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Abstract: Slow-moving inventory (SMI), which absorbs working capital over long periods of time 

and pushes up storage cost, urgently requires reliable and intelligible forecasting methods for 

making business decisions. We suggest the use of the Temporal Fusion Transformer as the 

backbone to fuse the graph attention layer, to capture the substitution effect and promotion 

transmission between SKUs. Secondly, multi-scale expansion causal CNNs account for both long-

term and short-term seasonal patterns while Bayesian residual branches measure the uncertainty 

of prediction. Attention-based feature selectors are designed in the training stage, while SHAP 

interpretation and counterfactual inference are integrated in the inference stage to interpret how 

price, demand, and logistics signals contribute to SMI prediction. All the results are integrated into 

the adaptive control chart of the interactive visual display of feature attribution heat map, forecast 

interval and core KPI Inventory Turnover in real time, and automatically launch early warning and 

hypothesis testing and scene simulation when anomalies are detected, to help managers to judge 

whether to advance the replenishment strategy or clearance strategy, to achieve the closed loop of 

forecasting and decision. Simulations conducted by a multinational consumer electronics retailer 

showed an increase in inventory turnover of approximately 14.6%. 

CCS CONCEPTS:•Applied computing ~ Enterprise computing ~ Enterprise data management 

Keywords: slow-moving inventory; explainable forecasting; hybrid neural network; interactive 

visualization 

 

1. Introduction 

Against the background of the interconnectedness and the complexity of the world’s supply 

chains, the inventory management problem in the enterprise has been aggravated. Geopolitical 

tensions, climate change, logistics bottlenecks and supply volatility all continue to grow, leading to 

more dynamic and less secure supply chains. In this case, inventory management is not a simple 

linear control problem, but a key reflection of the resilience and agility of enterprise operations. One 

of such measures is SMI (Slow-Moving Inventory). SMI products typically have low volume, slow 

product updating characteristics, and they are hard to predict in demand, with risks of inventory 

spells and capital precipitation [1]. Not only can companies be forced to pay for warehousing, 

insurance, or end-of-life disposal costs in real-time, but can lose positions, resource allocations 

around best-selling items. SMI represents, in most industries, only a fraction of the cost structure and 

is a bottleneck that limits the rate at which inventory can be turned and capital utilized. 

Classical approaches of inventory management, time series models (e.g. ARIMA, Holt-Winters) 

and decision-making systems depending on empirical rules are frequently applied in practice of 

supply chain management. The approaches above all considers the demand patterns are smooth or 

the demand curve is linearly-fitted, and are more suitable for forecasting high-frequency, regularity-

focused top-selling products [2]. However, with the exception of inventory aging, it is challenging 

for this approach to reflect nonlinear factors including the SKU replacement effect, the interference 
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of cross-promotion, and the fluctuations of holiday in the real business, which leads to the 

accumulation of forecasting error and would consequently influence the policy of replenishment and 

the rhythm of clearance. 

Meanwhile, the sales of SMIs are affected by external factors (e.g., seasonality, marketing, price 

altering) and internal factors (e.g., replenishment cycle, availability, substitutes) and they have a 

complex inter-variable coupling and scale inconsistency. The traditional methods in current use are 

unable to meet the demands of enterprises for fine-grained inventory prediction and risk control due 

to the relatively weak feature interaction modeling and multi-scale learning abilities [3]. These lack 

of modelling capabilities are concrete in real-life issues as loss of stock rotation, paralysed cash flows 

and slow adaptability of operations. 

Recently, deep learning techniques have achieved great success for time series modeling. 

Models like Long Short-Term Memory Network (LSTM), Gated Recurrent Unit (GRU), 

Convolutional Neural Network (CNN) are extensively applied for sales forecasting, energy 

dispatching, financial trend analysis, etc. They could describe well the aspects of relationships among 

nonlinear patterns, time varying structures and complex features, and reduce the dependence of the 

traditional models on static distribution assumptions, which gives a new thought for complex 

inventory forecasting [4]. Especially, the hybrid neural network framework consisting of CNN, LSTM 

and Transformer can capture local peak changes and long-term trend signals simultaneously, 

enhancing the modeling flexibility and generalization capacity. 

There are also some studies show that hybrid ANN models are superior to some of the 

alternative forms of neural networks in an e-commerce setting, chain retail, and manufacturing 

environment for sudden demand changes, price jumps, and promotional changes. For instance, in 

the multi-time-scale modeling structure, the parallel LSTM models out of CNN layers with different 

warp rates can effectively enhance the look-ahead and robustness of inventory allocation decisions. 

However, most of these methods have a “black box” shape, and there is no explainable mechanism 

in it, which leads to that business personnel can’t know key factors for a certain prediction from the 

model. Therefore, for real-world applications, due to this stiffness, the proposed retrieval model is 

unlikely to find a better cooperation with human experts [5]. 

In addition, the currently deep learning models basically only concentrate on the point 

estimation, without considering the practical requirements about the demand uncertainty and the 

abnormal risk as well as the strategy simulation. In SMI management, the decision makers usually 

want to compare the opportunity cost of inventory liquidation, the risk plane of reorder and the safety 

value limitation against the forecast results. Therefore, the model output does not have a confidence 

interval as well as an interpretability mechanism, which does not meet the dual requirements of 

“operability” and “credibility” of enterprises. This gap is blocking the possible deep learning 

penetration in high-risk materials management. 

2. Related Work 

Nieuwenhuijze [6] suggests a more accurate method to identify the drawback of the SMI 

identification in the Dow, i.e. a company for the production of chemicals. Through the creation of an 

XGBoost classification model in conjunction with SHAP analysis, important features that influence 

SMI were highlighted, such as upfront inventory levels, production levels, and historical average 

demand. Gralis [7] followed a design science method, by the combination of the Explainability 

Artificial Intelligence (XAI) and the Intrinsic Explainable Methods (IAI) built a sales forecasting 

model for E-commerce platforms. 

The SSDNet model of Lin et al. [8] leverages a Transformer model with a state space model to 

achieve explainable time series forecasting. The structural states of NS model consists of trend and 

seasonal components and performs probabilistic forecasting. SSDNet bypasses the convoluted 

nature of classic Kalman filters and optimizes prediction speed and accuracy by learning the 

parameters of the state-space model directly. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 May 2025 doi:10.20944/preprints202505.1367.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1367.v1
http://creativecommons.org/licenses/by/4.0/


 3 of 8 

 

Yusof [9] in the area of predictive analytics and machine learning for inventory management 

and demand forecasting in e-commerce platforms. The impact of regression analysis, time series 

forecasting, clustering, and neural networks is compared where external factors such as historical 

sales data, behaviour of consumers in the market and market trends are incorporated. 

As a solution to the problems pertaining to sporadic elements forecasting demand for parts, 

Kenaka et al. [10] proposed a new integrated method, which integrates Focal Loss with SMOTE. It 

balances the dataset via SMOTE technology and employs Focal Loss to make the model more 

sensitive to the rare demand events. Benhamida et al. [11] proposed a demand prediction tool for 

smart inventory management systems. The system uses a multiagent system (MAS) environment 

for real-time demand predictions, especially for on-again-off-again demand patterns, through 

integration of historical data and patterns. 

Jiang et al. [12] proposed an interpretable cascading expert mixture model called CP-MoE 

(Congestion Prediction Mixture-of-Experts) for urban traffic congestion prediction. The model aims 

to address the shortcomings of traditional methods in dealing with heterogeneous and dynamic 

spatiotemporal dependencies, especially in the face of noisy and incomplete traffic data. 

3. Methodologies 

3.1. Multi-layer hybrid neural networks 

In proposed Interpretable Slow-Moving Inventory Forecasting (ISMIF) model, we feed the 

multimodal time series 𝑥𝑡
(𝑛)

 and static metadata 𝑠(𝑛)  for all SKUs into the Temporal Fusion 

Transformer (TFT) backbone, and couple the graph attention branch and the multiscale expansion 

causal CNN branch in parallel, as shown in Equations 1 and 2: 

𝑦̂𝑡+1:𝑡+𝐻
(𝑛)

, 𝜎𝑡+1:𝑡+𝐻
(𝑛)

= ℱ (𝒢 (𝑋1:𝑡
(𝑛)
; 𝐴) , 𝒞 (𝑋1:𝑡

(𝑛)) , 𝑠(𝑛)) , (1) 

𝑋1:𝑡
(𝑛)

= [𝑥1
(𝑛)
, 𝑥2

(𝑛)
, … , 𝑥𝑡

(𝑛)
] , (2) 

where 𝐴 ∈ ℝ
𝑁×𝑁

 is the SKU diagram, and the edge weight of node (𝑛,𝑚) is 𝐴𝑛𝑚 = 𝜌𝑠𝑢𝑏(𝑛,𝑚) +

𝜌𝑝𝑟𝑜𝑚𝑜(𝑛,𝑚) quantifies the similarity of substitution and the resonance of promotion, respectively. 

𝒢 uses multi-head chart attention, as shown in Equations 3 and 4: 

ℎ𝑡
(𝑛)

= 𝜎( ∑ 𝛼𝑛𝑚,𝑡

𝑚∈𝒩(𝑛)

𝑊𝑔𝑥𝑡
(𝑚)

) , (3) 

𝛼𝑛𝑚,𝑡 =
exp (𝑥𝑡

(𝑛)
𝑊𝑞 (𝑥𝑡

(𝑚)
)
⊺
)

∑ exp (𝑥𝑡
(𝑛)
𝑊𝑞 (𝑥𝑡

(𝑘))
⊺
)𝑘∈𝒩(𝑛)

, (4) 

where 𝑊𝑔, 𝑊𝑞 is the trainable matrix, and 𝜎(∙) is the SiLU activation. 

On the time series side, 𝒞  captures the multi-period pattern as a causal convolution of 

exponential expansion factors, as in Equations 5 and 6: 

𝑐𝑡,𝑘
(𝑛)

= 𝐶𝑜𝑛𝑣1𝐷 (ℎ
𝑡−2𝑘−1𝑟:𝑡

(𝑛)
;𝑊𝑘 , 𝑑 = 2𝑘−1) , (5) 

𝑐𝑡
(𝑛)

= ⨁𝑘=1
𝐾 𝑐𝑡,𝑘

(𝑛)
, (6) 

where 𝑑 is the expansion rate, and 𝜏 controls the receptive field of each layer; Splice 𝑐𝑡
(𝑛) and enter 

the Variable Selection Network (VSN) of the TFT, as shown in Equation 7: 

𝑧̃𝑡
(𝑛)

=∑𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑊𝑣𝑠 [ℎ𝑡
(𝑛)

∥ 𝑐𝑡
(𝑛)

∥ 𝑠(𝑛)])
𝑗

𝑗

𝑧𝑗,𝑡
(𝑛)
, (7) 

Among them, the VSN weight 𝜔𝑗,𝑡 characterizes the immediate importance of the feature, and 

together with the subsequent gated GRN, position encoding, and decoder, it determines the predicted 

mean 𝑦̂. 

The overall architecture of the ISMIF model is presented in Figure 1, with its center of multilayer 

hybrid neural network aboriginated from Temporal Fusion Transformer. On the left are the input of 
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the input (i.e., multivariate time series and static metadata of SKU ), and the features of time series 

are selected by the attention-based feature selector and the multiscale expansion causal CNN branch. 

At the same time, graph attention module synthesizes a substitution-induced association between 

SKU and a promotion conduction modeling horizontal association. 

 

Figure 1. Architecture of proposed Interpretable Slow-Moving Inventory Forecasting Model. 

3.2. Uncertainty modeling and explainable decision looping 

To guarantee the synergy between neural parts, we define a joint flow where: the output of the 

graph attention network is adaptively integrated into the variable selection layer of the TFT, which 

benefits the feature prioritization through topologyinformed attention scores. The dilated causal 

CNN revealing different receptive field provides scale-aware trend signals to the temporal encoder. 

In addition, the Bayesian residuals serve as stochastic regularisers in training by providing an 

uncertainty estimate for both the output head and the confidence estimation block, unifying the 

learning of the mean and variance. 

In order to give confidence intervals and action recommendations at the operational level, ISMIF 

adds Bayesian residual branching, SHAP attribution, and counterfactual optimization on top of TFT, 

and pushes the results to the interaction cockpit in real time. 

Bayesian residuals versus probability outputs are expressed as Equations 8 and 9: 

𝑝 (𝑦𝑡+ℎ
(𝑛)

|𝑥1:𝑡
(𝑛)) = 𝒩 (𝑦̂𝑡+ℎ

(𝑛)
, 𝜎𝑡+ℎ

2 ) , (8) 

𝜎𝑡+ℎ = exp (𝑓𝜃 (𝑧̃𝑡
(𝑛))) , (9) 

where 𝑦̂ is derived from Equation 8 and 𝜎2 is output by the learnable network 𝑓𝜃. 

Together, they minimize the compounding loss to obtain Equation 10: 

ℒ = −∑𝑙𝑜𝑔𝒩(𝑦𝑡
(𝑛)
|𝑦̂𝑡

(𝑛)
, 𝜎𝑡

2) + 𝜆∑|𝛾𝑗|

𝑗

+ 𝛽𝐾𝐿(𝑞(𝜃) ∥ 𝑝(𝜃)), (10) 

where 𝛾𝑗 comes from sparse gating, and KL is about East Bayesian weights a prior. 

The interpretable module first quantifies the marginal contribution of each feature to 𝑦̂ with 

the Shapley value 𝜙𝑗 = 𝑆𝐻𝐴𝑃(𝑥𝑗), and then solves the counterfactual optimization, as shown in 

Equation 11: 
min
∆𝑥

|𝑓(𝑥 + ∆𝑥) − 𝑦∗| + 𝛾 ∥ ∆𝑥 ∥1, 𝑠. 𝑡. 𝑥 + ∆𝑥 ∈ 𝒞. (11) 
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Get a minimum adjustment of ∆𝑥 (e.g. 5% discount or replenishment - 2 weeks) to meet the 

target inventory level of 𝑦∗. 

The system continuously monitors the forecast-measured inventory turnover rate 𝐼𝑇𝑅𝑡
(𝑛)

, with 

Equation 12: 

|𝐼𝑇𝑅𝑡
(𝑛)

− 𝜇𝐼𝑇𝑅| > 𝑘𝜎𝐼𝑇𝑅. (12) 

If Equation 12 is true, the cockpit will trigger an anomaly alert to push the 

“Clearance/Replenishment” scenario generated by Equation 11, which will be visualized with heat 

maps, confidence bands, and IT control charts to help managers quickly measure the cash release 

∆𝐶𝑎𝑠ℎ and the storage savings ∆𝐶𝑜𝑠𝑡. 

Through the two components of 3.1 and 3.2, ISMIF unifies cross-SKU information flow, time 

series seasonality, and risk uncertainty in a single explainable framework, enabling high-precision 

forecasting → transparent attribution → interactive decision-making → operational gains”, which 

has significantly improved inventory turnover and reduced warehousing costs on real 7 million SKUs 

data, as summarized in the summary. 

In our model, the Bayesian residual branch is connected a shared latent space with the main 

prediction head and the uncertainty is not isolated, but rather regularizes the whole network using 

KL-divergence prior constraints. The SHAP module not only interprets how each feature affects 

forecast results, and its output is fed directly to the counterfactual optimization model as soft bounds 

for controllable fine-tuning. This ensures that the counterfactual generator can provide realistic 

recommendations of interventions (e.g., discount rates, delay shifts) that still remain feasible. 

4. Experiments 

4.1. Experimental setup 

This experiment adopts the RetailRocket Dataset, which is collected based on the real-time 

operation data of e-commerce websites and consists of about 4.5 million records of user action logs 

(views, add to cart, transactions), the corresponding attributes of items as well as multi-level 

category information. The data are extremely sparse, nonstationary and cross category wide, making 

it especially appropriate for SMI forecasting. We chose the low sales, low replenishment and long 

cycle products build the time series input, and merged the product attributes and substitution 

relation to form the graph structure, and served as the input foundation of the ISMIF model to 

evaluate the prediction performance and interpretability performance comprehensively in the actual 

SMI management application scenario. 

Figure 2 illustrates the hourly trend of add-to-cart and transaction events in the used dataset 

from May 3 to September 18, 2015. On the whole, the add-on behavior maintained a high level of 

activity in all periods, reflecting the wide distribution of users’ browsing and purchase intentions. 

Transaction behavior is relatively stable, and the number is significantly lower than that of additional 

purchases, revealing the phenomenon of low conversion rate. 
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Figure 2. Hourly Add-to-Cart vs Transaction Trend. 

We selected four representative time series forecasting or inventory modelling methods as 

baselines for comparison including 

• ARIMA (AutoRegressive Integrated Moving Average): One popular linear time series modeling 

approach called ARIMA differentiates to overcome non-stationarity and pools its 

autoregressive and moving average terms for forecasting trend. It is applicable to high-

frequency products with good stationarity, but exhibits clear shortcomings in handling sparse, 

nonlinear, and multiple-factor drivin g features as those in SMI. 

• DeepAR: is a probabilistic time series model based on the architecture of LSTM network, 

proposed by Amazon, which allows us to globally model the large scale multi-item forecast 

settings since it outputs entire forecast distributions rather than single point estimates. 

• Temporal Fusion Transformers (TFT): applies the multi-head attention mechanism to model 

short-term and long-term dependencies and introduces an explainable variable selection 

network (VSN). 

• SHAP-Linear: returns a SMI on SMI using a linear regression model with SHAP as the 

explanation mechanism. While SHAP is interpretable to the extent feature contributions can be 

explicitly observed”, the model ontology is additively decomposable and might not be able to 

retain higher-order interactions and other complicated nonlinear relationships among inventory 

drivers. 

• Informer: a Transformer-based long-sequence forecasting model optimized by ProbSparse self-

attention. 

4.2. Experimental analysis 

Figure 3 visually illustrates the focus of different models on each feature when driving slow-

motion inventory forecasting. Figure 3 indicates that ISMIF consistently returns larger attribution 

values than ARIMA, DeepAR, TFT, and SHAP-Linear for all the key features, in particular, 

promotion_flag, weeks_of_cover, seasonal_index, and substitution_score, which suggests it can well 

interpret promotions, inventory turnover cycles, multi-scale seasonal effects and other drivers like 

SKU substitution relationships. On the other hand, the selectiveness of other models of different 

characteristics is dispersed and low, and it is not easy to consider the global and local information. 

 

Figure 3. Feature Attribution Comparison Across Models. 

Inventory Turnover Ratio (ITR) An important operational indicator that quantifies the efficiency 

of stock flow of a enterprise, reflecting how many times the inventory in a company flows away from 

the store room to the market, the ITR is defined as the ratio of the inventory cost sold (or sales) to an 
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average inventory balance between some periods. The turnover value reflects how many times the 

average inventory amount has “turned” over (been replaced) as a dollar amount during the 

reporting period - with a higher value indicating a faster flow (and less capital) is used, while a low 

value suggests a backlog and sluggish flow. 

As demonstrated in Figure 4, ISMIF consistently outperforms competing models across all 

forecast windows, with pronounced advantages in the mid-horizon range, whether it is ARIMA, 

DeepAR, TFT, or SHAP-Linear, the longer the forecast window is, the worse their performance is, 

which means their accuracy and ro-bustness of long-term prediction are gradually loss. But ISMIF 

not only runs ahead of outperforms multiple competing methods in the windows with different 

lengths, but also that in the short and medium term of 4~6 weeks is similar to the requirement of 

inventory turnover efficiency in actual operation. Together with the velocity of inventory flow and 

capital occupation indicated by the inventory turnover rate itself, the comprehensive modeling and 

uncertainty quantification of key drivers by ISMIF can offer powerful decision-making support for 

enterprises to conduct accurate inventory management under various replenishment cycles. 

 

Figure 4. Inventory Turnover Rate With Prediction Horizon. 

5. Conclusion 

In conclusion, the proposed interpretable slow-moving inventory forecasting model unifies 

graph attention, dilated causal CNN, Transformer backbone and Bayesian residual branches, and 

achieves fine-grained modeling and uncertainty quantification on multi-dimensional driving factors. 

With SHAP attribution and counterfactual reasoning, the predictive output effortlessly becomes part 

of the business decisions. Experiments demonstrate that ISMIF is evidently superior to compared 

baselines when attributes the main features for slow inventory, inventory turnover prediction and 

the different prediction window by which it can reasonablelly helps the inventory turnover to reduce 

storage costs. In addition, we can continue to investigate model extension in cross-channel and 

multi-warehousing environment, real-time update scheme coupled online learning techniques, 

demand anomaly detection and supply chain collaborative optimization together for developing a 

more robust and inventory system. 
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