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Variations on the Theme "Definition of the
Orthodrome"

Miljenko Lapaine

University of Zagreb, Faculty of Geodesy, Kacic¢eva 26, 10000 Zagreb. Croatia, mlapaine@geof.hr

Abstract: A geodesic or geodetic line on a sphere is called the orthodrome. Research has shown that
the orthodrome can be defined in a large number of ways. This article provides an overview of
various definitions of the orthodrome. We recall the definitions of the orthodrome according to the
greats of geodesy, such as Bessel (1826) and Helmert (1880). We derive the equation of the
orthodrome in the geographic coordinate system and in the Cartesian spatial coordinate system. A
geodesic on a surface is a curve for which the geodetic curvature is zero at every point. Equivalent
expressions of this statement are that at every point of this curve the principal normal vector is
collinear with the normal to the surface, ie. it is a curve whose binormal at every point is
perpendicular to the normal to the surface, and that it is a curve whose osculation plane contains the
normal to the surface at every point. In this case, the well-known Clairaut equation of the geodesic in
geodesy appears naturally. It turns out that this equation can be written in several different forms.
Although differential equations for geodesics can be found in the literature, they are solved in this
article, first, by taking the sphere as a special case of any surface, and then as a special case of a surface
of rotation. At the end of this article, we apply calculus of variations to determine the equation of the
orthodrome on the sphere, first in the Bessel way, and then by applying the Euler-Lagrange equation.
All together the paper elaborates a dozen different approaches to orthodrome definitions.

Keywords: orthodrome; great circle; sphere; geodesic; geodetic line

1. Introduction

The orthodrome or great circle is the intersection of a sphere and a plane passing through the
centre of the sphere. Every arc of a great circle is a geodetic line or geodesic on the sphere, so great
circles in spherical geometry are the natural analogue of lines in the plane. For any pair of distinct
non-antipodal points on the sphere, there is a unique great circle that passes through both points.
Every great circle through any point also passes through its antipodal point, so there are infinitely
many great circles through two antipodal points. The shorter of two great circle arcs between two
distinct points on the sphere is the shortest path between them on the sphere.

A great circle is the largest circle that exists on any sphere. Any diameter of any great circle
coincides with the diameter of the sphere, and therefore every great circle is concentric with the
sphere and has the same radius. Any other circle on a sphere is called a small circle and is the
intersection of the sphere with a plane that does not pass through its centre.

Some examples of great circles on the celestial sphere are the celestial horizon, the celestial
equator, and the ecliptic. Great circles are also used as approximation of geodesics on the Earth's
surface for air or sea navigation, as well as on spheroidal celestial bodies. The equator of an idealized
Earth is a great circle, and each meridian and its opposite meridian form a great circle. A great circle
divides the Earth into two hemispheres.

The easiest way to measure the distance between two points on a map is to draw a straight line
connecting the two points. In this case, the straight line is taken to be the image of a great circle, i.e.
an arc of a great circle. However, a line segment on small-scale maps is generally not an image of a
great circle. The exception is the gnomonic projection. Therefore, distances and azimuths measured
directly from the maps will not be accurate, so it is useful to determine the orthodromicity of a map
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projection. This refers to the degree of approximation of the image of the orthodrome on the map and
the straight line connecting the endpoints. Orthodromicity depends on the properties of the
projection and can be defined by the largest deviation of the image of the orthodrome from the
direction and the difference between their length and azimuth [1].

Conformal map projections have an important property from the point of view of measuring
distances and direction positions on maps. In these projections the arc of a great circle of a sphere is
not mapped into a straight line. The properties of conformality and orthodromicity cannot be fulfilled
simultaneously. In cases where the non-orthodromicity of a conformal projection is particularly
pronounced, the accuracy of measuring straight lines and directions is significantly reduced [2]. The
assessment of the deviation of a straight line from the image of the orthodrome is important when
choosing the most suitable map projection for a given area.

Although we will encounter a large number of mathematical expressions and equations in the
article, for those who find such an approach a little more difficult, let us say that the concept of an
orthodrome can be described without mathematical relations. For example, let us take an orange as
an approximate model of a sphere. If we put a thin rubber band on the orange so that it does not slip,
it will take the shape of an orthodrome. Instead of the orange, we can use a tennis ball or any other
object in the shape of a ball. In a similar way, using the equilibrium of an elastic band on a surface,
Ljusternik [3] explains the geodesic. Consider the surface of a sphere. A rubber band stretched along
a large circle will be in equilibrium and will describe a great circle. If we cut the sphere with a plane
that does not pass through its centre, we will not be able to put the rubber band in equilibrium, it will
slip, so the small circle is not an orthodrome [3].

To understand the following text, we will need basic knowledge of analytical, spherical and
differential geometry. Spherical trigonometry formulas are applied in various areas, such as,
astronomy, cartography or satellite geodesy. Classical versions of these formulas can be found in the
literature (e.g. [4]).

However, the basic spherical trigonometry formulas can be obtained very easily using vector
algebra, as demonstrated by Krilov [5]). Hence the idea to approach problems related to the
orthodrome from the point of view of vector algebra as well, with a small extension with terms from
differential geometry. Such an approach enables a simpler and clearer exposition, freeing the reader
from the often clumsy expressions of spherical trigonometry.

Great circle navigation or orthodromic navigation (from the ancient Greek 0p00¢ (orthos) 'right
angle' and dpdpog (drémos) 'road') is the practice of navigating a vessel (ship or aircraft) along a great
circle. Such routes give the shortest distance between two points on the Earth's sphere [6].
Orthodrome properties are usually stated without proof. This gave the idea to consider different
definitions of that curve on the sphere using a mathematical apparatus that is sometimes very simple
and sometimes, perhaps at first glance, complicated.

In geodesy, a rotating ellipsoid is very often used for the Earth model. Geodesics on the ellipsoid
are very well researched and there is a relatively extensive literature on them [7-9]. Sometimes a
sphere is used instead of a rotating ellipsoid as a simpler model. A geodesic on a sphere as a special
case of geodesic on the ellipsoid is called the orthodrome. Research has shown that the orthodrome
can be defined in an unusually large number of ways. This is why this article deals with various
definitions of orthodrome.

In the following sections, we recall the definitions of the great scientists, such as Bessel [7] and
Helmert [8]. We derive the equation of the orthodrome in the geographic coordinate system and in
the Cartesian spatial coordinate system. Since the orthodrome is a geodesic on a sphere, we recall the
definition of a geodesic on a general surface. This definition states that it is a curve for which the
geodetic curvature at every point is zero. Equivalent expressions of this statement are that at every
point of this curve the principal normal vector is collinear with the normal to the surface, then that it
is a curve whose binormal at every point is perpendicular to the normal to the surface, and that it is
a curve whose osculation plane contains the normal to the surface at every point. This way, the well-
known Clairaut theorem or Clairaut equation of a geodesic appears naturally. It turns out that this
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equation can be written in several different forms. Since the orthodrome is a geodesic, and for such
curves, corresponding differential equations have been derived in the literature but seldom solved,
they are solved in this article. First, by taking the sphere as a special case of any surface, and then as
a special case of a surface of revolution. At the end of this article, we apply calculus of variations to
determine the equation of the orthodrome on the sphere, first in the Bessel way, then by applying the
Euler-Lagrange equation.

In all the following derivations, we assume without loss of generality, and for the sake of
economy of writing, that the radius of the sphere is equal to 1.

2. Definition of the Orthodrome According to Helmert

Let us first consider how Helmert [8] approached the introduction of the concept of the
orthodrome. Let us assume that all level surfaces are concentric spherical surfaces, and therefore all
plumb lines are lines passing through a common centre. Any two plumb lines then have a common
vertical plane, which intersects the physical surface of the Earth in a more or less wavy profile but
intersects every level surface in a great circle.

The horizontal distance between two points also gives the shortest distance between the
projections of both points on the corresponding level surface.

To prove this, let us divide the greatest circular arc PoPn (Figure 1) between the projections
marked Po and Px into infinitesimal segments PoP1, P1P2, P2Ps3, etc. and describe circles around Po with
radii PoP1, P1P2, P2Ps, etc. These circles are small circles on the sphere, which are arranged in pairs at
the same distance from each other. The shortest connection between Po and Px on the surface of the
sphere is therefore the greatest circular arc itself, and not any other line PoP'1P'2P's... Pr, because it
alone follows the shortest distance between small spherical circles everywhere. In general,

PoP't> PoP1, P'1P'2> P1P», etc.
It is also

PoP'1P2P's... Pn> PoP1P2Ps... Pa.

B

Figure 1. Interpretation of the geodesic on the sphere, according to Helmert (1880)

The exception occurs only for PoPn > m. In that case, the shortest distance is equal to the
circumference of the sphere minus PoPx. Therefore, PoPx is no longer a relative minimum, since every
infinitely close connection between Po and Pn is shorter on the small circle.

The plane of the greatest circular arc is the common vertical plane not only of the endpoints but
also of all the intermediate points, because all radii are normal to the sphere and this plane passes
through the centre of the sphere. It is therefore also the plane corresponding to the three infinitely
close points of the greatest circular arc, i.e. the oscillating plane at the corresponding point is also a
vertical plane. Because of this property of the greatest circular arc, it can also be called a geodesic on
the sphere.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.1084.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 d0i:10.20944/preprints202506.1084.v1

4 of 19

To explain this expression, let us imagine that the inhabitants of an arbitrarily curved surface,
which is also a level surface, are given the task of drawing a straight line in terms of geodetic practice
from point Po in a given direction.

Then we will first lay a vertical plane from Po in that direction and place a point P1 on the surface,
then lay a vertical plane in P1 through Po and place a point P2 in it (Figure 1), from P2 in the vertical
plane through P1 place a new point Ps, etc., where it is tacitly assumed that the adjacent points are so
close to each other that there is no noticeable difference between the adjacent vertical planes, so that
the three adjacent points lie in a plane, which at this point is the vertical plane of the surface (sphere).

From the above, we can conclude that in the previous sense, a geodetic line, or geodesic, has the
described property in relation to its osculating plane.

3. The Orthodrome as the Intersection of a Plane Passing Through the Centre of
a Sphere and the Sphere

Let a sphere of radius 1 centred at the origin of the coordinate system be defined by the
geographic parameterization

X=cospcosd, Y=cospsind, Z=sing, 1

where ¢ and A are the latitude and longitude respectively, ¢ € [-n/2,7/2], A € [-n, 7].
Let us define the orthodrome as the intersection of a plane passing through the centre of a sphere
and the sphere. Let us write the equation of the plane passing through the centre of the sphere given

by (1):
AX +BY +CZ = 0. )

In this equation, A, B and C are three real numbers. Let us insert the expressions for X, Y and Z
from (1) into equation (2). We will obtain the equation of the orthodrome on the sphere in the
geographic coordinate system in the form

Acos@cosA+ Bcosgsind+ Csing = 0. 3)
Let us assume that ¢ # +m/2. After dividing by cos ¢, equation (3) becomes
AcosA+ BsinA+ Ctang = 0. (4)

If A and B are equal to zero, then equation (4) describes the equator, ¢ = 0. Assume that at least
one of A and B is not zero and divide (4) by VA2 4+ B2. With the notations

sinff = 4 cosf =— il a=—
"~ Jaz+p? T Jazep? T JaZiB? ()

equation (4) can be written in the form
sin(A — B) = atan¢. (6)

Constants 2 and f can be given a simple geometric interpretation. Namely, it is easy to see that
p is the longitude of the point where the orthodrome intersects the equator, while a is the cotangent
of the angle between the orthodrome and the equator at their intersection. Furthermore, with the
assumption VA2 + B2 # 0, it is easy to obtain that the orthodrome has the highest and lowest point,
vertices, whose geographical coordinates are determined by A = f + /2 and tan¢ = 1/a.

If A=B =0 and C # 0, then ¢ =0, i.e. it is the equator.

If C = a = 0, the equation of the orthodrome (6) becomes

A= =xm, (7)

and the orthodrome is a meridian circle.
Let the great circle be given by its two points with geographic coordinates (¢4,4;) and
(92, A2). The unit vectors corresponding to these points are

7, = (cos ¢, cos Ay, cos ¢, sin A, ,sin ¢@,)
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7, = (Cos ¢, cos A, , cos @, sin A, sin @), (8)
and the normal vector to the plane to which the orthodrome belongs will be
N =7 x# = (4,B,0), )
where
A = cos ¢, sin 4, sin ¢, — cos ¢, sin 1, sin ¢4,
B = —cos ¢, cos A, sin ¢, + cos ¢, cos A, sin ¢, (10)

C = cos @, cos @, sin(A, — ;).

We would arrive at the same result from the condition that three points with coordinates (0,0),
(¢1,41) and (@,,4;) lie in a plane.

Since the centre of such a circle coincides with the centre of the sphere, and therefore with the
centre of the gnomonic projection, the great circle in that projection is mapped into a line. This
important property can be used to determine individual points of the orthodrome and to transfer the
orthodrome to a map made in any other projection.

4. Orthodrome in the Cartesian Spatial Coordinate System

In the textbook collection of solved problems in vector analysis [10], there is the equation of the
orthodrome (which does not include meridian circles):

7= m [acosAT+ asind] + sin(A — ﬂ)E], (11)

where a = const., § = const., 1 € [—m,m]. The following tasks are solved:

a) Prove that the orthodrome (11) lies on the unit sphere.
b) Prove that the orthodrome (11) lies in the plane Ax + By + Cz = 0 passing through the origin,

where VA2 + B2 # 0

.. A _ B _ <
sinf = Jaz+B?’ cosf = Jaz4p?’ a= Jaz+p? -’

¢) If a point with geographic coordinates (¢, 1) belongs to the great circle, then
sin(A — f) = atan¢.

d) Show that

7] = ] = Ve (12)
da a?+sin2(1-B)’

e) Show that B is the latitude of the point where the orthodrome (11) intersects the equator
f) If Ty(¢1,4) and T,(@,, 4,) are two points of the orthodrome then

tan ¢4 sinA,—tan ¢, sin A
tanﬁ — P1 2 P2 1 (13)

tan ¢, cos A,—tan @, cos A,

g) Show that a is the cotangent of the angle between the orthodrome and the equator at their
intersection.
h) If T;(¢,,4,) and T,(¢,, 4,) are two points of the orthodrome, then it is

— Sil‘l(ll—/lz) (14)
JtanZ @, +tan? @, —2 tan ¢, tan @, cos(1,—1;)"

1) The angle y between the orthodrome and the meridian passing through the point T; (¢4, 4,) is
determined by the relation

cosy = ﬁcos(ll -B). (15)
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j) Show that by appropriately rotating the spatial coordinate system around the origin, the equation
of the orthodrome can be transformed into the form

7 =costé, +sinté,, (16)

where €; and €, are two unit and mutually perpendicular vectors, t € [0,27].

5. Orthodrome as a Geodesic on a Sphere

Let the orthodrome be a geodesic on the sphere. A geodesic on a surface can be defined in several
ways, e.g. it is
a) a curve for which the geodetic curvature at every point is zero
b) a straight line or curve where at every point the vector of its principal normal and the vector of the
normal to the surface are collinear
¢) a straight line or curve whose binormal is perpendicular to the normal to the surface at every point
d) a straight line or curve whose osculating plane contains the normal to the surface at every point.
Suppose we are looking for a curve on a sphere where at every point the vector of its principal
normal # and the vector of the normal to the surface N are collinear, i.e. the following holds [11]:

N=ai, 21€eR (17)

It is obvious that there are no straight lines on a sphere, so we will look for such curves on the
sphere for which (17) holds. The normal vector N of the sphere X%+ Y2+ Z2 = 1 at any point is
equal to the radius vector # of that point

N=*. (18)
If the curve 7 = 7(s) is parameterized by the arc length s, then its normal vector is
— =7" (19)
If we insert N from (18) and 7 from (19) into (17) we get

7 =Ar". (20)

Let us determine the parameter A. Since 7 is the radius vector of a point on a sphere of radius
1, it is obvious that

F2=1 (21)
We differentiate (21) twice:
2717 =0, 72 +77"=0. (22)
Since we have assumed that the curve 7 = 7(s) is parameterized by the arc length s, it holds
that
72 =1 (23)
so it is
= —1. (24)

Multiplying (20) by 7 and using (24) we get
A=-1 (25)
This means that the differential equation of the orthodrome is
7'+ 7 =0. (26)

Equation (26) is a simple second-order differential equation whose solution is

7 = ¢, coss + G, sins, (27)
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where ¢; and ¢, are two constant vectors. Since the orthodrome is a curve on the sphere, (21) holds,
and from there it follows that

|81| = |62| =1 and El 1 82. (28)

Vectors ¢; and ¢, determine the plane that passes through the origin of the coordinate system, so
we conclude that the orthodrome, as the intersection of a sphere and a plane through its centre, is a
great circle on the sphere.

Now, starting from the differential equation (26), we will derive the equation of the orthodrome
in the geographic coordinate system. Let a sphere of radius 1 with the centre at the origin of the
coordinate system be defined by the geographic parameterization (1). Let us write (1) in vector form

7 = (cos@ cosA,cos@sind,sin ). (29)

Let the curve on the sphere be parameterized by the arc length s, i.e. let ¢ = ¢(s), 4 = A(s). Let
us calculate the vectors

Jis ar ( . do . da . do . da deo
r'=—=(—sing@g—cosA —cos@sinl—,—sinp—sinA + cos ¢ cosA1—, cos ¢ — 30
ds ¢ ds ¢ ds’ 4 ds + 4 ds’ ¢ ds/)’ ( )
and
a2y de\2 . . adedd . d2¢ . ., dedd dr\?
=11
r' = =|—cos@cosA (—) sing sinA—— — sin@ cosA— + sin ¢ sinA———cos ¢ cos A (—) —
ds? ( ¢ ds + ¢ ds ds ¢ ds? + ¢ ds ds ¢ ds
.. d%2 . de\? . dpdi . . L d%e . de dA . dr\2
cos@sinA—,—cos@sini (—) —sin@cosA———sin@sinA— —sin@ cosA———cos ¢ sin 1 (—) 31
¢ ds2’ ¢ ds ¢ ds ds 4 ds? 4 ds ds 4 ds + ( )

dza . de\? d2e
COS(pCOSAF,—Sll’I(p(E) +COS(pE .

Inserting (30) and (31) into the differential equation of the orthodrome (26), we can write it in
terms of the components

_ d_w)z inosin1%®? _ g 2o _ (d_l)z_ in 292 2
cos ¢ cos A cosgocos/l(dS 4—251n(p51n/1dsdS 51n<pcos/1dsz cos@ cos A . cosgosmAdSZ—O, (32)

2 2 2 2
cos@sind — cos @ sin 4 (Z—f) — 2sing cosAZ—fj—j —sing sin/l%—cosgo sin4 (Z—j) + cos ¢ cos/l% =0, (33)
. . dg\2 d?p
sing — sing (E) tcosp—— = 0. (34)

Since the last equation is a differential equation with only one unknown function ¢ = ¢(s), we
will solve that equation first. Let us start by lowering the order, i.e., let us denote

d , d
p=10 P =pg. (35)
and substitute in (34). After the separation of the variables and a little tidying up, we will get
pdp
tangp de = oy (36)
Let us prepare the last equation for integration.
sing _1 —2pdp
cos @ T2 1-p2° (37)
We integrate and get
—Incos¢ =%1n(1—p2) —Ink, (38)

where K is the constant of integration. From (38) it first follows

— = [1-p?, (39)

cos @
and then
_ dp _ Jcos? p—K?
p= ds cosgp (40)
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From the last relation it follows
__ cospdp cos pdg
ds = JecosZo—KZ ~ [1-KZ-sinZ¢ (41)
By substituting t = sin¢, dt = cos ¢ d¢, we obtain that
ds = %
S = \/Tz—tz’ (42)
which after integration gives
s = sin~1 _1:(2 +1L, (43)
where L is the constant of integration. From (43) it finally follows
singp = V1 — KZ?sins, (44)
if we choose L = 0, for ¢ = 0. We can also express
V1-KZsins (45)

tang = JKZ+(1-K2) cos?s’

which we will need later.
We still need to determine the function A = A(s). To do this, multiply (32) by cos 4, (33) by sina

and add these two equations. We get
2
cosg (1 —p?) —singp’ —cosgo(i—j) =0, (46)

—K2gj
KZSM®  this will be

d JcosZ p—-K?2 . dp
where we marked as before £ = p= YO P77 and since £ =———""1¢
ds cos @ dp  cos? @cos? p—K?
d?p _dp , dp K2 sin¢
=—=p' =p—=-— . 47
p p do cos3 ¢ ( )

F Tds
Inserting the expressions for p and p’ into (46), we obtain after minor rearrangements

@ - a

ds costo

From there it follows to the sign
da o
_  k _ K _ 1-K2
ds  cos2¢  1-(1-K2)sinZs 1f12{2+c052 s (49)

Finally we have
=K 45  _iin1
A= 1_K2f%+coszs tan (K tan S) + ﬁ, (50)
where f denotes the additive constant. Instead of (50) we can write
tan(A — B) = K tans,
or
. _ Ksins
sin1 = B) = et (51)
If we compare (45) with (51) we see that
K

(52)

tan ¢.

sin(A—f) = Nrwro
This is the equation of the orthodrome in the geographic coordinate system. Comparison with (6)
(53)

K

gives the relationship between the constants
1-K2'

6. The Orthodrome as a Geodesic on a Sphere and the Clairaut Theorem

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.1084.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 d0i:10.20944/preprints202506.1084.v1

9 of 19

The geodetic curvature K, of the curve on the surface is defined at a particular point using the
relation

K, = (£,7 N), (54)

where £ is the unit vector of the tangent to the curve, 7 is the unit vector of the principal normal to
the curve, and N is the unit vector of the normal to the surface [11]. The mixed product (f, n, N ) can
be written in the form

K, = £(ii x N), (55)

so K; =0, if the vectors 7 and N are collinear. We covered this in the previous section.
However, due to the well-known property of the mixed product that it will not change if the vectors
cyclically swap places, we can also write

K, = N(¢ x i) = Nb, (56)

where we also recognized that the vector product £ x 7i gives the binormal vector b. Therefore, we
can now say that K; = 0, if the vectors b and N are perpendicular. It does not matter whether the
two vectors are unit vectors or not. In this sense, we continue further.

Let a sphere of radius 1 with its centre at the origin of the coordinate system be defined by the
geographic parameterization (1). Let us write (1) in vector form (29). The normal vector N to the

sphere will be
N=17,x, (57)
where the first partial derivatives are
1'"'4, = g—; = (—sin¢@ cosA,—sin@sin 1, cos @), (58)
= Z_j = (—cos¢@sinA,cos @ cosA,0). (59)

Let us calculate second partial derivatives

L _ o

Tpp = 297 = (—cos¢@cosA,—cos@sini,—sin @),

.

2-7
Tpr = f;?p_aa = (singsin A, —sin¢ cos 1,0), (60)

N 927 .
== (—cos¢@cosA,—cos@sini,0).

Let A = A(¢p) be the equation of a curve on a sphere. Then for this curve we can write

7(@) = (cos @ cos A (@), cos @ sin A (¢), sin @), (61)

and calculate vectors

5 _ dF . o dA . : di
A GO (— sing cosA — cos @ sinA—, —sin @ sin A + cos ¢ cos 1—, cos <p),
de de de
I )
T =T1,1T1) a0 (62)

= d?7(e) —

—Ccos @ cos A + sin sin/lﬂ + sin sin/ld—l —cos@cos A (ﬂ)z -
dep? @ ¢ de ¢ de ¢ de

.o d?A . . aa . da ) dr\? d?a )
cospsinA—,—cos@sinld —singp cos1l— —sing@ cosA——cos@psind|(—) +cospcosl—,—sing]|,
d? de do de d?

a1 o S dA | o (dl)z 5 d22
' =T,, + 27—+ l—) +1—. 63
[20] PpA de AL ® A de? ( )

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.



https://doi.org/10.20944/preprints202506.1084.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 d0i:10.20944/preprints202506.1084.v1

10 of 19

The osculation plane is determined by the vectors 7' and 7", so we can write for the binormal
vector b = #' x 7. The condition that the normal vector to the surface N = 7, X 7y is perpendicular
to the binormal vector b = 7' X # can be written in the form

7, X1 )7 x7#") =0,
@

and this is identical to the expression

(T @r") — (77")@r) = 0. (64)
Let us calculate
Tl = 1,
PR = _2si @ 2,22
nr'' = —2singcos¢ 10 + cos“ @ 107

N dr\?
"no_ o as
7,7 = sin ¢ cos ¢ (dq)) ,

77 = cos? g 2.
ar = Y
Inserting it into (64) and assuming cos ¢ # 0 we get

3 2
-2 sin<p%—singocosz<p(%) +cosg0§—(£= 0. (65)

@

dcp

cosodh

Figure 2. Infinitesimal triangle on the unit sphere. The differential of the arc length of the curve is ds, the

differential of the arc length of the meridian is d¢, and the differential of the arc length of the parallel is cos ¢ dA.

Let us introduce the azimuth « as follows (Figure 2):

__cosqpdi
tana ===, (66)
ie.
dA _ tana
% " cosg’ (67)
Calculation gives
ﬂ _ %Hanasin(p (68)
dez cos2 ¢ )
Substituting (67) and (68) into (65), after minor rearrangements we obtain
da
—tanatan @ +%= 0, (69)
and then
da
—sinasing + cosacosp—=0, (70)
de
and finally
d .
s (cos@sina) =0, (71)
ie.
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cos @ sina = K = const. (72)

In geodesy, the last equation is called Clairaut's theorem of the geodesic [12]. Alexis Claude
Clairaut (1713 — 1765) was a French mathematician, astronomer and geophysicist. It is obvious that
the value of the constant K must be in the range —1 < K < 1. The azimuth « is equal to zero when
the orthodrome is equal to the meridian circle arc. In general, it will have the smallest value when the
radius of the parallel takes the largest value, i.e. at the equator, when cos¢ = 1, so it holds

Sin @pq, = K. (73)
The largest value of angle a, i.e. @ = /2, corresponds to the smallest value of cos ¢, therefore
(cos @) min = K. (74)

Therefore, the constant K in Clairaut's theorem is equal to the radius of the northernmost and
southernmost parallel that the orthodrome reaches. Clairaut's theorem for the sphere is identical to
the sine theorem in spherical trigonometry. Namely, the sine theorem can be written in the form
(Figure 3)

€OS @4 Sin@; = COS @, sin a5. (75)

Figure 3. Polar spherical triangle illustrating the sine and the Clairaut theorems.

Mohle [13] derived the equation of the geodesic for a surface of revolution in an analogous
manner.

Let us also show that (72) is indeed the equation of an orthodrome on the unit sphere. For every
curve on the sphere it holds (Figure 2)

de =cosads (76)
cos @ dA = sina ds. (77)
If we divide (77) by (76) we get
da
cosp o= tana. (78)
Clairaut's equation (72) gives
sina = cosq’ (79)
and then
_K_
_ cos @ _ K
tana = e = Jcoszo-K2 (80)
cos2 ¢
Accordingly we can write
dr K
% " cos @+[cos? p—K?’ (81)
From there
_ do _ 1 Ksing
A=K f cos @+/cos? p—K? = tan JcosZ p-K?2 + B' (82)

where [ denotes the additive constant. From (82) it follows
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Ksing

tan(A — B) = Teeste i

or (52) or (6).

7. Different Forms of the Clairaut Theorem
The Clairaut theorem can be written in other forms:

i
cos? ¢~ =K = const.

cospsina =K

da . )
— =tang@sina
ds ¢

2% _ Sin
a_ Sme.

12 of 19

(83)

(84)

(85)

(86)

(87)

Let us show the equivalence of the relations (84)-(87). For every curve on the sphere, (76) and
(77) hold (Figure 2). Substituting (77) into (84) we obtain (85). Differentiating (85) with respect to s we

obtain
cosS a sina + sina d cosp =0
4 ds ds =Y
da . . de
cos@ cosa— —sinasing— = 0.
ds ds
From there
da d
= —tangtana =2
ds ds

Considering (76) we get (86). If we insert sina from (77) into (86) we get

da _ tan ¢ cos aA
ds - 4 4 ds

and from there (87) follows immediately. Since according to (90) it is
4 _ sinp 2
ds ¢ ds

then because of (76) it is

dy a1

da .
cosa—=smge .
ds ds ds

Differentiating (77) with respect to s, we obtain
cosal = —sinp L% 4 cos a2
ds P as as Pz
From the last two equations it follows

. do dA d2a
—23111(,0;;4— COSgDE =0,

(88)

(89)

(90)

©n

92)

(93)

(94)

and this means that (84) holds. Since (84) follows (85), (85) follows (86), (86) follows (87), and (87)

follows (84), it is shown that all four relations (84)-(87) are equivalent.

8. The Orthodrome as a Solution of Differential Equations of a Geodesic
In differential geometry, one can find differential equations for a geodesic on any surface [11,

14]:
Q"= —r;f’(p<p’2 — 2T, A — T2
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A= =T, = 2T ') — T2 (95)
® 2 . . . r_de . _d’e o, _dA 4, _d®2
where Ij,, ..., I}; are Christoffel notations of the second kind, ¢’ = T P Ea A=A =

and s is the arc length. Elwin Bruno Christoffel (1829-1900) was a German mathematician and
physicist. In addition, for any curve parametrized by the arc length,

E@? +2Fp'A +GA? =1, (96)

where E, F and G are first-order Gaussian quantities for the surface.

Let a sphere of radius 1 with the centre at the origin of the coordinate system be defined by the
geographic parameterization (1). For this sphere, the first-order Gaussian quantities or the
coefficients of the first differential form are equal to

E=1 F=0, G=cos?op, (97)
so the first differential form (96) takes the form
@'?+cos?@A? =1. (98)
The Christoffel notations of the second kind for a sphere have these values:

F(p(p(p =0, Fq’}(p =0, Fﬁ = sing cos ¢

I}, =0, T}, =—tang, I} = 0. (99)

Substituting (99) into (95) we get
@" = sing cos @ A" (100)
A= 2tang@ ¢'A". (101)

So, geodesics on the sphere will be obtained by solving differential equations (100) and (101)
with the help of relation (99). One possibility is to express 1’2 from relation (99) and include it in
(100). This way, we would get a second-order differential equation with an unknown function ¢ =
¢(s), which we reduce to a first-order differential equation by lowering the order and then solve it
in the usual way. We will describe a slightly shorter procedure.

Let us assume that it is

A=0, (102)

so we immediately get that the geodesics are meridians, A = C = const., and then from (100) ¢" =0,
@' =K, ¢ = Ks+ L, where K and L are constants. If we want ¢ = 0 for s = 0, then we should take
L =0.If we also want s = /2 for ¢ = /2, we should take K = 1.

Let us now assume that

A #0, (103)

so when we divide (101) by A" we get

n

2 do
o =2tang (104)

and then
A,”
Fds = 2tan @ do,

and after integration

InA' =—-2Incos¢ + InkK, (105)
where K is a constant. After the antilogarithm process (105) becomes
,_ K
N =cae (106)
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From relation (98) it follows
@'?=1-—cos?@l?, (107)
and then considering (106) it follows
' K2
p?=1- cosZ g’ (108)
; _ \Jcos? p—K? (109)
T cosg ’
_ cos @ _ cos @
ds = JcosZ p-K?2 dg = J1-K2-sin2 ¢ de, (110)
and finally
. _. Sing
s =sin"!———. 111
ik (th
From (111) it follows
sing =+41—K?sins (112)
and then
cos?p=1-sin2p =1—(1—-K?)sin?s. (113)
Now we can write according to (106) and (113)
A= K 114
T 1-—(1—K?)sin?s (114)
ds
A= Kf 1-(1-K2)sinZs + ﬁ' (115)
where f is the constant of integration. After integration we get
A =tan (K tans) + B. (116)

We can obtain a direct relationship between 4 and ¢ as follows. From (112) and (113) it follows

__sing _ YJ1-KZ?sins

tang = cos@  J1-(1-K2)sin?s (117)
while from (116) we get (50) and from there
. K sins
sin(A — ) = (118)

J1—(1—-K?)sinZs

Finally, from (117) and (119) we obtain (6).
We note another interesting consequence of (101), known as the Clairaut theorem. Note that
equation (101) can be written as

(cos? @A) =cos? @A’ —2singcosp Ao =0.
From there it follows
cos? @ X' = const.
and

cos pdA .
cos @ % = cos @ sina = const.

which is the famous Clairaut theorem.

9. The Orthodrome as a Solution of Differential Equations
of a Geodesic on a Surface of Revolution
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In differential geometry, differential equations for a geodesic on any surface can be found [11,15].
If it is a surface of revolution, its equation can be written in the form

X=f(p)cosA, Y=f(p)sind, Z=g¢. (119)

The differential equations of the geodesic on such a surface read:

. _(flfll_'_glgll)(plz_'_fflllz
o= oo Je e (120)
f!
A'==2=¢'}, 121
7 (121)
where the notation for derivatives was introduced
r_ﬂ Il_dzf I_d_g Il_dz_g
f - dqo' f - d(pz' g - d(p' g - d(pzl (122)
1 do 17 dg I da " d*a
=0 V=g M= V=g (123)
Since for a sphere defined by geographic parameterization
f(@) =cosp, g(p)=sing, (124)
itis
f'=—singp, f" =—cosgp,
g ' =cosep, g"=-—sing, (125)

so the differential equations of geodesics on the sphere (120) and (121) pass into

@" =singcosp'?,

A" =2tang@ @'l

and these are differential equations (100) and (101) from the previous section, so they can be solved
in the same way as they were solved there.

10. The Orthodrome as the Shortest Arc Length of a Curve on a Sphere
Connecting Two Points According to Bessel

Let there be two points A and B on a surface. We ask ourselves what is the shortest connection
between these points on the surface? For some simpler cases, it is possible to give a necessary
condition. Geodesics have the local minimum property: they are curves that are the shortest
connections between two points on the surface. In other words, a geodesic is the shortest connection
between two sufficiently close points on the surface [11].

The problem of a geodesic as the shortest path between two points on a given surface was
addressed by many scientists as early as the 18th century. Bessel provides a concise description of the
work of several authors who dealt with this topic, such as Clairaut, Euler, du Séjour, Legendre, and
Oriani [9].

Let us take two points A and B on the surface of the ellipsoid of revolution connected by a certain
curve. Consider two adjacent points on the curve with latitudes ¢ and ¢ + d¢ and longitudes
relative to A of 1 and 4 + dA (measured east). Let the distance between them be ds, the azimuth of
the line directed towards A be a (measured clockwise from north), the radius of the parallel
corresponding to the latitude 7, and the radius of curvature of the meridian R; then we find

cosads = Rdy,

sinads = rdA,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.1084.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 d0i:10.20944/preprints202506.1084.v1

16 of 19

which gives

ds = /R?d@? + r2dA?.
If we put

e 2n2 2
p ‘MandU R%p% + 717,

then we have
ds = UdA.
The distance along the curve between two points A and B is therefore
s=[Uda,

where the integration is from A to B. In order for the curve to be geodesic or the shortest one, the
relation between ¢ and A must be such that the value of the integral is minimal. If we slightly
change that relation by replacing ¢ with ¢ + z, where z is an arbitrary function of A that vanishes
at the end points (because those points lie on both curves), then the slightly changed length

s'=[U'da,
must be longer than s for each z. Let us expand U(¢,p) in a Taylor series. We will get
au aU dz
U' = U+— +a—a+ ..,

and therefore we have

s=s+[(Siz+ ) dat -,

where we explicitly introduced terms only up to the first order of z. For s to be a minimum, it should

be
ou oU dz dlt >0
f (0(,0 Jdp dl)
for all z. Since this must also hold if z is replaced by -z, and since we can take z so small that the

first-order terms are greater than the sum of all other higher-order terms (unless the first-order terms
vanish), it follows that the condition for a minimum of s is equal to

U | aUdz au ou ,
f( +a—a)d/1 [SozdA+ [T dz=0.

Partial integration of the second integral gives

ou au
VA P zd (5).
and remembering that z vanishes at the endpoints we get
au d (0U
- £ @)=

Since the integral should vanish for arbitrary z, it must be
U d (au) —0
dp da\ap)

oudep dUdp dpadU d (6U) _

dpdl ' dpdir  diop dA\op

or by multiplying by p = 2—‘:

which, integrating with respect to A, gives
au
U-p o = const.

By substituting U = \/R?p? +r? we get
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% = rsina = const.
, 1+T_2p2
which is the well-known characteristic equation of a geodesic. The Bessel derivative shown applies
to an ellipsoid of revolution. If we are talking about a unit sphere, then R = 1, r = cos ¢, so the last
equation becomes

cos? ¢ cos? pdA

= = cos ¢ sina = const.

cos? <p+(2—f)2 ds

where we recognize the Clairaut theorem for the sphere.

11. The Orthodrome as a Solution to the Euler-Lagrange Equation

The brachistochrone is one of many problems in which we want to determine a function y(x)
that minimizes or maximizes an integral [16]:

Jly] = J; f(x,y(0),y"(0))dx. (126)

Leonhard Euler was the first to devise a systematic method for solving such problems. Consider,
for example, two points, A and B, on a sphere of radius 1 centred at the origin. We want to connect
A and B by the shortest, continuously differentiable curve lying on the sphere.

Let the sphere of radius 1 centred at the origin of the coordinate system be defined by the
geographic parameterization (1). The first differential form of the mapping (1) is

ds? = dp? + cos? p dA2. (127)

From there we have

ds = \/dgoz + cos? @ dAZ. (128)

Assume that 4 = A(¢). Searching for the curve that minimizes the length of the arc between the
points A = (¢,,4,) and B = (¢;,1;) isreduced to finding the function 1 = A(¢) that minimizes the
integral

2
s= ff ds = f;plz \/1 + cos? ¢ (%) do (129)
with boundary conditions

o) =4, Np,) = 4, (130)

Leonhard Euler was the first person to systematize the study of variational problems. His 1744
work [17], Method for Finding Curved Lines Enjoying the Properties of Maximums or Minimums, or
the Solution of Isoperimetric Problems in the Widest Sense, is a collection of 100 special problems.
The book also contains a general method for solving such problems. Euler abandoned his method in
favour of Lagrange's more elegant "method of variations" after receiving Lagrange's letter (12 August
1755). Euler also named the subject the calculus of variations in Lagrange's honour.

This variational derivative has the same role for functionals as the partial derivative has for
functions. For a relative (or local) minimum, we expect the derivative to vanish at each point, leaving
us with the Euler-Lagrange equation

Z_§ - :—x (;Tf) = 0. (131)

The Euler-Lagrange equation is only a necessary condition, in the same sense that f(x) =0 is a
necessary but insufficient condition in mathematical analysis. For general surfaces, the resulting
Euler-Lagrange equation is quite complicated [24]. Fortunately, the Euler-Lagrange equation
simplifies for some surfaces. The most important special case is the one for surfaces of revolution, i.e.,
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surfaces obtained by rotating a plane curve about an axis. For example, the Euler-Lagrange equation
for the unit sphere simplifies to

—d 1= (132)
d‘pl day?
l 1+cos? <p(w) J

2 dd
cos? o K

- 133

1+cosz<,o(%)2 ( )

From there it follows

If we solve the last equation in terms of % and integrate, we will get (82) and then (83), (52) or (6).

12. Conclusions

This article provides an overview of the various definitions of the orthodrome, as research has
shown that this curve can be approached in about a dozen different ways, which is not common in
defining technical terms in geodesy and related fields. Geodesics have been studied and are still
studied by many scientists today. A geodesic on a surface is a curve for which the geodetic curvature
is zero at every point. Equivalent expressions of this statement are that at every point of this curve
the vector of the principal normal is collinear with the normal to the surface, that it is a curve whose
binormal at every point is perpendicular to the normal to the surface, and that it is a curve whose
osculation plane contains the normal to the surface at every point. In this case, the well-known
Clairaut equation of a geodesic naturally appears in geodesy. It is shown that this equation can be
written in several different forms. Since corresponding differential equations for geodesics can be
found in the literature, but usually without a solution, they are solved in this article. In addition, the
orthodrome can also be approached using the calculus of variations, since it is a question of finding
the minimum length of an arc.

The article contains a large number of mathematical expressions. To understand the text, basic
knowledge of analytical, spherical and differential geometry and the calculus of variations is
sufficient. The simplest derivation is using analytical geometry, in which the orthodrome is defined
as the intersection of a sphere and a plane passing through its centre. The shortest derivation is using
the calculus of variations, but this requires knowledge of the basics of this part of mathematics that
is usually not taught in the study of geodesy.
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