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Synaptic Plasticity in a Simulated Neural Network 

Richard Murdoch Montgomery 

Universidade de Aveiro; montgomery@alumni.usp.br 

Abstract: This article presents a novel computational approach to visualizing memristor dynamics within a 

simulated neural network. Memristors, known for their ability to emulate synaptic plasticity due to their 

variable resistance characteristics, are key components in neuromorphic computing and hold potential for 

advancing our understanding of neural processes. Our study introduces a sophisticated memristor model that 

incorporates non-linear resistance changes, simulating the complex behavior of synaptic connections in a 

neural network.The neural network, consisting of multiple interconnected neurons with memristor-based 

synapses, is subjected to a series of electrical stimuli. Each memristor's resistance is modulated in response to 

the applied voltage, mimicking the synaptic weight adjustments that occur during learning and memory 

formation in biological neural networks. To effectively illustrate these changes, we employ a high-contrast color 

mapping scheme, where the varying resistance of each memristor is represented by distinct colors, providing 

a clear and intuitive visualization of synaptic modifications over time.Our simulation runs through multiple 

iterations, demonstrating how synaptic weights evolve in response to different input patterns. The use of an 

extended voltage range and increased scaling factors ensures pronounced changes in memristance, enhancing 

the visibility of synaptic adaptations. The resulting visualizations offer a compelling representation of how 

memristors can mimic the dynamic nature of biological synapses, contributing to the field of neuromorphic 

engineering and deepening our comprehension of neural mechanisms underlying learning and memory.This 

work not only showcases the potential of memristors in simulating neural behavior but also provides a valuable 

educational tool for illustrating complex concepts in neuroscience and neuromorphic computing. The insights 

gained from this study pave the way for further exploration into the development of advanced neural network 

models and the design of memristor-based computing systems. 
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1. Introduction 

The advent of memristors has revolutionized the field of neuromorphic computing, offering a 

novel approach to mimicking synaptic plasticity, a fundamental property of biological neural 

networks. This article provides a comprehensive overview of the role of memristors as synthetic 

synapses, their integration into neural network models, and the dynamic visualization of their 

behavior, drawing from seminal works and recent advancements in the field. Moreover, we explore 

the implications of these developments for neuromorphic computing and their potential applications 

in education and research. 

1.1. Memristors as Artificial Synapses 

Memristors, with their unique ability to change and retain resistance based on the history of 

applied voltage and current, have emerged as promising candidates for emulating synaptic plasticity 

(Chua, 1971; Strukov et al., 2008). Ibraheem et al. (2021) and Jo et al. (2014) have demonstrated the 

capability of memristors to mimic the adaptive nature of biological synapses, a crucial aspect of 

learning and memory in neural systems. The comprehensive review by Sengupta et al. (2018) 

highlights the potential of memristors in replicating a wide range of neural functions, from synaptic 

plasticity to neuronal dynamics. Prezioso et al. (2016) further illustrate the application of memristors 
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in spike-time-dependent learning, a bio-inspired approach that closely mirrors the timing-based 

synaptic modifications observed in the brain. 

1.2. Integration into Neural Network Models 

The theoretical foundations of neural network modeling, as established by Dayan and Abbott 

(2001) and Gerstner and Kistler (2002), provide a robust framework for understanding the 

computational principles of neural systems. The incorporation of memristors into these models offers 

a pathway to enhance their biological plausibility and computational efficiency. Day and Funke 

(2010) delve into the network properties of biological neural networks, shedding light on the intricate 

interactions and emergent behaviors within these systems. The Human Connectome Project, 

discussed by Van Essen and Udhry (2007), underscores the importance of mapping and 

understanding the complex network structures in the human brain. The integration of memristors 

into neural network models, as demonstrated by Wang et al. (2017) and Li et al. (2019), not only 

advances our understanding of these networks but also paves the way for more efficient and 

biologically plausible neuromorphic computing architectures. 

1.3. Dynamic Visualization of Memristor Behavior 

Visualizing the dynamic behavior of memristor-based neural networks is essential for gaining 

insights into their functionality and potential applications. Hwang et al. (2018) and Wu et al. (2018) 

have developed innovative techniques for the dynamic visualization of memristor-based 

neuromorphic computing, providing a tangible representation of these complex systems. These 

visualizations offer a deeper understanding of how memristors evolve and interact within a network, 

facilitating the analysis and optimization of these systems. Li et al. (2019) and Wang et al. (2017) 

further demonstrate methods for visualizing memristor dynamics in crossbar circuits and neural 

network models, enabling researchers to explore the interplay between device-level characteristics 

and network-level behaviors. These visualization techniques not only aid in the development of 

memristor-based technologies but also serve as valuable educational tools for conveying complex 

concepts in neuroscience and computer science. 

1.4. Implications for Neuromorphic Computing and Education 

The concept of neuromorphic computing, pioneered by Mead (1990), aims to develop electronic 

systems that emulate the architecture and processing capabilities of the brain. The integration of 

memristors into neuromorphic computing, as surveyed by Schuman et al. (2017) and Roy et al. (2018), 

represents a significant step towards realizing brain-inspired artificial intelligence systems. 

Memristor-based neuromorphic computing offers the potential for energy-efficient, scalable, and 

adaptive computing architectures that can tackle complex real-world problems. Moreover, the 

convergence of neuromorphic computing with deep learning, as highlighted by Roy et al. (2018), 

opens up new avenues for developing more powerful and biologically plausible learning algorithms. 

The advancements in memristor-based neuromorphic computing also have significant 

implications for education and research. The dynamic visualizations and interactive simulations of 

memristor-based neural networks serve as valuable educational tools, allowing students and 

researchers to explore and understand the intricacies of neural processing and learning. These tools 

can be integrated into curricula across various disciplines, including neuroscience, computer science, 

and electrical engineering, fostering interdisciplinary understanding and collaboration. Furthermore, 

the insights gained from studying memristor-based systems can inform our understanding of 

biological neural networks and contribute to the ongoing research in neuroscience and cognitive 

science. 

2. Methodology 

2.1. Overview 

The methodology for visualizing memristor dynamics in a simulated neural network involves 

creating a computational model that incorporates memristors as synaptic elements. The model is 
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designed to simulate the behavior of memristors in response to electrical stimuli, reflecting changes 

in synaptic strength akin to synaptic plasticity in biological neural networks. 

2.2. Memristor Model 

Each memristor's behavior is governed by a set of equations that model its resistance change in 

response to voltage. The key equations used are: 

1. Resistance Update Equation: 

𝑅(𝑡 + 𝑑𝑡) = 𝑅(𝑡) + Δ𝑅 

where 𝑅(𝑡) is the resistance at time 𝑡, 𝑑𝑡 is the time step, and Δ𝑅 is the change in resistance. 

2. Change in Resistance (Δ𝑅) : 

Δ𝑅 = 𝛼 ⋅ sin⁡(𝑉) ⋅ 𝑑𝑡 

where 𝛼  is the scaling factor for the state change, 𝑉  is the applied voltage, and sin⁡(𝑉) 

introduces a non-linear change in resistance. 

3. Conductance Calculation: 

𝐺 =
1

𝑅
 

where 𝐺 is the conductance of the memristor, inversely proportional to its resistance R. 

2.3. Neural Network Model 

1. Network Structure: 

• The network consists of 𝑁 neurons, each connected to every other neuron through memristor-

based synapses. 

• The memristors are arranged in an 𝑁 × 𝑁 matrix, representing the synaptic weights between 

neurons. 

2. Training the Network: 

• At each time step, a matrix of voltages is applied to the network, simulating the electrical 

stimuli. 

• The resistance of each memristor is updated based on the applied voltage using the resistance 

update equation. 

3. Visualization 

1. Graphical Representation: 

• Neurons are represented as points in a 2D plot. 

• Synaptic connections (memristors) are represented as lines between neurons. 

• The color and width of each line correspond to the resistance (or conductance) of the 

memristor, using a color map for visual distinction. 

2. Color Mapping: 

• The resistance values are normalized and mapped to colors using the 'jet" colormap in 

matplotlib, providing a gradient from low to high resistance (please see attachment for Python 

Code). 

3. Results 

2.4. Iterative Simulation 

For a predefined number of steps, the network undergoes training with randomly generated 

voltage matrices. 

After each training step, the network is visualized to show the changes in memristor states. 

The network's state at each step is plotted in a grid layout, allowing for the observation of 

memristor dynamics over time. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 May 2024                   doi:10.20944/preprints202405.1176.v1

https://doi.org/10.20944/preprints202405.1176.v1


 4 

 

Observe, in Figure 1, the changing in color patterns in each of the 20 steps, signaling synaptic 

plasticity. 

 
Figure 1. At each step, the graphs shows changing oblique bar sequences, simulating synaptic 

plasticity. 

This methodology provides a comprehensive approach to simulating and visualizing the 

behavior of memristors in a neural network, offering insights into their potential for mimicking 

synaptic plasticity. 

4. Discussion 

4.1. Insights from the Memristor Model 

The simulation of memristor dynamics in a neural network context, as presented in this study, 

offers valuable insights into the potential of memristors to mimic synaptic plasticity. The key findings 

from our model align with the growing body of research in this field, reinforcing the significance of 

memristors in neuromorphic computing. 

The dynamic synaptic behavior demonstrated in our model, where synaptic weights change in 

response to electrical stimuli, mirrors the synaptic plasticity observed in biological neurons. This 

adaptive characteristic is crucial for learning and memory formation in neural systems, as highlighted 

by the works of Ibraheem et al. (2021) and Jo et al. (2014). The incorporation of a non-linear function 

(sine wave) in the resistance update equation captures the complex and nuanced nature of synaptic 

modifications, a feature that is essential for realistic neural processing and learning, as noted by 

Prezioso et al. (2016) and Sengupta et al. (2018). 

The visualization of synaptic adaptations through color-coded and width-varied representations 

in graph 1. provides an intuitive understanding of how memristor-based synapses can evolve over 

time, reflecting the learning process within the network. This aligns with the importance of 

visualizing memristor dynamics, as emphasized in studies by Hwang et al. (2018) and Wu et al. 

(2018). These visual representations serve as valuable tools for both education and research, making 

the complex behavior of memristors more accessible and understandable. 

4.2. Implications for Neuromorphic Computing 

The demonstrated synaptic plasticity in memristor-based networks has significant implications 

for the field of neuromorphic computing. As highlighted by Mead (1990) and Schuman et al. (2017), 
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neuromorphic systems aim to emulate the neural architecture and processing capabilities of the brain, 

including its ability to learn and adapt. The advanced learning algorithms enabled by memristor-

based synaptic plasticity, as shown in our model, pave the way for the development of more 

sophisticated and biologically plausible neuromorphic systems. 

Moreover, the energy efficiency of memristors, due to their non-volatile nature and low power 

consumption, makes them promising candidates for the development of sustainable and scalable 

neuromorphic computing systems (Li et al., 2019; Wang et al., 2017). This is particularly relevant in 

the era of big data and AI, where the demand for efficient and powerful computing solutions is ever-

increasing. 

The potential for hardware implementations of neural networks using memristors, as suggested 

by our model, offers speed and efficiency advantages over traditional, software-based approaches. 

This aligns with the ongoing research efforts in developing memristor-based neuromorphic 

hardware, as discussed by Roy et al. (2018) and Sengupta et al. (2018). 

4.3. Educational and Research Applications 

The visualization approach used in this study has broader applications in both education and 

research. As an educational tool, the intuitive visual representation of memristor dynamics makes it 

an excellent resource for students and researchers new to the field of neuromorphic computing and 

neural networks. This is in line with the growing recognition of the importance of visual aids in 

science education and communication (Hwang et al., 2018; Wu et al., 2018). 

For researchers, the model serves as a valuable tool for exploring and understanding the 

behavior of memristor-based neural networks. It provides a foundation for further investigations into 

the complex dynamics of these systems, aiding in the development of more sophisticated 

neuromorphic architectures. This is particularly relevant given the increasing interest in the 

convergence of neuromorphic computing with deep learning, as highlighted by Roy et al. (2018) and 

Schuman et al. (2017). 

Furthermore, the insights gained from our model contribute to the ongoing efforts in 

understanding the biological processes of memory and learning. By drawing parallels between 

memristor behavior and synaptic plasticity, our study offers a fresh perspective on the fundamental 

principles of neural information processing. This interdisciplinary approach, bridging the gap 

between neuroscience and electronics, is crucial for advancing our knowledge of both biological and 

artificial intelligence (Dayan & Abbott, 2001; Gerstner & Kistler, 2002). 

5. Conclusions 

In conclusion, this article contributes to the growing body of knowledge in neuromorphic 

computing by providing a clear and dynamic visualization of memristor behavior in a neural 

network model. The study not only enhances our understanding of memristor dynamics but also 

demonstrates the potential of these components in simulating neural processes. As such, it holds 

promise for advancing neuromorphic computing technologies and offers a valuable resource for both 

educational and research purposes in the fields of computational neuroscience and artificial 

intelligence. 

The exploration of memory capacity in neuromorphic systems, particularly through the lens of 

memristor technology, is a burgeoning area of research. Memristors, with their inherent ability to 

emulate the synaptic functions of the brain, offer a promising pathway to enhancing memory capacity 

in artificial neural networks. This article synthesizes insights from key studies in the field, 

highlighting how memristor-based systems can revolutionize our approach to memory in 

computational models. 

• The author claims no conflicts of interests. 

6. Attachment -  Python Code 

import numpy as np 

import matplotlib.pyplot as plt 
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class Memristor: 

    def __init__(self): 

        self.v = 0  # Voltage across the memristor 

        self.phi = 0  # Magnetic flux, integral of voltage over time 

        self.w = np.random.uniform(0.1, 0.9)  # Memristance state variable 

        self.r_on = 0.1 

        self.r_off = 10.0 

        self.beta = 0.5  # Increased scaling factor for the state change 

 

    def update(self, v, dt): 

        self.v = v 

        self.phi += v * dt 

        self.w += self.beta * np.sin(v) * dt  # Non-linear change 

        self.w = np.clip(self.w, 0, 1) 

 

    def get_resistance(self): 

        return self.r_on * self.w + self.r_off * (1 - self.w) 

 

class NeuralNetwork: 

    def __init__(self, num_neurons): 

        self.num_neurons = num_neurons 

        self.memristors = [[Memristor() for _ in range(num_neurons)] for _ in range(num_neurons)] 

 

    def train(self, voltage_matrix, dt): 

        for i in range(self.num_neurons): 

            for j in range(self.num_neurons): 

                self.memristors[i][j].update(voltage_matrix[i][j], dt) 

 

    def plot_network(self, ax, title="Neural Network"): 

        for i in range(self.num_neurons): 

            ax.scatter([i]*self.num_neurons, range(self.num_neurons), color='blue') 

 

        for i in range(self.num_neurons): 

            for j in range(self.num_neurons): 

                resistance = self.memristors[i][j].get_resistance() 

                color = plt.cm.jet((resistance - self.memristors[i][j].r_on) / (self.memristors[i][j].r_off - 

self.memristors[i][j].r_on)) 

                ax.plot([i, j], [i, j], color=color, alpha=0.9, linewidth=2) 

 

        ax.set_title(title) 

        ax.axis('off') 
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# Example usage 

num_neurons = 5 

network = NeuralNetwork(num_neurons) 

 

# Create a figure with multiple subplots 

fig, axes = plt.subplots(2, 10, figsize=(20, 4)) 

dt = 0.1  # Time step for the simulation 

 

# Simulate and plot at each step 

for i in range(20): 

    voltage_matrix = np.random.uniform(-5.0, 5.0, (num_neurons, num_neurons))  # Increased 

voltage range 

    network.train(voltage_matrix, dt) 

 

    row, col = divmod(i, 10) 

    network.plot_network(axes[row, col], title=f"Step {i+1}") 

 

plt.tight_layout() 

plt.show() 
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