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Abstract

As 5G and beyond networks grow in heterogeneity, complexity, and scale, traditional Intrusion
Detection Systems (IDS) struggle to maintain accurate and precise detection. Deep Learning (DL)
provides a promising alternative detection method however, DL based IDS suffer from issues relating
to interpretability, performance variability tied to framework dependency and high computational
overhead which limit and question their deployment in real-world applications. In this study we
introduce a novel new DL based IDS employing Convolutional Neural Networks (CNN) to identify
different types of attack together with a bijective encoding-decoding pipeline that acts between network
traffic features (such as IPv6, IPv4, MAC addresses and protocol data), and their RGB representations
that facilitates our DL IDS in detecting spatial patterns without sacrificing fidelity. Following the
application of our bijective pipeline from RGB images to their corresponding network traffic features
the ‘black-box’problem is resolved and digital forensic traceability enabled. Finally, we have evaluated
our DL IDS on three datasets, UNSW NB-15, InSDN, and ToN_IoT, analysing the accuracy, GPU
usage, memory utilisation, training, testing, and validation time. To summarise, in this study, we
present a new CNN based IDS with an end-to-end pipeline between network traffic data and their
RGB representation that offers high performance and transparency.

Keywords: convolutional neural network (CNN); lossless encoding and decoding; network traffic
to images; images to network traffic; intrusion detection system (IDS); computational complexity;
TensorFlow; PyTorch; 5G; B5G

1. Introduction

The rollout of 5 Generation (5G) following the 15" to 19" releases of the 3" generation part-
nership project (3GPP) [1], and the rapid advancement of mobile communication technology toward
5G-Advanced [2,3], have provided the standardised, scalable, and reliable foundation necessary for the
deployment of use cases at scale, with guaranteed performance, across heterogeneous environments,
Connected and Automated Vehicles (CAVs), the Internet of Things (IoT), and Multi-Access Edge
Computing (MEC) [4]. These use cases, which compliment primary use cases such as enhanced mobile
broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine type
communications (mMTC), have placed a heightened demand for secure networks requiring high
privacy [5], reliability [6], and availability [7].

The exponential growth of connected devices and end users in mobile telecommunications
with smart devices is expected to reach 7.95 billion by 2028 from 7.21 billion by the end 2024 [8],
where mobile hand-held smart devices already generating 1.3 zettabytes of data in 2024 [9]. This
exponential growth of users and traffic volume, raises an important question: How do we protect the 5G
and beyond from adversarial threats?. The application of traditional Intrusion Detection Systems (IDS),
Intrusion Prevention Systems (IPS), such as Firewalls, have proven to be ineffective in the face of
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diverse traffic patterns with exponential volumes [10]. The complexity of attacks, sophistication of
Advanced Persistent Threats (APTs), and large-scale Distributed Denial of Service (DDoS) attacks, and
the widespread availability of tools to conduct a sophisticated attack, continue to challenge existing
security capabilities [11-13]. As per the research by [13] Machine Learning (ML) methods have proven
to be an effective, faster and more accurate threat detection and prevention mechanism, compred to the
traditional security solutions in the big-data era [14]. Despite its many advantages in cyber security, ML
methods alone do possess drawbacks. Adversarial attacks and evasion [15], adaptability limitations,
black box problem, lack of interpretability, [12,16], for example, can be construed as some drawbacks.
Deep Learning (DL), a subset of ML, has attracted the attention of both academia and industry as
a viable method to overcome drawbacks such as the above, and with its potential to autonomously
grasp intricate patterns and connections within data [17]. Similarly, authors at [18], postulate that
DL methods are increasingly becoming essential in cyber security solutions and deployments, in an
attempt to address the fundamental limitations of ML based solutions.

Recent studies have explored the use of images based on network traffic to leverage the strong
feature extraction and extrapolation capabilities offered through the use of CNN, and hence it has
become a popular DL model for the intrusion detection problem. Popular methods include converting
network traffic to grayscale [19], RGB images [20], and serialised images [21]. Higher accuracy
generated by the use of RGB images as opposed to grayscale methods, motivated us to develop a
new bijective method for image encoding and decoding to ensure that CNN approaches to the IDS
problem remain interpretable by security experts, post detection. Unlike in serialised approaches
where reconstruction of the original network data remains inaccessible.

Despite the popularity and the advances in the field of CNN based IDS’s comparative studies
involving computational efficiency and overhead remain unavailable, particularly, with respect to
the use of TensorFlow and PyTorch frameworks. Differences in constructing computational graphs,
hardware utilisation, optimisation strategies, and memory allocation and de-allocation, can signifi-
cantly impact the model performance, training and testing time, and scalability [22]. Hence test the
effectiveness of our approach, we employed three popular datasets used in the study of ML /DL for
the intrusion detection problem. They are UNSW NB-15 [23], InSDN [24], and ToN_IoT [25].

This paper proposes CiNeT (Classify in Network Transformation), a novel CNN based IDS for
5G and beyond networks. CiNeT was developed to be integrated into the NeT2I (NEtwork Traffic to
Images) and I12NeT (Images to NEtwork Traffic) pipeline [26], leveraging the PyTorch and TensorFlow
frameworks. This process alleviates the “black-box" problem when ML /DL models have been applied
and facilitates interpretability in detection and results [27].

We implement CiNeT and compare the two variants CiNeT-TF (developed using TensorFlow) and
CiNeT-PT (developed using PyTorch). Our analysis and evaluation in terms of accuracy, loss, memory
utilisation, GPU usage, training time, validation time, and architectural layers are present in Section 5.
The experiments and collected results demonstrate that CiNeT-PT outperformed CiNeT-TF across all
use cases for the above metrics. Furthermore, we analysed the robustness of NeT2I and I12NeT across
theoretical and empirical complexities to test its application for systems requiring real-time detection.

1.1. Contribution

This paper makes the following contributions to the field of 5G and beyond security, by employing
a CNN based IDS system. In particular, we have:

¢ Animproved NeT2l and I2NeT implementation that encodes network traffic into RGB images
and decodes the images back to network traffic in a bijective manner.

*  Developed and evaluated a novel Plug-and-Play CiNeT detection algorithm. A CNN based IDS
tailored for resource constrained edge devices for 5G and beyond.

¢ A comparative study of CiNeT between TensorFlow and PyTorch across varying architectural
depths, in terms of performance trade-offs, resource usage, scalability, and speed of training and
testing.
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e  Validation of results across UNSW NB-15, InSDN, and TON_IoT datasets.

1.2. Structure of the Paper

The remainder of this paper is organised as follows. Related work is discussed in Section 2.
Proposed algorithms in this research are discussed at Section 3, outlining the evaluation metrics in
Section 4 and programs used. Results and analysis for the proposed algorithms across datasets are
presented in Section 5. The overall results obtained from our research are discussed in Section 6.
Concluding remarks, observations, and future work are presented in Section 7.

2. Related Work

This section presents a review of the state-of-the art literature in the field of Network Intrusion
Detection Systems (NIDS), datasets, deep learning frameworks, deep learning models, various model
architectures, and finally, trends and advancements of image based representations for network traffic,
which lays the foundation of our work.

The development, evaluation, and deployment of IDS based on ML models and the acquired
accuracy rely heavily on the dataset. The quality and the realistic nature of network traffic pertaining in
the dataset contributes towards the applicability and performance of such NIDS based on ML models.
The UNSW NB-15 dataset [23], was introduced and designed to address the limitations and drawbacks
found in the KDD Cup 99 dataset, which can be construed as outdated. UNSW NB-15 contained
modern network attacks, attack vectors, and a balanced distribution between normal and malicious
network traffic. Another dataset used in the context of researching ML models to the NIDS problem is
the InSDN dataset [24], which is based on a Software Defined Network environment, providing a large
scale collection of network traffic distributed amongst a multi-class classification of malicious and
normal traffic. Finally, the recently collected ToN_IoT [25] dataset, has emerged as a comprehensive
collection of network traffic in a multi class classification, and a benchmark dataset for training, testing,
and evaluating ML models for NIDS problem. When conducted a cross evaluation amongst the three
datasets, TON_IoT dataset has shown a significant performance gain as opposed to UNSW NB-15 [28],
and InSDN [29] datasets, highlighting its applicability and the quality of the data found within the
collection. Hence, the ToN _IoT dataset may be considered a benchmark dataset for application ML
models to advance research into NIDS's.

Deep Learning models have shown a superiority over ML models for the IDS problem, given
their ability to reveal complex, hierarchical features and their representations from raw unprocessed
data. Unlike ML models whose accuracy rely on accurate feature selection and engineering, DL
models such as Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Artificial
Neural Network (ANN), and Deep Neural Networks (DNN) for example, facilitate the extraction
and identification patterns in network traffic, increasing their robustness to ever evolving network
attacks. Researchers at [14] demonstrated that a DL based NIDS outperformed classical ML based
NIDS, achieving higher accuracy and lower false alarms, in sophisticated multi-class attacks [30]. The
research in [31] further emphasizes that the automatic feature extraction capability facilitated by DL
models as a key contributing factor for their superior performance. These studies collectively confirm
the validity of applying DL models to the NIDS problem, as opposed to using traditional ML models.

The choice of DL framework can significantly impact the development, training, evaluation,
testing, and deployment of an IDS based on a DL model. TensorFlow and PyTorch are the most
commonly used framework for deploying a model for DL tasks [32]. The extensive community
support, ecosystem, and integration into cloud platforms such as Google Colab, Lambda Labs, and
Jupyter Notebooks, for example, have contributed to these two frameworks becoming the de-facto
standards in both academia and industry. TensorFlow, due to its static computational graph, offers
high performance and a seamless capacity for integration and deployment. Conversely, PyTorch offers
a dynamic computation graph that offers greater flexibility, ease of debugging, and faster prototyping
have made this framework increasingly popular [2,32]. A recent survey [5] highlights the interchange
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between the two frameworks, PyTorch and TensorFlow, with the choice of framework having the
potential to impact their application, particularly for real-time interference, model interpretability, and
ease of development and deployment.

Long Short-Term Memory (LSTM) networks have been widely adopted and applied in NIDS’s
based on DL models. Their ability to model temporal dependencies, the capability to handle the
multivariate, and sequential nature of network traffic has contributed to its wider adoptation for
intrusion detection problems. Respective research by [33-36] developed IDS’s employing LSTM
models and tested its accuracy for a variety of datasets. However, the LSTM models require a high
resource availability and a computational complexity, which can constitute a bottleneck when applied
in a real-time system. Also, the sequential nature of LSTM, hinders parallelisation, leading to longer
training, validation, and testing periods. Furthermore, [33], has highlighted that LSTM’s struggle with
extensive dependencies in network traffic, and the reliance on hyper-parameter tuning, can contribute
to overfitting and reduced model generalisation.

The adaptation of Large Language Models (LLM) into various applications across industry
and academia has opened an avenue for it to be considered with the intrusion detection problem.
Research by [37,38] employed LLM'’s for exploring and analysing patterns in network traffic generating
responses pertaining to network activity (malicious or non_malicious). Despite the adoptation of
LLMs’ into the intrusion detection problem, similar to the LSTM models, resource requirements and
computation remain extremely high [39]. Inference latency and the “black-box" nature of LLMs’ create
a bottleneck in their application to IDS’s requiring real-time detection and the rationale for decisions.

Deep Neural Networks and Artificial Neural Networks have been foundational DL models for
the intrusion detection problem. Research by [40-43] presented DL models tested across various bench-
mark datasets to support the usability of DL in NIDS'’s. Despite the popularity and the foundational
work, these models face a tendency to overfit, which can lead to higher rates of false positive alarms.
The extensive requirement for hyper-parameter tuning, the higher computational complexity, and the
“black-box" problem create barriers to their deployment in real-time systems and resource constrained
environments.

Convolutional Neural Networks (CNN) have become a popular choice for IDS’s due to high
accuracy, precision, and excellent generalisation properties [44]. This prompted us to explore CNN's
as a viable option for the detection of malicious traffic in the 5G and beyond network infrastruc-
ture. Surveys conducted by [45,46] provides a comprehensive overview of the CNN based IDS’s
with various architectures, performance, and their applicability for intrusion detection problems.
Respective research by [26,47-50] introduces various applications of CNN'’s to further solidify the
usability of CNN’s to the intrusion detection problem, emphasizing their effectiveness in handling
high-dimensional network data. Compared to LSTM and LLM models, CNNs are computationally
viable, with a lower cost and smaller memory footprint. CNNs also allow parallel processing, leading
to faster training and suitable for inference times, unlike LSTM models. The ability to handle high
dimensional data, shared weights, and parameter reduction through pooling avoids the overfitting
problem unlike in ANN and DNN models. Finally, CNN'’s offer greater interpretability avoiding the
“black-box" problem found in other models.

One of the greatest challenges in the application of CNN's to network security involves the
process of encoding data into a form recognisable by the CNN. As CNNs accept images for training
and testing, data collected from a dataset has to be converted into images. Existing research uses
various methods to encode network traffic data into images that can be used to train a CNN algorithm.
Research published in [19,51-56] employed grayscale images to represent and encode the desired
features of network traffic for training and testing a CNN algorithm. However, representing network
traffic by grayscale images can lead to a loss of information since modern network traffic, due to
heterogeneity and complexity, can contain data that exceeds a pixel value in the grayscale (0-255).

Due to this limitation on grayscale images, authors in [21,57,58] and [20] employed mechanisms
to encode network traffic as RGB images. Improvements in accuracy were observed [20,58], when
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employing RGB images in preference to grayscale images. Authors of [57] and [20], employed a tiled
image approach along the x and y axis, for a given pixel length and width, whereas [21,58] generated
serialised RGB images. Although, these images are capable of producing a higher accuracy than with
grayscale images, RGB can represent a pixel value between 0 - 16,777,215, in a tiled image which places
a high demand on CPU, memory and time of execution. Although, serialised images can be construed
as computationally viable, but are not bijective with information being lost during conversion, between
network traffic and images. This information loss, could potentially classify a CNN based IDS as a
“black-box" solution. In this work, we propose an improved NeT2I and I2NeT bijective algorithm
[26] for encoding and decoding of network traffic including IPv6 addresses, MAC addresses, IPv4
addresses, and other network features. We also present a novel detection algorithm CiNeT, a dynamic
plug-and-play algorithm capable of detecting classes and determining related parameters.

3. Proposed Algorithm

In this section we present a novel encoding algorithm (NeT2I), used to represent network traffic
in terms of RGB images and a corresponding decoding algorithm (I2NeT) to translate the RGB images
back into network traffic. We include in this section a dynamic detection algorithm (CiNeT) developed
using both TensorFlow and PyTorch which we use to identify observed traffic.

3.1. Encoding and Decoding Network Traffic (NeT2I-I2NeT Pipeline)

The secure, structured, and deterministic transformation of network data traffic into images is
achieved through the integration of a NeT2I-I2NeT pipeline, initially introduced in [26]. The pipeline
has been significantly developed since its first inception, to now include a comprehensive set of network
features that accommodate for example IPv4 and IPv6 addresses, MAC addresses, flow duration,
jitter, protocol identifiers, and packet load. These features form a multi-dimensional representation of
network traffic and behaviour, for the detection of malicious attacks with advanced complexity.

The pseudo code presented in Algorithm 1 (Encoding Algorithm: NeT2I) describes our method
for representing network traffic as PNG images. A generated image from the NeT2I, can be seen in
Figure 1. The ability to handle IPv6 addresses is a significant new feature of this pipeline, driven by
the urgent need for network security solutions to support the global transition to IPv6 [59]. The US
Executive Order on furthering the Nation’s Cybersecurity and Cyber readiness and the European
Unions IPv6 action plan require all public internet assets to be IPv6 ready [60] by the end of 2025.
In response to this, our NeT2I-I12NeT pipeline, provides a meticulous, lossless, and a deterministic
method for encoding and decoding IPv6 addresses. To achieve this each 128-bit value is converted to
its packed binary form. The 16-byte sequence is padded with two additional zero bytes to form an
18-byte array, compatible with a 3-byte RGB grouping, to form six consecutive RGB pixel tuples, with
values ranging from 0 to 255. Each of these now corresponds to one horizontal stripe in the generated
image. This approach ensures that each IPv6 address that is to be mapped and encoded to an RGB
image, does so in a lossless manner, maintaining full address fidelity.
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Figure 1. A Visual Representation of an Image Generated via NeT2i

During the encoding phase, NeT2I automatically generates a JSON companion file containing
metadata, to ensure accurate and unambiguous data reconstruction. This file meticulously documents
the structure of the network traffic in the input CSV file. The I2NeT decoder, as described in Algorithm
2 (Decoding Algorithm:12NeT) reverses this process by reading the JSON metadata file by identifying
six consecutive RGB pixels from the PNG image, with each pixel representing three of the 18-byte
padded binary representation. The first 16 bytes are interpreted as the packed binary of the IPv6
address, allowing an accurate reconstruction of the original IPv6 address in a standardised colon
separated hexadecimal format. In order to ensure robustness, at the decoding stage images generated
from IPv6 addresses are tagged with an additional prefix(e.g., ipv6_1022.png). This ensures that in a
scenario where the JSON file is not available, I2NeT can default to the appropriate path for decoding.
The structured, type-aware, and error resilient approach ensures that I2NeT achieves high-fidelity for
the recovery of IPv6 addresses.

In the NeT2I algorithm, floating point numbers are mapped to image data using an invertible
binary serialisation approach that ensures both accuracy and integrity. Initially, a floating point number
is converted to its 32-bit IEEE 754 [61] binary representation ensuring network byte-order consistency.
This 4-byte floating point number is then represented in two RGB pixels. The first RGB pixel carries
the first three bytes (RGB) and the second pixel encodes the fourth byte in its Red channel, setting the
Green and Blue channel to zero. This deterministic mapping sequence allows the decoder in the I2NeT
algorithm to accurately reconstruct the original floating-point number from the RGB representation,
correctly reassembling the byte sequence in a loss-less manner. As in the case above, metadata is stored
in the JSON file to aid at the decoding stage.

The I12NeT decoder captures and reconstructs floating-point numbers from images through a
deterministic process that ensures accuracy, integrity, and fidelity. During the decoding phase, I2NeT
extracts the RGB stripe from the horizontal bands in the image and processes each pair of pixels
to recover and reconstruct the original 4-byte float structure. The original floating-point number
is reconstructed by concatenating these four bytes accurately following the byte order. The I2NeT
decoder follows type-aware reconstruction employing the metadata from the JSON file to determine
fields which are floating-point numbers. In a scenario where the JSON file is not available, I2NeT
uses a default generic decoding mechanism, ensuring a robust recovery. Similarly, I2NeT also follows
bound checking, exception handling, and error resilience features to manage potential mismatches or
corrupted data.

This end-to-end pipeline of NeT2I for encoding and I2NeT for decoding, creates a bijective
transformation between structured data and corresponding image representation. The latest version
of NeT2I can be found in the GitHub repository [62] and in the Python Package Index (PyPI) [63].
The latest version of I2NeT can be found in the GitHub repository [64] and in the Python Package
Index (PyPI) [65]. By integrating support for modern network features such as IPv6 and floating-
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point numbers, the NeT2I-I12NeT pipeline provides a robust, scalable, future-proof, errorless, and a
deterministic solution for securing network data transmission.

Algorithm 1 Encoding Algorithm: NeT2I

Input: input.csv

Output: image.png

Function encodeCSVToRGB (csv_path):

Data: Loaded CSV data

Data: Detected data types per column (Float, IPv4, IPv6, MAC, String)
Data: Processed RGB pixel array

/* Step 1: Clean output directory and temporary files */
cleanOutputDirectory()

/* Step 2: Split CSV into IPv4 and IPv6 datasets */
ipv4_data, ipv6_data < splitCSV ByIPType(csv_path)

/* Step 3: Process each dataset separately */
processDataset(ipv4_data, is_ipv6=False) processDataset(ipv6_data, is_ipv6=True)

/* Step 4: Save type information for decoding */
saveTypelnformation()

/* Step 5: Generate images from RGB pixel arrays */
generateImages()

Function convertDataToRGB (row, types):
Data: List of RGB pixel tuples per row
rgb_row « []
foreach value, dtype in zip(row, types) do
switch dtype do
case "IPv6 Address” do

| rgb_pixels < convertIPv6ToRGB(value)
case "[Pv4 Address” do

| float_val < convertIPv4ToFloat(value)
case "MAC Address” do

| float_val < convert MACToFloat(value)
case “"Float” do

| rgbl, rgb2 « floatToTwoRGB(value)
case "String” do

| hash_val < hashStringToFloat(value)
otherwise do

| Error: Unknown data type
end

end
end
return rgb_row
Function createImageFromRGB (rgb_row, image_id, prefix):
initializelmageArray() /* Fill image with RGB pixel stripes */
rows_per_color <— calculateStripeHeight(rgb_row) current_row < 0
foreach rgb in rgb_row do
(r, g, b) < normalizeRGB(rgb) for i =0 to rows_per_color do
if current_row < image_size then
| fillRow(current_row, 1, g, b) current_row <« current_row + 1
end
end
end
/* Fill remaining rows with last color if needed */
while current_row < image_size do
| fillRow(current_row, r, g, b) current_row <— current_row + 1
end
return savelmage(image_id, prefix)
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Algorithm 2 Decoding Algorithm:I2NeT
Input: input.png (directory or single image)
Output: output.csv
Function decodeImagesToCSV (image_path):
/* Step 1: Auto-detect IP version and load type info */
autoDetectIPVersion(image_path)
/* Step 2: Extract RGB pixel values */
rgb_values < extractRGBFromImage (image_path)
/* Step 3: Detect expected data structure */
adaptive_type_info < detectDataStructure (len(rgb_values), type_info)
/* Step 4: Reconstruct structured values */
decoded_values < reconstructValues (rgb_uvalues, adaptive_type_info)
/* Step 5: Write to CSV */

writeToCSV (decoded_values)
return output.csv

Function extractRGBFromImage (mage_path):
/* Extract RGB pixel values using stripe detection */
img = openlmage(image_path)

array = convertToNumpyArray(img)

stripe_colors = detectColorStripes(array)

return stripe_colors

Function detectDataStructure (rgb_count, type_info):
if type_info is available then
calculateExpectedPixelCount(type_info)
if rgb_count < expected_count then
| return truncated_types

end
else
| return type_info
end
end
else
‘ /* Fallback: assume 2 pixels per float */
end

Function reconstructValues (rgb_values, adaptive_type_info):
for orig_type in original_types do

if orig_type == "IPv6 Address” then

ipv6 < decodelPv6From6Pixels(rgb_values)
reconstructed.append(ipv6)

end

Ise if orig_type == "IPv4 Address” then

ipv4 < decodelPv4From6Pixels(rgb_values)
reconstructed.append(ipv4)

[¢]

end

Ise if orig_type == "MAC Address” then

mac < formatMACFromChunks(chunk1, chunk2)
reconstructed.append(mac)

[¢]

end

Ise if orig_type == "Float” then

float_val < decodeFloatFrom2Pixels(rgb_values)
reconstructed.append (float_val)

[¢]

end

else if orig_type == "Integer” then

int_val < decodeIntFrom2Pixels(rgb_values)
reconstructed.append(int_val)

end

Ise if orig_type == "String” then

hash_val - decodeHashFromPixel(rgb_values)
reconstructed.append(str(hash_val))

[¢)

end
end
return reconstructed

Function writeToCSV (decoded_values):
/* Write decoded values to CSV file */
createNewCSVFile()
for row in decoded_values do
|  writeRowToCSV(row)
end
return output.csv
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3.2. Detection Algorithm (CiNeT)

The CiNeT algorithm conducts a multi-class classification of network traffic by leveraging DL
techniques. This algorithm has been developed and designed to integrate seamlessly with the NeT2I
and I2NeT frameworks. CiNeT is implemented using both TensorFlow and PyTorch to enable cross-
framework evaluation. This method allows for comparative analysis on model performance, training
efficiency, accuracy, loss convergence, and computational complexity. The TensorFlow variant of
CiNeT employs a CNN architecture with three convolutional blocks whereas the PyTorch variant
employs four convolutional blocks, with batch normalisation and dropout for robustness. The model
is trained on images generated via NeT2i and classification accuracy is validated by reconstructing
predictions via I2NeT, ensuring a seamless encoding-classification-decoding pipeline of a full-fledged
DL based IDS.

The CiNeT algorithm features an autonomous and an adaptive class detection mechanism that
enables automation without requiring manual intervention or the specification of output classes.
During the initialisation phase CiNeT scans the input directory and sub-directories within and passes
the sub-directory names to dynamically construct a list of class labels and assign a unique index to
each. The detected class count is used to configure the CNN, setting the output units to K, where K
denotes the number of classes. This is used to select the appropriate loss function. For K = 2, binary
cross-entropy is used and where K > 2, categorical cross-entropy is used.

In addition to autonomous class detection, CiNeT employs a data driven mechanism to select
the optimal batch size. This decision is based on the total number of training samples. The algorithm
determines the best candidate batch size from a predefined set of rules to reduce underutilisation and
thereby improve training efficiency. Along with adaptive class detection and automated batch size
selection, CiNeT is a highly scalable, efficient, and a plug-and-play classification system that integrates
seamlessly with NeT2I and I2NeT for encoding and decoding.

3.2.1. TensorFlow

The CiNeT algorithm implemented within this ecosystem, implemented in TensorFlow, performs
multi-class classification using a CNN architecture, employing three sequentially stacked convolutional
blocks. The pseduo code can be found at Algorithm 3 (CiNeT-TF Algorithm). Each of these, comprises a
Conv2D layer with ReLU activation, followed by max-pooling, and drop out for spatial downsampling
and regularisation. The input layer accepts images in RGB format specifying the three colour channel
and the size of 150 pixels (150 x 150 x 3). The size corresponds to the output image generated via
NeT?2I. The TensorFlow variant of CiNeT progressively extracts features through increasing filter depth
of 32,64, and 128, respectively per layer. Regularisation is achieved by a 25% dropout upon each
max-pooling operation, while the fully connected layer includes a 512-unit dense layer with a 50%
drop out to ensure overfitting is mitigated.

CiNeT leverages Keras API for model creation, complication, training, and evaluation. RMSProp
optimiser was utilised with a learning rate set for 1 x 10~ with an adaptive loss function based on
the class count (binary cross-entropy for two classes or categorical cross-entropy for multi-classes).
Data augmentation was applied during training to improve generalisation and avoid overfitting with
random rotation, shifting, shearing, zooming, and flipping across the horizontal plane. Performance
validation was conducted using a test-set (15%), with training and validation accrued for 70% and 15%
respectively. The confusion matrix consisted of Accuracy, F1-score, recall, and precision, these being
generated using the results obtained from the test-set.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1085.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2025 d0i:10.20944/preprints202508.1085.v2

10 of 26

Algorithm 3 CiNeT-TF Algorithm

Input: Directory with class folders (e.g.,data_A, data_B)
Output: Trained model (. h5), accuracy, confusion matrix
Functionmain():
config < splits=(0.7,0.15,0.15), epochs=100
checkResources() /* Verify GPU and RAM */
class_names «— discoverClasses ("/home/ubuntu/Images/")
createDirs("training,validation, testing")
for cls in class_names do
src < "data_" +cls
splitData((src, f"training/cls”, f"validation/cls”, f"testing/cls”))

end

buildModel ((num_classes))
total <— countImages("training/")
batch_size < selectBatchSize(total)
createLoaders (batch_size)

history < train (epochs=100)
evaluation <— evaluateModel ()
plotData/(targets, predictions)
saveModel ("model_saved”)
return success

Function discoverClasses (dir):
classes <[] foritem in listDir(dir) do
if isDir(item) and startsWith(item,”data_") then
| classes.append(removePrefix(item,"data_"))
end

end
return sorted(classes)

Function splitData(src, train, val, test):
files < shuffle(nonEmptyFiles(src))
splitAndCopyf(files, 0.7, 0.15, train, val, test)

Function buildModel (1):
model < Sequential()
model.add(2DConvolutional Layer 1(32, (3,3), activation="relu’, input_shape=(150,150,3)))
model.add(MaxPooling2D(2,2))
model.add(Dropout(0.25))
model.add(2DConvolutional Layer 2(64, (3,3), activation="relu’))
model.add(MaxPooling2D(2,2))
model.add(Dropout(0.25))
model.add(2DConvolutional Layer 3(128, (3,3), activation="relu’))
model.add(MaxPooling2D(2,2))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512, activation="relu"))
model.add(Dropout(0.5))
model.add(Dense(n, activation))
if num_classes == 2 then
activation = sigmoid
loss_fn=binary_crossentropy

else
activation = softmax
‘ loss_fn = categorical_crossentropy
end
model.compile(RMSprop(Ir=1e-4))

Function createlLoaders (bs):

trainGen < ImageDataGenerator(Image_Augmentation)
valTestGen <— ImageDataGenerator()

trainGen < trainGen.flow_from_directory("training /", bs, class_mode=auto)
valGen ¢« valTestGen.flow_from_directory("validation/", bs, class_mode=auto)
testGen <— valTestGen.flow_from_directory("testing/", bs, class_mode=auto)

Function train (epochs):
/* Fit model using generators */
history <— model.fit( trainGen, epochs=epochs, validation_data=valGen, verbose=1)

return history

Function evaluateModel():
/* Evaluate on test set */
predictions <— model.predict(testGen)
true_labels «— testGen.classes
if num_classes == 2 then
‘ pred_labels < (predictions > 0.5).astype(int)

end
else
‘ pred_labels < argmax(predictions, axis=1)

end
acc — accuracy(true_labels, pred_labels)
return accuracy=acc, predictions=pred_labels, targets=true_labels

Function plotData (targets, preds):
| cm < confusion_matrix(targets, preds)

Function saveModel (name):
|  model.save(‘model’)
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3.2.2. PyTorch

The second variant of the CiNeT algorithm was implemented using PyTorch, performing multi-
class classification leveraging CNN. The pseduo code can be found at Algorithm 4 (CiNeT-PT Al-
gorithm). The optimal model architecture comprises of 4 sequentially stacked convolutional blocks,
each consisting of a Conv2D layer, batch normalisation, ReLU activation, max-pooling, and dropout
for regularisation. Similar to the TensorFlow variant, the input layer accepts RGB images of three
channels(150 x 150 x 3). The PyTorch variant of CiNeT progressively extracts features through in-
creasing filter depths of 32, 64,128, and 256, respectively per layer. Regularisation is achieved by a 25%
dropout upon each max-pooling operation, while the fully connected layer includes 512 neurons and a
50% drop out to ensure overfitting is mitigated, before the final classification layer.

RMSProp optimisation is employed with a learning rate of 1 x 10~#, where the loss function is
based on the number of classes. BCEWithLogitsLoss for binary classes and CrossEntropyLoss for
multi-classes was chosen. Random rotation, horizontal flipping, shifting, shearing, and zooming
under augmentation was used to increase input diversity and to reduce overfitting. Performance
validation was conducted using a test-set (15%), with training and validation accruing for 70% and
15% respectively. The confusion matrix comprised of Accuracy, Fl-score, recall, and precision was
generated using the results collated from the test-set.
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Algorithm 4 CiNeT-PT Algorithm

Input: Directory with class folders (e.g., data_A,data_B)
Output: Trained model (. pth), accuracy, confusion matrix
Functionmain():
config < splits=(0.7,0.15,0.15), epochs=100
checkResources() /* Verify GPU and RAM */

class_names < discoverClasses ("/home/ubuntu/Images/")
createDirs("training,validation, testing")

for cls in class_names do

| src<"data_"+cls splitData(src, f"training/cls”, f"validation/cls”, f"testing/cls")
end
buildModel (num_classes)

total <— countImages("training /")

batch_size + selectBatchSize(total)

createLoaders (batch_size)
history <[] forepoch < 1 to 100 do

train_loss, train_acc < trainEpoch ()
val_loss, val_acc < valEpoch ()

end

test_acc, preds, targets < evalTest ()
PlotData (targets, preds)
saveModel ("pytorch_model.pth”)
return success

Function discoverClasses (dir):
classes <[] foritem in listDir(dir) do
if isDir(item) and startsWith(item, data_") then
| classes.append(removePrefix(item,"data_"))
end

end
return sorted(classes)

Function splitData(src, train, val, test):
files <— shuffle(nonEmptyFiles(src))
splitAndCopyf(files, 0.7, 0.15, train, val, test)

Function buildModel (n):

2DConvolutional Layer 1 (32, (3,3))
BatchNorm2d (32)

MaxPooling2d (2,2)
Dropout()

2DConvolutional Layer 2(64, (3,3))
BatchNorm2d (64)

MaxPooling2d (2,2)
Dropout()

2DConvolutional Layer 3(128, (3,3))
BatchNorm2d (128)

MaxPooling2d (2,2)
Dropout()

2DConvolutional Layer 4 (256, (3,3))
BatchNorm?2d (256)

MaxPooling2d (2,2)
Dropout()

Flatten (256 x 9 x 9 =20,736 features),
Fully Connected (20736 — 1024)
Fully Connected (1024 — num_classes)

if num_classes == 2 then
| criterion <— BCEWithLogitsLoss()

else
| criterion < CrossEntropyLoss()
end

optimizer <~ RMSprop(model.parameters(), lr=1e-4)

moveModelToDevice(model, device)

Function createLoaders (bs):

trainT < [Image_Augmentation]
valT <[]

trainLoader < DataLoader("training/", trainT, bs, shuffle=True)
valLoader < DataLoader("validation/", valT, bs)
testLoader <— DataLoader("testing/", valT, bs)

Function trainEpoch():

foreach (data,target) in trainLoader do
| output <— model(data)

end

return loss/N, acc%

Function valEpoch():
foreach (data,target) in valLoader do
|  output < model(data.to(device))
end
return loss/len, correct/total

Function evalTest ():

foreach (data,target) in testLoader do
| pred « argmax(model(data))

end

return accuracy, pred

Function saveModel (path):
| torch.save('model”)
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4. Evaluation Metrics for the Algorithms
4.1. Workflow and Datasets

Among publicly available datasets, INSDN contains the most recently collected data for malicious
and non-malicious traffic. The dataset contains multi-classes and has been collated on a Software
Defined Networking environment, with 80 features, 18% of the dataset consists of malicious network
data. The ToN_IoT dataset is another comprehensive dataset consisting of multi-class traffic along
with malicious and non-malicious traffic. The dataset contains 44 features with approximately 15% of
the dataset classified as malicious. Finally, the UNSW-NB 15 dataset contains 49 features with 12% of
the available traffic in the dataset corresponding to malicious traffic. The workflow of the proposed
algorithms and their applications on the datasets is shown in Figure 2. CSV files extrapolated from
the datasets and used as input to the NeT2I algorithm generating PNG images based on the network
traffic. The generated PNG images are then input into the CiNeT algorithm. Following detection by
the CiNeT algorithm, the I2NeT algorithm is used to decode the images back to a CSV file in order to
evaluate the accuracy of our detection algorithm. The following Table 1 shows the selected features for
each dataset, through Recursive Feature Elimination with Random Forest due to its ability to handle
data with high-dimensions and its ability to handle non-linear complex interactions [66].

Dataset Feature Selection q NeT2l

CSV of Malicious Traffic |1— 12NeT ¢ CiNeT

Figure 2. Workflow of the Proposed Algorithms.

Table 1. Features Selected from each Dataset.

Dataset Selected Features

In-SDN 2,13, f4, 15, f6, 18, 19, f10, f11, f12, f13, f15, f19, £21, £22, £23, £24, £27, {31, {68, {78
UNSW NB-15 | f1, 2, {4, 5, {6, {7, £10, f11, f16, f17, f18, f19, £21, £24, £25, 26, £27, 28, {38, {40, {45
ToN IoT 1, 2, £3, 4, 15, 6, {7, £8, 19, f10, f11, £f12, 13, 14, f15, f16, f17, {18, 19, £20, £21

4.2. Theoretical and Empirical Performance Analysis

The NeT2I and I2NeT algorithms were evaluated with respect to execution time, CPU usage,
memory utilisation, and time complexity in terms of the Big-O notation, supporting both theoretical
and empirical performance analysis.

4.3. Theoretical Analysis

For our theoretical evaluation of the computational complexity, we employ the Big-O notation
framework for NeT2I, I2NeT, and CiNeT algorithms. As per the study of [67], the application of
a theoretical evaluation using this framework, provides a characterisation of the algorithm as a
function of the input size. The encoding to detection to decoding processes within the proposed
pipeline involves a deterministic transformation that encompasses problems that can be solved in
polynomial time. This efficiency is critical for both desk approaches and real-time applications,
requiring predictable and scalable performance is essential [67].

4.4. Empirical Computational Complexity

As discussed in [67], identifying accurate empirical measurements of an algorithm'’s execution
time and memory utilisation is important and essential, as theoretical complexity alone may not

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1085.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2025 d0i:10.20944/preprints202508.1085.v2

14 of 26

reflect accurate performance due to memory allocation, de-allocation, system-level overheads, and
I/0 operations. To accommodate this, we collect and collate execution time, CPU usage, memory
utilisation, and GPU utilisation.

4.4.1. Execution Time

For measuring the time of execution, we employed the Python time library. Variation in execution
time can affect performance and efficiency, particularly important when applying the algorithm to an
intrusion detection problem based in an environment with low resources. To ensure reliability average
execution time is presented in later section with each experiment being repeated over multiple runs
(n = 10), to mitigate caching and Just-In-Time (JIT) compilation effects [68].

4.4.2. CPU Usage

To monitor CPU usage, Python psutil library was employed. The library was utilised to monitor
and sample CPU usage at one-second intervals during the execution of NeT2I and I2NeT. To ensure
statistical reliability, the average of multiple runs (n = 10) were recorded. The experiments were
conducted in an environment with the Global Interpreter Lock, which restricts code to be executed as
a single-thread. This restriction is important to ensure that the proposed algorithms can be executed in
environments with low-processing power [69] such as Multi-Access Edge Computing (MEC) nodes.

4.4.3. Memory Utilisation

As discussed in the work presented by [70], memory allocation in a modern operating system, is
inherently imprecise compared to CPU usage or execution time. This is due to over-allocation, caching,
and ineffective garbage collection. To monitor the memory consumption across NeT2I, I2NeT, and
CiNeT, we employed the Python memory-profiler library. Computer systems often over-allocate
memory to minimise the allocation and deallocation frequency, and garbage collection does not occur
instantaneously. Due to this non-deterministic behaviour, averages of multiple independent runs
(n = 10) were recorded, to ensure a more reliable and a comparable indicator.

4.4.4. GPU Utilisation

CiNeT algorithm was designed to leverage GPU acceleration while NeT2I and I2NeT were
designed to be CPU bound. To determine the GPU compute usage, and memory allocation, we
employed the nvidia-smi and CUDA interface. The experiments were conducted in a controlled
environment with access to a single GPU to emulate an edge-launched intelligent IDS. AS highlighted
in [39], DL executions exhibit suboptimal GPU utilisation despite resource allocation and availability.
This leads to inefficient compute usage and prolonged execution times. By measuring utilisation,
we ensure that CiNeT achieves high computational throughput and effectively leverages the parallel
processing capabilities of the GPU. GPU utilisation is a key indicator for algorithmic efficiency. High
and sustained utilisation reflects minimal idle time and effective kernel execution. Low and erratic
usage may indicate under utilisation, poor resource management and orchestration, despite high
accuracy. Therefore, GPU monitoring provides a valuable and necessary statistic collected over
multiple independent runs (n = 10), to ensure performance gains are not achieved at the cost of
excessive hardware dependency or energy consumption.

5. Results and Analysis

We collected data on a UVT_Cloud deployment running Ubuntu 22.04 LTS, with a single CPU,
8GB of RAM and 20 GB of HDD space for the NeT2I and I2NeT algorithms. The CiNeT algorithm was
trained, validated, and tested using an NVIDIA H100 GPU (96 GB VRAM) within a system based on
the ARM64 architecture. 225,000 images representing network traffic that belong to various malicious
and non-malicious classes were selected with images being subsequently grouped following the ratio
of 70:15:15, for training, validation, and testing, respectively.
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5.1. Encoded Images

The Figure 3 represents images generated from distinct lines of network traffic in the input CSV.
The image consists of one dimensional horizontal lines with a variable x value and a fixed y value.
Each line in the generated PNG, encompasses a network feature such as source IP, destination IP, MAC
address, protocol, source port, destination port, packet length, jitter, duration, load. Each file name
consists a prefix (ipv4, ipv6) to aid the I2NeT algorithm distinguish and apply the correct decoding
strategy.

a lIH ‘é .“ ;‘ II‘IHI ‘E II

Figure 3. Images Generated from NeT2I.

As stated in Section 3.1, the NeT2I converts floating-point numbers to RGB pixel values without
loss, using the IEEE 754 standardisation. For example, for a floating point value 3.14159, the Python
function struct.pack(¢!f’,3.14159) would be used to generate the IEEE 754 binary representation
[64,9,33,25]. The respective binary representation would then be split into 2 RGB pixel values
((64,9,33), (25,0,0)), which would then be employed at the image generation phase in NeT2I.

When encoding an IPv4 address, NeT2I splits the IP address into 4 octets. Each integer octet is
treated as a float number, and mapped to the respective RGB channel. For instance, for the I address
192.168.1.100,

. struct.pack(¢!f’,192.0) —IEEE 754 [66,192,0,0] -RGB((66,192,0), (0,0,0))
. struct.pack(¢!f’,168.0) —IEEE 754 [66,160,0,0] -RGB((66,160,0), (0,0,0))
e struct.pack(‘!f’,1.0) —IEEE 754 [63,128,0,0] —RGB((63,128,0), (0,0,0))

e struct.pack(‘!f’,100.0) —IEEE 754 [66,100,0,0] —RGB((66,100,0), (0,0,0))

The generated RGB pixel values are employed in the image generation.

MAC addresses are handled by converting the hexadecimal string into a 48-bit long integer. This
integer value is split into two 24-bit chunks, which is converted to a float and mapped using the two
RGB pixel method. For example, for a MAC address 00 : 1A : 2B : 3C : 4D : 5E, we proceed as follows:

e 00:1A:2B:3C:4D :5E —001A2B and 3C4D5E

e 001A2B —67019

e 3C4D5E —3951966

e struct.pack(’!f’, 67019.0) —IEEE 754[72,131,128,0] —RGB ((72,131,128),(0,0,0))

o struct.pack(’!f’, 3951966.0) —IEEE 754 [87,102,128,0] —RGB ((87,102,128), (0,0,0))

The generated RGB pixel values from the MAC address are employed in image generation.

Finally, IPv6 addresses are mapped to their 128-bit long representation, which is converted to 16
bytes with two additional zeros appended to the end, making an 18 byte long array. For example, for
the IP address 2001 : 0db8 : 8543 : 0000 : 0000 : 8a2e : 0370 : 7334, we have:
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. IPv6Adress.packed(2001:0db8:85a3:0000:0000:8a2e:0370:7334) —
[32,1,13,184,133,163,0,0,0,0,0,0,138,46,3,112]
*  Appending [0,0] —[32,1,13,184,133,163,0,0,0,0,0,0,138,46,3,112,0,0] —
RGB ((32,1,13), (184,133,163), (0,0,0), (0,0,0), (138,46,3), (112,0,0))
Following the above process, network features are converted to RGB pixel values and these are
then used for image generation without loss.

5.2. Computational Complexity

In Table 2, we present the following averaged times: execution, CPU usage, and memory utilisa-
tion for the NeT2I and I2NeT algorithms across three datasets. In Table 3 the computational complexity
for the two variants of the CiNeT algorithm are found, averaged across the three datasets. Evaluation
for the CiNeT algorithm is carried out in terms of time complexity, GPU usage, and memory utilisation.

Table 2. Computational Complexity of NeT2I and I2NeT algorithms.

Algorithm | Dataset i\Tumber of Tptal Execution | Execution Time CPU Usage Me;{nory
mages Time Per Image Utilisation
InSDN 215,000 99s 0.00046s 100% 18%
NeT2I UNSW NB 15 | 215,000 100s 0.000465s 100% 19%
TON-IoT 215,000 100s 0.000465s 100% 19%
InSDN 215,000 103s 0.00047s 100% 20%
I2NeT UNSW NB 15 | 215,000 102s 0.000474s 100% 20%
TON-IoT 215,000 101s 0.000469s 100% 20%
Table 3. Computational Complexity for the CiNeT algorithms.
. Trainin Validation | Testin, GPU Memor
Algorithm | Layers Time 5 Time Time 5 Usage Utilisati};n
CiNeT - TF | 1 Layer 12.35hrs | 1.49 hrs 25s 98.2% | 26.9%
2 Layers | 12.11hrs | 2.01 hrs 43s 99.9% | 27.5%
3 Layers | 13.25hrs | 2.11 hrs 124 mins | 99.9% | 27.7%
4 Layers | 15.1 hrs 2.35 hrs 2.15mins | 99.9% | 29.5%
5Layers | 17.45hrs | 3.05 hrs 3.30mins | 99.9% | 30%
CiNeT -PT | 1 Layer 5.1 hrs 3.19 hrs 2.0l mins | 5.1% 8.4%
2 Layers | 5.24 hrs 3.29 hrs 2.09 mins | 8.9% 9.4%
3 Layers | 5.38 hrs 3.31 hrs 211 mins | 13.2% | 10.6%
4 Layers | 6.01 hrs 3.42 hrs 213 mins | 14.8% | 11%
5Layers | 6.22 hrs 3.45 hrs 220 mins | 15.8% | 12.1%

5.2.1. Execution Time

We formulated execution time per image, based on the total execution time, since our task of
image creation from network traffic is an Aperiodic Task [71]. From the collated results, the new NeT2I
and I2NeT algorithms are consistent with our previous study [26].

5.2.2. CPU Usage

Given the global interpreter lock and single threaded execution of Python code, we observed that
the algorithms NeT2I, and I2NeT used 100% of the CPU resources. However, due to their light weight
and deterministic logic, NeT2I and I2NeT algorithms utilised the CPU for a smaller window as seen
in the total execution time in Table 2, compared to [57], when it was evaluated against NeT2I in [26],
releasing the CPU for other tasks. This efficient used resources and allows for a rapid completion, thus
freeing the CPU for other processes in an MEC environment. High CPU usage during active execution
is a hallmark of an efficient algorithm design, as it indicates reduced and minimal idle time, illustrating
an efficient use of available computational resources [70].

5.2.3. Memory Utilisation

NeT?2I utilised 19% of memory on average across the three datasets, consistent with the findings
at [26]. This low memory footprint is attributed to the algorithms deterministic approach and the
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absence of large intermediate data structures. The light-weight encoding operations such as binary
serialisation, struct packing, and pixel generation, and mapping makes NeT2I ideal to launch in a
resource-constrained environment. The higher utilisation of 20% by I2NeT can be attributed towards
the overhead generated by image loading and the initial processing of NumPy arrays for RGB extrac-
tion. Although a marginal increase in memory utilisation was recorded, memory leaks or unbounded
copies were not recorded, making the decoding I2NeT suitable for resource-constrained edge devices.

5.2.4. GPU Utilisation

During the training, validation, and testing phases, data relating to GPU usage was collected. The
data can be seen in Table 3. The observed results and usage patterns revealed a dramatic divergence.
The variant developed using the TensorFlow framework, namely CiNeT-TF exhibited a high GPU
usage consistently with an average of 99.9% across its application to the three datasets (for layers 1
to 5). This demonstrates a highly efficient execution in which the GPU is nearly saturated during
the training and validation process, minimizing idle time and maximum throughput. However, this
high utilisation attributes to a cost, where frequent out-of-memory (OOM) errors occurring, when
employing larger batch sizes within deeper architectures (4 to 5 layers), indicating a resource boundary.
The same has been observed in the works of Gao et al. [39], where utilisation constituted a constraint
of computation, forcing reduced batch sizes or model complexities.

In contrast, the CiNeT developed using the PyTorch framework (CiNeT -PT) exhibited a low GPU
utilisation across its application to the three datasets and all applications (layers 1 to 5). While this may
constitutes a performance deficiency, it reflects the fundamental difference between frameworks, where
reproducibility and stability are crucial over optimal hardware usage [22]. Unlike the TensorFlow
variant of CiNeT, operating at the edge of GPU memory which resulted in OOM errors, the PyTorch
variant prevents resource contention and system instability. As stated in the work of Sencan et al. [72],
such inefficiencies are common in real-world workloads where GPU usage remains low despite high
resource availability. Thus suggesting that underutilisation of resources, computation, or memory
can be construed as a deliberate design choice to enhance fault tolerance in production environments
where crash avoidance is crucial and predictable behaviour sought, as opposed to unpredictability and
OOM errors due to saturation [73,74]. Table 3 also shows the memory utilisation of CiNeT algorithm
across the two variants with varying architectural depths. Initial observations, reveal that the iterations
of CiNeT-TF have consumed more memory, ranging from 26.9% to 30% of the system’s total memory
allocation, compared to the CiNeT-PT variants, utilising only 8.4% to 12.1%. The disparity in memory
utilisation is attributed to the memory management strategy of the underlying framework, where
TensorFlow tend to reserve larger memory blocks at the start of execution for graph construction and
data handling, contributing to a higher memory utilisation. Conversely, PyTorch employs a more
dynamic on-demand memory allocation process, where memory is allocated as tensors during the
training phase, and when these tensors are out of scope, the allotted memory is released back to the
system through efficient and prompt reference counting and garbage collection mechanisms. This
process employed by PyTorch led to a more conservative memory footprint in contrast to the memory
footprint created by TensorFlow [32].

The, CiNeT-PT variant can therefore be viewed as a failure-averse deployment for the intrusion
detection problem, with a priority for stability and energy efficiency. As stated by [75], peak utilisation
of resources, memory, and computation is largely proportional to higher energy consumption, and by
operating at a lower GPU usage, CiNeT-PT avoids resource saturation, and power demands, whilst
maintaining an enhanced fault tolerance, resulting in a reliable and a sustainable choice for real-time
security applications.

5.3. Theoretical Analysis (Big-O Notation)

The theoretical analysis of NeT2I, I2NeT, and CiNeT is conducted by employing the Big-O
notation. Big-O notation is used to characterise an algorithm as a function of time and space with
respect to the input [76].
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5.3.1. Theoretical Complexity for NeT2I
In evaluating NeT2I, Let n denote the number of rows in the input csv, d the number of features,
and p the dimension of the output image.
e Reading the CSV file is O(n - d), as each of rows must be scanned and passed across columns.
e The nested loop which iterates over each row and feature, results O(# - d) iterations.
- Within the loop, each data entry is encoded using O(1)
- Therefore, processing one row is O(d) and for n rows, O(n - d)

* Image generation of p by p pixels, where p is the number of RGB stripes, will result in p?
*  As the pixels are of a fixed size and doesn’t scale with the number of rows or features, O(p?) =
O(1)

Therefore, we can state that the total time complexity (T (n,d))
T(n,d)=0(m-d)+0(1) =0(n-d) 1)

For the space complexity S(n,d), we can state that

e Theinput as per the above O(n - d)
*  The output image, as per the above O(p?) = O(1)
Hence,
S(n,d) =0(n-d) ()

Therefore, we can state that NeT2I algorithm belong to the class of polynomial-time bounded by
O(n - d), making it suitable for real-time applications.

5.3.2. Theoretical Complexity for I2NeT

Similarly, applying the Big-O notation for I2NeT, let 1 denote the number of images, p the number
of RGB pixel stripes, and d the number of features,

e Discovery of images with O(m) and sorting m files O(mlogm)

e Loading the JSON file as O(1)

e Image decoding and RGB extraction, involves iterating over p rows in the image, resulting O(p)

¢  Employing the JSON file, calculation of the pixel count, with d as the number of features, which is
constant, resulting a O(1)

e Value reconstruction similar to value encoding is O(1)

e For one image T(1,p) = O(p) with m images, T(m, p) = O(m - p). With O(mlogm) cost being
smaller, total time complexity can be stated using

T(m,p) = O(m - p) 3)
With regards to the space complexity of I2NeT,

e Thelist of images O(m)
e  Extracting RGB pixel data and the reconstruction for a row O(p)
e Hence, the final CSV O(m - p)

Therefore, we can state that the space complexity (S(m, p))

S(m,p) = O(m - p) (4)

Similar to NeT2I, the decoding algorithm I2NeT algorithm also belong to the class of polynomial-
time, bounded by O(m - p), As stated by [76], polynomial time is regarded as tractable or efficiently
solvable problems.
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5.3.3. Theoretical Complexity for CiNeT

When applying the theoretical complexity for CiNeT, training, validation, and testing phases
of the algorithm must be taken into consideration. Let E denotes the epochs, Ny, the number of
training samples, N, the validation samples, and F the number of floating-point operations for a
single forward pass through the network. This theoretical application is embedded into the standard
methodology for training, validating, and testing a DL model [39,77].

e  For each sample, the model conducts a forward pass through convolutional layers and fully
connected layers. As the number of operations is determined by the model architecture and the
operations per sample is constant, the forward pass is O(F)

e  Similarly, the back propagation can be construed as being approximately proportional to the
above, hence it is also O(F)

*  The optimizer updates the weights and this can be O(P), where P is the number of parameters.

*  Above steps are repeated for each sample resulting Ny, times per epoch, with the loop being
repeated E times.

Therefore, we can state the total training time (T},;,) is
Tirain = O(E * Ntrain - (F+F+ P)) = O(E * Ntrain - F) )

During the validation and the testing phase, the model requires a forward pass O(F), for each N,
where Ny, for validation and Ni.st for testing, resulting a Ty, ference

Tinference = O(N ’ F) (6)
For the space complexity S, we can state
S = O(P + B - Factivation) @)

where P is the total number of parameters, batch size B, and the number of floating-point values in the
activation map Fj4ipation created during the forward pass.

5.4. Training and Validation

Table 4 presents the validation accuracy acquired during the training and validation phases of the
CiNeT algorithm across the three datasets, employing both variants. The collated results demonstrate
that CiNeT-PT outperformed CiNeT-TF across all datasets and architectures, with the highest validation
accuracy reaching 99.2%. Conversely, CiNeT-TF achieved the highest validation accuracy of 97.1%.
CiNeT-PT achieved the highest validation accuracy when the architecture contained 4 layers, whereas
the CiNeT-TF achieved the highest validation accuracy with 3 layers. This finding corroborate the
initial work of [20], where the accuracy of their model developed in TensorFlow degraded accuracy
and precision when the number of layers exceeded three, suggesting architectural depth and sensitivity
to accuracy.

Table 4. Validation Accuracy of CiNeT Variants.

Dataset CiNeT - TF CiNeT - PT

1L 2L 3L 4L 5L 1L 2L 3L 4L 5L
InSDN 943 | 958 | 97.1 | 96.5 | 959 | 96.7 | 97.8 | 98.4 | 99.1 | 98.6
UNSW-NB15 | 93.6 | 95.0 | 96.8 | 96.0 | 953 | 959 | 97.1 | 98.0 | 98.9 | 98.3
ToN-IoT 94.8 1 96.0 | 97.2 | 96.7 | 96.1 | 97.0 | 98.0 | 98.7 | 99.2 | 98.8

As evident by the Figure 4a,b, the CiNeT-PT (4 Layer) model acting on the ToN_IoT dataset
exhibits a steady increase in training and validation accuracy, suggesting effective learning with
minimal overfitting. Conversely, the CiNeT-TF (3 Layer) model acting on ToN_IoT shows fluctuations
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in both accuracy and loss, with the validation curve displaying a slower convergence, suggesting
potential numerical issues during training.

Albeit marginal, this performance gap suggests that CiNeT-PT implementation benefitted from the
efficient training process, better gradient handling, consistent weight initialisation, efficient memory
usage (as shown in Table 3), numerical instabilities, as suggested by the authors at [78,79]. These
studies further comment that TensorFlow models are prone to silent bugs and incorrect gradient
computations that can degrade model accuracy. In contrast, PyTorch’s dynamic computation graph
and programming model, offer greater transparency and control during the training and validation
stages, enabling a reliable and more accurate model with a deeper architecture, making it more suitable
for complex multi-class intrusion detection problem.

1.4 T T T T T T T T T
Training Accuracy - CiNeT-PT —+— Training Loss - CiNeT-PT —+—
Validation Accuracy - CiNET-PT —*— Validation Loss - CiNeT-PT —*—
1.2+ Training Accuracy - CINET-TF —*— | 0.6 Training Loss - CiNET-TF —*— |
Validation Accuracy - CiNeT-TF —=— Validation Loss - CiNeT-TF —=—

Accuracy
Accuracy

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Epoch Epoch
(a) Training and Validation Accuracy (b) Training and Validation Loss

Figure 4. Training and Validation Data from the TON_IoT dataset.

5.5. Evaluation of Detection

The performance of the two CiNeT algorithms was evaluated using the results shown in Tables 5
and 6. Table 5 presents the accuracy acquired during class-wise tests for both CiNeT-TF(3 Layer) and
CiNeT-PT (4 Layer) for each of the three datasets, with Table 6 providing a more granular analysis of
the best model (CiNeT-PT(4 Layer)), presenting the accuracy (Acc), precision (Prec), Recall (Rec), and
F1-score (F1) for each traffic class.

Table 5. Test Accuracy of CiNeT Variants Across Datasets and Traffic Classes.

InSDN UNSW-NB15 ToN-IoT

Traffic Class CiNeT-TF [ CiNeT-PT | CiNeT-TF [ CiNeT-PT | CiNeT-TF [ CiNeT-PT

(3L) (4L) (3L) (4L) (3L) (4L)
Normal 98.5 99.0 96.9 97.5 99.1 99.4
DDoS 98.7 99.3 97.2 98.1 99.0 99.5
DoS 97.5 98.4 95.8 96.9 98.1 98.8
Reconnaissance 96.3 97.5 94.6 95.7 97.0 97.8
Exploits 95.1 96.4 93.2 94.5 95.9 96.7
Backdoor 94.0 95.2 91.8 93.0 94.8 95.6

Table 6. Confusion Matrix for CiNeT-PT (4 Layer).

Traffic Class InSDN UNSW-NB15 ToN-IoT
Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1

Normal 99.0 987 992 989 | 975 971 978 974 | 994 992 995 993
DDoS 993 991 994 992 | 981 978 983 980 | 995 993 996 994
DoS 984 98.0 98.7 983 | 969 965 972 968 | 98.8 985 99.0 987
Reconnaissance | 975 970 979 974 | 957 952 960 956 | 978 974 981 977
Exploits 964 959 96.8 963 | 945 940 949 944 | 967 963 970 96.6
Backdoor 952 947 956 951 | 93.0 925 934 929 | 956 952 959 955
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Further to the results found in Table 4, Table 5 confirms superior detection for the CiNeT-PT (4
Layer) algorithm. For the ToN-IoT dataset (a highly sought after dataset with diverse and realistic
data), CiNeT-PT achieved an exceptional accuracy of 99.4% for normal traffic and 99.5% for DDoS
traffic, suggesting an improvement from 99.1% and 99% for the CiNeT-TF algorithm. The performance
variation is observable for each of the cases investigated.

As shown in the Table 6, the CiNeT-PT variant achieves an F1-score of 99.4%, 99.3% for precision,
and 99.6% for recall, over DDoS traffic, suggesting that the model performed with high precision
and accuracy, suggesting a lower false alarms rate. Similarly, for other attack types such as backdoor,
exploits, DoS, and reconnaissance the CiNeT-PT variant maintained high accuracy and precision,
demonstrating the robust application of CiNeT-PT for detecting a wide range of attacks. Achieving
an accuracy of 100% would signify an overfitting of data in neural networks, the achieved accuracy
can be considered as having achieved cross-validation in our methodology due to augmentation,
regularisation, and increase of varied training data [80].

6. Discussion

In the context of this research, we present a comprehensive performance evaluation of the CiNeT
algorithm, a novel DL algorithm capable of automated attack class detections a new IDS that operates
on images encoded and decoded via a NeT2I-I2NeT pipeline. Our work has improved and extended
the pipeline through which we can encode a broader range of network features, including IPv6 and
floating point numbers without loss, as RGB images, allowing for a rigorous comparative analysis of
the CiNeT algorithm deployed using TensorFlow and PyTorch. The evaluation focuses not only on
critical performance such as accuracy, prediction, recall, and F1-score but also theoretical and empirical
evaluation over its computational complexity, and resource utilisation, providing a holistic view.

The computational complexity of CiNeT algorithms reveal a fundamental trade-off between
resource usage and model robustness. The TensorFlow variant achieving peak GPU usage demon-
strated hardware efficiency, but fragility, and error prone behaviour during training and validation.
Whereas the PyTorch variant exhibited low GPU usage demonstrated exceptional stability, robustness,
and consistent performance. This observation highlighted an important insight, high GPU usage
may constrain performance, efficiency, and sustainability. The CiNeT-PT 4 Layer model therefore,
produces a superior performance with prioritised stability, reproducibility, and sustainability, without
compromising accuracy of detection.

By careful observation, it is evident that the CiNeT-PT variant has outperformed the CiNeT-TF
variant. As discussed previously, this performance gain can be attributed to the stable and efficient
training process, gradient handling, weight initialisation, and resource usage. As the CiNeT-PT (4
Layer) model was able to detect with high precision and minimal false positives, we can state that the
model is able to generalise exceptionally well, as an IDS.

Finally, across the three datasets, the ToN-IoT dataset outperformed both the UNSW-NB15 and
InSDN datasets. This can be attributed to the dataset quality and diversity of traffic when evaluating
intrusion detection problems. This aligns with recent studies that have suggested ToN-IoT is better
suited for IDS’s equipped with DL models. Following our research, we can state that the CiNeT-PT (4
layer) variant represents a significant advancement in the field of network security.

7. Conclusions and Future Work

In this paper, we presented CiNeT, a novel CNN based IDS capable of detecting multiple classes
of malicious traffic, leveraging both PyTorch and TensorFlow. Alongside CiNeT, we also introduced
an advanced pipeline of the NeT2I and I2NeT capable of conducting a bijective encoding - decoding
process, that can leverage the CiNeT detection algorithm. Thus allowing the utilisation of CNN for
spatial pattern recognition in network flows, maintaining full traceability from detection to packet
level information, providing a step towards intrusion prevention. This method solves the “black-box"
problem commonly associated with DL applications in cyber security [18].
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Two variants of the CiNeT algorithms were evaluated across three datasets, UNSW NB-15,
InSDN, and TON_IoT, with a focus on multi-class classification in intrusion detection. Our results
demonstrated that CiNeT-PT (4 Layer) achieved superior accuracy of 99.5%, outperforming the CiNeT-
TF architectures. CiNeT-PT outperformed CiNeT-TF in training time, validation time, RAM utilisation,
and GPU usage, making the application of CiNeT-PT suitable for systems requiring edge detection
[81].

Currently, we are working towards the deployment of CiNeT in our 5G testbed, extending
the research at [81], integrating control and data plane programmability using technologies such
as Software Defined Networking and Programming Protocol independent Packet Processing [82],
to realise a real-time CNN based NIDS. This work draws upon the foundational framework of
Real-Time Deep Learning based NIDS (RTDL-NIDS) [83], where NeT2I-CNN-I2NeT pipeline was
successfully implemented and evaluated within a 5G-Multi-Access Edge Computing (MEC) mobile
telecommunication testbed. This work demonstrates that the aforementioned pipeline enables intrusion
detection in real-time as opposed to a ‘desk-approach’. The ongoing research is aimed at implementing
the CiNeT-PT (4 Layer) within a 5G testbed, paving the way for an intelligent and automated security
implementation.
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