skewed distributions in markets TA, BG, HU, ITS and RO hint at asymmetric pricing 

behavior, showing a tendency for upward price spikes. The table shows no differences between the 

markets for the frequency of extreme points, and HU exhibits the highest price, followed by SI and 

RO markets. From Table 10 we observe that the Greek and Italian markets have the highest total 

number of hourly price outliers. 

Table 9. Aggregated summary statistics for market comparison (per market analysis). 

Marke

t 

avgPric

e 

medianPr

ice 
St.Dev IQR 

minPric

e 

maxPric

e 
CV 

Peak-Off-

peak 

Spread 

(PoPS) 

Extreme-

FreqPct 

skewnes

s 

kurtosi

s 

AT 151.067 111.315 122.897 110.645 -500.000 919.640 0.814 59.608 9.995 1.841 7.233 

BG 154.763 119.295 119.108 114.435 -45.000 950.010 0.770 94.164 9.995 1.802 7.339 

GR 170.618 130.650 117.579 130.290 -1.020 942.000 0.689 76.433 9.999 1.604 6.496 

HU 161.898 120.970 128.535 119.975 -500.000 1047.100 0.794 86.169 9.999 1.811 7.179 

ITS 180.862 134.070 120.720 115.925 0.000 870.000 0.667 59.204 9.999 1.842 6.816 

RO 159.411 119.750 128.138 117.520 -106.360 1021.610 0.804 95.312 9.999 1.849 7.267 

SL 159.725 117.910 126.317 120.660 -500.000 1022.270 0.791 74.068 9.999 1.757 6.853 

Note: IQR : interquartile range, CV: Coefficient of Variation=std/mean, PoPS: Peak-off-peak spread i.e. avg 

price (7-10pm) - avg price (2-5am), Extreme-Freq Pct : frequency of extreme prices (%>90th percentile) 

Table 10. Average and total (across all hours) number of hourly price outliers. 

Market 
Average number  

of Outliers 
Total number of outliers 

AT 20.13 483 

BG 26 630 

GR 31 767  

HU 27.1 651 

ITS 30.5 733 

RO 28 672 

SI 24.6 592 
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Figure 7. Box plot of the distribution of the Austrian (AT) DA prices, 2022-Oct2024. 

 

Figure 8. Box plot of the distribution of the Romanian (RO) DA prices, 2022-Oct2024. 

4.2. Correlation Analysis of All Raw Data, 2022-Oct2024 

Even though correlation analysis is not capable of revealing any causalities, profound or hidden, 

its result can serve as a useful, albeit rough guide of the ‘interactions’ between the variables involved. 

We use correlation analysis (Figure 9a–d) to ‘detect’: a) strong regional spot price interactions, b) 

price-fuel correlations, c) North-South correlation gradient (strength), d) cluster of markets and 

finally e) the role of local fuels. High correlations between neighboring countries' Day-Ahead (DA) prices 

(e.g., AT-DA-price, HU-DA-price, SI-DA-price) suggest significant market coupling or shared supply-

demand fundamentals. These strong correlations may reflect cross-border electricity trade, similar 

weather conditions or economic patterns, and coordinated market operations within the EU internal 

electricity market. Regarding price-fuel correlations, we observe that GR-Gas, AT-Gas,  HU-Gas, 

and SL-Gas have medium to small positive correlations with DA prices in their respective countries, 

while this fact is not observed in BG, IT and RO markets. This results in natural gas being a relatively 

marginal fuel, especially during price-setting hours, highlighting the influence, to some degree, of gas 

prices on electricity pricing in these markets. Now, as far as the strength or gradient of correlations, from 

north to south markets, we observe a decrease in correlation strength between prices from Core CCR 

(AT, HU, SI, RO) to SEE CCR markets (GR, IT). For example, the average spot prices correlation 

between AT and HU, SI and RO markets, is higher than in AT and GR, BG markets (0.94 and 0.86 

respectively). The same is observed between the mean correlation of prices of HU, SL and RO 

markets, with the mean value between HU and GR markets (0.965 and 0.915). This could indicate 

transmission bottlenecks, different generation mixes (e.g., higher renewable share in some markets), 

or regulatory or market structure differences. The figures show also clustered Markets countries like 

AT, HU, SI, and RO that form a highly correlated cluster, indicating a tightly interconnected sub-

region, while GR and IT are more loosely connected, possibly due to their geographical positioning 
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and more, in general, isolated grid conditions. For the role of local fuels play, we observe that hydro and 

lignite generation in BG and GR markets are only locally correlated with their own DA prices, which 

implies a local dependency on these two fuels for power generation. The two markets show similar 

local dependency of their own prices on their RES (wind and solar generations).   

We observe also that the cross-border transfer availabilities (CBTAs) RO-BG (between Romania 

and Bulgaria), BG-RO, GR-BG, and BG-GR exhibit the largest, negative correlations with the spot 

prices. Instead of trying to explain these findings, we refer to section 7.3 where we present the results 

of rolling volatility spillover of spot prices and CBTAs, between all pairs of markets. More specifically, 

we have computed the correlations of the rolling volatility curves of both spot prices and CBTAs, of 

all markets, and have analyzed their volatility spillover from one market to another, thus enhancing 

further the causality structure learning findings of section 7.1 (MB and LCSL results). 
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Figure 9. a: Heat map of all possible correlations between pairs of AT, BG, GR markets’ fundamental parameters, 

excluding CBTA. b: Heat map of all correlations between pairs of HU, ITS, RO markets’ fundamental parameters, 

excluding CBTA. c: Heat map of all correlations between pairs of SI market’s fundamental parameters, excluding 

CBTA. d: Heat map of correlations between pairs of all DA prices and Cross Border Transfer (CBT) availability. 

5. Methodology 

In section 5.1 we provide a short review for Global, Local Causal structure learning, and Markov 

Blanket learning, emphasizing their differences and the fields they are applied, although we do not 

use Global causal structure learning in the present work. Sections 5.2-5.4 then present the necessary 

mathematical background (definitions and key propositions without proofs), with emphasis on 

Markov Blanket learning, and finally sections 5.5-5.8 provide information on the practical aspects of 

the applied algorithms. 

5.1. The Difference Between Global, Local Causal Structure Learning, and Markov Blanket Learning 

Causal structure learning involves discovering the causal relationships among variables in a 

dataset. The three main approaches—Global Causal Structure Learning (GCSL), Local Causal Structure 

Learning (LCSL), and Markov Blanket Learning (MBL) differ in their scope and methodology.  In the 

GCSL, the goal is to learn the entire causal graph over all variables in the dataset, using various 
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approaches such as constraint-based, score-based, or hybrid methods to infer the global causal 

structure. Constraint-based method uses conditional independence tests (e.g., Parent Child -PC- 

algorithm, FCI), while the score-based one optimizes a scoring function (e.g., BIC, Bayesian scores) 

over possible graphs (e.g., GES). Finally, the hybrid method combines both approaches (e.g., Max-

Min Hill-Climbing, MMHC). The advantages of GCLS are the fact that it provides a complete causal 

structure (it provides ‘the big picture’ of the problem under analysis, and it can infer direct and 

indirect causal effects. However, it is computationally expensive, especially for high-dimensional 

data, and it requires strong assumptions (e.g., causal sufficiency, faithfulness). This is the reason (as 

well as the advantages of LCSL listed below) we do not use this method in this work. The transition 

from local to global learning plays an essential role in Bayesian network (BN) structure learning. 

Mainstream algorithms for this type of learning were based on first constructing the skeleton of a 

DAG (directed acyclic graph) by learning the MB (Markov blanket) or PC (parents and children) of 

each variable in a data set and then orienting edges in the skeleton. Since it requires expensive 

computational resources (especially with a large-sized BN, resulting in inefficient local-to-global 

learning algorithms), [6] developed an efficient local-to-global learning approach using feature 

selection, using the well-known Minimum-Redundancy and Maximum-Relevance (MRMR) feature 

selection approach for learning a PC set of a variable, and proposed the efficient F2SL (feature 

selection-based structure learning) approach to local-to-global BN structure learning, the algorithm 

adopted in our preset work. 

One the opposite, in LCSL the goal is to learn causal relationships for a subset of variables (e.g., the 

most crucial variable around a target variable). We focused on this method, since our main target is to 

detect the most relevant factors that shape the dynamics (especially the surge) of spot prices target 

variables.  The most crucial variables coincide with the set of members detected in the MB. LCSL identifies 

MB’s members direct causes and effects without reconstructing the entire causal graph, using 

methods as local constraint-based methods (e.g., HITON, Grow-Shrink, see Table 11), and local score-

based methods. Advantages of this learning method include that it is more scalable than global learning, 

and focuses on relevant variables, therefore reducing noise. However, LCSL does not capture the full 

causal structure (across all European interconnected markets) and may miss indirect causal effects, 

however avoiding both these ‘defects’, is beyond the purpose of our analysis.  

We applied Local causal structure learning (LCSL) in our dataset to discover and distinguish the 

direct causes and direct effects of all seven DA spot prices, the chosen target variables. Since the 

mainstream LCSL algorithms need to perform an exhaustive subset search within the currently 

selected variables for PC (i.e., parents and children) discovery, to speed up and make the process 

more efficient, several algorithms have been developed. Examples are the work of [19], proposing the 

LCS FS model and the Causal Markov Blanket, CMB [18] is the algorithm adopted in our study. 

In the MB learning, the goal is to identify the Markov Blanket of a target variable, which consists 

of Parents (direct causes), Children (direct effects), and Spouses (other parents of the target’s 

children). It uses conditional independence tests or local structure learning to identify the minimal 

set of variables that render the target variable conditionally independent from all others. A plethora 

of methods exist, such as HITON-MB, IAMB, Fast-IAMB, PCMB, InterIAMBnPC (see also Table 8). 

This learning approach is efficient for feature selection and reduces dimensionality while preserving 

relevant information. However, it does not provide a full causal graph and is sensitive to sample size 

and independence test accuracy. Therefore, we can use Global Learning when the entire causal 

structure is needed (e.g., causal discovery), Local Learning when only a subset of causal relationships 

is relevant and Markov Blanket Learning when feature selection is needed (e.g., as in machine 

learning, predictive modeling). In our present work we have adopted the combination of MB and LCSL and 

the InterIAMBnPC algorithm [32] for MB learning. 

In the application of Markov Blanket Learning in detecting causalities in electricity markets the 

main goal, as already mentioned, is the ‘revealing’ of a subset of variables, i.e. Markov Blanket of a 

target variable (e.g., electricity price in a specific market) consisting of the direct causes (parents) → 

Fundamental drivers (e.g., demand, supply, weather, fuel prices, interconnector flows, i.e. CBTAs), 
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direct effects (children) → Downstream impacts (e.g., price fluctuations in neighboring markets), and 

finally spouses (other parents of the target’s children) → Variables that influence price through 

shared dependencies. Therefore, by identifying the MB of a spot price, we can determine the most 

relevant factors affecting price fluctuations while filtering out irrelevant variables. MB is particularly 

useful for feature selection (reducing dimensionality), predictive modeling (improving forecasting), 

and identifying key influences of price changes (this is the case in our paper). We stress here that MB 

learning alone does not establish causal direction beyond identifying relevant variables. The challenges with 

using only MB learning are: a) no explicit causal structure as the learning tell us which variables are 

important but not necessarily the cause-effect relationships, b) it does not capture indirect effects, 

since some causes may influence price via intermediate variables, which MB learning might miss, 

and c) the method does not consider temporal causality, since spot prices are dynamic and evolve 

over time, and MB learning typically works on static datasets. To overcome these problems and 

properly discover causal relationships, as we have pointed out, we combine MBL with LCSL and 

mainstream time series analysis, as the rolling volatility of spot prices and CBTAs, to capture the 

volatility spillover effects due to interaction of the markets. The steps of our workflow are described 

as follows:  

Step 1: MB Learning (Feature Selection). We used the algorithm IAMB, to identify the most 

relevant fundamental variables affecting DA electricity prices, thus reducing further the 

dimensionality of the dataset and focusing only on key drivers. 

Step 2: Causal Discovery on the MB Selected Variables, we applied LCSL (CMB algorithm) to 

the wholesale DA price variables to determine direct causal relationships. 

Step 3: We validated the results by using the results of volatility spillover as well as consulting 

experts in the electricity markets field working in the Greek TSO and other European institutions (see 

affiliations of authors), to ensure that our findings align with real energy market dynamics (domain 

knowledge). 

5.2. A Short Mathematical Background in Bayesian Network (BN), Markov Blanket (MB) and Causal 

Feature Selection (CFS) 

We provide here the necessary, short background theoretical information (notation and 

definitions etc.), based on the works of [6, 20] which describe in a rigorous mathematical approach 

all the theoretical basis (all related theorems and their proofs). 

We symbolize with C our Target Variable (TV) (or Class attribute, CA) of interest. Let φ represent 

the distinct TV values (or labels), as c={ ��, ��, … ��} , and  � = {��, ��, … ��} the set of all distinct 

features. Let also that D is a training dataset, D={(��, ��), 1 ≤ � ≤ �, �� ∈ �}, with � the number of 

instances, ��  the i-th instance i.e. a n-dimensional vector defined on F, and ��  a label of the TV 

associated with �� . To facilitate our presentation, let � = � ∪ {�} = {��, ��, … , ����} the set of all 

variables under consideration in our analysis, where  �� = ��(1 ≤ � ≤ �), and ���� =C . Let V \ 

��indicate the set V \{ ��}, that is, all features excluding �� ,  ∀��∈V. To consider conditionality, let 

use  ��  ╨  �� |S   are conditionally independent given S, � ≠ �,  and � ⊆ �{��, ��} , and the 

expression �� (not ╨) ��|S, to denote that �� is conditionally dependent on ��  given S.  

Definition 1 (Conditional Independence). Two distinct variables   ��, �� ∈V are said to be 

conditionally independent given a subset of variables S ⊆V \ {��, ��  } (i.e., �� ╨  ��|S), if and only 

if P (��, ��|S) = P( ��|S)P( ��|S). Otherwise,  ��, �� are conditionally dependent given S,  ��  (not ╨) 

��|S. 

5.3. Bayesian Network, Markov Blanket, and Causal Feature Selection 

We provide basic knowledge at this point associated with causal feature selection (CFS), 

including the basics of BN, MB, and why we choose causal feature selection. Suppose that P (V) is the 

joint probability distribution over the set of all variables V, and G = (V, E) represents a directed acyclic 

graph (DAG) having nodes V and edges E, where an edge represents the direct dependence relationship 

between two variables.  
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In a DAG, �� → ��  symbolizes that �� is a parent of �� and ��  is a child of �� .  

Definition 2 [20]. The triplet V, G, P(V)is called a BN, if the Markov condition as defined below 

(definition 3) is valid:  

Definition 3 (Markov Condition) [20]. For a DAG G, the Markov condition holds in G, if and 

only if, every node of G is independent of any subset of its non-descendants conditioned on its 

parents.  Thus, the joint probability over a set of variables V is encoded by a BN which decomposes P 

(V) into the product of the conditional probability distributions of the variables given their parents in 

G. 

Let ��(��) be the set of parents of  ��  in G. Then, P(V) can be written as  

�(��, ��, … ����) = ∏ �(��|��(��))���
���       (1) 

In this paper, we consider a CBN, a BN in which an edge  �� → ��  indicates that ��is a direct 

cause of  ��  [20, 21]. In the definition 4 below, we give the key concepts and assumptions associated 

with BNs and MBs. 

Definition 4 (Faithfulness) [20]. Suppose that a BN <V, G, P (V)>, then G is faithful to P(V) if and 

only if every conditional independence present in P is entailed by G and the Markov condition.  P(V) 

is faithful if and only if G is faithful to P (V). 

Definition 5 (Causal Sufficiency) [20]. Causal sufficiency assumes that any common cause of two 

or more variables in V is also in V. 

Definition 6 (d-Separation) [20].   In a path πof a DAG G,  ��  and  ��are said to be blocked 

by a set of nodes S ⊂V, if and only if: (a) π contains a chain  

��→��→��  or the opposite direction  ��←��←�� (Chain) 

or a fork 

��←��→ ��  (Fork) 

such that the middle node ��   is in S, or (b) the path π contains a v-structure  

��→ ��← ��  (v-structure) 

such that �� ∉S holds and no descendants of  ��are in S. A set S is said to d-separate��from ��if and 

only if S blocks every path from �� ���� 

Theorem 1 [20, 21]. Given a BN <V,G, P (V )>, under the faithfulness assumption, d-separation 

captures all conditional independence relations that are encoded in G, which implies that ��    and 

��  in G are d-separated by S ⊂V \{��, ��}, if and only if  �� and ��  are conditionally independent 

given S in P(V).  The theorem concludes the equivalence of conditional independence in data 

distribution and d-separation in the corresponding DAG, under the assumption of faithfulness. 

Definition 7 Markov Blanket (MB). [20]. The Markov Blanket (MB) of a variable in a BN is 

unique and consists of its parents (direct causes), children (direct effects), and spouses (other parents 

of the variable’s children), provided that the faithfulness assumption is valid. 

The relation between PC in a BN, and how to identify spouses are given by proposition 1 and 2 

respectively and are the basis of designing CFS algorithms. 

Proposition 1 [21]. In a BN, there is an edge between the pair of nodes��  and ��, if and only if 

they are dependent (i.e. �� (not ╨) ��|S),  for all S ⊆V \ {�� ,  ��}. 

Proposition 2 [21].  In a BN, assuming that  ��  is adjacent to ��,  �� is adjacent to ��, and 

��  is not adjacent to �� (e.g.,  ��→ ��←��), if  ∀S ⊆V \ {��, ��  ,��  }, ��  ╨  ��|S) and ��  (not ╨) 

��|S∪{��} ℎ���, �ℎ�� �� is a spouse of ��.  

The cornerstone of causal and non-causal feature selection is the concept of Mutual Information 

(MI), introduced initially in machine learning by [22] and later by [23, 24], and used then as an 

additional concept in explaining feature relevance, in non-causal FS [25]. The conditional MI between 

X and Y given another feature Z is given by:  
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                            �(�; �|�) = �(�|�) − (�(�|��) =

∑ �(�) ∑ �(�, �|�)���
�(�,�|�)

�(�|�)�(�|�)�∈�,�∈��∈�    (2) 

It is based on the concept of Sannon’s entropy: H(X)=-∑ �(�)����(�)�   (3) 

of a variable X, and on the conditional entropy of X after observing the values of Y  

H(X|Y) = -∑ �(�) ∑ �(�|�)� ����(�|�)�   (4) 

In equations (3) ana (4), P(x) is the prior probability of X=x (the value x that the variable X takes) 

and similarly P(Y) is the posterior probability of Y=y, in the context of Bayes Rule, so the MI between 

X and Y is  

�(�; �) = �(�) − �(�|�) = ∑ �(�, �)���
�(�,�)

�(�)�(�)�,�    (5) 

Using (2), then in the context of non-causal FS, a feature �� is strongly relevant to C if and only if 

I(��; �|�\��) > 0. 

5.4. The Objective Function of Optimal Feature Selection Problem, Based on the MI Concept  

The problem of finding a subset �∗ ⊂ � , given a dataset D containing C and F, in a feature 

selection context is formulated as follows 

�∗ = �������⊂��(�|�) (6) 
i.e. try to find a subset �∗ of features that maximizes the conditional probability of C. Equation (6), 

using equation (2) is written finally as  

�∗ = �������⊂��(�; �)  (7) 
It is shown, in the literature provided, that the feature set S∗ defined in Equation (7) is the set of 

features that leads to the minimal Bayes error rate. Recently, [26] has shown that for a given classification 

problem, the minimum classification error attainable, by any classifier, is called its Bayes error rate. In 

this work we adopt the approach of [25] in choosing the Bayes error rate for justifying Equation (7) 

since, according to the associated literature, this error is the tightest possible classifier-independent 

lower-bound, since it depends only on the predictor features and the Target variable (class attribute). 

In setting the lower and upper bounds on the Bayes error rate, [27, 28, 29] have finally made the 

connection of the Shannon conditional entropy [30] to the Bayes error rate, a crucial step in rigorously 

formulating CFS approach in ML. 

In general, Feature selection (FS) is used in model building as well as data understanding and is 

a process of identifying a subset of features (predictor variables) from the original set of features. FS 

is more pressing now, in the era of big data, since the handling of ‘inherently ubiquitous’ high-

dimensional datasets is very difficult. FS has become the cornerstone behind any efficient classification 

model. There is a plethora of FS methods that fall into three categories: a) Filter, b) Wrapper and c) 

embedded methods. The two last methods are classifier dependent while filter methods are classifier 

or prediction model independent.  

Strongly relevant features, weakly relevant features and irrelevant features are the types of features 

that characterize the relevance of given predictors with a class attribute (also called target variable) [31]. 

The aim of the FS is to identify the strongly relevant features of the Target variable, and this is 

achieved by first ranking the features according to their relevance to the Target variable and then by 

using an iterative process, selecting for inclusion the most relevant features [32]. 

In this paper, the method used for MB (the CMB) uses an emerging, very efficient FS filter 

method in identifying a Markov blanket (MB) of the class attribute or Target variable [33], a concept 

invented by Pearl [20] in the framework of Bayesian network (BN). The components of the MB of a 

variable are of its parents (direct causes), children (direct effects), and spouses (other parents of this 

variable’s children). A medical example of using this method is given in figure SB1, in 

Supplementary Material B. 
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The LCS has the advantage that causality is connected to the capacity of the related models to 

generate better and more interpretable predictions. The MB (filter) selection approach is also called 

causal feature selection (CFS) [6] (a term also used in this work) to better understand the mechanisms 

behind the wholesale (spot) electricity prices of the SEE markets, and more specifically the causes 

that are behind their ‘extreme’ values (strong price disparities). CFS approach is an approach that has 

been shown to be theoretically optimal, in comparison with a non-causal FS.  

5.5. The Markov Blanket (MB), a Tool for Causal Feature Selection to Reveal the Strongest Factors 

Influencing DA Electricity Prices 

The Markov Blanket, as defined previously (definition 7), a concept from Bayesian networks and 

the associated probabilistic graphical models, is a powerful tool able to identify the set of variables 

that shield a target variable from the influence of all others, a tool particularly useful in causal feature 

selection. We explain here how it is used in the CFS of the DA (spot) electricity price, our Target 

variable, symbolized as TV-SpotElectP. From definition 7, the components of the MB of this variable 

will be: the Parents i.e. Variables that directly cause the dynamics of TV-SpotElectP, the Children i.e. 

variables directly caused (affected) by TV-SpotElectP, and finally the Co-parents (Spouses) i.e. other 

variables that cause (affect) TV-SpotElectP’s children. Together, these components determine the 

smallest set that makes TV-SpotElectP conditionally independent of all other variables in the system. 

The steps followed in using MB for feature selection are a) building a probabilistic Graphical Model i.e. 

using data to construct a probabilistic graphical model, such as a Bayesian network, that encodes the 

conditional dependencies between variables, b) identify the Markov Blanket i.e. applying a variety of 

algorithms (see Table 8) to identify the Markov Blanket of the target variable, which  will include 

the most causally relevant features for TV-SpotElectP, c) analyzing the Markov Blanket i.e. examining 

the MB’s that are directly or indirectly causally related to TV-SpotElectP, i.e. the strongest factors 

influencing target variable (the absence of a variable from the blanket implies it is irrelevant or 

redundant for predicting our target variable , given the variables in the blanket). We list here some 

of the advantages of using the MB, namely the causal relevance (since MB focuses on features with 

causal influence on the target, avoiding spurious correlations), the minimal feature set (Mb identifies 

the smallest set of variables needed for accurate prediction of target variable), and finally the fact that 

MB provides interpretable models(by isolating causally relevant factors, it simplifies interpretation of 

the model). Thus, our paper contributes towards enhancing the limited number of papers in which 

MB is used in the analysis of energy issues. 

5.6. Practical Aspects in Applying the MB CFS Approach to Understand Price Surges in SEE Electricity 

Markets and a Suggested Workflow 

We describe here the steps we have followed in applying this approach to our work: in step 1 

we define our target variable, i.e. the TV-SpotElectP, the wholesale prices. In step 2 we identify 

candidate variables. We have considered factors potentially influencing price surges, such as: a) 

Energy Supply Factors: Gas prices, coal prices, renewable energy generation, and imports/exports 

(Cross-border Transfer availability, CBTA), b) Load Factors: actual and forecasted load, of each 

market, c) Market Dynamics: Market coupling approaches with neighboring countries, via CBTA (see 

section 3), d) Policy Factors: we have considered relevant publicly available information, for each 

country, policies such as subsidies, taxes, and EU Emissions Trading System (ETS) costs, only in cases 

that we think can support interpreting our models results. Then, in step 3, we construct a Probabilistic 

Graphical Model. We use data to construct a Bayesian network or a similar probabilistic graphical 

model, if this is possible, that represents conditional dependencies between variables in each market, 

based on its assumptions, and in step 4, we ‘discover’ the Markov Blanket, by using a plethora of 

algorithms (see Table 8), i.e. we identify the MB for a given target variable. This will include Parents 

(Variables directly causing price surges), Children (Variables influenced by price surges), and Co-parents 

(Variables that jointly influence the children of price surges). We interpret results, in the final stage: 

Variables in the Markov Blanket are the strongest factors influencing electricity price surges, for example, if 
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gas prices, renewable generation, and market coupling are in the Markov Blanket, these are causally relevant, 

while other variables are conditionally independent given the blanket. Finally, we use LCSL approach to 

‘capture’ the causality directions between the variables identified by MB. Figure 10 presents the work 

flow we followed in using CFS MB approach to energy market analysis. 

 

Figure 10. The workflow in using the CFS MB approach detecting the most crucial predictors (features) that 

affect hourly spot prices in the DA electricity markets analyzed. 

The steps in the workflow are: 

 Define the Target Variable: in our case, electricity price surges in all 

seven markets. 

 Collect Relevant Data: Gather data on potentially influencing 

factors, such as fuel prices, demand and supply metrics, policy 

changes, and geopolitical events. 

 Construct a Probabilistic Graphical Model: Use the collected data 

to build a model that represents the conditional dependencies 

between variables. 

 Identify the Markov Blanket MB: Apply algorithms to determine the 

set of variables that directly influence the target variable. 

 Use LCSL methodology to identify the direct causalities between 

the member-variables of the MB 

 Interpret the Results: Analyze the identified factors to understand 

their causal impact on electricity price surges, using results from 

volatility spillovers, and opinions form the market experts. 

5.7. Justification of Using Causal Discovery and Feature Selection Approach Instead of a Typical Regression 

Model 

At this point, we think that we must provide the reasons for adopting the MB approach instead 

of other ‘mainstream’ approaches as regression modeling. We list the advantages of the Markov 

Blanket Approach: first, this method focuses on Causal Relationships: the Markov Blanket isolates 

variables with a direct or indirect causal impact on price surges, reducing noise from spurious 

correlations. As an example, if coal (lignite) prices are conditionally independent of price surges given gas 
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prices, the model excludes coal prices as a key factor. Second, the approach defines a Minimal Feature Set: 

it identifies the smallest set of variables needed to explain the target, leading to simpler, more 

interpretable models. Third, the approach exhibits Robustness to Multicollinearity: unlike regression, 

which can struggle with multicollinearity (e.g., between gas prices and renewable generation), the Markov 

Blanket approach accounts for conditional dependencies. Fourth, it handles Nonlinear and Complex 

Interactions: Probabilistic graphical models capture nonlinear relationships and interactions between 

variables, which are common in electricity markets. From our literature review, Table 11 has 

emerged, summarizing all the previous advantages of MB over a regression approach  

Table 11. Comparison of MB with Regression Approaches. 

Aspect Markov Blanket Regression 

Focus Causal relationships Statistical associations 

Feature Selection Identifies causally relevant variables 
May include spurious or redundant 

variables 

Handling Multicollinearity 
Resolves through conditional 

independence 
Struggles without feature engineering 

Model Complexity 
Produces a minimal set of explanatory 

variables 

Includes all statistically significant 

variables 

Interpretability Provides clear causal explanations Explains variance but not causality 

Assumptions 
Requires conditional independence 

assumption 

Assumes linearity (in linear 

regression) 

Performance in High 

Dimensions 
Effective for sparse causal structures May be overfit without regularization 

 
To facilitate reader’s interpretation, we provide below a simple example of a possible indicative 

result among other possible results described in section 7. Example: explaining DA price surges in 

SEE electricity markets by using MB. Let the result of Markov Blanket Approach is as follows: MB 

Identifies gas prices, renewable generation, and EU ETS costs as causally relevant. The interpretation is 

that Gas prices directly cause price surges, renewable generation mitigate surges, and ETS costs amplify them. 

Other variables (e.g., coal prices) are conditionally independent given these factors. In a traditional 

regression approach the expected result is gas prices, renewable generation, coal prices, and 

industrial demand are statistically significant predictors. In the interpretation of the result of this 

method we may be aware that the method may overemphasize the role of coal prices due to 

multicollinearity with gas prices, leading to less clear causal insights.  

Therefore, since our goal is to identify ‘true’ causal drivers of price surges, i.e. a causal inference 

target, then it is better to prefer the MB Approach. Also, this approach is preferred in the case of 

Complex Interactions i.e. when relationships between variables are nonlinear or involve interactions 

(complex inference). Finally, the MB is strongly more effective in causality inference in the case of 

high-dimensional data, i.e. when dealing with many potential predictors, since the MB simplifies the 

feature set. Finally, to complete the comparison of MB with regression, regression is preferable when 

the goal is simply to predict price surges, not explain them, or when linear relationships prevail in the 

dynamics, i.e. when relationships between variables are linear and well understood, and finally when 

data size or quality is insufficient for reliable causal discovery. Thus, in conclusion, the MB excels in 

revealing the strongest causal factors behind electricity price surges, providing a more interpretable 

and causally grounded analysis compared to regression. While regression is a powerful predictive 

tool, it is less suited for uncovering causal mechanisms in complex systems like electricity markets. 

5.8. Algorithms Associated with Causal Discovery and Feature Selection (CFS) and MB 

CFS is the methodology to find the Markov Blanket (MB) of the target variable in a CBN context 

[34], in which an edge X →Y indicates that X is a direct cause (parent) of Y, and Y is a direct effect 

(child) of X, therefore the MB of the target variable consists of the parents, children, and the spouses 

(i.e. other parents of the children), and offers a complete picture around the local causal structure 
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(LCS). Most important, from a statistical point of view, the blanket represents a minimal set of 

features that makes the target variable statistically independent from all the other features conditioned on the 

MB [20]. The minimal set of features, determined by MB, is also the optimally found subset for the 

purpose of classification as well as a holistic interpretation of the predictors that strongly affect the 

target variable [32]. 

[35] invented the first sound MB discovery algorithm, GS (Growing-Shrinking) for BN structure 

learning, that replaced the KS model [36] who were the first to introduce MBs to feature selection, 

but with the problem of not being able to secure the finding of the actual MB. Another generation of 

improved algorithms for optimal FS are the Incremental Association-based MB (IAMB) family of 

algorithms, such as IAMB, inter-IAMB, IAMBnPC [36], and Fast-IAMB [37]. A list of the algorithms 

for global causal structure FS learning is given in the following Table 12: 

Table 12. List of algorithms associated with Markov Blanket (MB), Global and Local Causal Structure Learning 

(GCS-LCS). 

Global Causal Structure Learning (GCS) algorithms 

Acronym Title of algorithm Reference 

GSBN Grow/Shrink Bayesian network [35] 

GES Greedy Equivalence Search [53] 

PC PC [21] 

MMHC Max-Min Hill-Climbing [32] 

PCstable PC-stable [43] 

F2SL_c Feature Selection-based Structure Learning using independence tests [6] 

F2SL_s Feature Selection-based Structure Learning using score functions [6] 

Local Causal Structure (LCS) learning algorithms 

PCDbyPCD PCD-by-PCD [42] 

MBbyMB MB-by-MB [44] 

CMB Causal Markov Blanket [18] 

LCSFS Local Causal Structure Learning by Feature Selection [19] 

Markov blanket (MB) learning algorithms 

GS Grow/Shrink algorithm [35] 

IAMB Incremental Association-Based Markov Blanket [45] 

InterIAMB Inter-IAMB [36] 

InterIAMBnPC Inter-IAMBnPC [32] 

FastIAMB Fast-IAMB [37] 

FBED Forward-Backward selection with Early Dropping [46] 

MMMB Min-Max MB [45] 

HITONMB HITON-MB [47] 

PCMB Parents and children-based MB [48] 

IPCMB Iterative Parent-Child based search of MB [9] 

MBOR MB search using the OR condition [49] 

STMB Simultaneous MB discovery [50] 

BAMB Balanced MB discovery [51] 

EEMB Efficient and Effective MB [52] 

MBFS MB by Feature Selection [51] 
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Figure 11. A schematic representation of the Global Causal Structure, Local Causal structure and Markov 

Blanket. 

In Figure 12 we show a schematic representation of the Causal feature selection process, adopted 

in this work. There are three layers, data, algorithmic and applications. Figure 12 shows a schematic 

representation of GCS, LCS learning and MB approaches. 

 

Figure 12. A schematic representation of Causal feature selection and discovery, used in this work. 

6. Rolling Volatility of DA prices and Their Correlation to ‘Grasp’ Spillover 

Effects 

The spillover of electricity price volatility across 24 countries in the European Union has been 

recently studied by [38], during the period 2014-2024. Six of the markets analyzed in our paper are 

included (Bulgaria is missing) in their study, in which the [39, 40,41] measure is used to capture the 

volatility spillover between AT, HU, GR, BG, RO, and IT, and their findings are used here to support 

our findings. They developed both a static and a dynamic assessment of spillover effects and 

directional decomposition between individual markets. Their main findings, that are very related to 

our study, show that a very large amount of the volatility (about 73 percent of the forecast error 

variation) is explained by cross-variance shares, meaning that only 27 percent can be attributed to shocks 

within each market, therefore cross-border volatility spillovers dominate the behavior in national electricity 

markets in Europe, an effect that has increased over time. Instead of using the Diebold-Yilmaz (DY) 

[39,40,41] approach (our objective in our paper is different), we have computed the rolling volatility 
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(standard deviation) of DA prices of all markets, using a window of 720 hours (a month), as well as the 

correlations between all pairs of the rolling volatility curves.  

We can combine the above correlation information, with several methods like visual cluster 

maps or a table comparing structural plus weather similarities, or clustering these markets 

statistically e.g., via a dendrogram (see Figure 24) to capture the clustering processes. Figure 24 shows 

the dendrogram method of clustering process, that uses K-means extracted features, based on the 

correlation matrix of the rolling volatility curves of the hourly spot prices and CBTAs of these 

countries so we can extract conclusions about the price volatility spillover. This is a very important 

step, since we connect a linear statistical measure, the correlation of rolling volatilities of the most 

crucial factors identified via nonlinear methods (MB and LCS), with economic and structural 

reasoning to extract insightful conclusions about how volatility spillovers affect the spot prices surge. Now, 

a natural question is what do volatility correlation values really tell us? When we correlate rolling 

volatilities of spot prices, we're essentially measuring how synchronous the “intensity of risk” or price 

variability is across markets over time—not just price levels, but how similar the volatility dynamics are. 

Therefore, a) high correlation in volatility indicates co-movement in risk or uncertainty across markets, b) 

suggests common drivers, such as weather conditions, shared fuel price shocks (e.g., gas prices), 

interconnected grid events, and finally policy or regulation changes affecting multiple markets. On 

the other hand, low correlation in volatility means that volatility is idiosyncratic, driven by local factors, 

like domestic generation mix, internal grid congestion and country-specific demand patterns or 

weather anomalies. Table 13 summarizes possible interpretations of the high and low correlation of 

volatilities between two markets. 

Table 13. Possible interpretations of high and low correlation of volatilities between two markets. 

Conditions* Interpretation 

Markets share weather patterns  Likely weather-driven common volatility (hydro/wind output variability) 

Markets are strongly interconnected  Likely volatility transmission via power flows/coupling mechanisms 

Markets have similar generation mixes Fuel-driven spillovers (e.g., gas price shocks affect both) 

*Note: Real examples of market conditions are the results in Figure 24 and Table 13, in the results section. 

In case we see low volatility correlation despite interconnection, it may suggest that one market is 

isolated in volatility terms (e.g., due to internal constraints or pricing mechanisms), market resilience 

or decoupling—volatility is not transmitting effectively, and finally asymmetric spillovers — one 

market is a transmitter but the other absorbs differently. 

Even though correlation is symmetric, we can try to infer directional spillover tendencies, thus we 

overlay indicative correlation patterns with structural asymmetries, as in Table 14. 

Table 14. Relating spot price volatility correlation patterns with structural asymmetries. 

Scenario Implication 

Market A has persistent high volatility, and others show 

delayed rise 
A is likely a volatility transmitter 

Market A is small but strongly correlated with a larger hub Possibly price-taking market with imported volatility 

Markets with weak coupling show weak correlation 
Physical/market coupling is crucial for volatility 

transmission 

For example, we see that the interconnections BG–RO and GR-BG exhibit high volatility 

correlation, thus we likely observe volatility co-movement due to weather and grid interconnection, 

possibly bidirectional spillovers. Similarly, we see that GR volatility is correlated more with BG than 

with IT, despite physical ties with IT, market coupling with BG dominates volatility transmission. 

Therefore, our conclusion is that clustered Volatility Patterns ‘resemble’ or somehow ‘coincide’ with 

volatility Spillover Zones.  
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The Clustering tool Dendrogram, in Our Context 

A dendrogram (see Figure 21) is a tree-like diagram that shows how electricity markets (based 

on their volatility correlation similarities) cluster together — from most similar to least one. The 

dendrogram is useful to us because it helps us group structurally similar markets without relying 

only on market rules — it’s data-driven, i.e. it can validate or challenge existing market integration 

assumptions (measured by the interconnectivity level, section 3). It reveals how volatility spillovers 

operate naturally, beyond algorithmic models like FBMC, and finally is powerful in highlighting 

hidden market coupling dynamics or stress-induced decoupling. The Y-axis shows the labels of spot 

prices and CBTAs. The X-Axis shows the distance or dissimilarity metric we have computed as → 

Distance = sqrt(2*(1 - correlation)). Therefore, lower distance = higher correlation → more similar 

volatilities, and higher distance = less correlated → less similar volatilities. Regarding dendrogram’s 

branches and merging points, the closer two markets merge at the bottom, the more similar they are 

in terms of volatility behavior, and markets that merge early (at low height) → high correlation of 

volatility patterns → structurally similar, while markets that only join clusters at higher levels are 

more volatility divergent. 

7. Empirical Results 

7.1. Markov Blanket Learning 

7.1.1. MB Analysis of DA Prices as Target Variable 

As already mentioned, Markov Blanket discovery helps reduce the search space by selecting the 

most relevant variables. We present in Table 14 the results of applying the MB IAMBnPC algorithm 

on our dataset, choosing as target variable each DA-price, for each year to detect the evolution of the 

dominant factors (members of the MB) that affect the price over the period of our analysis. Also, in 

Figures 13a, 13b and 14, we present the annual DAGs for MB results graphically, learned by the 

IAMBnPC algorithm, setting as target variables the DA prices of the Austrian (AT), Greek (GR) and 

Italian (IT) markets. Similar figures can be drawn for the other markets but not shown in this report.  

For the Austrian DA price, during 2022, we observe in Figure 13a that the set of the MB members 

consists of the DA prices of the two directly interconnected neighboring markets of HU and SI, as 

well as Italy’s price (a rather surprising result), and the cross-border transfer availabilities (CBTAs) 

of Austria with its neighboring Czech, Germany-Luxembourg and Slovenia (AT-CZ, AT-DELU and 

AT-SI). The AT-SI CBTA is present also in 2023, during which the RO-BG CBTA is also included, 

together with two Bulgarian power generation variables (Gas and Hydro), the HU and SI spot prices, 

and the SI hydro generation. Thus, it seems that the RO-BG CBTA has affected the price in HU which 

in turn has affected the AT price, which is also affected by the SI price. In 2024, we see that AT-DELU 

and GR-BG CBTAs are in the MB set, together with SI and GR(?) spot prices, AT’s solar and hydro 

power generations, GR’s hydro power, and IT gas and HU lignite power generations. The presence 

of AT-DELU CBTA in 2022, 2023 and 2024 indicates the significance of this variable in shaping the 

dynamics of AT spot price. We point out that the FBMC approach is implemented to optimize the 

cross-border electricity flows between AT, DELU, SI, HU and RO (section 3).   

In the Greek case (Figure 13b) we observe that nodes (variables) 7(BG-DAp), 19(GR-Wind), 

20(GR-Solar), 22(GR-HydroStrg) and 32(ITS-DAp) are present in years 2022-2024, indicating that 

these factors (generation types in combination with Bulgarian and Italian spot prices) are dominant 

in shaping the price for the entire period of analysis. Node 39 (RO-DAp) is present in both 2022 and 

2024, while node 54(GR-IT, CBTA) affect the dynamics of Greek spot price during 2023. The directions 

of the influence these factors exert on the Greek price is not shown in the MB DAG, but in the learned 

local structure DAG’s, shown below. To conserve space in this manuscript, we do not show similar 

figures as Figures 14 and 15 for the other spot markets, since the constituents of the corresponding 

MBs are given in Table 10.  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2025 doi:10.20944/preprints202507.1867.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1867.v1
http://creativecommons.org/licenses/by/4.0/


 32 of 49 

 

In the Italian case (Figure 14), factors-nodes 47 (SI-DAp) Slovenia’s price, 36(ITS-Wind) Italy’s 

wind power generation and 15 (GR-DAp) the Greek spot price, are the dominant factors affecting the 

South Italian spot price during the whole period (2022-2024), while the Astria’s price 1(AT-DAp) 

affects strongly Italy’s price in 2022 and 2024. The power generation via natural gas in Italy, 35 (ITS-

Gas) affects Italy’s spot price in 2023 and 2024 years, while during 2024 new factors enter the scene, 

as 38(IT-Hydro), and the CBTAs 58(RO-BG) and 62(AT-CH).  The last node 62, is the cross-border 

transfer availability between Austria (AT) and Switzerland (CH).  What is important from the above 

cases is that the AT market’s spot price and its CBTAs with some of the neighboring markets, seem 

to have played a crucial role in shaping the price dynamics in the SEE CC region.  

Table 14. Results of Markov Blanket (MB) CSL, of all wholesale prices, for each year by applying the IAMBnPC 

algorithm. Critical factors as nodes or components of the MB. 

Causal structure learning by Markov Blanket (MB) (IAMBnPC algorithm) 

Target Variable: AT-DA-p (1*) 

Year 2022 2023 2024 2022-2024 

Nodes (Comp. of MB) 24,32,47,63,64,66 10,13,24,47,52,58,66 5,6,15,22,31,35,45,47,53,54,64 4,32,47,50,66 

Target Variable: BG-DA-p (7) 

Nodes (Comp. of MB) 15,19,21,39,42,46 15,28,31,39,53,66 15,39,47,50,62 15,19,21,35,39,64 

Target Variable: GR-DA-p (15) 

Nodes (Comp. of MB) 7, 19, 20,22,32,39 7,14,19,20,22,32,54 7,19,20,32,39 1,7,14,19,20,32 

Target Variable: HU-DA-p (24) 

Nodes(Comp. 

Of MB) 
1,35,39,43,47 1,13,27,39,47,52 7, 27, 39, 47 1,27,38,39,43,47,66 

Target Variable: ITS-DA-p (32) 

Nodes(Comp. 

Of MB) 

1,4,7,15,23,30,36,47 

60, 63 

10,15,26,35,36,37,47 

52, 63 

1,15,18,35,36,38,47,58, 

62 

1,7,15,27,36,47,58 

59 

Target Variable: RO-DA-p (39) 

Nodes(Comp. 

Of MB) 
7,15,24,43,56,62 7,12,24,43 7,15,23,24,47 7,23,24,32,43 

Target Variable: SI-DA-p (47) 

Nodes(Comp. 

Of MB) 
1,5,24,64 1, 24, 35, 65 1, 7, 24, 32, 50 1,7,24,32,46,50 

Note: for the full name of nodes & description, see Table 1. * Indicate the number of the variable in the Table 1 

Disturbances in the volatility of its spot price and CBTAs seem to ‘propagate’ through the entire 

path from AT to SEE countries, causing ultimately their price surge. Since the AT, SI, HU, DELU and 

RO countries are in the Core CCR in which the flow-based (FB) coupling approach (a feature of the 

Target Model) is used in calculating the capacity availability for trade, the connection of the 

performance of the Target model with the issue of SEE markets price surge is now evident. 
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Figure 13. a: DAG of the MB causal structure learned by the IAMBnPC algorithm, for AT-DA price target 

variable, for years 2022 to Oct. 2024. DAG is based on Table 14 that contains the nodes (members) of the NB, for 

each year and each target variable (spot price). b: DAG of the MB causal structure learned by the IAMBnPC 

algorithm, for GR-DA price target variable, for years 2022 to Oct. 2024. DAG is based on Table 14 that contains 

the nodes (members) of the NB, for each year and each target variable (spot price). 
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Figure 14. DAG of the MB causal structure, learned by the IAMBnPC algorithm, for ITS-DA price target variable, 

for years 2022 to Oct. 2024. DAG is based on Table 14 that contains the nodes (members) of the NB, for each year 

and each target variable (spot price). 

7.2. Local Causal Structure Learning LCSL Results 

Having determined the Markov Blanket for each spot price, we proceed to determine the causal 

relationships within it (i.e. between its members).  

Table 15. Results of the Local Causal Structure Learning (LCSL) using the CMB algorithm. 

                                  Local Causal structure learning LCSL: 

algorithm CMB 

                                  Target Variable: AT-DA-p (1*) 

Year 2022 2023 2024 

Parents 

Children

Spouses 

63, 64 

24, 32, 47, 66 

- 

5, 24, 47, 58, 60, 64 

4, 39 

- 

5, 6, 7, 22, 27, 31, 35, 47, 53, 

54, 64 

- 

- 

                                   Target Variable: BG-DA-p (7) 

Parents 

Children

Spouses 

1, 6, 15, 19, 35, 39, 42 46 

- 

- 

5, 15, 31, 52, 60, 66 

28, 39 

- 

24, 39 

15, 21, 50 

- 

                                     Target Variable: GR-DA-p (15) 

Parents 

Children

Spouses 

7, 19, 32, 39,47 

22, 44 

- 

7, 10, 14, 19,22,32,37,54 

- 

- 

7, 19, 20, 32, 39, 45, 46 

5 

- 

                                   Target Variable: HU-DA-p (24) 

Parents 

Children

Spouses 

1, 18, 39, 43 

47 

- 

1, 13, 22, 25, 29, 39, 47,52 

- 

39 

7, 27,29,43,47, 55 

- 

                                     Target Variable: ITS-DAp (32) 

Parents 

Children

Spouses 

7, 61 

1,10,15,23,30,36,47,56,60,63

- 

5, 7,15,29,35,36,47,52,63 

25 

- 

1,15, 18,36,38,47 

35, 58, 62 

- 

                                        Target Variable: RO-DAp (39) 

Parents 

Children

Spouses 

7,15,24,43,56 

62, 67 

- 

1,5,7,35 

24 

- 

7,15,24,47 

23, 43 

- 

                                      Target Variable: SI-DAp (47) 

Parents 

Children

Spouces 

1,12,38 

24, 32, 64 

31, 35 

1, 24, 39, 65 

- 

32, 38 

1, 7, 24, 37, 50 

 

Notes: for the full name of nodes & description, see Table 1. Numbers in bold 

indicate variables included in the Markov Blanket (MB) but now equipped with 

direction arrows. * Indicate the number of the variable in Table 1. 

We used the CMB algorithm [15], a very suitable method for real-world noisy data, as well as 

very large data matrices (in our case, the data matrices have 8761 rows and 67 columns, for full year 

hourly values). Table 15 summarizes the results. The table contains the MB found components, but 

now with directions, and extends the results including further variables in the DAG, due to the 

inhered wider ‘lenses’ of the LCS learning model. 

From Table 15 we see that in 2022 the parents (direct causes) of Austria’s spot price, AT-DAp, are 

the Austria’s CBTAs with CZ and DELU (AT-CZ, AT-DELU) i.e. AT-DAp is the child of these two 

cross border availabilities, which are also members of its MB (see Table 14). Thus, these two CBTAs 

seem to be the ‘initiators’ of the price volatility disturbances that ‘propagates’ through the entire 

path from the Core CCR to the SEE CCR.  In this year, AT-DAp has the spot prices of HU, ITS and 

SI, and the AT-SI CBTA as its children. AT-Solar, HU-DAp, SI-DAp and the RO-BG, SI-IT and AT-
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DELU cross-border transfer availability cause Austria’s price in 2023, which in turn causes the level 

of the Austria’s Gas generated power (AT-actGAS) and the price of RO, the parents of which in these 

year, as will be shown in the analysis of RO market, are AT’s spot price and Solar power generation. 

In 2024, AT-DAp has no direct effect (child) and is affected by a several factors: its parents are 

Austria’s Solar and Hydro generated power, BG price, Greece’s Hydro, Hungary’s Gas and lignite 

power production, Italy’s Gas generated power, Slovenia’s spot price and lignite generation, and 

finally the GR-BG cross-border trading. Figure 15 depicts graphically the results above. 

 

Figure 15. DAG of the LCSL (local causal structure), learned by the CMB algorithm, for AT-DA price target 

variable, for years 2022 to Oct. 2024 (Green boxes are used for CBTAs). 

Bulgaria’s spot price (BG-DAp) in 2022 is affected by (its parents are) the spot prices of AT, GR 

and RO (AT-DAp, GR-DAp, RO-DAp), and the AT-Hydro, GR-wind, IT-Gas, and finally RO- Gas 

and Lignite. BG-DAp has no direct effects (child) this period. In 2023, AT-Solar, GR-DAp, HU-

Lignite, SI-Hydro,   CBTAs SI-IT and AT-SI are parents of Bulgaria’s spot price, which in turn has 

direct effects (children) the HU-wind power generation and Romania’s spot price (RO-DAp). 

During 2024, HU and RO spot prices are the causes of Bulgaria’s price, which affects (has children) 

the Greece’s spot price and hydro generation, and Slovenia’s Gas generated power. 

In 2022, Greek spot price has as parents the spot prices of Bulgaria’s, Romania’s, Italy’s and 

Slovenia’s spot prices (BG-DAp, RO-DAp, ITS-DAp, SI-DAp), and Greece’s wind generated power, 

and affects Greece’s and Romania’s hydro power generation. During 2023, Bulgaria’s price and gas 

and lignite generated power, Greece’s levels in wind power and hydro storage, and finally Italy’s 

price and solar generation are the causes of GR-DAp, which in turn has no children (effects). Italy’s, 

Bulgaria’s and Romania’s spot prices, Greece’s wind and solar power generation, and Romania’s 

hydro and lignite generations are the causes of Greece’s spot price in 2024, which in turn has no direct 

effects.  

Hungaria’s spot price (HU-DAp), in 2022, has as parents the spots prices AT-DAp, RO-DAp and 

Greece’s Gas power generation, and Romania’s wind power generation and has direct effect 

(children) the SI-DAp.  Austria’s, Romania’s and Slovenian spot prices, Bulgaria’s, Greece’s and 

Slovenia’s Hydro power generations, and HU load and Solar generation, are the causes of HU-DAp, 

in 2023, which in turns has no direct effects. RO-DAp causes the Hungarian spot price in 2024, which 

has direct effects the BG and SI spot prices, HU gas and solar power generation, the RO wind 

generation and finally the CBTA BG-GR.  

The Italian spot price in 2022, was affected by (caused by) BG’s price and CBTA IT-SI, and has 

caused AT’s, SI’s, GR’s spot prices, BG’s gas generation, GR’s lignite, HU’s hydro and Italy’s wind 

power generation, as well as the cross-border transfer availabilities SI-IT, IT-GR and AT-CZ. In 2023, 
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BG’s, GR’s and SI’s spot prices, HU’s and AT’s Solar generations, IT’s gas and wind generations, SI’s 

hydro generation, and the AT-CZ CBTA were its parent (caused by). AT’s and GR’s spot prices, GR’s 

gas generation, and IT’s hydro and wind generations were the parents of Italy’s spot price in 2024, 

which caused the CBTAs RO-BG and AT-CH, and IT’s gas generation. 

In 2022, Romania’s spot price was caused by BG’s, GR’s and HU’s spot prices, as well as by RO’s 

wind generation, and the CBTAs AT-CH, AT-HU, and IT-GR, while ha no directs effects. Its parents 

in 2023 were the AT’s, BG’s spot prices, and AT’s Solar and IT’s Gas power generations, and has 

directly affected the Hungarian price. With parents in 2024 the BG’s, GR’s, HU’s and SI’s spot prices, 

it has directly affected the GR’s and RO’s lignite generations 

The parents of Slovenian spot price in 2022, were AT’s price, BG’s Solar and IT’s hydro 

generations, and has affected the HU’s and IT’s prices as well as the CBTA AT-DELU. In 2023, its 

parents were the AT’s, HU’s, RO’s prices and the CBTA AT-IT North. In 2024, AT’s, BG’s HU’s spot 

prices as well as SI’ gas generation were its parents. 

7.3. Results of Rolling Price Volatility Correlation and Cluster Analysis for Studying Spillover effects 

Figures 16 and 17 show the rolling volatility curves of all DA prices, Figures 18 and 19 the rolling 

volatility of all CBTA, and Figures 20 and 21 the correlation of rolling volatilities and their dendrogram 

depicting the clustering process, respectively. 

 

Figure 16. Rolling volatility of AT, BG, GR, and HU DA prices using a window of 720 hours (month). 

In Figure 16 we observe a relative resemblance in the dynamic behavior of spot price volatility 

of AT, BG, HU, are almost similar. More specifically, the volatility curves trend initially upwards 

during the third quarter of 2022, and then downwards in the 4th quarter of 2022, although in the case 

of AT and HU we see a rather oscillating behavior before the end of the 3rd quarter. In the case of ITS 

and RO prices (Figure 17), the downward volatility is strongly oscillating. The volatilities of all spot 

prices remain low during the 1st and 2nd quarters of 2023, trending upwards reaching their peak 

values in the 3rd quarter, trending downwards in the 4th quarter of 2023, remaining at very slow values 

during the 2nd and 3rd quarters of 2024, and finally trending upwards and reaching peak values during 

the 3rd quarter of 2024. We can therefore observe clearly in Figures 16 and 17, the decoupling in 

volatility terms, in the summer 2024: GR, BG, RO and HU have high volatility probably because of 

the difference in prices between day and night. On the other hand, the volatility of prices in IT and 
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AT is relatively low, while SI’s volatility is somewhere in the middle. Looking at the other time 

periods of our analysis, from 2022- Oct.2024, we observe identical volatility shapes. 

In Figures 18 and 19, we show the curves of the rolling volatility of cross-border trading, CBTA, 

between the markets shown in the figures. During 2022, the volatility of CBTA between Austria and 

Switzerland (AT-CH) exhibits strong oscillations, with peaks in the middle of the 2nd and 3rd quarters, 

as well as at the ends of the 1st and 4th quarters. In 2023, the volatility is constantly at a high level in 

the 1st quarter, shows a V shape in the second, and drops in the third, while increasing during the 4th 

quarter, taking its peak value at the end of 1st quarter of 2024.       

 

Figure 17. Rolling volatility of ITS, RO and SI DA prices using a window of 720 hours (month). 

A strong increase in volatility is observed during 2nd and 3rd quarters of 2024, reaching its lowest 

value near the end of August 2024, followed by an abrupt upward trend at the end of 3rd quarter of 

2024. The rolling volatility of the CBTA between AT and CZ exhibits an strong decrease at the end of 

2022 2nd quarter, remaining constantly at a very low value up to the 2023 1st quarter, followed by a 

lasting increase up to the end of 3rd quarter of 2023, after which a dropping and an increasing behavior 

is observed in the 4th quarter, then remaining constant for the rest of the periods. The rolling volatility 

CBTA between Austria and Germany (AT-DE), shows an abrupt decrease and then increase in 2022 

Q1, remains constant during 2022 Q2 and Q3, drops and increase fast in 2022 Q4, and remains 

constant at a high value for the rest of 2023-24 period. The rolling volatility of CBTA between Austria 

and North Italy (AT-ITN), exhibits a constant dropping in the first three quarters of 2022, increases to 

a peak value in the middle of 2022 Q4, followed by a fast dropping and then is trending upward with 

oscillations, for the rest of the periods. The rolling volatility of CBTA between Austria and Hungary 

(AT-HU), is low in the first three quarters of 2022, followed by a upward trending and reaching a 

peak value in 2022 Q4, and finally exhibits an upward oscillating trend up to the 1st quarter of 2024,  
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Figure 18. Rolling volatility of AT-CH, AT-CZ, AT-DE Cross Border Transfer Availability (CBTA) using a 

window of 720 hours (month). 

 

Figure 19. Rolling volatility of AT-ITNorth, AT-Sl, AT-HU Cross Border Transfer Availability (CBTA) using a 

window of 720 hours (month). 

7.3.1. Correlation of Rolling Volatility Curves and Their Clustering Process 

The interaction of all rolling volatility curves, described previously, is shown in Figure 20, where 

the correlation of rolling volatility curves of all DA prices and all CBTAs (using a window of 720 

hours-1 month), is shown.  Using the information above, and in combination with the results of 

CBTA’s rolling volatility correlation, Figure 20, we can ‘capture’ the dynamics of the volatility 

spillover, trying to detect significant decoupling in volatility patterns that may indicate cross-border 

disruptions that cause the increase in the spot prices in this region. In Figure 20 we observe a relative 

heterogeneity in the context of correlation of rolling volatility, across markets: the Italian and Austrian 

markets are shown to have lower correlation of price volatility (see ‘orange’ upper-left cells in Figure 

20). For example, volatility correlation of ITS with HU (0.69), SL (0.75), AT (0.80), RO (0.74) and BG 

(0.74), GR(0.74) markets, indicating that the correlations (a linear measure) of price volatilities are 

lower between geographically distant and unconnected (directly) markets. However, we observe that 

RO and BG markets, although distant and not directly connected with the IT market, exhibit larger 

correlations with ITS than with HU market, and comparable with SI market. This ‘strange’ result is 
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justified by the ‘weaknesses of this linear measure, as well as from the results of the MB and LCS 

learning, sections 7.1 and 7.2. From the MB and LCS analysis (see Tables 14 and 15), the GR-DA price 

(15) has parents the BG-DA price (7), whose parent is the RO-DA price (39), as well as the ITS-DA 

price (32). The moderate correlations of price volatility of RO-DA and BG-DA prices with the Italian 

price is due to this indirect connection, reflecting their nonlinear correlation, ‘captured’ via MB 

analysis. The correlations of price volatility between the directly connected markets are the highest, as shown 

in Figure 20 (yellow and orange cells, in the upper-left portion of the figure).    

Thus, markets AT, HU, RO, BG seem to be the best candidates for volatility transmitters, and since 

AT is the first market in the entire interconnection path, seems to be the most critical market, most 

likely the initiator of the propagation of the price surges in SEE region. This is shown below, by 

examining the volatility spillover across markets via a dendrogram (see Figure 21) of the correlation of 

volatility values.  

The highest correlations of price volatility of the Greek market are with the RO and BG (~0.948 

and ~0.95 respectively), and smaller but statistically significant ones with all other markets. The 

results of the rolling volatility shown in the figures are consistent with the results of the MB and LCS 

learning which effectively contribute to capturing both linear and nonlinear spillover mechanisms of the 

price volatility of all markets directly and indirectly connected.    

We then examine how the spot price volatility correlation of the two groups of countries, the 

group DE/AT/HU and the group RO/BG/GR, are compared. For the first group the correlations are 

corr(ATp-Hup) = 0.65, corr(ATp-BGp) = 0.72, corr(ATp-GRp) = 0.69 and ATp-ROp) = 0.70, so the mean 

correlation of the group is 0.69. Similarly, corr(ROp-GRp) =0.77, corr(ROp-BGp) =0.98, corr(GRp-BGp) 

=0.957, giving a mean volatility of 0.90. Thus, the rolling spot volatility within SEE CCR group (BG, GR) 

and RO increases, driven by shared scarcity shock. We also observe a drop in the volatility correlation between 

the two groups, from 0.90 to 0.69, indicating that the SEE CCR countries become their own self-contained 

volatility bubble, while core markets experience minimal impact (at least temporarily) (all above correlations 

are statistically significant). 

We examine and compare now the volatility correlations between spot prices and CBTA, in each 

of the two groups. We observe statistically significant negative volatility correlations in pairs of AT-

CH cross-border trading and the spot prices:  corr(ATp-(AT-CH)) = -0.353, corr(BGp-(AT-CH))=-

0,56, corr(GRp-(AT-CH)) = -0.48, corr(Hup-(AT-CH)) = -0.64, corr(ROp-(AT-CH)) = -0.59, corr(SIp-

(AT-CH) =-0.65. Similar negative volatility correlations between Austrias’ CBTAs with other central 

Europe (core) countries and SEE spot prices, are observed. Thus, when Austria decreases its CBTA with 

countries that are interconnected with SEE countries, causes their spot prices to increase   substantially. 
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Figure 20. Correlation of rolling volatility curves of all DA prices and CBTA using a window of 720 hours 

(month). 

How are the above results of the rolling volatility spillover related to the Target’s model 

expected ‘behavior’? We know that Target Model + Flow-Based Allocation → Market Distortion. The 

Target Model’s flow-based market coupling (FBMC) assumes "physical feasibility optimization” but in 

practice, its algorithms allocate cross-border capacities not just based on price signals but also on pre-

set constraints and priorities. Since, as we know, flows were redirected to Switzerland (CH) and 

Ukraine, then SEE markets became de facto semi-isolated, losing competitive imports from cheaper 

markets (DE/AT/HU). As a result, we can conclude that price and volatility in SEE spike due to a) supply 

scarcity, b) loss of arbitrage smoothing and c) increased reliance on local (often more expensive) generation. 

This finding however, raises a new relative question: Is there strategic behavior/ “price game”? This 

is subtle. While it's unlikely that Germany/Austria/Hungary are explicitly “playing a price game”, 

the structure of FBMC allows passive gain from structural decoupling: 

 When interconnection is “algorithmically blocked”, SEE CCR 

market prices surge, but DE/AT/HU can export at higher prices via 

different paths (or even import cheap and export expensive). 

 If cross-zonal capacities are not allocated efficiently, this can create 

rent-seeking arbitrage opportunities, especially for dominant 

players (e.g., traders, utilities) in the core. 

Therefore, our answer could be yes! However, this may not be malicious intent, but the 

algorithmic structure enables economic rents to concentrate in the core zone, leaving SEE markets 

overexposed. 

7.3.2. The Dendrogram of the Clustering Process 

Figure 21 shows the twenty (20) hierarchically formed clusters in a dendrogram, shown also in 

Table 16. We describe shortly the process of clustering of the correlations of spot prices and CBTAs 

volatilities, to shed further light on the way they interact: RO-DAp and BG-DAp cluster first (cluster 

1), by the first U-shaped lines connecting RO and BG in the hierarchical tree. The height of U-shaped 

lines corresponds to the lower distance (~0.30) between the two data points, i.e. to the highest 
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correlation between their rolling price volatilities. The next cluster (cluster 2) is that between HU spot 

price and the previously formed cluster of RO and BG prices, with a distance slightly larger than 

before, i.e. HU price has a lower correlation between its volatility, or the spillover of volatility 

between HU and the two markets of BG and RO is lower than the spillover of volatility between BG 

and RO.  

 

Figure 21. Dendrogram showing the clusters of the rolling volatility of DA prices and CBTA. Numbers show the 

hierarchical position of the clusters, characterized as leaders, early and late followers. The highest strength of 

volatility spillover is shown by the leader clusters. 

The next cluster (cluster 3) is formed between the previously clusters of  (RO-BG) and HU-(RO-

BG) with GR price, where the height of U is considerably larger (~0.35), indicating that the correlation 

of price volatilities between the markets of the two previous clusters and GR is lower, i.e. the strength 

of the volatility spillover between the GR and (RO-BG) and HU-(RO-BG). The process of clustering 

continues similarly, so the next cluster (4) is between the CBTA between Greece and Bulgaria, 

followed next by the cluster (5) between the spot prices of SI and the spot prices of cluster 3. Then 

cluster 6 is between ITS (Italy South) and Austria (AT) spot prices. Thus, interestingly, the spillover 

of volatility between AT and ITS prices is weaker than the spillover between BG and GR CBTAs, a 

very interesting finding. Table 16 shows the hierarchical steps from cluster 1 to cluster 14 of the 

clustering process. The cluster 8 made by CBTAs of AT-HU and AT-SI) with cluster 9 (BG-RO and (BG-

GR and GR-BG) is pivotal, since it emphasizes strongly how the CBTAs of AT, HU, SI, BG, RO, and 

GR markets interact with, i.e. how the volatility of Austria’s CBTA spills over to the markets of BG 

and GR. The clustering of the AT-CH and RO-BG CBTAs (cluster 12) also enhances the strong interaction 

between the AT and CH markets with the two SEE markets of BG and RO! Similarly, CBTAs between Austria’s 

and Germany’s (AT-DE) and Austria’s and Czechoslovakia’s (AT-CZ) electricity markets (cluster 15), also 

indicates that the Austrian market is a pivotal market, more importantly it is a ‘transmitter’ of price and cross-

border activity volatility, between markets that are located ‘up-stream’ and ‘down-stream’ in its connection 

path with SEE markets that receive the price and CBTA volatility disturbances that cause their price surge. 

Table 16 shows the hierarchy of the clustering process. Clusters 1, 2, 3,5,6 and 7 refer to pairs of several 

DA prices while the rest to the pairs of CBTAs. From all the above and looking carefully at Figure 21 

and table 16, we will try to make further distinction between the markets, based on the hierarchy of 

their clustering process. More specifically, we identify markets as leaders, early and late followers, 

according to the priority of clustering patterns. Also, we identify Bridge markets, the ones that connect 

the Central Volatility Zones markets with the South Volatility Zones markets. Therefore, based on Figure 21 

and Table 16, the leaders are the clusters 1, 2, 3, 4, 5, and 6, formed mainly by the spot prices and the 
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CBTAs BG-GR and GR-BG, while early followers are the clusters 7, 8, 9, 10,  formed only by cross-

border trading availabilities (CBTAs), and finally late followers, formed by clusters 11, 12, 13, 14, 15 

and 16, also by clusters formed only by CBTAs. Clusters 17-20 (not shown) indicate clusters of 

markets interactions with negligible spillover effects. It is obvious that the markets involved in the 

early followers volatility patterns can also be the bridge markets.  

From the dendrogram and specifically the leader clusters we observe the intensive volatility 

spillover between BG and RO spot prices, as well as the intensive volatility spillover between the spot 

prices of HU and BG, HU and RO, and between GR, BG and RO. The volatility spillover of cross-

border transfer availability between BG and GR is also intensive. Intensive is also the volatility 

spillover of AT and ITS prices (cluster 6), which affects all the previous spot prices. The conclusion 

here is that the volatility of spot prices of three Core CCR markets (HU, AT and RO), is diffused 

towards and affects severely both the spot prices as well as the CBTAs of BG and GR. The spillover 

of volatility is lower between the spot prices or CBTAs of the markets belonging to early clusters, e.g. 

the CBTAs IT-SI, AT-HU and AT-SI, also the CBTA BG-RO with BG and GR, which also is diffused 

and affects the spot prices of the SEE CCR markets of Greece and Bulgaria. Therefore, the clustering 

process shown in the dendrogram creates a structure of interactions between the pairs of quantities in 

the clusters (mainly leaders & early followers), a ‘suitable background’ in which if crucial events occur can 

‘fire’ the formation of price spikes and surges, that can propagate towards the RO, BG and GR markets. Thus, 

if a disturbance in prices or CBTAs take place in the ‘upstream’ (say AT, HU) of this ‘background’, the induced 

volatilities diffuse to ‘downstream’ markets of BG and GR.  

Under the light of the results, we examine the period 2023–2024, and specifically how the 

Electricity flows (indicated by the dendrogram above) between Austria (AT), Czechoslovakia (CZ), 

Switzerland (CH) and Germany (DE), in a cascading mode, have affected the dynamics of flows to 

Hungary and then to SEE CCR countries Bulgaria, Greece and Romania (a Core CCR member).  
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Table 16. The hierarchy of the clustering process. 

Cluster 

hierarchy 
Market fundamentals 

Cluster 

hierarchy 
Market fundamentals 

1st cluster ROp-BGp 9th cluster 
BG-RO cbta with cluster 

4 
2nd cluster HUp with cluster 1 10th cluster IT-SI cbta with SI-IT 

3rd cluster GRp with cluster 2 11th cluster cluster 8 with 9 

4th cluster 
BG-GR cbta with GR-

BG cbta  
12th cluster RO-BG with GR-IT 

5th cluster SIp with cluster 3 13th cluster IT-GR cbta with cluster 7 

6th cluster ITSp with ATp 14th cluster 
AT-ITNorth cbta with cluster 

11 

7th cluster cluster 6 with 5 15th cluster AT-DE with AT-CZ cbta  

8th cluster 
AT-HU cbta with AT-

SI cbta 
16th cluster cluster 10 with 14 

An important question then is raised, regarding possible supply disruptions not naturally 

occurred but ‘artificially’, because of an algorithmic idiosyncrasy of the relevant mechanism. More 

specifically, by "artificially disrupted" we mean disrupted not by real physical constraints (like lines 

overloaded) but algorithmically by the market coupling rules incorporated in the Target Model, 

especially flow-based market coupling (FBMC)), that can even redirect flows toward ‘wrong’ countries. 

The complexity of the interactions described by the dendrogram above, that have created a ‘suitable 

background’ awaiting for crucial events to happen to generate price spikes and surges, can be 

revealed by summarizing the situation as follows. The background is that Germany, Austria, 

Switzerland, and Czechia are tightly interconnected and were historically considered a "copperplate" 

(no internal congestion). Switzerland is not in the EU Target Model (due to political reasons), but 

physically it’s important. Since October 1, 2018, Germany and Austria are split into separate bidding 

zones because of loop flows that affected Eastern Europe, especially Hungary. As already mentioned, 

Flow-Based Market Coupling (FBMC) is now active in the Core region (which includes AT, CZ, DE, 

HU, RO, etc.) since June 8, 2022. We now shortly review what happened in 2023–2024. Due to 

excessive renewable generation (i.e. surpluses especially in Germany) and market prices differences 

(especially after the Ukraine war energy crisis), electricity was flowing massively from North and 

Central Europe toward the South-East. Hungary (HU) became a critical transit and bottleneck 

country. Constraints on cross-border flows between DE–CZ, DE–AT, and AT–HU, have become 

dominant in the calculation. Some flows were redirected4 or "allocated differently": flows that "were 

supposed or wanted" to go to HU, RO, BG were sometimes "virtually" limited because of congestion elsewhere 

(even if the physical lines HU–RO were not full). Ukraine’s interconnection with EU (via ENTSO-E 

synchronization) after February 2022 allowed for commercial exchanges — mainly export from EU to Ukraine. 

So, the natural question that now oppressively is raised is: was this redirection an artificial one? In 

a sense, we answer yes, based on the findings above and the following scenario-argument: under the flow-

based allocation, if an export from Germany to Romania/Hungary uses critical branches (lines) that are 

already congested (say in CZ or AT), then the market coupling limits how much can be sent, even if 

locally the HU–RO line is not congested. Meanwhile, exports to Ukraine (through Slovakia or 

Hungary) could still happen because they use different critical branches, or because their allocated 

flow factor is lower. This means that even if physically we could have sent more toward Romania, the 

algorithm limited it — not because of real-time physical overload, but because of calculated capacity 

 
4 Commercial flows are redirected (e.g. to Ukraine) because of different impact factors, PTDFs 
(Power Transfer Distribution Factors) determine how much a MW transfer from A to B uses each 
line. RAM (Remaining Available Margin) is the headroom left on a line. If a transfer Germany → 
Romania "uses" too much of a congested line in Austria or Czechia, it's limited. Export Germany 
→ Ukraine (via Slovakia) might "use" less congested lines (or different ones) → so it's allowed. 
The core flow-based domain thus shapes what trades can happen. 
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margins. Figure 22 shows the physical connections: DE (Germany), AT (Austria), CZ (Czechia), CH 

(Switzerland), HU (Hungary), RO (Romania), BG (Bulgaria), GR (Greece), UA (Ukraine), as well as 

how flows were meant to go toward RO and SEE CCR (HU → RO → BG → GR). Most importantly, 

it depicts also how algorithmic flow-based rules limited flows toward SEE but allowed flows to 

Ukraine. Specifically, it shows  that normally electricity should flow DE → CZ → SK → HU → RO 

→ BG → GR (the right path), but the TM’s algorithm for flow-based market coupling (FBMC) 

‘realized’ a congestion in CZ and AT (mainly because Germany’s renewable surpluses heavily loaded 

internal grids), resulting therefore in limited electricity transfers toward HU and further into RO/BG, 

regardless the fact that the HU→RO line was physically free. However, export HU→UA (Ukraine) 

was allowed because it had a lower impact on congested lines (different PTDF, see footnote 4). 

Therefore, RO and SEE CRR markets (BG, GR) sometimes due to limited-reduced electricity imports 

exhibited higher prices. Table 17 provides a short visual summary of the results of Figure 22. 

 

Figure 22. Physical and commercial flows diagram, 2023-2024. 

Table 17. provides a short visual summary of the figure above. Short visual summary. 

From To Flow status Reason 

DE → CZ → HU → 

RO 
BG Limited (❌) 

Congestion upstream (DE–CZ, 

AT) 

HU → UA (Ukraine) Allowed (✅) Lower congestion impact  

DE/AT → CH 
No market coupling 

(⚡) 

Switzerland outside EU 

market 
 

7.3.3. The Behavior of the Target Model in the Issue of SEE Markets’ Price Surge 

Based on the results depicted in Figure 22 and Table 17, we ask whether the European Target model 

has failed in our case, in the sense that it has not prevented the prices surge in SEE countries in the 

period 2023-2024. Having accepted in the previous section that the flow redirection was ‘artificial’, 

we further dig into it carefully, since the answer seems to be nuanced, not a simple ‘yes’ or ‘no’. First, 

a summary of what the European Target Model (ETM) was supposed to do is shown in Table 18. 

TM’s Flow-Based Market Coupling (FBMC) mechanism plays a crucial role in the performance of the 

model when applied in practice, since it models the real physics of the grid better than simple border-

based allocations. An evaluation of the TM’s performance in dealing with the wholesale price 

discrepancies and surges in SEE CCR markets is given in the comments of Table 18. Therefore, our 

answer to the question is partly yes. Table 18 shows a detailed evaluation of the TM’s performance, in 

the case of SEE prices surge. 

Table 18. Detailed evaluation of the performance of the European TM, in the case of SEE spot price surge. 
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Aspect Result in 2023–24 Comments 

Price convergence ❌ Failed Prices in SEE diverged strongly from Core (DE/AT/CZ) 

Grid physical realism ✅ Worked FBMC realistically modeled grid congestions 

Market integration ❌ Partially failed SEE countries were semi-isolated 

Security of supply ✅ Generally OK No blackouts, but expensive 

Efficient capacity use ❌ Not optimal Some capacities underused (especially HU→RO) 

As a conclusion, although TM’s FBMC algorithm obeyed its design rules, price convergence and 

"social welfare" goals were not achieved for SEE CCR markets, a finding of strategic consequences, as the 

need for Europe to split large bidding zones further (e.g., Germany into north/south zones, now a real 

fact) (ENTSO-e, 2025, [52]), as many experts have systematically argued. Another strategic 

consequence is the need to invest massively in North–South transmission corridors (e.g., from Poland to 

Romania, from Austria to Hungary and further ‘downstream’ to South). Also, considering all the 

TM’s ‘malfunctions’ generated due to exports to Ukraine, mentioned previously, it is urgent for 

Europe review priority treatment of Ukraine export vs internal EU flows in critical times, on a higher 

strategic level, considering also the need of adjusting flow-based rules to better protect the markets in 

vulnerable regions like SEE CCRs markets. Conclusion: the European Target Model worked mechanically, 

but failed strategically for SEE countries in 2023–2024 — it did not deliver price convergence or fair market 

integration for them under stress. 

8. Discussion - Conclusions and Policy Recommendations  

The findings in section 7 have shown that by applying a combination of ML methods (Markov 

Blanket, MB, and Local Causal Structure- LCS- learning approaches) with a mainstream approach, the 

analysis of volatility spillover effects between pairs of markets analyzed in this paper, has been proved 

to be a powerful tool for causal feature descovery, helping to reveal the strongest factors influencing 

(causing) the dynamic evolution of the surges of DA electricity prices occurred in the SSE CCR 

countries, in the period of 2023-2024.  

By focusing on causally relevant features, the tool improves model interpretability and predictive 

performance while avoiding overfitting caused by irrelevant or redundant variables. We have shown 

how Markovian Blanket, a causal feature selection and discovery approach, has revealed the 

strongest factors in explaining the price surges in SEE electricity markets. We have also shown why 

this approach is better than a typical regression approach, in our case. Using the Markov Blanket for 

causal feature selection and discovery to explain price surges in SEE electricity markets has proved 

to provide us with a robust framework for identifying the strongest explanatory factors, (out of a 

‘large’ number of possible market parameters), focusing on causal relationships rather than mere 

associations. We believe that via these causal interactions we finally managed to shed some light on 

the ‘real’ factors that shape the DA electricity price surges in the Southeast European countries. 

To further enhance our results, we computed the rolling volatility curves of all crucial variables 

included in the MB sets, for each market, and their correlations to detect volatility spillovers, across 

the entire path of the spot prices and CBTAs, from north to south markets, to detect how ‘volatility 

disturbances have propagated. The combination of MB-LCS learning and Volatility Spillover analysis 

revealed the ‘partial failure’ of the European Target Model’s capacity to protect the price surge in SEE 

markets, i.e. we have found that TM facilitates cross-border price crisis diffusion. 

 
Our findings have successfully explained how the transformation, via the target model, of a local 

problem of supply-demand imbalance into an electricity price problem (due to energy exchange market 

inflation) and then the spillover-diffusion of this problem to the entire path of the interconnected 

countries (DE-LU →AT→HU→RO→BG→GR), has challenged the effectiveness and reliability of the 

target model, as a mechanism designed to ‘homogenize’ prices and more importantly in mitigating 

price surges in a network of coupled electricity markets, thus its contribution to the energy transition 

target is seriously criticized.  
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8.1. Policy Issues and Future Directions 

As we have already pointed out in section 4, several factors seem to have exacerbated FBMC's 

challenges in the case of SEE CCR’s countries: a) the limited interconnectivity, since these countries often 

rely on the Net Transfer Capacity (NTC) mechanism, contrasting with FBMC's application in Core 

CCR’s countries. Thus, this discrepancy seems to hinder their seamless integration into the European 

‘core body’ power system, b) infrastructure constraints, as the delays in returning key power plants, 

maintenance on critical interconnectors, such as the BG>RO line, further strained the system, and 

finally c) external (weather) pressures, as climate events, like heatwaves, have increased electricity 

demand, while geopolitical tensions, notably Ukraine's shift from exporter to importer, added 

pressure on neighboring grids.   

We conclude that while FBMC is designed to enhance market efficiency and integration, its 

current implementation has, in certain scenarios, failed to protect SEE markets from spot price surges 

and discrepancies compared to Central European markets. The July 2024 events exemplify how 

algorithmic decisions, without adequate consideration of regional specificities and infrastructure 

limitations, can lead to significant market distortions. Addressing these challenges requires a 

reevaluation of FBMC's application in SEE, improved infrastructure, and enhanced coordination 

among regional stakeholders. 

Based on the results of the study, and specifically on the ‘response’ of the Target model (TM) to 

the systematic discrepancies of spot prices between Core CCR and SEE CCR markets, we have 

already addressed the challenges imposed on TM due to its ‘partial failure’ in dealing with this issue. 

Therefore, to strengthen Target Model's capacity in successfully handling a future prices problem in 

Southeast Europe, we propose several measures that seem to be necessary. First, the need for 

accelerating market coupling, i.e. enhance cross-border market integration and expand interconnection 

capacity, as well as investing in regional grid infrastructure to reduce bottlenecks, are immediate 

actions to be taken. Secondly, the diversification of energy sources, via prioritizing the deployment of 

renewables, particularly wind and solar, to reduce reliance on volatile fossil fuels, and supporting 

energy storage solutions and demand-side management, are also urgent actions. Regulatory and 

Institutional Reforms are also needed, to strengthen market competition and reduce the dominance of 

state-owned utilities in the region under analysis, as well as a need to harmonize regulations to align 

with EU standards and foster investor confidence. The Target model must adopt crisis-preparedness 

mechanisms, i.e. developing tools to address price volatility, such as capacity mechanisms, strategic 

reserves, and demand response programs. The model must also facilitate coordination of regional efforts 

to manage energy security and supply risks. As a conclusion, the Target Model has not failed outright, 

but its shortcomings in Southeast Europe highlight the need for targeted reforms and investments. 

Addressing structural weaknesses and accelerating market integration are critical to ensuring that 

the region can fully benefit from the model while mitigating the impacts of future energy crises. 

8.2. Need for an EU-Wide Systemic Approach in Decision Making 

It is profound from all above that the EU needs stronger governance – a system that allows it 

more input into decisions made by individual countries that could have regional effects, such as 

planned outages. Therefore, a strong request is for more EU regulatory oversight, an EU-wide regulator 

for electricity that can have a systemic-holistic as well as ‘concurrent’ view of all interconnected and 

interacted markets. Another crucial issue, revealed by this price surges is that the decision for 

exporting to Ukraine has created a strong impact, that however is felt only by some countries without 

sufficient electricity transfers within the EU. Thus, it seems that there is a need for re-designing 

electricity market for options for Greece to ‘claw back windfall (unexpected) profits from generators and 

protect consumers during this shock’, as the Greek Prime Minister stated. Thus, Greece, Bulgaria and 

Romania have expressed jointly the need their interconnection projects to be funded from profits from the 

wholesale electricity markets. Greece already charges a windfall (unexpected) tax on energy companies 

and directs the proceeds in the form of subsidies to vulnerable consumers. In the current framework 

the EU allows market interventions but with a substantial lag, i.e. after a prolonged period of high 
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prices. The three badly affected from the prices surges countries, Greece, Romania and Bulgaria, have 

expressed their request for a mechanism that will enable them to react faster to the price spikes. The 

price disparities also have revealed the need for the EU to enhance electricity interconnectors, so in case 

these disparities between countries reach extreme levels make the related interconnection projects 

strongly justifiable due to enhanced cost-benefit considerations. Thus, the three Balkan countries 

have requested that part of their revenues from electricity markets be invested in the development of the grids 

enhancing and their cross-border transfer availability (CBTA). 

8.3. Potential Limitations, Challenges & How to Overcome Them 

We list at this point some possible limitations in our work as well as the actions we have taken 

to strengthen further the reliability of our findings: a) Data Quality: Causal discovery needs high-

quality, time-synchronized data. In this study we used reliable and tested data provided by the 

European organization ENTSO-E, as well as regulatory reports for Greece and other SEE markets, b) 

Latent Confounders: we could extend the current study by applying Bayesian methods to account for 

unobserved effects like political risks, a work left for future consideration, c) Computational Complexity: 

the algorithms used in this work are very efficient in handling very large datasets, even larger than 

those used in our work. 
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