

Article

Not peer-reviewed version

Effect of Oscillation and Pulmonary Expansion Therapy on Pulmonary Outcomes After Cardiac Surgery

Christopher Williams , Kirsten Holbrook , [Aryan Shiari](#) * , Ali Zaied , Hussam Al-Sharif , Abdul Rishi , Ryan Frank , Adel Zurob , [Muhammad A Rishi](#)

Posted Date: 28 December 2023

doi: [10.20944/preprints202312.2179.v1](https://doi.org/10.20944/preprints202312.2179.v1)

Keywords: cardiothoracic surgery; continuous high-frequency oscillation; pneumonia; postoperative pulmonary complications

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Effect of Oscillation and Pulmonary Expansion Therapy on Pulmonary Outcomes After Cardiac Surgery ^{†,‡,§}

Christopher D. Williams ¹, Kirsten M. Holbrook ¹, Aryan Shiari ^{1,6,*}, Ali A. Zaied ¹,
Hussam Z. Al-Sharif ¹, Abdul R. Rishi ^{2,3}, Ryan D. Frank ⁴, Adel S. Zurob ¹ and
Muhammad A. Rishi ⁵

¹ Pulmonary, Critical Care, and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana

² Mayo Clinic Health System – Northwest Wisconsin region, Eau Claire, Wisconsin

³ Department of Internal Medicine, Indiana University School of Medicine, Indianapolis, Indiana

⁴ SSM Health St Clare Hospital, Fenton, Missouri; Division of Clinical Trials and Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana

⁵ Mayo Clinic, Rochester, Minnesota; and Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana

⁶ Pulmonology, Critical Care, and Sleep Medicine, Mayo Clinic Health System – Northwest Wisconsin region, 1221 Whipple St, Eau Claire, WI 54703

* Correspondence: shiari.aryan@mayo.edu

† Mayo Clinic does not endorse specific products or services included in this article.

‡ Presented as a poster at the American Association of Respiratory Care (AARC) Congress; November 9-12, 2019; New Orleans, Louisiana.

§ Portions of this manuscript have been published in abstract form: Respiratory Care. 2019 Oct;64 (Suppl 10): 3216240.

Abstract: **Background:** Oscillation and pulmonary expansion (OPE) therapy can decrease postoperative pulmonary complications in a general surgical population, but its effect after cardiac surgery has not been reported, to our knowledge. We hypothesized that using an OPE device after cardiac surgery before extubation would decrease pulmonary complications. **Methods:** This retrospective cohort study included adults undergoing elective open cardiac surgery at our institution from January 2018 through January 2019, who had an American Society of Anesthesiologists score of 3 or greater. For mechanically ventilated patients after cardiac surgery, a new OPE protocol was adopted July 1, 2019, comprising an initial 10-minute OPE treatment administered in-line with the ventilator circuit, then continued treatments for 48 hours after extubation. Severe postoperative respiratory complications (primary outcome measure) included need for antibiotics, increased supplemental oxygen use, and prolonged hospital length of stay (LOS). Demographic, clinical, and outcomes data were compared for patients before (usual care with postextubation hyperinflation) and after protocol implementation (OPE). **Results:** Of 104 patients, 54 patients received usual care, and 50 received OPE. Usual-care recipients had more men (74% vs 62%; $P=.19$) and were older (median, 70 vs 67 years; $P=.009$) than OPE recipients. The OPE group had a significantly shorter hospital LOS than the usual-care group (mean, 6.2 vs 7.4 days; $P=.04$). Other measures improved with OPE but did not reach significance: shorter ventilator duration (mean, 0.6 vs 1.1 days with usual care; $P=.06$) and shorter LOS in the intensive care unit (mean, 2.7 vs 3.4 days; $P=.06$). On multivariate analysis, intensive care unit LOS was significantly shorter for the OPE group (mean difference, -0.85 days; 95% CI, -1.65 to -0.06; $P=.04$). The OPE group had a lower percentage of postoperative complications (10% vs 20%). **Conclusion:** OPE therapy after cardiac surgery is associated with decreased ICU and hospital LOS.

Keywords: cardiothoracic surgery; continuous high-frequency oscillation; pneumonia; postoperative pulmonary complications

Introduction

Respiratory complications after surgery have a substantial burden on patient outcomes and health care costs. These complications include lower respiratory tract infection, acute respiratory failure, atelectasis and persistent pneumothorax, need for prolonged mechanical ventilation, prolonged intensive care unit (ICU) stay, and extubation failure. The surgical site affects rates of pulmonary complications, which are more common among patients who undergo cardiothoracic, thoracic, and upper abdominal surgery. The incidence of pulmonary complications varies from 2% to 5% in a general surgical population, from 3% to 16% after coronary artery bypass graft (CABG) surgery, and from 5% to 7% after valvular heart surgery.¹⁻⁴ Other risk factors for pulmonary complications include older age and higher American Society of Anesthesiologists (ASA) Physical Status Classification score as well as congestive heart failure, chronic obstructive pulmonary disease, smoking history, and severe (class 3) obesity.⁵⁻⁹

Atelectasis is a major factor in developing other postoperative pulmonary complications.¹⁰ Although most patients in a previous study had atelectasis after surgery, perioperative interventions addressing atelectasis in high-risk patients were shown to decrease the risk of pulmonary complications including respiratory failure.¹¹ Among the approaches shown to decrease postoperative atelectasis are adequate and judicious analgesia and nasogastric decompression for carefully selected patients.^{10,11} High-risk patients may benefit from pulmonary secretion mobilization and pulmonary inflation interventions.¹⁰⁻¹³ Devices shown to improve pulmonary inflation include those that provide continuous positive airway pressure (PAP) and those that use oscillation and pulmonary expansion (OPE).¹⁴⁻²⁰ Whereas PAP devices improve hypoxemia in addition to atelectasis,^{21, 22} OPE devices help clear mucus, promote lung expansion, and can be used for nebulization.^{14, 23-28}

A prospective study found that aggressive treatment with OPE may decrease postoperative pulmonary complications and resource use among patients undergoing general surgery who were at high risk for pulmonary complications.²⁹ That study also included a small number of patients undergoing thoracic surgery. However, the effect of OPE after cardiac surgery has not been reported, to our knowledge. In the current study, we hypothesized that OPE would decrease the rate of postoperative respiratory complications in high-risk patients undergoing cardiac surgery vs patients receiving usual care.

Methods

The study was approved on January 28, 2019, by the Mayo Clinic Institutional Review Board (IRB) for the use of existing health records of patients who gave prior research authorization. The IRB determined that the activity did not require review in accordance with the *Code of Federal Regulations* (45 CFR 46.102). No IRB number was provided.

Study Design

We performed a retrospective health record review of all consecutive patients 18 years or older with an ASA score of 3 or greater undergoing elective CABG, mitral valve replacement (MVR), and aortic valve replacement (AVR) surgery from March 1, 2019, through October 31, 2019, at a community hospital in Northwest Wisconsin. Only open elective surgical procedures were included. Patients were excluded from analysis if they had a contraindication to OPE therapy (eg, untreated tension pneumothorax), underwent a minimally invasive procedure, received ventilator therapy before surgery, or had a history of home PAP use.

Demographic, clinical, and outcomes data were collected for study participants. Data collected included ICU length of stay (LOS), hospital LOS, duration of mechanical ventilation, and the rate of all complications occurring during hospitalization, including for lower respiratory tract infections.

Study Device

The OPE device used was the MetaNeb System (Hillrom). The device has a pneumatic compressor that administers continuous high-frequency oscillation and continuous positive

expiratory pressure. This system was developed for mobilizing respiratory secretions, expanding lungs, and preventing and treating atelectasis. The device can also be used for delivering nebulization while it is in continuous high-frequency oscillation or continuous positive expiratory pressure mode.³⁰

Treatment Regimen

From March 1 through June 30, 2019, patients undergoing these procedures received either incentive spirometry after extubation according to a nursing protocol or PAP (EzPAP, Smiths Medical ASD) according to a respiratory therapy protocol, or both. The choice of intervention was based on the attending physician's preference. For both protocols, patients were instructed to breathe through the PAP device mouthpiece for 10 consecutive breaths, with a target expiratory pressure of 15 cm H₂O. At the end of this breathing cycle, patients breathed normally for 1 minute. Then this process of targeted breathing and eupnea was repeated 3 times. To help patients reach a target expiratory pressure of 15 cm H₂O during lung expansion therapy, the oxygen gas flow meter was adjusted to inspiratory flows of 5 to 12 L/min.

On July 1, 2019, our department adopted a new protocol that universally incorporated OPE treatment for mechanically ventilated patients undergoing CABG, AVR, or MVR surgery who had an ASA score of 3 or greater. Patients were transferred from the operating room to the critical care unit. Within 2 hours after patients were deemed hemodynamically stable while receiving mechanical ventilation, a 10-minute OPE treatment was administered in-line with the ventilator circuit. After extubation, patients continued to receive incentive spirometry but no longer received PAP therapy during OPE treatment. Extubated patients were given OPE treatments 4 times daily for 48 hours and then were reevaluated. If a patient had a vital capacity of 15 mL/kg or greater, the protocol was discontinued. Nebulizer treatment was not to be delivered during OPE sessions. All patients were extubated according to an extubation protocol for cardiothoracic surgery (Figure).

Figure. Extubation Protocol After Elective Cardiac Surgery. FIO₂ indicates fraction of inspired oxygen; PaO₂, arterial partial pressure of oxygen; PEEP, positive end-expiratory pressure.

Outcome Measures

Our primary outcome measure was development of severe postoperative respiratory complications. Postoperative respiratory complications that patients were screened for included the need for prolonged mechanical ventilation (>24 hours after postsurgical hospital admission), prolonged need for noninvasive positive pressure ventilation (>24 hours after hospital admission), prolonged increased oxygen requirements (>40% fraction of inspired oxygen or 5 L/min >24 hours after admission), and readmission to the ICU. Screening also included a diagnosis of pneumonia based on criteria³¹ consisting of new pulmonary infiltrate, new-onset fever, purulent sputum, leukocytosis, and increased oxygen requirements. A positive result from a sputum culture was not required for the diagnosis. Other outcomes were duration of mechanical ventilation, ICU LOS, and hospital LOS.

Statistical Analysis

Analysis was performed with SAS version 9.3 (SAS Institute Inc). All hypothesis tests were 2-tailed, with $P \leq .05$ considered significant. Patients' demographic characteristics and primary and secondary outcomes were summarized with descriptive statistics: number (%) for categorical variables, and mean (SD) or median (IQR) for continuous variables. The Wilcoxon rank sum test was used to compare continuous variables, and the χ^2 test or the Fisher exact test was used to compare categorical variables. Univariate and multivariate associations between the treatment phase and outcomes were further defined by using linear and multiple logistic regression models where appropriate to obtain mean differences or odds ratios.

Results

In total, 104 adults undergoing cardiac surgery who had an ASA score of 3 or greater were studied from January 2018 through January 2019. Of these patients, 54 received usual care before the OPE intervention, and 50 received OPE therapy after the new protocol was implemented.

The usual-care group was older than the OPE group (median age, 70 vs 67 years; $P=.009$) and had more men (74% vs 62%; $P=.19$), but no other difference between study groups was observed in demographic characteristics or in preoperative risk according to ASA score (Table 1). The distribution of surgical procedures performed before and after intervention also was similar. With OPE treatment, hospital LOS was significantly shorter than with usual care (mean, 6.2 vs 7.4 days; $P=.04$; Tables 2 and 3). Although ventilator duration tended to be shorter for the OPE group, this difference did not reach significance (mean, 0.6 vs 1.1 days; $P=.06$); nor did the shorter ICU LOS observed after intervention (mean, 2.7 vs 3.4 days; $P=.09$). No difference was observed in duration of oxygen use before and after intervention (mean, 3.6 vs 4.2 days; $P=.99$).

Table 1. Baseline Characteristics by Study Phase^a.

Characteristic	Total (N=104)	Usual care ^b (n=54)	OPE therapy ^c (n=50)	P value ^d
Age, y	70 (64-77)	73 (66-78)	67 (62-74)	.009 ^e
Sex				.19
Men	71 (68)	40 (74)	31 (62)	
Women	33 (32)	14 (26)	19 (38)	
ASA score				.85
3	20 (19)	10 (19)	10 (20)	
4	84 (81)	44 (82)	40 (80)	
Any CABG	69 (66)	36 (67) ^f	33 (66)	.94
Any AVR	31 (30)	16 (30)	15 (30)	.97
Any MVR	5 (5)	3 (6)	2 (4)	1.00 ^g

Abbreviations: ASA, American Society of Anesthesiologists; AVR, aortic valve replacement; CABG, coronary artery bypass graft; MVR, mitral valve replacement; OPE, oscillation and pulmonary expansion. ^a Data are number (%) except for age, which is reported as median (IQR). ^b Usual care included incentive spirometry and positive airway pressure therapy as needed. ^c OPE was delivered by the MetaNeb System (Hillrom). ^d A χ^2 test was used unless otherwise indicated. ^e Wilcoxon rank sum test. ^f One patient in the usual-care group underwent >1 surgical procedure. ^g Fisher exact test.

Table 2. Outcomes by Study Phase.

Characteristic	Total (N=104)	Usual care ^a (n=54)	OPE therapy ^b (n=50)	P value
Ventilator duration, median (IQR), d	0.5 (0.5-0.5)	0.5 (0.5-1.0)	0.5 (0.5-0.5)	.06 ^c
Hospital LOS, median (IQR), d	6 (5-8)	6 (5-8)	6 (4-7)	.04 ^c
ICU LOS, median (IQR), d	2 (2-4)	3 (2-4)	2 (2-3)	.09 ^c
Oxygen duration, median (IQR), d	3 (2-5)	3 (2-5)	3 (2-4)	.99 ^c
PAP (EzPAP, Smiths Medical ASD) or hyperinflation, No. (%)	47 (45.2)	47 (87.0)	0 (0)	<.001 ^d
Any complication, No. (%)	16 (15.4)	11 (20.4)	5 (10.0)	.14 ^d
Infection, No. (%)	5 (4.8)	5 (9.3)	0 (0)	.03 ^d

Abbreviations: ICU, intensive care unit; LOS, length of stay; OPE, oscillation and pulmonary expansion; PAP, positive airway pressure. ^a Usual care included incentive spirometry and PAP therapy as needed. ^b OPE was delivered by the MetaNeb System (Hillrom). ^c Wilcoxon rank sum test. ^d χ^2 test.

Although the overall complication rate did not significantly differ before and after intervention (Table 4), a decrease was observed in the rate of all respiratory tract infections after intervention.

Specifically, no cases of postoperative pneumonia developed in the OPE group compared with 4 cases in the usual-care group. No adverse events were reported related to the device.

After multivariate adjustment for potential confounders (including study phase, age, sex, and ASA score), ICU LOS was significantly shorter after intervention (mean difference, -0.85 days; 95% CI, -1.65 to -0.06 days; $P=0.04$; Table 3). The OPE group also had a lower percentage of complications than the usual-care group (10% vs 20%), but the difference was not significant on multivariate analysis (odds ratio [95% CI]= 0.51 [0.15-1.66]; $P=0.26$).

Table 3. Univariate and Multivariate Associations Between Study Phase and Continuous Outcomes With Linear Regression.

Outcome	N	Mean (SD)	Univariate analysis ^a		Multivariate analysis ^b	
			Mean	difference (95% CI)	Mean	difference (95% CI)
			P value		P value	
Ventilator duration, d				.08		.13
Usual care	54	1.1 (1.8)	0.0 [Reference]		0.0 [Reference]	
OPE therapy	50	0.6 (0.4)	-0.44 (-0.94 to 0.05)		-0.40 (-0.92 to 0.11)	
Hospital stay, d				.04		.10
Usual care	54	7.4 (3.7)	0.0 [Reference]		0.0 [Reference]	
OPE therapy	50	6.2 (2.4)	-1.27 (-2.47 to -0.06)		-1.04 (-2.26 to 0.18)	
ICU stay, d				.06		.04
Usual care	54	3.4 (2.5)	0.0 [Reference]		0.0 [Reference]	
OPE therapy	50	2.7 (1.3)	-0.74 (-1.52 to 0.03)		-0.85 (-1.65 to -0.06)	
Oxygen duration, d				.34		.51
Usual care	54	4.2 (3.9)	0.0 [Reference]		0.0 [Reference]	
OPE therapy	50	3.6 (2.1)	-0.58 (-1.78 to 0.62)		-0.41 (-1.64 to 0.82)	

Abbreviations: ICU, intensive care unit; OPE, oscillation and pulmonary expansion. ^a Regression models included only treatment phase. ^b Regression models included treatment phase, age, sex, and American Society of Anesthesiologists score.

Table 4. Postoperative Complications by Study Phase, No. (%).

	Total (N=104)	Usual care ^a (n=54)	OPE therapy ^b (n=50)	P value ^c
Complication				.42
None	88 (85)	43 (80)	45 (90)	
Pneumonia	4 (4)	4 (7)	0 (0)	
NIV	2 (2)	1 (2)	1 (2)	
MV	1 (1)	1 (2)	0 (0)	
Tracheitis	1 (1)	1 (2)	0 (0)	
Delirium	3 (3)	1 (2)	2 (4)	
ECMO	1 (1)	1 (2)	0 (0)	
Mucus plugs	2 (2)	1 (2)	1 (2)	
Pneumothorax	1 (1)	1 (2)	0 (0)	
Pulmonary embolism	1 (1)	0 (0)	1 (2)	

Abbreviations: ECMO, extracorporeal membrane oxygenation; MV, mechanical ventilation; NIV, noninvasive ventilation; OPE, oscillation and pulmonary expansion. ^a Usual care included incentive spirometry and positive airway pressure therapy as needed. ^b OPE was delivered by the MetaNeb System (Hillrom). ^c χ^2 test.

Discussion

This retrospective study of health records evaluated OPE therapy as part of standard postoperative respiratory therapy for high-risk patients undergoing cardiac surgery. To our

knowledge, this is the first attempt to study the effectiveness of OPE in this patient population. A previous study investigated this intervention for patients after general surgery.²⁹

The exact definition of postoperative pulmonary complications differs, just as reported rates of these complications vary from 2% to 40%.¹⁰ One definition of postoperative pulmonary complications encompasses pulmonary infection, pleural effusion, bronchospasm and pneumothorax, chemical pneumonitis due to aspiration, atelectasis, acute respiratory distress syndrome, pulmonary edema, pulmonary embolism, and respiratory failure.³² In our definition of respiratory complications, we also included need for prolonged mechanical ventilation, need for noninvasive mechanical ventilation, and need for prolonged use of supplemental oxygen. This definition has been used in another study as well.²⁹ Before the OPE intervention, our postoperative pulmonary complication rate of 20% was comparable to rates described in other studies.^{5,33}

Although the underlying mechanisms responsible for postoperative pulmonary complications are most likely complex, atelectasis and decreased mucus clearance probably have an important role.³⁴ A low level of evidence exists that early postoperative mobilization, chest physiotherapy, and good oral hygiene may decrease postoperative pulmonary complications.³⁴⁻³⁸ Similarly, a judicious and multipronged approach to analgesia, selective gastric decompression, and secretion mobilization may improve outcomes and are frequently used, but systemic evaluation of these interventions is lacking.³⁴ Among interventions shown to limit postoperative pulmonary complications, lung expansion therapies have some of the strongest evidence of beneficial effect.²² Because OPE therapy can be started before extubation (as opposed to PAP with EzPAP), earlier intervention may help decrease the risk of prolonged ventilation and pulmonary complications.

Over the past several years, the need for improving patient outcomes and quality of care and using a value-based payment model have taken on increasing importance. Given this environment, it is especially important to decrease postoperative complications and improve quality of care. In fact, the need for postoperative mechanical ventilation for longer than 48 hours and hospital LOS after major surgery represent quality measures that may be reportable to The Joint Commission and the Centers for Medicare & Medicaid Services.²⁹

In the current study, use of OPE was associated with a decreased rate of postoperative pulmonary complications from 20% to 10%, although the difference did not reach statistical significance. Use of OPE was also associated with decreases in hospital and ICU LOS and with fewer cases of pneumonia and all respiratory tract infections. After multivariate adjustment for potential confounders, the ICU LOS was significantly shorter for patients after the OPE intervention.

We did not study the financial effect of this intervention. However, substantial savings can be achieved by decreasing ICU LOS and rates of postoperative pulmonary complications.³⁹

Our study has some limitations. The sample size was small. Other interventions including a sedation “vacation”/spontaneous breathing trial bundle, early mobilization, and other clinical interventions that were not controlled for during the study may have affected outcomes. Similarly, the retrospective nature of the study may have resulted in unidentified confounders. We also did not adjust for seasonal variations, which may affect postoperative complications of cardiothoracic surgery.⁴⁰ Last, the before and after design of the study may be prone to an inherent and possibly unavoidable bias.⁴¹

Conclusion

Postoperative pulmonary complications can be decreased by using OPE therapy for patients undergoing cardiac surgery. Our study included patients with higher ASA scores who are at high risk for having postoperative complications, yet we did not identify any adverse effects related to OPE therapy. Specifically, no complications were related to new or worsening pneumothorax in these patients.

Future studies using a randomized controlled prospective model are needed to confirm our findings. In addition, use of OPE therapy for other postoperative patient populations warrants investigation. Finally, use of OPE therapy should be further investigated for any respiratory

conditions, such as chronic obstructive pulmonary disease and pulmonary contusions due to blunt chest trauma, that can increase the risk of postoperative pulmonary complications.

Author Contributions: All authors made substantial contributions to the manuscript as follows: C.D.W.: Study design, Review of manuscript; K.M.H.: Literature search, Data collection; A.A.Z.: Literature search, Study design, Review of manuscript; H.Z.A.: Literature search, Study design, Review of manuscript; A.S.: Literature search, Review of manuscript, Manuscript preparation; A.R.R.: Literature search, Study design, Review of manuscript; R.D.F.: Contributed to design of analyses, Analysis of data, Provided interpretation of findings for primary author; A.S.Z.: Literature search, Study design, Review of manuscript; M.A.R.: Literature search, Study design, Data collection and analysis, Manuscript preparation.

Funding: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Acknowledgments: The Scientific Publications staff, Mayo Clinic, provided editorial consultation, proofreading, administrative, and clerical support.

Conflicts of Interest: The authors declare that there is no conflict of interest.

Ethics Approval and Consent to Participate: The study was approved by the Mayo Clinic Institutional Review Board for the use of existing medical records of patients who gave prior research authorization.

Consent for Publication: Not applicable.

Availability of Data and Materials: All relevant, deidentified data supporting the findings of this study are reported within the article.

Abbreviations

ASA	American Society of Anesthesiologists
AVR	aortic valve replacement
CABG	coronary artery bypass graft
ICU	intensive care unit
IRB	Institutional Review Board
LOS	length of stay
MVR	mitral valve replacement
OPE	oscillation and pulmonary expansion
PAP	positive airway pressure

References

1. Smetana GW. Postoperative pulmonary complications: an update on risk assessment and reduction. *Cleve Clin J Med*. Nov 2009;76 Suppl 4:S60-5. doi:10.3949/ccjm.76.s4.10
2. Sachdev G, Napolitano LM. Postoperative pulmonary complications: pneumonia and acute respiratory failure. *Surg Clin North Am*. Apr 2012;92(2):321-44. doi:10.1016/j.suc.2012.01.013
3. Rock P, Rich PB. Postoperative pulmonary complications. *Curr Opin Anaesthesiol*. Apr 2003;16(2):123-31. doi:10.1097/00001503-200304000-00004
4. Younossian AB, Adler D, Bridevaux PO, Kherad O. [Postoperative pulmonary complications: how to anticipate and prevent the risk?]. *Rev Med Suisse*. Nov 16 2011;7(317):2214, 2216-9. Complications pulmonaires postopératoires: comment anticiper et prévenir le risque?
5. Agostini P, Cieslik H, Rathinam S, et al. Postoperative pulmonary complications following thoracic surgery: are there any modifiable risk factors? *Thorax*. Sep 2010;65(9):815-8. doi:10.1136/thx.2009.123083
6. Dimick JB, Chen SL, Taheri PA, Henderson WG, Khuri SF, Campbell DA, Jr. Hospital costs associated with surgical complications: a report from the private-sector National Surgical Quality Improvement Program. *J Am Coll Surg*. Oct 2004;199(4):531-7. doi:10.1016/j.jamcollsurg.2004.05.276
7. Gupta H, Gupta PK, Fang X, et al. Development and validation of a risk calculator predicting postoperative respiratory failure. *Chest*. Nov 2011;140(5):1207-1215. doi:10.1378/chest.11-0466
8. Khuri SF, Henderson WG, DePalma RG, et al. Determinants of long-term survival after major surgery and the adverse effect of postoperative complications. *Ann Surg*. Sep 2005;242(3):326-41; discussion 341-3. doi:10.1097/01.sla.0000179621.33268.83

9. Zilberberg MD, Shorr AF. Prolonged acute mechanical ventilation and hospital bed utilization in 2020 in the United States: implications for budgets, plant and personnel planning. *BMC Health Serv Res.* Nov 25 2008;8:242. doi:10.1186/1472-6963-8-242
10. Restrepo RD, Braverman J. Current challenges in the recognition, prevention and treatment of perioperative pulmonary atelectasis. *Expert Rev Respir Med.* Feb 2015;9(1):97-107. doi:10.1586/17476348.2015.996134
11. Rama-Maceiras P. [Peri-operative atelectasis and alveolar recruitment manoeuvres]. *Arch Bronconeumol.* Jun 2010;46(6):317-24. Atelectasias perioperatorias y maniobras de reclutamiento alveolar. doi:10.1016/j.arbres.2009.10.010
12. Hans GA, Sottiaux TM, Lamy ML, Joris JL. Ventilatory management during routine general anaesthesia. *Eur J Anaesthesiol.* Jan 2009;26(1):1-8. doi:10.1097/EJA.0b000e000000f1fb
13. Sabate S, Mazo V, Canet J. Predicting postoperative pulmonary complications: implications for outcomes and costs. *Curr Opin Anaesthesiol.* Apr 2014;27(2):201-9. doi:10.1097/ACO.0000000000000045
14. Berlinski A, Willis JR. Albuterol delivery via intrapulmonary percussive ventilator and jet nebulizer in a pediatric ventilator model. *Respir Care.* Dec 2010;55(12):1699-704.
15. Birnkrant DJ, Pope JF, Lewarski J, Stegmaier J, Besunder JB. Persistent pulmonary consolidation treated with intrapulmonary percussive ventilation: a preliminary report. *Pediatr Pulmonol.* Apr 1996;21(4):246-9. doi:10.1002/(SICI)1099-0496(199604)21:4<246::AID-PPUL8>3.0.CO;2-M
16. Clini EM, Antoni FD, Vitacca M, et al. Intrapulmonary percussive ventilation in tracheostomized patients: a randomized controlled trial. *Intensive Care Med.* Dec 2006;32(12):1994-2001. doi:10.1007/s00134-006-0427-8
17. Dimassi S, Vargas F, Lyazidi A, Roche-Campo F, Dellamonica J, Brochard L. Intrapulmonary percussive ventilation superimposed on spontaneous breathing: a physiological study in patients at risk for extubation failure. *Intensive Care Med.* Aug 2011;37(8):1269-76. doi:10.1007/s00134-011-2249-6
18. Fornasa E, Ajcevic M, Accardo A. Characterization of the mechanical behavior of intrapulmonary percussive ventilation. *Physiol Meas.* Dec 2013;34(12):1583-92. doi:10.1088/0967-3334/34/12/1583
19. Natale JE, Pfeifle J, Homnick DN. Comparison of intrapulmonary percussive ventilation and chest physiotherapy. A pilot study in patients with cystic fibrosis. *Chest.* Jun 1994;105(6):1789-93. doi:10.1378/chest.105.6.1789
20. Paneroni M, Clini E, Simonelli C, Bianchi L, Degli Antoni F, Vitacca M. Safety and efficacy of short-term intrapulmonary percussive ventilation in patients with bronchiectasis. *Respir Care.* Jul 2011;56(7):984-8. doi:10.4187/respca.01098
21. Branson RD. The scientific basis for postoperative respiratory care. *Respir Care.* Nov 2013;58(11):1974-84. doi:10.4187/respca.02832
22. Qaseem A, Snow V, Fitterman N, et al. Risk assessment for and strategies to reduce perioperative pulmonary complications for patients undergoing noncardiothoracic surgery: a guideline from the American College of Physicians. *Ann Intern Med.* Apr 18 2006;144(8):575-80. doi:10.7326/0003-4819-144-8-200604180-00008
23. Reyhler G, Keyeux A, Cremers C, Veriter C, Rodenstein DO, Liistro G. Comparison of lung deposition in two types of nebulization: intrapulmonary percussive ventilation vs jet nebulization. *Chest.* Feb 2004;125(2):502-8. doi:10.1378/chest.125.2.502
24. Toussaint M, De Win H, Steens M, Soudon P. Effect of intrapulmonary percussive ventilation on mucus clearance in Duchenne muscular dystrophy patients: a preliminary report. *Respir Care.* Oct 2003;48(10):940-7.
25. Toussaint M, Guillet MC, Paternotte S, Soudon P, Haan J. Intrapulmonary effects of setting parameters in portable intrapulmonary percussive ventilation devices. *Respir Care.* May 2012;57(5):735-42. doi:10.4187/respca.01441
26. Tsuruta R, Kasaoka S, Okabayashi K, Maekawa T. Efficacy and safety of intrapulmonary percussive ventilation superimposed on conventional ventilation in obese patients with compression atelectasis. *J Crit Care.* Dec 2006;21(4):328-32. doi:10.1016/j.jcrc.2006.03.008
27. Vargas F, Boyer A, Bui HN, Guenard H, Gruson D, Hilbert G. Effect of intrapulmonary percussive ventilation on expiratory flow limitation in chronic obstructive pulmonary disease patients. *J Crit Care.* Jun 2009;24(2):212-9. doi:10.1016/j.jcrc.2008.02.006
28. Vargas F, Bui HN, Boyer A, et al. Intrapulmonary percussive ventilation in acute exacerbations of COPD patients with mild respiratory acidosis: a randomized controlled trial [ISRCTN17802078]. *Crit Care.* Aug 2005;9(4):R382-9. doi:10.1186/cc3724
29. Huynh TT, Liesching TN, Cereda M, et al. Efficacy of Oscillation and Lung Expansion in Reducing Postoperative Pulmonary Complication. *J Am Coll Surg.* Nov 2019;229(5):458-466 e1. doi:10.1016/j.jamcollsurg.2019.06.004

30. Li J, Elshafei AA, Gong L, Fink JB. Aerosol Delivery During Continuous High Frequency Oscillation for Simulated Adults During Quiet and Distressed Spontaneous Breathing. *Respir Care*. Feb 2020;65(2):227-232. doi:10.4187/respcare.07050
31. Metlay JP, Waterer GW, Long AC, et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. *Am J Respir Crit Care Med*. Oct 1 2019;200(7):e45-e67. doi:10.1164/rccm.201908-1581ST
32. Jammer I, Wickboldt N, Sander M, et al. Standards for definitions and use of outcome measures for clinical effectiveness research in perioperative medicine: European Perioperative Clinical Outcome (EPCO) definitions: a statement from the ESA-ESICM joint taskforce on perioperative outcome measures. *Eur J Anaesthesiol*. Feb 2015;32(2):88-105. doi:10.1097/EJA.0000000000000118
33. Lupei MI, Chipman JG, Beilman GJ, Oancea SC, Konia MR. The association between ASA status and other risk stratification models on postoperative intensive care unit outcomes. *Anesth Analg*. May 2014;118(5):989-94. doi:10.1213/ANE.0000000000000187
34. Miskovic A, Lumb AB. Postoperative pulmonary complications. *Br J Anaesth*. Mar 1 2017;118(3):317-334. doi:10.1093/bja/aex002
35. van der Leeden M, Huijsmans R, Geleijn E, et al. Early enforced mobilisation following surgery for gastrointestinal cancer: feasibility and outcomes. *Physiotherapy*. Mar 2016;102(1):103-10. doi:10.1016/j.physio.2015.03.3722
36. Haines KJ, Skinner EH, Berney S, Austin Health PSI. Association of postoperative pulmonary complications with delayed mobilisation following major abdominal surgery: an observational cohort study. *Physiotherapy*. Jun 2013;99(2):119-25. doi:10.1016/j.physio.2012.05.013
37. Silva YR, Li SK, Rickard MJ. Does the addition of deep breathing exercises to physiotherapy-directed early mobilisation alter patient outcomes following high-risk open upper abdominal surgery? Cluster randomised controlled trial. *Physiotherapy*. Sep 2013;99(3):187-93. doi:10.1016/j.physio.2012.09.006
38. Pasquina P, Tramer MR, Granier JM, Walder B. Respiratory physiotherapy to prevent pulmonary complications after abdominal surgery: a systematic review. *Chest*. Dec 2006;130(6):1887-99. doi:10.1378/chest.130.6.1887
39. Shander A, Fleisher LA, Barie PS, Bigatello LM, Sladen RN, Watson CB. Clinical and economic burden of postoperative pulmonary complications: patient safety summit on definition, risk-reducing interventions, and preventive strategies. *Crit Care Med*. Sep 2011;39(9):2163-72. doi:10.1097/CCM.0b013e31821f0522
40. Martin TJ, Eltorai AEM, Kennedy K, Sellke F, Ehsan A. Seasonality of postoperative pneumonia after coronary artery bypass grafting: A national inpatient sample study. *J Card Surg*. Jun 2020;35(6):1258-1266. doi:10.1111/jocs.14577
41. Ho AMH, Phelan R, Mizubuti GB, et al. Bias in Before-After Studies: Narrative Overview for Anesthesiologists. *Anesth Analg*. May 2018;126(5):1755-1762. doi:10.1213/ANE.0000000000002705

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.