
Article Not peer-reviewed version

Variations on the Theme "Definition of

the Orthodrome"

Miljenko Lapaine *

Posted Date: 12 June 2025

doi: 10.20944/preprints202506.1084.v1

Keywords: orthodrome; great circle; sphere; geodesic; geodetic line

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/534240


 

 

Article 

Variations on the Theme "Definition of the 

Orthodrome" 

Miljenko Lapaine 

University of Zagreb, Faculty of Geodesy, Kačićeva 26, 10000 Zagreb. Croatia, mlapaine@geof.hr 

Abstract: A geodesic or geodetic line on a sphere is called the orthodrome. Research has shown that 

the orthodrome can be defined in a large number of ways. This article provides an overview of 

various definitions of the orthodrome. We recall the definitions of the orthodrome according to the 

greats of geodesy, such as Bessel (1826) and Helmert (1880). We derive the equation of the 

orthodrome in the geographic coordinate system and in the Cartesian spatial coordinate system. A 

geodesic on a surface is a curve for which the geodetic curvature is zero at every point. Equivalent 

expressions of this statement are that at every point of this curve the principal normal vector is 

collinear with the normal to the surface, i.e. it is a curve whose binormal at every point is 

perpendicular to the normal to the surface, and that it is a curve whose osculation plane contains the 

normal to the surface at every point. In this case, the well-known Clairaut equation of the geodesic in 

geodesy appears naturally. It turns out that this equation can be written in several different forms. 

Although differential equations for geodesics can be found in the literature, they are solved in this 

article, first, by taking the sphere as a special case of any surface, and then as a special case of a surface 

of rotation. At the end of this article, we apply calculus of variations to determine the equation of the 

orthodrome on the sphere, first in the Bessel way, and then by applying the Euler-Lagrange equation. 

All together the paper elaborates a dozen different approaches to orthodrome definitions. 

Keywords: orthodrome; great circle; sphere; geodesic; geodetic line 

 

1. Introduction 

The orthodrome or great circle is the intersection of a sphere and a plane passing through the 

centre of the sphere. Every arc of a great circle is a geodetic line or geodesic on the sphere, so great 

circles in spherical geometry are the natural analogue of lines in the plane. For any pair of distinct 

non-antipodal points on the sphere, there is a unique great circle that passes through both points. 

Every great circle through any point also passes through its antipodal point, so there are infinitely 

many great circles through two antipodal points. The shorter of two great circle arcs between two 

distinct points on the sphere is the shortest path between them on the sphere. 

A great circle is the largest circle that exists on any sphere. Any diameter of any great circle 

coincides with the diameter of the sphere, and therefore every great circle is concentric with the 

sphere and has the same radius. Any other circle on a sphere is called a small circle and is the 

intersection of the sphere with a plane that does not pass through its centre. 

Some examples of great circles on the celestial sphere are the celestial horizon, the celestial 

equator, and the ecliptic. Great circles are also used as approximation of geodesics on the Earth's 

surface for air or sea navigation, as well as on spheroidal celestial bodies. The equator of an idealized 

Earth is a great circle, and each meridian and its opposite meridian form a great circle. A great circle 

divides the Earth into two hemispheres. 

The easiest way to measure the distance between two points on a map is to draw a straight line 

connecting the two points. In this case, the straight line is taken to be the image of a great circle, i.e. 

an arc of a great circle. However, a line segment on small-scale maps is generally not an image of a 

great circle. The exception is the gnomonic projection. Therefore, distances and azimuths measured 

directly from the maps will not be accurate, so it is useful to determine the orthodromicity of a map 
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projection. This refers to the degree of approximation of the image of the orthodrome on the map and 

the straight line connecting the endpoints. Orthodromicity depends on the properties of the 

projection and can be defined by the largest deviation of the image of the orthodrome from the 

direction and the difference between their length and azimuth [1]. 

Conformal map projections have an important property from the point of view of measuring 

distances and direction positions on maps. In these projections the arc of a great circle of a sphere is 

not mapped into a straight line. The properties of conformality and orthodromicity cannot be fulfilled 

simultaneously. In cases where the non-orthodromicity of a conformal projection is particularly 

pronounced, the accuracy of measuring straight lines and directions is significantly reduced [2]. The 

assessment of the deviation of a straight line from the image of the orthodrome is important when 

choosing the most suitable map projection for a given area. 

Although we will encounter a large number of mathematical expressions and equations in the 

article, for those who find such an approach a little more difficult, let us say that the concept of an 

orthodrome can be described without mathematical relations. For example, let us take an orange as 

an approximate model of a sphere. If we put a thin rubber band on the orange so that it does not slip, 

it will take the shape of an orthodrome. Instead of the orange, we can use a tennis ball or any other 

object in the shape of a ball. In a similar way, using the equilibrium of an elastic band on a surface, 

Ljusternik [3] explains the geodesic. Consider the surface of a sphere. A rubber band stretched along 

a large circle will be in equilibrium and will describe a great circle. If we cut the sphere with a plane 

that does not pass through its centre, we will not be able to put the rubber band in equilibrium, it will 

slip, so the small circle is not an orthodrome [3]. 

To understand the following text, we will need basic knowledge of analytical, spherical and 

differential geometry. Spherical trigonometry formulas are applied in various areas, such as, 

astronomy, cartography or satellite geodesy. Classical versions of these formulas can be found in the 

literature (e.g. [4]). 

However, the basic spherical trigonometry formulas can be obtained very easily using vector 

algebra, as demonstrated by Krilov [5]). Hence the idea to approach problems related to the 

orthodrome from the point of view of vector algebra as well, with a small extension with terms from 

differential geometry. Such an approach enables a simpler and clearer exposition, freeing the reader 

from the often clumsy expressions of spherical trigonometry. 

Great circle navigation or orthodromic navigation (from the ancient Greek ορθός (orthós) 'right 

angle' and δρόμος (drómos) 'road') is the practice of navigating a vessel (ship or aircraft) along a great 

circle. Such routes give the shortest distance between two points on the Earth's sphere [6]. 

Orthodrome properties are usually stated without proof. This gave the idea to consider different 

definitions of that curve on the sphere using a mathematical apparatus that is sometimes very simple 

and sometimes, perhaps at first glance, complicated. 

In geodesy, a rotating ellipsoid is very often used for the Earth model. Geodesics on the ellipsoid 

are very well researched and there is a relatively extensive literature on them [7-9]. Sometimes a 

sphere is used instead of a rotating ellipsoid as a simpler model. A geodesic on a sphere as a special 

case of geodesic on the ellipsoid is called the orthodrome. Research has shown that the orthodrome 

can be defined in an unusually large number of ways. This is why this article deals with various 

definitions of orthodrome. 

In the following sections, we recall the definitions of the great scientists, such as Bessel [7] and 

Helmert [8]. We derive the equation of the orthodrome in the geographic coordinate system and in 

the Cartesian spatial coordinate system. Since the orthodrome is a geodesic on a sphere, we recall the 

definition of a geodesic on a general surface. This definition states that it is a curve for which the 

geodetic curvature at every point is zero. Equivalent expressions of this statement are that at every 

point of this curve the principal normal vector is collinear with the normal to the surface, then that it 

is a curve whose binormal at every point is perpendicular to the normal to the surface, and that it is 

a curve whose osculation plane contains the normal to the surface at every point. This way, the well-

known Clairaut theorem or Clairaut equation of a geodesic appears naturally. It turns out that this 
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equation can be written in several different forms. Since the orthodrome is a geodesic, and for such 

curves, corresponding differential equations have been derived in the literature but seldom solved, 

they are solved in this article. First, by taking the sphere as a special case of any surface, and then as 

a special case of a surface of revolution. At the end of this article, we apply calculus of variations to 

determine the equation of the orthodrome on the sphere, first in the Bessel way, then by applying the 

Euler-Lagrange equation. 

In all the following derivations, we assume without loss of generality, and for the sake of 

economy of writing, that the radius of the sphere is equal to 1. 

2. Definition of the Orthodrome According to Helmert 

Let us first consider how Helmert [8] approached the introduction of the concept of the 

orthodrome. Let us assume that all level surfaces are concentric spherical surfaces, and therefore all 

plumb lines are lines passing through a common centre. Any two plumb lines then have a common 

vertical plane, which intersects the physical surface of the Earth in a more or less wavy profile but 

intersects every level surface in a great circle. 

The horizontal distance between two points also gives the shortest distance between the 

projections of both points on the corresponding level surface. 

To prove this, let us divide the greatest circular arc P0Pn (Figure 1) between the projections 

marked P0 and Pn into infinitesimal segments P0P1, P1P2, P2P3, etc. and describe circles around P0 with 

radii P0P1, P1P2, P2P3, etc. These circles are small circles on the sphere, which are arranged in pairs at 

the same distance from each other. The shortest connection between P0 and Pn on the surface of the 

sphere is therefore the greatest circular arc itself, and not any other line P0P'1P'2P'3… Pn, because it 

alone follows the shortest distance between small spherical circles everywhere. In general, 

P0P'1> P0P1, P'1P'2> P1P2, etc. 

It is also 

P0P'1P'2P'3… Pn> P0P1P2P3… Pn. 

 

 

Figure 1. Interpretation of the geodesic on the sphere, according to Helmert (1880) 

The exception occurs only for P0Pn > π. In that case, the shortest distance is equal to the 

circumference of the sphere minus P0Pn. Therefore, P0Pn is no longer a relative minimum, since every 

infinitely close connection between P0 and Pn is shorter on the small circle. 

The plane of the greatest circular arc is the common vertical plane not only of the endpoints but 

also of all the intermediate points, because all radii are normal to the sphere and this plane passes 

through the centre of the sphere. It is therefore also the plane corresponding to the three infinitely 

close points of the greatest circular arc, i.e. the oscillating plane at the corresponding point is also a 

vertical plane. Because of this property of the greatest circular arc, it can also be called a geodesic on 

the sphere. 
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To explain this expression, let us imagine that the inhabitants of an arbitrarily curved surface, 

which is also a level surface, are given the task of drawing a straight line in terms of geodetic practice 

from point P0 in a given direction. 

Then we will first lay a vertical plane from P0 in that direction and place a point P1 on the surface, 

then lay a vertical plane in P1 through P0 and place a point P2 in it (Figure 1), from P2 in the vertical 

plane through P1 place a new point P3, etc., where it is tacitly assumed that the adjacent points are so 

close to each other that there is no noticeable difference between the adjacent vertical planes, so that 

the three adjacent points lie in a plane, which at this point is the vertical plane of the surface (sphere). 

From the above, we can conclude that in the previous sense, a geodetic line, or geodesic, has the 

described property in relation to its osculating plane. 

3. The Orthodrome as the Intersection of a Plane Passing Through the Centre of 

a Sphere and the Sphere 
Let a sphere of radius 1 centred at the origin of the coordinate system be defined by the 

geographic parameterization 

𝑋=cos𝜑cos𝜆,  𝑌=cos𝜑sin𝜆,  𝑍=sin𝜑, (1) 

where 𝜑 and 𝜆 are the latitude and longitude respectively, 𝜑 ∈ [−𝜋/2, 𝜋/2], 𝜆 ∈ [−𝜋, 𝜋].  

Let us define the orthodrome as the intersection of a plane passing through the centre of a sphere 

and the sphere. Let us write the equation of the plane passing through the centre of the sphere given 

by (1): 

𝐴𝑋 + 𝐵𝑌 + 𝐶𝑍 = 0. (2) 

In this equation, A, B and C are three real numbers. Let us insert the expressions for X, Y and Z 

from (1) into equation (2). We will obtain the equation of the orthodrome on the sphere in the 

geographic coordinate system in the form 

𝐴 cos𝜑 cos 𝜆 + 𝐵 cos𝜑 sin 𝜆 + 𝐶 sin𝜑 = 0. (3) 

Let us assume that 𝜑 ≠ ±𝜋/2. After dividing by cos𝜑, equation (3) becomes 

𝐴 cos 𝜆 + 𝐵 sin 𝜆 + 𝐶 tan𝜑 = 0. (4) 

If A and B are equal to zero, then equation (4) describes the equator, 𝜑 = 0. Assume that at least 

one of A and B is not zero and divide (4) by √𝐴2 + 𝐵2. With the notations 

sin 𝛽 =
𝐴

√𝐴2+𝐵2
,  cos 𝛽 = −

𝐵

√𝐴2+𝐵2
,  𝑎 =

𝐶

√𝐴2+𝐵2
 (5) 

equation (4) can be written in the form 

sin(𝜆 − 𝛽) = 𝑎 tan𝜑. (6) 

Constants a and 𝛽 can be given a simple geometric interpretation. Namely, it is easy to see that 

𝛽 is the longitude of the point where the orthodrome intersects the equator, while a is the cotangent 

of the angle between the orthodrome and the equator at their intersection. Furthermore, with the 

assumption √𝐴2 + 𝐵2 ≠ 0, it is easy to obtain that the orthodrome has the highest and lowest point, 

vertices, whose geographical coordinates are determined by 𝜆 = 𝛽 ± 𝜋/2 and tan𝜑 = 1/𝑎. 

If 𝐴 = 𝐵 = 0 and 𝐶 ≠ 0, then 𝜑 = 0, i.e. it is the equator.  

If 𝐶 = 𝑎 = 0, the equation of the orthodrome (6) becomes 

𝜆 = 𝛽 ± 𝜋, (7) 

and the orthodrome is a meridian circle.  

Let the great circle be given by its two points with geographic coordinates (𝜑1, 𝜆1)   and 

(𝜑2, 𝜆2). The unit vectors corresponding to these points are 

𝑟1 = (cos𝜑1 cos 𝜆1 , cos𝜑1 sin 𝜆1 , sin𝜑1)  
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𝑟2 = (cos𝜑2 cos 𝜆2 , cos𝜑2 sin 𝜆2 , sin𝜑2), (8) 

and the normal vector to the plane to which the orthodrome belongs will be 

𝑁⃗⃗⃗ = 𝑟1 × 𝑟2 = (𝐴, 𝐵, 𝐶), (9) 

where 

𝐴 = cos𝜑1 sin 𝜆1 sin𝜑2 − cos𝜑2 sin 𝜆2 sin𝜑1,  

𝐵 = −cos𝜑1 cos 𝜆2 sin𝜑2 + cos𝜑2 cos 𝜆2 sin𝜑1, (10) 

𝐶 = cos𝜑1 cos𝜑2 sin(𝜆2 − 𝜆1).  

We would arrive at the same result from the condition that three points with coordinates (0,0), 

(𝜑1, 𝜆1) and (𝜑2, 𝜆2) lie in a plane. 

Since the centre of such a circle coincides with the centre of the sphere, and therefore with the 

centre of the gnomonic projection, the great circle in that projection is mapped into a line. This 

important property can be used to determine individual points of the orthodrome and to transfer the 

orthodrome to a map made in any other projection. 

4. Orthodrome in the Cartesian Spatial Coordinate System 

In the textbook collection of solved problems in vector analysis [10], there is the equation of the 

orthodrome (which does not include meridian circles): 

𝑟 =
1

√𝑎2+sin2(𝜆−𝛽)
[𝑎 cos 𝜆 𝑖 + 𝑎 sin 𝜆 𝑗 + sin(𝜆 − 𝛽)𝑘⃗⃗], (11) 

where 𝑎 = 𝑐𝑜𝑛𝑠𝑡., 𝛽 = 𝑐𝑜𝑛𝑠𝑡., 𝜆 ∈ [−𝜋, 𝜋]. The following tasks are solved: 

a) Prove that the orthodrome (11) lies on the unit sphere. 

b) Prove that the orthodrome (11) lies in the plane 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 = 0 passing through the origin, 

where √𝐴2 + 𝐵2 ≠ 0 

sin 𝛽 =
𝐴

√𝐴2+𝐵2
,  cos 𝛽 = −

𝐵

√𝐴2+𝐵2
,  𝑎 =

𝐶

√𝐴2+𝐵2
 .  

c) If a point with geographic coordinates (𝜑, 𝜆) belongs to the great circle, then 

sin(𝜆 − 𝛽) = 𝑎 tan𝜑.   

d) Show that 

|𝑟′| = |
𝑑𝑟

𝑑𝜆
| =

𝑎√𝑎2+1

𝑎2+sin2(𝜆−𝛽)
. (12)  

e) Show that 𝛽 is the latitude of the point where the orthodrome (11) intersects the equator 

f) If 𝑇1(𝜑1, 𝜆1) and 𝑇2(𝜑2, 𝜆2) are two points of the orthodrome then 

tan𝛽 =
tan𝜑1 sin 𝜆2−tan𝜑2 sin𝜆1

tan𝜑1 cos 𝜆2−tan𝜑2 cos𝜆1
. (13)  

g) Show that a is the cotangent of the angle between the orthodrome and the equator at their 

intersection. 

h) If 𝑇1(𝜑1, 𝜆1) and 𝑇2(𝜑2, 𝜆2) are two points of the orthodrome, then it is 

𝑎 =
sin(𝜆1−𝜆2)

√tan2 𝜑1+tan2 𝜑2−2 tan𝜑1 tan𝜑2 cos(𝜆1−𝜆2)
. (14)  

i) The angle 𝛾 between the orthodrome and the meridian passing through the point 𝑇1(𝜑1, 𝜆1) is 

determined by the relation 

cos 𝛾 =
1

√𝑎2+1
cos(𝜆1 − 𝛽). (15)  
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j) Show that by appropriately rotating the spatial coordinate system around the origin, the equation 

of the orthodrome can be transformed into the form 

𝑟 = cos 𝑡 𝑒1 + sin 𝑡 𝑒2, (16) 

where 𝑒1 and 𝑒2 are two unit and mutually perpendicular vectors, 𝑡 ∈ [0,2𝜋]. 

5. Orthodrome as a Geodesic on a Sphere 

Let the orthodrome be a geodesic on the sphere. A geodesic on a surface can be defined in several 

ways, e.g. it is 

a) a curve for which the geodetic curvature at every point is zero 

b) a straight line or curve where at every point the vector of its principal normal and the vector of the 

normal to the surface are collinear  

c) a straight line or curve whose binormal is perpendicular to the normal to the surface at every point  

d) a straight line or curve whose osculating plane contains the normal to the surface at every point. 

Suppose we are looking for a curve on a sphere where at every point the vector of its principal 

normal 𝑛⃗⃗ and the vector of the normal to the surface 𝑁⃗⃗⃗ are collinear, i.e. the following holds [11]: 

𝑁⃗⃗⃗ = 𝜆𝑛⃗⃗,  𝜆 ∈ ℝ. (17) 

It is obvious that there are no straight lines on a sphere, so we will look for such curves on the 

sphere for which (17) holds. The normal vector 𝑁⃗⃗⃗ of the sphere 𝑋2 + 𝑌2 + 𝑍2 = 1 at any point is 

equal to the radius vector 𝑟 of that point 

𝑁⃗⃗⃗ = 𝑟. (18) 

If the curve 𝑟 = 𝑟(𝑠) is parameterized by the arc length s, then its normal vector is 

𝑛⃗⃗ =
𝑑2𝑟

𝑑𝑠2 = 𝑟". (19) 

If we insert 𝑁⃗⃗⃗ from (18) and 𝑛⃗⃗ from (19) into (17) we get 

𝑟 = 𝜆𝑟". (20) 

Let us determine the parameter 𝜆. Since 𝑟 is the radius vector of a point on a sphere of radius 

1, it is obvious that 

𝑟2 = 1. (21) 

We differentiate (21) twice: 

2𝑟𝑟′ = 0,  𝑟′2 + 𝑟𝑟" = 0. (22) 

Since we have assumed that the curve 𝑟 = 𝑟(𝑠) is parameterized by the arc length s, it holds 

that 

𝑟′2 = 1 (23) 

so it is 

𝑟𝑟" = −1. (24) 

Multiplying (20) by 𝑟 and using (24) we get 

𝜆 = −1. (25) 

This means that the differential equation of the orthodrome is 

𝑟" + 𝑟 = 0⃗⃗. (26) 

Equation (26) is a simple second-order differential equation whose solution is 

𝑟 = 𝑐1 cos 𝑠 + 𝑐2 sin 𝑠, (27) 
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where 𝑐1 and 𝑐2 are two constant vectors. Since the orthodrome is a curve on the sphere, (21) holds, 

and from there it follows that  

|𝑐1| = |𝑐2| = 1  and  𝑐1 ⊥ 𝑐2. (28) 

Vectors 𝑐1 and 𝑐2 determine the plane that passes through the origin of the coordinate system, so 

we conclude that the orthodrome, as the intersection of a sphere and a plane through its centre, is a 

great circle on the sphere. 

Now, starting from the differential equation (26), we will derive the equation of the orthodrome 

in the geographic coordinate system. Let a sphere of radius 1 with the centre at the origin of the 

coordinate system be defined by the geographic parameterization (1). Let us write (1) in vector form 

𝑟 = (cos𝜑 cos 𝜆 , cos𝜑 sin 𝜆 , sin𝜑). (29) 

Let the curve on the sphere be parameterized by the arc length s, i.e. let 𝜑 = 𝜑(𝑠), 𝜆 = 𝜆(𝑠). Let 

us calculate the vectors 

𝑟′ =
𝑑𝑟

𝑑𝑠
= (−sin𝜑

𝑑𝜑

𝑑𝑠
cos 𝜆 − cos𝜑 sin 𝜆

𝑑𝜆

𝑑𝑠
, − sin𝜑

𝑑𝜑

𝑑𝑠
sin 𝜆 + cos𝜑 cos 𝜆

𝑑𝜆

𝑑𝑠
, cos𝜑

𝑑𝜑

𝑑𝑠
), (30) 

and 

𝑟′′ =
𝑑2𝑟

𝑑𝑠2 = (−cos𝜑 cos 𝜆 (
𝑑𝜑

𝑑𝑠
)

2

+ sin𝜑 sin 𝜆
𝑑𝜑

𝑑𝑠

𝑑𝜆

𝑑𝑠
− sin𝜑 cos 𝜆

𝑑2𝜑

𝑑𝑠2 + sin𝜑 sin 𝜆
𝑑𝜑

𝑑𝑠

𝑑𝜆

𝑑𝑠
−cos𝜑 cos 𝜆 (

𝑑𝜆

𝑑𝑠
)

2

−

cos𝜑 sin 𝜆
𝑑2𝜆

𝑑𝑠2 , − cos𝜑 sin 𝜆 (
𝑑𝜑

𝑑𝑠
)
2

− sin𝜑 cos 𝜆
𝑑𝜑

𝑑𝑠

𝑑𝜆

𝑑𝑠
− sin𝜑 sin 𝜆

𝑑2𝜑

𝑑𝑠2 − sin𝜑 cos 𝜆
𝑑𝜑

𝑑𝑠

𝑑𝜆

𝑑𝑠
−cos𝜑 sin 𝜆 (

𝑑𝜆

𝑑𝑠
)
2

+

cos𝜑 cos 𝜆
𝑑2𝜆

𝑑𝑠2 , − sin𝜑 (
𝑑𝜑

𝑑𝑠
)

2

+ cos𝜑
𝑑2𝜑

𝑑𝑠2). 

(31) 

Inserting (30) and (31) into the differential equation of the orthodrome (26), we can write it in 

terms of the components 

cos𝜑 cos 𝜆 − cos𝜑 cos 𝜆 (
𝑑𝜑

𝑑𝑠
)

2

+ 2sin𝜑 sin 𝜆
𝑑𝜑

𝑑𝑠

𝑑𝜆

𝑑𝑠
− sin𝜑 cos 𝜆

𝑑2𝜑

𝑑𝑠2 −cos𝜑 cos 𝜆 (
𝑑𝜆

𝑑𝑠
)

2

− cos𝜑 sin 𝜆
𝑑2𝜆

𝑑𝑠2 = 0, (32) 

cos𝜑 sin 𝜆 − cos𝜑 sin 𝜆 (
𝑑𝜑

𝑑𝑠
)

2

− 2sin𝜑 cos 𝜆
𝑑𝜑

𝑑𝑠

𝑑𝜆

𝑑𝑠
− sin𝜑 sin 𝜆

𝑑2𝜑

𝑑𝑠2 −cos𝜑 sin 𝜆 (
𝑑𝜆

𝑑𝑠
)

2

+ cos𝜑 cos 𝜆
𝑑2𝜆

𝑑𝑠2 = 0, (33) 

sin𝜑 − sin𝜑 (
𝑑𝜑

𝑑𝑠
)

2

+ cos𝜑
𝑑2𝜑

𝑑𝑠2 = 0. (34) 

Since the last equation is a differential equation with only one unknown function 𝜑 = 𝜑(𝑠), we 

will solve that equation first. Let us start by lowering the order, i.e., let us denote 

𝑝 =
𝑑𝜑

𝑑𝑠
,  𝑝′ = 𝑝

𝑑𝑝

𝑑𝜑
. (35) 

and substitute in (34). After the separation of the variables and a little tidying up, we will get 

tan𝜑 𝑑𝜑 =
𝑝𝑑𝑝

𝑝2−1
. (36) 

Let us prepare the last equation for integration. 

sin𝜑

cos𝜑
𝑑𝜑 =

1

2

−2𝑝𝑑𝑝

1−𝑝2 . (37) 

We integrate and get 

− ln cos𝜑 =
1

2
ln(1 − 𝑝2) − ln𝐾, (38) 

where K is the constant of integration. From (38) it first follows 

𝐾

cos𝜑
= √1 − 𝑝2, (39) 

and then 

𝑝 =
𝑑𝜑

𝑑𝑠
=

√cos2 𝜑−𝐾2

cos𝜑
. (40) 
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From the last relation it follows 

𝑑𝑠 =
cos𝜑𝑑𝜑

√cos2 𝜑−𝐾2
=

cos𝜑𝑑𝜑

√1−𝐾2−sin2 𝜑
. (41) 

By substituting 𝑡 = sin𝜑, 𝑑𝑡 = cos𝜑 𝑑𝜑, we obtain that 

𝑑𝑠 =
𝑑𝑡

√1−𝐾2−𝑡2
, (42) 

which after integration gives 

𝑠 = sin−1 𝑡

√1−𝐾2
+ 𝐿, (43) 

where L is the constant of integration. From (43) it finally follows 

sin𝜑 = √1 − 𝐾2sin 𝑠, (44) 

if we choose 𝐿 = 0, for 𝜑 = 0. We can also express 

tan𝜑 =
√1−𝐾2 sin 𝑠

√𝐾2+(1−𝐾2) cos2 𝑠
, (45) 

which we will need later. 

We still need to determine the function 𝜆 = 𝜆(𝑠). To do this, multiply (32) by cos 𝜆, (33) by sin 𝜆 

and add these two equations. We get 

cos𝜑 (1 − 𝑝2) − sin𝜑 𝑝′ − cos𝜑 (
𝑑𝜆

𝑑𝑠
)

2

= 0, (46) 

where we marked as before  
𝑑𝜑

𝑑𝑠
= 𝑝 =

√cos2 𝜑−𝐾2

cos𝜑
 , and since 

𝑑𝑝

𝑑𝜑
=

−𝐾2 sin𝜑

cos2 𝜑√cos2 𝜑−𝐾2
, this will be 

𝑑2𝜑

𝑑𝑠2 =
𝑑𝑝

𝑑𝑠
= 𝑝′ = 𝑝

𝑑𝑝

𝑑𝜑
= −

𝐾2 sin𝜑

cos3 𝜑
 . (47) 

Inserting the expressions for 𝑝 and 𝑝′ into (46), we obtain after minor rearrangements 

(
𝑑𝜆

𝑑𝑠
)

2

=
𝐾2

cos4 𝜑
 . (48) 

From there it follows to the sign 

𝑑𝜆

𝑑𝑠
=

𝐾

cos2 𝜑
=

𝐾

1−(1−𝐾2) sin2 𝑠
=

𝐾

1−𝐾2

𝐾2

1−𝐾2+cos2 𝑠
. (49) 

Finally we have 

𝜆 =
𝐾

1−𝐾2 ∫
𝑑𝑠

𝐾2

1−𝐾2+cos2 𝑠
= tan−1(𝐾 tan 𝑠) + 𝛽, (50) 

where 𝛽 denotes the additive constant. Instead of (50) we can write 

tan(𝜆 − 𝛽) = 𝐾 tan 𝑠,  

or 

sin(𝜆 − 𝛽) =
𝐾 sin 𝑠

√𝐾2+(1−𝐾2) cos2 𝑠
. (51) 

If we compare (45) with (51) we see that 

sin(𝜆 − 𝛽) =
𝐾

√1−𝐾2
tan𝜑. (52) 

This is the equation of the orthodrome in the geographic coordinate system. Comparison with (6) 

gives the relationship between the constants 

𝑎 =
𝐾

√1−𝐾2
. (53) 

6. The Orthodrome as a Geodesic on a Sphere and the Clairaut Theorem 
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The geodetic curvature 𝐾𝑔 of the curve on the surface is defined at a particular point using the 

relation 

𝐾𝑔 = (𝑡, 𝑛⃗⃗, 𝑁⃗⃗⃗), (54) 

where 𝑡 is the unit vector of the tangent to the curve, 𝑛⃗⃗ is the unit vector of the principal normal to 

the curve, and 𝑁⃗⃗⃗ is the unit vector of the normal to the surface [11]. The mixed product (𝑡, 𝑛⃗⃗, 𝑁⃗⃗⃗) can 

be written in the form 

𝐾𝑔 = 𝑡(𝑛⃗⃗ × 𝑁⃗⃗⃗), (55) 

so 𝐾𝑔 = 0 , if the vectors 𝑛⃗⃗  and 𝑁⃗⃗⃗  are collinear. We covered this in the previous section. 

However, due to the well-known property of the mixed product that it will not change if the vectors 

cyclically swap places, we can also write 

𝐾𝑔 = 𝑁⃗⃗⃗(𝑡 × 𝑛⃗⃗) = 𝑁⃗⃗⃗𝑏⃗⃗, (56) 

where we also recognized that the vector product 𝑡 × 𝑛⃗⃗ gives the binormal vector 𝑏⃗⃗. Therefore, we 

can now say that 𝐾𝑔 = 0, if the vectors 𝑏⃗⃗ and 𝑁⃗⃗⃗ are perpendicular. It does not matter whether the 

two vectors are unit vectors or not. In this sense, we continue further. 

Let a sphere of radius 1 with its centre at the origin of the coordinate system be defined by the 

geographic parameterization (1). Let us write (1) in vector form (29). The normal vector 𝑁⃗⃗⃗ to the 

sphere will be 

𝑁⃗⃗⃗ = 𝑟𝜑 × 𝑟𝜆, (57) 

where the first partial derivatives are 

𝑟𝜑 =
𝜕𝑟

𝜕𝜑
= (−sin𝜑 cos 𝜆 , −sin𝜑 sin 𝜆 , cos𝜑), (58) 

𝑟𝜆 =
𝜕𝑟

𝜕𝜆
= (−cos𝜑 sin 𝜆 , cos𝜑 cos 𝜆 , 0). (59) 

Let us calculate second partial derivatives 

𝑟𝜑𝜑 =
𝜕2𝑟

𝜕𝜑2 = (−cos𝜑 cos 𝜆 , −cos𝜑 sin 𝜆 , −sin𝜑),  

𝑟𝜑𝜆 =
𝜕2𝑟

𝜕𝜑𝜕𝜆
= (sin𝜑 sin 𝜆 , −sin𝜑 cos 𝜆 , 0), (60) 

𝑟𝜆𝜆 =
𝜕2𝑟

𝜕𝜆2 = (− cos𝜑 cos 𝜆 , −cos𝜑 sin 𝜆 , 0).  

Let 𝜆 = 𝜆(𝜑) be the equation of a curve on a sphere. Then for this curve we can write 

𝑟(𝜑) = (cos𝜑 cos 𝜆 (𝜑), cos𝜑 sin 𝜆 (𝜑), sin𝜑), (61) 

and calculate vectors 

 

𝑟′ =
𝑑𝑟(𝜑)

𝑑𝜑
= (−sin𝜑 cos 𝜆 − cos𝜑 sin 𝜆

𝑑𝜆

𝑑𝜑
, − sin𝜑 sin 𝜆 + cos𝜑 cos 𝜆

𝑑𝜆

𝑑𝜑
, cos𝜑),  

𝑟′ = 𝑟𝜑 + 𝑟𝜆
𝑑𝜆

𝑑𝜑
, (62) 

𝑟′′ =
𝑑2𝑟(𝜑)

𝑑𝜑2 = (−cos𝜑 cos 𝜆 + sin𝜑 sin 𝜆
𝑑𝜆

𝑑𝜑
+ sin𝜑 sin 𝜆

𝑑𝜆

𝑑𝜑
− cos𝜑 cos 𝜆 (

𝑑𝜆

𝑑𝜑
)
2

−

cos𝜑 sin 𝜆
𝑑2𝜆

𝑑𝜑2 , − cos𝜑 sin 𝜆 − sin𝜑 cos 𝜆
𝑑𝜆

𝑑𝜑
− sin𝜑 cos 𝜆

𝑑𝜆

𝑑𝜑
− cos𝜑 sin 𝜆 (

𝑑𝜆

𝑑𝜑
)

2

+ cos𝜑 cos 𝜆
𝑑2𝜆

𝑑𝜑2 , − sin𝜑), 
 

𝑟′′ = 𝑟𝜑𝜑 + 2𝑟𝜑𝜆
𝑑𝜆

𝑑𝜑
+ 𝑟𝜆𝜆 (

𝑑𝜆

𝑑𝜑
)
2

+ 𝑟𝜆
𝑑2𝜆

𝑑𝜑2. (63) 
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The osculation plane is determined by the vectors 𝑟′ and 𝑟′′, so we can write for the binormal 

vector 𝑏⃗⃗ = 𝑟′ × 𝑟′′. The condition that the normal vector to the surface 𝑁⃗⃗⃗ = 𝑟𝜑 × 𝑟𝜆 is perpendicular 

to the binormal vector 𝑏⃗⃗ = 𝑟′ × 𝑟′′ can be written in the form 

(𝑟𝜑 × 𝑟𝜆)(𝑟′ × 𝑟′′) = 0,  

and this is identical to the expression 

(𝑟𝜑⃗⃗⃗⃗ 𝑟′)(𝑟𝜆⃗⃗⃗ ⃗𝑟
′′) − (𝑟𝜑⃗⃗⃗⃗ 𝑟′′)(𝑟𝜆⃗⃗⃗ ⃗𝑟

′) = 0. (64) 

Let us calculate 

𝑟𝜑⃗⃗⃗⃗ 𝑟′ = 1,  

𝑟𝜆⃗⃗⃗ ⃗𝑟
′′ = −2 sin𝜑 cos𝜑

𝑑𝜆

𝑑𝜑
+ cos2 𝜑

𝑑2𝜆

𝑑𝜑2,  

𝑟𝜑⃗⃗⃗⃗ 𝑟′′ = sin𝜑 cos𝜑 (
𝑑𝜆

𝑑𝜑
)
2

,  

𝑟𝜆⃗⃗⃗ ⃗𝑟
′ = cos2 𝜑

𝑑𝜆

𝑑𝜑
-  

Inserting it into (64) and assuming cos𝜑 ≠ 0 we get 

−2sin𝜑
𝑑𝜆

𝑑𝜑
− sin𝜑 cos2 𝜑 (

𝑑𝜆

𝑑𝜑
)

3

+ cos𝜑
𝑑2𝜆

𝑑𝜑2 = 0. (65) 

 

Figure 2. Infinitesimal triangle on the unit sphere. The differential of the arc length of the curve is ds, the 

differential of the arc length of the meridian is 𝑑𝜑, and the differential of the arc length of the parallel is cos 𝜑 𝑑𝜆. 

Let us introduce the azimuth α as follows (Figure 2): 

tan𝛼 =
cos𝜑𝑑𝜆

𝑑𝜑
, (66) 

i.e. 

𝑑𝜆

𝑑𝜑
=

tan𝛼

cos𝜑
. (67) 

Calculation gives 

𝑑2𝜆

𝑑𝜑2 =

cos𝜑

cos2 𝛼

𝑑𝛼

𝑑𝜑
+tan𝛼 sin𝜑

cos2 𝜑
 . (68) 

Substituting (67) and (68) into (65), after minor rearrangements we obtain 

− tan𝛼 tan𝜑 +
𝑑𝛼

𝑑𝜑
= 0, (69) 

and then 

−sin 𝛼 sin𝜑 + cos𝛼 cos𝜑
𝑑𝛼

𝑑𝜑
= 0, (70) 

and finally 

𝑑

𝑑𝜑
(cos𝜑 sin 𝛼) = 0, (71) 

i.e. 
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cos𝜑 sin𝛼 = 𝐾 = 𝑐𝑜𝑛𝑠𝑡. (72) 

In geodesy, the last equation is called Clairaut's theorem of the geodesic [12]. Alexis Claude 

Clairaut (1713 – 1765) was a French mathematician, astronomer and geophysicist. It is obvious that 

the value of the constant K must be in the range −1 ≤ 𝐾 ≤ 1. The azimuth α is equal to zero when 

the orthodrome is equal to the meridian circle arc. In general, it will have the smallest value when the 

radius of the parallel takes the largest value, i.e. at the equator, when cos𝜑 = 1, so it holds 

sin 𝛼𝑚𝑎𝑥 = 𝐾. (73) 

The largest value of angle α, i.e. 𝛼 = 𝜋/2, corresponds to the smallest value of cos𝜑, therefore 

(cos𝜑)𝑚𝑖𝑛 = 𝐾. (74) 

Therefore, the constant K in Clairaut's theorem is equal to the radius of the northernmost and 

southernmost parallel that the orthodrome reaches. Clairaut's theorem for the sphere is identical to 

the sine theorem in spherical trigonometry. Namely, the sine theorem can be written in the form 

(Figure 3) 

cos𝜑1 sin 𝛼1 = cos𝜑2 sin 𝛼2. (75) 

 

Figure 3. Polar spherical triangle illustrating the sine and the Clairaut theorems. 

Möhle [13] derived the equation of the geodesic for a surface of revolution in an analogous 

manner. 

Let us also show that (72) is indeed the equation of an orthodrome on the unit sphere. For every 

curve on the sphere it holds (Figure 2) 

𝑑𝜑 = cos𝛼 𝑑𝑠 (76) 

cos𝜑 𝑑𝜆 = sin 𝛼 𝑑𝑠. (77) 

If we divide (77) by (76) we get 

cos𝜑
𝑑𝜆

𝑑𝜑
= tan𝛼. (78) 

Clairaut's equation (72) gives 

sin 𝛼 =
𝐾

cos𝜑
, (79) 

and then 

tan𝛼 =

𝐾

cos𝜑

√1− 
𝐾2

cos2 𝜑

=
𝐾

√cos2 𝜑−𝐾2
. 

(80) 

Accordingly we can write 

𝑑𝜆

𝑑𝜑
=

𝐾

cos𝜑√cos2 𝜑−𝐾2
. (81) 

From there 

𝜆 = 𝐾 ∫
𝑑𝜑

cos𝜑√cos2 𝜑−𝐾2
= tan−1 𝐾 sin𝜑

√cos2 𝜑−𝐾2
+ 𝛽, (82) 

where 𝛽 denotes the additive constant. From (82) it follows 
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tan(𝜆 − 𝛽) =
𝐾 sin𝜑

√cos2 𝜑−𝐾2
, (83) 

or (52) or (6). 

7. Different Forms of the Clairaut Theorem 

The Clairaut theorem can be written in other forms: 

cos2 𝜑
𝑑𝜆

𝑑𝑠
= 𝐾 = 𝑐𝑜𝑛𝑠𝑡. (84) 

cos𝜑 sin 𝛼 = 𝐾 (85) 

𝑑𝛼

𝑑𝑠
= tan𝜑 sin 𝛼 (86) 

𝑑𝛼

𝑑𝜆
= sin𝜑. (87) 

Let us show the equivalence of the relations (84)-(87). For every curve on the sphere, (76) and 

(77) hold (Figure 2). Substituting (77) into (84) we obtain (85). Differentiating (85) with respect to s we 

obtain 

cos𝜑
𝑑

𝑑𝑠
sin 𝛼 + sin 𝛼

𝑑

𝑑𝑠
cos𝜑 = 0,  

cos𝜑 cos 𝛼
𝑑𝛼

𝑑𝑠
− sin𝛼 sin𝜑

𝑑𝜑

𝑑𝑠
= 0. (88) 

From there 

𝑑𝛼

𝑑𝑠
= tan𝜑 tan𝛼

𝑑𝜑

𝑑𝑠
. (89) 

Considering (76) we get (86). If we insert sin 𝛼 from (77) into (86) we get 

𝑑𝛼

𝑑𝑠
= tan𝜑 cos𝜑

𝑑𝜆

𝑑𝑠
  (90) 

and from there (87) follows immediately. Since according to (90) it is 

𝑑𝛼

𝑑𝑠
= sin𝜑

𝑑𝜆

𝑑𝑠
  (91) 

then because of (76) it is 

cos 𝛼
𝑑𝛼

𝑑𝑠
= sin𝜑

𝑑𝜑

𝑑𝑠

𝑑𝜆

𝑑𝑠
. (92) 

Differentiating (77) with respect to s, we obtain 

cos 𝛼
𝑑𝛼

𝑑𝑠
= −sin𝜑

𝑑𝜑

𝑑𝑠

𝑑𝜆

𝑑𝑠
+ cos𝜑

𝑑2𝜆

𝑑𝑠2. (93) 

From the last two equations it follows 

−2 sin𝜑
𝑑𝜑

𝑑𝑠

𝑑𝜆

𝑑𝑠
+ cos𝜑

𝑑2𝜆

𝑑𝑠2 = 0, (94) 

and this means that (84) holds. Since (84) follows (85), (85) follows (86), (86) follows (87), and (87) 

follows (84), it is shown that all four relations (84)-(87) are equivalent.  

8. The Orthodrome as a Solution of Differential Equations of a Geodesic 
In differential geometry, one can find differential equations for a geodesic on any surface [11, 

14]: 

𝜑" = −Γ𝜑𝜑
𝜑

𝜑′2 − 2Γ𝜑𝜑
𝜆 𝜑′𝜆′ − Γ𝜆𝜆

𝜑
𝜆′2  
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𝜆" = −Γ𝜑𝜑
𝜆 𝜑′2 − 2Γ𝜑𝜆

𝜆 𝜑′𝜆′ − Γ𝜆𝜆
𝜆 𝜆′2 (95) 

where Γ𝜑𝜑
𝜑

, …, Γ𝜆𝜆
𝜆  are Christoffel notations of the second kind, 𝜑′ =

𝑑𝜑

𝑑𝑠
, 𝜑" =

𝑑2𝜑

𝑑𝑠2 , 𝜆′ =
𝑑𝜆

𝑑𝑠
, 𝜆" =

𝑑2𝜆

𝑑𝑠2, 

and s is the arc length. Elwin Bruno Christoffel (1829-1900) was a German mathematician and 

physicist. In addition, for any curve parametrized by the arc length, 

𝐸𝜑′2 + 2𝐹𝜑′𝜆′ + 𝐺𝜆′2 = 1, (96) 

where 𝐸, 𝐹 and 𝐺 are first-order Gaussian quantities for the surface. 

Let a sphere of radius 1 with the centre at the origin of the coordinate system be defined by the 

geographic parameterization (1). For this sphere, the first-order Gaussian quantities or the 

coefficients of the first differential form are equal to 

𝐸 = 1, 𝐹 = 0, 𝐺 = cos2 𝜑, (97) 

so the first differential form (96) takes the form 

𝜑′2 + cos2 𝜑 𝜆′2 = 1. (98) 

The Christoffel notations of the second kind for a sphere have these values: 

Γ𝜑𝜑
𝜑

= 0, Γ𝜑𝜑
𝜆 = 0, Γ𝜆𝜆

𝜑
= sin𝜑 cos𝜑  

Γ𝜑𝜑
𝜆 = 0, Γ𝜑𝜆

𝜆 = − tan𝜑, Γ𝜆𝜆
𝜆 = 0. (99) 

Substituting (99) into (95) we get 

𝜑" = sin𝜑 cos𝜑 𝜆′2 (100) 

𝜆" = 2 tan𝜑 𝜑′𝜆′. (101) 

So, geodesics on the sphere will be obtained by solving differential equations (100) and (101) 

with the help of relation (99). One possibility is to express 𝜆′2 from relation (99) and include it in 

(100). This way, we would get a second-order differential equation with an unknown function 𝜑 =

𝜑(𝑠), which we reduce to a first-order differential equation by lowering the order and then solve it 

in the usual way. We will describe a slightly shorter procedure. 

Let us assume that it is 

𝜆′ = 0, (102) 

so we immediately get that the geodesics are meridians, 𝜆 = 𝐶 = 𝑐𝑜𝑛𝑠𝑡., and then from (100) 𝜑" = 0, 

𝜑′ = 𝐾, 𝜑 = 𝐾𝑠 + 𝐿, where 𝐾 and 𝐿 are constants. If we want 𝜑 = 0 for 𝑠 = 0, then we should take 

𝐿 = 0. If we also want 𝑠 = 𝜋/2 for 𝜑 = 𝜋/2, we should take 𝐾 = 1. 

Let us now assume that 

𝜆′ ≠ 0, (103) 

so when we divide (101) by 𝜆′ we get 

𝜆′′

𝜆′ = 2 tan𝜑
𝑑𝜑

𝑑𝑠
, (104) 

and then 

𝜆′′

𝜆′ 𝑑𝑠 = 2 tan𝜑 𝑑𝜑,  

and after integration 

ln 𝜆′ = −2 ln cos𝜑 + ln𝐾, (105) 

where 𝐾 is a constant. After the antilogarithm process (105) becomes 

𝜆′ =
𝐾

cos2 𝜑
- (106) 
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From relation (98) it follows 

𝜑′2 = 1 − cos2 𝜑 𝜆′2, (107) 

and then considering (106) it follows 

𝜑′2 = 1 −
𝐾2

cos2 𝜑
, (108) 

𝜑′ =
√cos2 𝜑−𝐾2

cos𝜑
 , (109) 

𝑑𝑠 =
cos𝜑

√cos2 𝜑−𝐾2
𝑑𝜑 =

cos𝜑

√1−𝐾2−sin2 𝜑
𝑑𝜑, (110) 

and finally 

𝑠 = sin−1
sin𝜑

√1 − 𝐾2
. (111) 

From (111) it follows 

sin𝜑 = √1 − 𝐾2 sin 𝑠 (112) 

and then 

cos2 𝜑 = 1 − sin2 𝜑 = 1 − (1 − 𝐾2) sin2 𝑠. (113) 

Now we can write according to (106) and (113) 

𝜆′ =
𝐾

1 − (1 − 𝐾2) sin2 𝑠
 (114) 

𝜆 = 𝐾 ∫
𝑑𝑠

1−(1−𝐾2) sin2 𝑠
+ 𝛽, (115) 

where 𝛽 is the constant of integration. After integration we get 

𝜆 = tan−1(𝐾 tan 𝑠) + 𝛽. (116) 

We can obtain a direct relationship between 𝜆 and 𝜑 as follows. From (112) and (113) it follows 

tan𝜑 =
sin𝜑

cos𝜑
=

√1−𝐾2 sin 𝑠

√1−(1−𝐾2) sin2 𝑠
, (117) 

while from (116) we get (50) and from there 

sin(𝜆 − 𝛽) =
𝐾 sin 𝑠

√1 − (1 − 𝐾2) sin2 𝑠
. (118) 

Finally, from (117) and (119) we obtain (6). 

We note another interesting consequence of (101), known as the Clairaut theorem. Note that 

equation (101) can be written as 

(cos2 𝜑 𝜆′)′ = cos2 𝜑 𝜆′′ − 2 sin𝜑 cos𝜑 𝜆′𝜑′ = 0.  

From there it follows 

cos2 𝜑 𝜆′ = 𝑐𝑜𝑛𝑠𝑡.  

and 

cos𝜑
cos𝜑𝑑𝜆

𝑑𝜑
= cos𝜑 sin 𝛼 = 𝑐𝑜𝑛𝑠𝑡.  

which is the famous Clairaut theorem. 

9. The Orthodrome as a Solution of Differential Equations  

of a Geodesic on a Surface of Revolution 
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In differential geometry, differential equations for a geodesic on any surface can be found [11,15]. 

If it is a surface of revolution, its equation can be written in the form 

𝑋=𝑓(𝜑)cos𝜆,  𝑌=𝑓(𝜑)sin𝜆,  𝑍=𝑔𝜑. (119) 

The differential equations of the geodesic on such a surface read: 

𝜑" =
−(𝑓′𝑓′′+𝑔′𝑔′′)𝜑′2+𝑓𝑓′𝜆′2

𝑓′2+𝑔′2 , (120) 

𝜆" = −2
𝑓′

𝑓
𝜑′𝜆′ , (121) 

where the notation for derivatives was introduced 

𝑓′ =
𝑑𝑓

𝑑𝜑
,  𝑓′′ =

𝑑2𝑓

𝑑𝜑2,  𝑔′ =
𝑑𝑔

𝑑𝜑
,  𝑔′′ =

𝑑2𝑔

𝑑𝜑2, (122) 

𝜑′ =
𝑑𝜑

𝑑𝑠
,  𝜑′′ =

𝑑2𝜑

𝑑𝑠2 ,  𝜆′ =
𝑑𝜆

𝑑𝑠
,  𝜆′′ =

𝑑2𝜆

𝑑𝑠2. (123) 

Since for a sphere defined by geographic parameterization 

𝑓(𝜑) = cos𝜑,  𝑔(𝜑) = sin𝜑 , (124) 

it is 

𝑓′ = −sin𝜑,  𝑓′′ = −cos𝜑,  

𝑔′ = cos𝜑,  𝑔′′ = −sin𝜑, (125) 

so the differential equations of geodesics on the sphere (120) and (121) pass into 

𝜑" = sin𝜑 cos𝜑 𝜆′2,  

𝜆" = 2 tan𝜑 𝜑′𝜆′,  

and these are differential equations (100) and (101) from the previous section, so they can be solved 

in the same way as they were solved there. 

10. The Orthodrome as the Shortest Arc Length of a Curve on a Sphere 

Connecting Two Points According to Bessel 

Let there be two points A and B on a surface. We ask ourselves what is the shortest connection 

between these points on the surface? For some simpler cases, it is possible to give a necessary 

condition. Geodesics have the local minimum property: they are curves that are the shortest 

connections between two points on the surface. In other words, a geodesic is the shortest connection 

between two sufficiently close points on the surface [11]. 

The problem of a geodesic as the shortest path between two points on a given surface was 

addressed by many scientists as early as the 18th century. Bessel provides a concise description of the 

work of several authors who dealt with this topic, such as Clairaut, Euler, du Séjour, Legendre, and 

Oriani [9]. 

Let us take two points A and B on the surface of the ellipsoid of revolution connected by a certain 

curve. Consider two adjacent points on the curve with latitudes 𝜑  and 𝜑 + 𝑑𝜑  and longitudes 

relative to A of 𝜆 and 𝜆 + 𝑑𝜆 (measured east). Let the distance between them be ds, the azimuth of 

the line directed towards A be 𝛼  (measured clockwise from north), the radius of the parallel 

corresponding to the latitude r, and the radius of curvature of the meridian R; then we find 

cos 𝛼 𝑑𝑠 = 𝑅𝑑𝜑,  

sin 𝛼 𝑑𝑠 = 𝑟𝑑𝜆,  
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which gives 

𝑑𝑠 = √𝑅2𝑑𝜑2 + 𝑟2𝑑𝜆2.  

If we put 

𝑝 =
𝑑𝜑

𝑑𝜆
 and 𝑈 = √𝑅2𝑝2 + 𝑟2,  

then we have 

𝑑𝑠 = 𝑈𝑑𝜆.  

The distance along the curve between two points A and B is therefore 

𝑠 = ∫𝑈𝑑𝜆,  

where the integration is from A to B. In order for the curve to be geodesic or the shortest one, the 

relation between 𝜑 and 𝜆 must be such that the value of the integral is minimal. If we slightly 

change that relation by replacing 𝜑 with 𝜑 + 𝑧, where 𝑧 is an arbitrary function of 𝜆 that vanishes 

at the end points (because those points lie on both curves), then the slightly changed length 

𝑠′ = ∫𝑈′𝑑𝜆,  

must be longer than s for each 𝑧. Let us expand 𝑈(𝜑, 𝑝) in a Taylor series. We will get 

𝑈′ = 𝑈 +
𝜕𝑈

𝜕𝜑
𝑧 +

𝜕𝑈

𝜕𝑝

𝑑𝑧

𝑑𝜆
+ ⋯,  

and therefore we have 

𝑠′ = 𝑠 + ∫ (
𝜕𝑈

𝜕𝜑
𝑧 +

𝜕𝑈

𝜕𝑝

𝑑𝑧

𝑑𝜆
) 𝑑𝜆 + ⋯,  

where we explicitly introduced terms only up to the first order of 𝑧. For s to be a minimum, it should 

be 

∫(
𝜕𝑈

𝜕𝜑
𝑧 +

𝜕𝑈

𝜕𝑝

𝑑𝑧

𝑑𝜆
) 𝑑𝜆 + ⋯ ≥ 0  

for all 𝑧. Since this must also hold if 𝑧 is replaced by −𝑧, and since we can take 𝑧 so small that the 

first-order terms are greater than the sum of all other higher-order terms (unless the first-order terms 

vanish), it follows that the condition for a minimum of s is equal to 

∫ (
𝜕𝑈

𝜕𝜑
𝑧 +

𝜕𝑈

𝜕𝑝

𝑑𝑧

𝑑𝜆
) 𝑑𝜆 = ∫

𝜕𝑈

𝜕𝜑
𝑧𝑑𝜆 +∫

𝜕𝑈

𝜕𝑝
𝑑𝑧 = 0.  

Partial integration of the second integral gives 

𝑧
𝜕𝑈

𝜕𝑝
− ∫𝑧𝑑 (

𝜕𝑈

𝜕𝑝
).  

and remembering that 𝑧 vanishes at the endpoints we get 

∫ 𝑧 [
𝜕𝑈

𝜕𝜑
−

𝑑

𝑑𝜆
(
𝜕𝑈

𝜕𝑝
)] 𝑑𝜆 = 0.  

Since the integral should vanish for arbitrary 𝑧, it must be 

𝜕𝑈

𝜕𝜑
−

𝑑

𝑑𝜆
(
𝜕𝑈

𝜕𝑝
) = 0   

or by multiplying by 𝑝 =
𝑑𝜑

𝑑𝜆
 

𝜕𝑈

𝜕𝜑

𝑑𝜑

𝑑𝜆
+

𝜕𝑈

𝜕𝑝

𝑑𝑝

𝑑𝜆
−

𝑑𝑝

𝑑𝜆

𝜕𝑈

𝜕𝑝
−

𝑑

𝑑𝜆
(
𝜕𝑈

𝜕𝑝
) = 0,   

which, integrating with respect to λ, gives 

𝑈 − 𝑝
𝜕𝑈

𝜕𝑝
= 𝑐𝑜𝑛𝑠𝑡.   

By substituting 𝑈 = √𝑅2𝑝2 + 𝑟2 we get 
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𝑟

√1+
𝑅2

𝑟2𝑝2

= 𝑟 sin 𝛼 = 𝑐𝑜𝑛𝑠𝑡.  
 

which is the well-known characteristic equation of a geodesic. The Bessel derivative shown applies 

to an ellipsoid of revolution. If we are talking about a unit sphere, then 𝑅 = 1, 𝑟 = cos𝜑, so the last 

equation becomes 

cos2 𝜑

√cos2 𝜑+(
𝑑𝜑

𝑑𝜆
)
2
=

cos2 𝜑𝑑𝜆

𝑑𝑠
= cos𝜑 sin 𝛼 = 𝑐𝑜𝑛𝑠𝑡.   

where we recognize the Clairaut theorem for the sphere. 

11. The Orthodrome as a Solution to the Euler-Lagrange Equation 

The brachistochrone is one of many problems in which we want to determine a function y(x) 

that minimizes or maximizes an integral [16]: 

𝐽[𝑦(𝑥)] = ∫ 𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥))𝑑𝑥.
𝑏

𝑎
  (126) 

Leonhard Euler was the first to devise a systematic method for solving such problems. Consider, 

for example, two points, A and B, on a sphere of radius 1 centred at the origin. We want to connect 

A and B by the shortest, continuously differentiable curve lying on the sphere. 

Let the sphere of radius 1 centred at the origin of the coordinate system be defined by the 

geographic parameterization (1). The first differential form of the mapping (1) is 

𝑑𝑠2 = 𝑑𝜑2 + cos2 𝜑 𝑑𝜆2. (127) 

From there we have 

𝑑𝑠 = √𝑑𝜑2 + cos2 𝜑 𝑑𝜆2. (128) 

Assume that 𝜆 = 𝜆(𝜑). Searching for the curve that minimizes the length of the arc between the 

points 𝐴 = (𝜑1, 𝜆1) and 𝐵 = (𝜑2, 𝜆2) is reduced to finding the function 𝜆 = 𝜆(𝜑) that minimizes the 

integral 

𝑠 = ∫ 𝑑𝑠
𝐵

𝐴
= ∫ √1 + cos2 𝜑 (

𝑑𝜆

𝑑𝜑
)

2𝜑2

𝜑1
𝑑𝜑  (129) 

with boundary conditions 

𝜆(𝜑1) = 𝜆1,  𝜆(𝜑2) = 𝜆2.  (130) 

Leonhard Euler was the first person to systematize the study of variational problems. His 1744 

work [17], Method for Finding Curved Lines Enjoying the Properties of Maximums or Minimums, or 

the Solution of Isoperimetric Problems in the Widest Sense, is a collection of 100 special problems. 

The book also contains a general method for solving such problems. Euler abandoned his method in 

favour of Lagrange's more elegant "method of variations" after receiving Lagrange's letter (12 August 

1755). Euler also named the subject the calculus of variations in Lagrange's honour. 

This variational derivative has the same role for functionals as the partial derivative has for 

functions. For a relative (or local) minimum, we expect the derivative to vanish at each point, leaving 

us with the Euler-Lagrange equation 

𝜕𝑓

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝑓

𝜕𝑦′) = 0.  (131) 

The Euler-Lagrange equation is only a necessary condition, in the same sense that f’(x) = 0 is a 

necessary but insufficient condition in mathematical analysis. For general surfaces, the resulting 

Euler-Lagrange equation is quite complicated [24]. Fortunately, the Euler-Lagrange equation 

simplifies for some surfaces. The most important special case is the one for surfaces of revolution, i.e., 
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surfaces obtained by rotating a plane curve about an axis. For example, the Euler-Lagrange equation 

for the unit sphere simplifies to 

𝑑

𝑑𝜑

[
 
 
 

cos2 𝜑
𝑑𝜆

𝑑𝜑

√1+cos2 𝜑(
𝑑𝜆

𝑑𝜑
)
2

]
 
 
 

= 0.  (132) 

From there it follows 

cos2 𝜑
𝑑𝜆

𝑑𝜑

√1+cos2 𝜑(
𝑑𝜆

𝑑𝜑
)
2
= 𝐾.  

(133) 

If we solve the last equation in terms of 
𝑑𝜆

𝑑𝜑
 and integrate, we will get (82) and then (83), (52) or (6). 

12. Conclusions 

This article provides an overview of the various definitions of the orthodrome, as research has 

shown that this curve can be approached in about a dozen different ways, which is not common in 

defining technical terms in geodesy and related fields. Geodesics have been studied and are still 

studied by many scientists today. A geodesic on a surface is a curve for which the geodetic curvature 

is zero at every point. Equivalent expressions of this statement are that at every point of this curve 

the vector of the principal normal is collinear with the normal to the surface, that it is a curve whose 

binormal at every point is perpendicular to the normal to the surface, and that it is a curve whose 

osculation plane contains the normal to the surface at every point. In this case, the well-known 

Clairaut equation of a geodesic naturally appears in geodesy. It is shown that this equation can be 

written in several different forms. Since corresponding differential equations for geodesics can be 

found in the literature, but usually without a solution, they are solved in this article. In addition, the 

orthodrome can also be approached using the calculus of variations, since it is a question of finding 

the minimum length of an arc. 

The article contains a large number of mathematical expressions. To understand the text, basic 

knowledge of analytical, spherical and differential geometry and the calculus of variations is 

sufficient. The simplest derivation is using analytical geometry, in which the orthodrome is defined 

as the intersection of a sphere and a plane passing through its centre. The shortest derivation is using 

the calculus of variations, but this requires knowledge of the basics of this part of mathematics that 

is usually not taught in the study of geodesy. 
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