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Abstract 

This study re-evaluates ROC-AUC for binary classification under severe class imbalance (<3% positives). 

Despite widespread use, ROC-AUC can mask operationally salient differences among classifiers when false-

positive and false-negative costs are asymmetric. Using three benchmarks, credit-card fraud detection (0.17%), 

yeast protein localization (1.35%), and ozone level detection (2.9%), we compare ROC-AUC with Matthews 

Correlation Coefficient (MCC), F2-score, H-measure, and area under the precision–recall curve (PR-AUC). Our 

empirical analyses span 20 classifier–sampler configurations per dataset, four classifiers (Logistic Regression, 

Random Forest, XGBoost, and CatBoost) crossed with four oversampling methods plus a no-resampling 

baseline (no resampling, SMOTE, Borderline-SMOTE, SVM-SMOTE, ADASYN). ROC-AUC exhibits 

pronounced ceiling effects, yielding high scores even for underperforming pipelines. In contrast, MCC and F2 

align more closely with deployment-relevant costs and achieve the highest Kendall’s τ rank concordance 

across datasets; PR-AUC provides threshold-independent ranking, and H-measure integrates cost sensitivity. 

We quantify uncertainty and differences using stratified bootstrap confidence intervals, DeLong’s test for 

ROC-AUC, and Friedman–Nemenyi critical-difference diagrams, which collectively underscore ROC-AUC’s 

limited discriminative value in rare-event settings. The findings support a shift to a multi-metric evaluation 

framework, recommending MCC and F2 as primary indicators, supplemented by PR-AUC and H-measure 

where ranking granularity and principled cost integration are required. This evidence encourages researchers 

and practitioners to move beyond sole reliance on ROC-AUC when evaluating classifiers in highly imbalanced 

data. Impact Statement— This paper addresses a pervasive failure mode in model evaluation: ROC-AUC often 

overstates performance in highly imbalanced classification (<3% positives). Through cross-domain 

experiments—credit-card fraud, yeast protein localisation, and ozone exceedance—covering 20 classifier–

sampler configurations per dataset, we show pronounced ceiling effects for ROC-AUC, while MCC and F2-

score better align with asymmetric costs; PR-AUC supports threshold-independent ranking, and H-measure 

integrates principled cost weighting. Using bootstrap confidence intervals, DeLong’s test, Kendall’s tau, and 

Friedman–Nemenyi diagrams, we provide statistically rigorous evidence and practical guidance. The impact is 

a clear, reproducible protocol: report MCC and F2 as primary, threshold-dependent indicators; accompany 

them with PR-AUC and H-measure; and treat ROC-AUC as contextual, not decisive. Adopting this framework 

improves decision-relevance, reduces deployment risk, and increases comparability across pipelines, samplers, 

and domains. Code and metric settings are straightforward to reproduce, enabling researchers and 

practitioners to upgrade evaluation practices without changing models.  
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1. Introduction and Background 

Rare-event binary classification remains a significant challenge across various domains, 

including but not limited to fraud detection, bioinformatics, environmental monitoring, 

cybersecurity, medical diagnosis, manufacturing fault detection, and autonomous systems. In these 

settings, the positive class typically constitutes a small fraction of the data, making accurate detection 

both technically difficult and operationally critical. Standard tools for model evaluation—particularly 

Area Under the Receiver Operating Characteristic Curve (ROC-AUC)—often yield inflated 

assessments due to their insensitivity to class imbalance and asymmetric error costs. As machine 

learning systems become integral to decision-making in high-stakes, real-world environments, it is 

essential to critically evaluate both the data preprocessing methods and performance metrics used in 

model assessment. This study presents a comprehensive, metric-centred investigation of classifier 

evaluation under highly imbalanced data conditions, focusing on resampling strategies and metric 

behaviour. The subsections below provide background on the methodological foundations that guide 

our analysis. 

1.1. Resampling Strategies in Imbalanced Data 

When the minority‐class prior 

𝜋 = 𝑃𝑟(𝑦 = 1) ≪ 0.5, 

empirical risk minimisation with a symmetric loss favours the majority class [1]. One cure is 

resampling, i.e., constructing a training set whose posterior prior 𝜋∗  is closer to 0.5. Let 𝑁1 , 𝑁0 

denote the counts of minority (class 1) and majority (class 0) instances, and let 𝑟 be an oversampling 

factor applied to the minority class. After oversampling, 

𝜋∗ =
𝑟 𝑁1

𝑟 𝑁1 +  𝑁0

, 𝑤𝑖𝑡ℎ  𝑟 =
𝜋∗

(1 − 𝜋∗)
 
𝑁0

𝑁1

. 

A perfectly balanced set, therefore, corresponds to 𝑟 = (𝑁0/𝑁1) . The subsections below 

summarise the major families of resampling and highlight their theoretical motivations. 

Random undersampling, randomly discarding the majority of instances, reduces 𝑃𝑟(𝑦 = 0) to 

𝜋∗≈0.5 [2]. While computationally attractive, it may eliminate informative majority examples and 

increase estimator variance; ensemble variants such as EasyEnsemble and BalanceCascade mitigate 

this by building multiple classifiers on independently undersampled subsets and aggregating their 

predictions. 

Random oversampling replicating minority observations to reach the desired ratio is unbiased 

in expectation but can cause exact duplicate rows, leading to over-fitting [4]. The expected Bayes risk 

decreases only if the learner regularises against memorisation. 

To avoid duplication, synthetic minority over-sampling generates artificial instances 

𝑥𝑛𝑒𝑤 = 𝑥𝑖 + 𝜆(𝑥𝑁𝑁 − 𝑥𝑖), 𝜆 ∼ 𝒰(0,1), 

where xi is a minority point and xNN one of its k minority nearest neighbours [5]. Extensions 

refine the neighbourhood criterion: 

• Borderline-SMOTE focuses on minority points whose nearest neighbours are predominantly 

majority, increasing density near the decision boundary [6]. 

• SVM-SMOTE exploits the support vectors of a cost-sensitive SVM to guide synthesis [7]. 

• Safe-Level-SMOTE assigns a safety level 𝑆𝐿(𝑥𝑖) = 𝑘−1 ∑ 1(𝑦𝑖 = 1)𝑘
𝑗=1  and chooses the 

interpolation factor λ so that the synthetic point lies closer to the parent with a higher safe-

level score to avoid generating samples in dangerous regions [8]. 
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• ADASYN adaptively varies the number of synthetic samples per minority point according to 

the local imbalance ratio 

𝐺𝑖 =
𝛿𝑖

∑ 𝛿𝑖𝑗

 𝐺, 

where 𝛿𝑖 is the proportion of majority neighbours [9]. This shifts density toward sparsely 

represented minority areas. 

 

Combining oversampling with Tomek links deletion or Edited Nearest Neighbours removes the 

majority of points lying within the minority manifold, reducing class overlap [12]. Empirically, 

SMOTE + ENN often yields smoother decision surfaces than either step alone [13]. 

Density-aware and generative approaches employ information-theoretic or generative criteria. 

G-SMOTE replaces linear interpolation with a Gaussian mixture model of the minority class [14], 

while GAN-based oversamplers learn p(x ∣ y = 1)  implicitly via adversarial training [15]. 

Theoretical analyses show that, under a Lipschitz assumption on the Bayes decision boundary, 

synthetic samples drawn from a contiguous minority manifold can reduce the upper bound on the 

classification error by tightening the margin [16]. 

1.2. Performance Metrics in Binary Classification 

Let the confusion matrix for a binary classifier at threshold t be 

 𝑦̂ = 1 𝑦̂ = 0 

𝑦 = 1 𝑇𝑃(𝑡) 𝐹𝑁(𝑡) 

𝑦 = 0 𝐹𝑃(𝑡) 𝑇𝑁(𝑡) 

and 𝑁1 = 𝑇𝑃 + 𝐹𝑁, 𝑁0 = 𝐹𝑃 + 𝑇𝑁. 

Any scalar score reduces this 2×2 matrix—or, in threshold-free form, the ranking of class scores 

s(x)—to a single real number. The following subsections review metrics' principal families, 

mathematical properties, and known limitations. 

1.2.1. Threshold-independent Discrimination 

The receiver-operating-characteristic area is 

𝑅𝑂𝐶 − 𝐴𝑈𝐶 = 𝑃𝑟(𝑠(𝑥+) > 𝑠(𝑥−)) = ∬ 1(𝑠(𝑥+) > (𝑥−)) 𝑑𝐹+𝑑𝐹−, 

where 𝐹+ , 𝐹− are the score distributions for positives and negatives [17, 18]. ROC-AUC is 

equivalent to the Mann–Whitney 𝑈  statistic and is invariant under strictly monotone score 

transformations. Its major weakness is class-imbalance insensitivity: when 𝑁1 ≪  𝑁0, significant 

changes in FP translate into tiny variations of the false-positive rate [19]. Consider a binary classifier 

that assigns each instance a score s(x) and applies a threshold t to decide between positive and 

negative. The two axes of its ROC curve are then 

𝑇𝑃𝑅(𝑡) =
𝑇𝑃(𝑡)

𝑇𝑃(𝑡) + 𝐹𝑁(𝑡)
,     𝐹𝑃𝑅(𝑡) =

𝐹𝑃(𝑡)

𝐹𝑃(𝑡) + 𝑇𝑁(𝑡)
. 

In many practical settings, the number of positive cases 𝑁1 is vanishingly small compared to 

negatives 𝑁0. In that extreme imbalance, the FPR denominator is effective 𝑁0, so even a significant 

absolute change in false positives (FP) produces only a barely perceptible shift in the ROC curve. 

This distortion carries over to the AUC itself. Equivalently expressed as 

𝐴𝑈𝐶 = Pr(𝑠(𝑥+) > 𝑠(𝑥−)), 
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the statistic is overwhelmed by comparisons among the abundant negative–negative pairs. As 

long as a model avoids egregious score inversions, moderate numbers of false alarms or misses 

scarcely register in AUC. 

The upshot is that, under severe imbalance, nearly any non‐degenerate classifier achieves an 

ROC‐AUC in the 0.90–0.99 range, obscuring the errors that drive operational cost. By treating false 

positives and false negatives (FN) symmetrically, ROC‐AUC “wins” without ever “paying” for the 

mistakes that, in domains like fraud or medical diagnosis, are most consequential. 

Replacing the x-axis with recall yields the precision–recall curve; its area 

𝑃𝑅 − 𝐴𝑈𝐶 = ∫ 𝑃(𝑅)𝑑𝑅  
1

0
      , 𝑃 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
 

has a baseline equal to the minority prevalence 𝜋 =
𝑁1

𝑁0+𝑁1
. Davis and Goadrich prove that Area 

Under the Precision–Recall Curve (PR-AUC) is strictly more informative than ROC-AUC when 𝜋 is 

small. 

In a similar effort, the H-measure is a coherent alternative to the area under the ROC curve that 

explicitly incorporates the relative cost of false positives and false negatives via a user-specified 

distribution over misclassification cost‐ratios. Rather than treating all operating points equally, the 

H-measure defines a weighting density u(c) on the cost‐ratio c ∈ [0,1] and computes the expected 

misclassification loss 

𝐿̂ = ∫ [𝜋0𝑐𝐹𝑃𝑅(𝜏𝑐) + 𝜋1(1 − 𝑐)𝐹𝑁𝑅(𝜏𝑐)]𝑢(𝑐)𝑑𝑐,
1

0

 

where π1 and π0 = 1 − π1 are the class priors, and τ𝑐 is the threshold minimizing the cost for 

a given 𝑐. By default, one chooses 𝑢(𝑐) to be the Beta(2,2) density, yielding a neutral prior that 

neither over‐ nor under‐emphasizes extreme cost ratios. The H-measure is then normalized by the 

worst‐possible expected loss under the same density, producing a summary score in [0,1]: 

𝐻 = 1 −
𝐿̂

𝐿𝑚𝑎𝑥

. 

In contrast to ROC‐AUC—which is dominated by the vast number of negative–negative score‐

pair comparisons under severe imbalance and thus remains artificially high even when a classifier 

makes many costly errors—the H-measure penalizes errors proportionally to their operational 

importance. In highly skewed scenarios (e.g., fraud detection, rare‐disease screening), it provides a 

more discriminating evaluation: classifiers that sacrifice minority‐class sensitivity or incur excessive 

false alarms receive a substantially lower H-measure, whereas ROC‐AUC remains saturated. 

1.2.2. Single-threshold Confusion-matrix Scores 

The Matthews correlation coefficient (MCC) and the Fβ score are two widely used scalars. 

MCC =
TP TN−FP FN

√(TP+FP)(TP+FN)(TN+FP)(TN+FN)
∈ [−1,1] [22] 

MCC is a special case of Pearson’s 𝑟 between prediction and truth. MCC treats both classes 

symmetrically and remains well defined even when one row or column is small [23]. 

𝐹𝛽 = (1 + 𝛽2)
𝑃𝑅

𝛽2𝑃+𝑅
, 𝛽 > 1 𝑒𝑚𝑝ℎ𝑎𝑠𝑖𝑠𝑒𝑠 𝑟𝑒𝑐𝑎𝑙𝑙 [24]. 

Unlike MCC, 𝐹𝛽  ignores true negatives; it is therefore sensitive to prevalence and may 

exaggerate performance in dense negative regions [25]. An alternative that explicitly accounts for 

prevalence is balanced accuracy 

𝐵𝐴 =
1

2
(𝑇𝑃𝑅 + 𝑇𝑁𝑅) =

1

2
(

𝑇𝑃

𝑁1
+

𝑇𝑁

𝑁0
), 

recently advocated for class-imbalance evaluation [26]. 
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Another related metric, Cohen’s κ (kappa), is a chance-corrected measure of agreement that 

quantifies how much better a classifier’s predictions agree with the true labels than would be 

expected by random chance [27]. For a two-category problem, let 

𝑃𝑜 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑁
 𝑎𝑛𝑑 𝑃𝑒 = ∑ (

𝑁𝑐
𝑝𝑟𝑒𝑑

𝑁
×

𝑁𝑐
𝑡𝑟𝑢𝑒

𝑁
)

𝑐∈{0,1}

 

be the observed and expected agreement, respectively, where 𝑁𝑐
𝑝𝑟𝑒𝑑 and 𝑁𝑐

𝑡𝑟𝑢𝑒 are the counts 

of predicted and true instances in class 𝑐. Then 

κ =
𝑃𝑜 − 𝑃𝑒

1 − 𝑃𝑒

 

which ranges from −1 (complete disagreement) through 0 (no better than chance) to 1 (perfect 

agreement). 

Unlike raw accuracy, κ corrects for any agreement that would arise simply from the marginal 

class frequencies—an important feature when classes are highly imbalanced. In such settings, a naive 

classifier can achieve high accuracy (and thus high 𝑃𝑜) by always predicting the majority class, yet 

its κ will remain low because 𝑃𝑒 is large. Interpretive benchmarks suggest that κ<0.00 indicates 

“poor” agreement, 0.00–0.20 “slight,” 0.21–0.40 “fair,” 0.41–0.60 “moderate,” 0.61–0.80 “substantial,” 

and > 0.80 “almost perfect.” 

Cohen’s κ was deliberately excluded from our evaluation because it offers little independent 

information beyond existing confusion–matrix–based metrics in the context of extreme class 

imbalance. Our study employs the F₂ score to capture threshold‐specific recall‐weighted 

performance, the MCC for chance‐corrected balance, ROC‐AUC and PR‐AUC for threshold‐agnostic 

discrimination, and the H-measure for cost‐sensitive integration. Since κ and MCC both correct for 

class‐marginal effects and in practice produce virtually identical classifier rankings on ultra-skewed 

data, including κ would have been redundant and risked obscuring the clarity of our comparative 

analysis. 

1.3. Contribution of the Study 

Prior work has highlighted metric pitfalls in imbalanced learning [19, 23, 29], arguing that PR 

curves/PR-AUC are more informative than ROC on skewed data and that MCC is preferable to 

accuracy/F1; some even propose replacing ROC-AUC outright with MCC. Yet, we still lack a 

statistically rigorous, cross-domain comparison of ROC-AUC against MCC, F₂, PR-AUC, and the H-

measure under ultra-imbalanced prevalence and realistic resampling pipelines. Saito & Rehmsmeier 

focus on PRC vs. ROC in imbalance but do not examine MCC or H-measure or analyze sampler–

classifier pipelines. Chicco & Jurman advocate MCC over accuracy/F1 but do not position MCC 

against ROC-AUC/PR-AUC/H-measure in rare-event scenarios or under resampling. Chicco & 

Jurman argue MCC vs. ROC-AUC conceptually, without an empirical, multi-metric treatment 

combining rare-event settings, resampling, and statistical testing. Meanwhile, Richardson et al. 

reopen the debate by contending that ROC-AUC remains robust under imbalance while PR-AUC is 

prevalence-sensitive—an observation that, rather than endorsing a single “best” metric, motivates a 

multi-metric protocol that separates ranking from cost and thresholding. In response, we deliver a 

multi-metric, cost-aligned package—MCC and F₂ (primary threshold-dependent metrics) with PR-

AUC (threshold-free ranking) and H-measure (principled cost integration)—evaluated in ultra-

imbalanced (<3%) regimes across resampling pipelines and supported by bootstrap confidence 

intervals, DeLong’s tests, Kendall’s τ, and Friedman–Nemenyi analyses; we also include a 

prevalence-sensitivity check showing how shifts in class balance affect PR-AUC and H-measure on 

our datasets, reinforcing the need to report complementary metrics rather than rely on ROC-AUC 

alone. 

To address this gap, we conduct a cross-domain analysis of 20 classifier–sampler configurations 

per dataset—four classifiers (logistic regression, random forest, XGBoost, and CatBoost) crossed with 
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five sampling strategies (no oversampling, SMOTE, Borderline-SMOTE, SVM-SMOTE, and 

ADASYN)—on three rare-event benchmarks: credit-card fraud (0.17% positives), yeast protein 

localization (POX) (1.35%), and ozone exceedance (≈3%). 

Our contributions are fourfold: 

1. Empirical characterization of ROC-AUC in rare-event regimes. We quantify ceiling effects and 

show that ROC-AUC can overstate model quality by remaining relatively insensitive to 

operationally costly misclassifications when prevalence is <3%, even as false positives and false 

negatives vary substantially across pipelines. 

2. A pragmatic, cost-aware multi-metric alternative. Using Kendall’s τ rankings and paired 

significance testing, we show that MCC and F₂ better reflect asymmetric error costs and 

deployment priorities. In contrast, PR-AUC (threshold-free ranking) and the H-measure 

(principled cost weighting) provide complementary views. We distill this into a portable 

reporting protocol: use MCC + F₂ as primaries, with PR-AUC + H-measure as companions; report 

ROC-AUC only with explicit caveats in ultra-imbalanced settings. 

3. Statistically rigorous, resampling-aware evaluation. We pair model selection with robust 

inference—stratified bootstrap confidence intervals, DeLong’s tests for ROC-AUC, Kendall’s τ 

for rank concordance, and Friedman–Nemenyi critical-difference analysis—to reveal practically 

meaningful differences that ROC-AUC alone can mask. 

4. Actionable guidance for practitioners and researchers. We provide a replicable framework for 

evaluating classifiers under extreme class imbalance that integrates threshold-dependent 

(MCC/F₂) and threshold-free (PR-AUC/H-measure) metrics, aligns with stakeholder cost 

asymmetries, and transfers across domains (finance, bioinformatics, environmental monitoring). 

These contributions move beyond single-metric advocacy toward a multi-metric, cost-aligned 

evaluation protocol empirically validated in ultra-imbalanced, real-world scenarios. 

2. Related Work 

Quantitative comparison of performance metrics has attracted sustained interest because the 

choice of metric can alter scientific conclusions and deployment decisions. Early empirical surveys 

[31, 32] catalogued divergences among accuracy, ROC-based, and cost-based criteria, noting that 

overall accuracy 

ACC =
𝑇𝑃 + 𝑇𝑁

𝑁1 + 𝑁0

 

is dominated by the majority class when 𝜋 = 𝑁1/(𝑁1 + 𝑁0) ≪ 0.5. 

For instance, Hanley and McNeil justified ROC-AUC as the probability that a randomly chosen 

positive receives a higher score than a randomly chosen negative. However, Hand showed that AUC 

implicitly assigns unequal, prevalence-dependent misclassification costs, violating many decision 

contexts. Building on that critique, Davis and Goadrich derived the monotone transformation that 

maps any ROC point (FPR, TPR) to (R, P) space and proved that the PR curve dominates ROC when 

𝜋 < 0.2. Saito and Rehmsmeier confirmed the theoretical claim with biomedical data, where ROC-

AUC varied less than 0.02 while PR-AUC varied over 0.50 for the same algorithms. Very recent work 

has reopened the debate. Richardson et al. contend, via simulation and an epitope-prediction case 

study, that ROC-AUC remains robust to imbalance, whereas PR-AUC “over-penalises” legitimate 

classifiers. Their critique hinges on the fact that precision is a function of both TPR and prevalence, 

making PR-AUC sensitive to evaluation-set sampling. Conversely, Zhang and Geng demonstrate that 

PR-AUC’s prevalence sensitivity is a feature, not a bug, when the deployment environment shares 

the same class skew. The persisting disagreement underscores the need for multi-metric reporting. 

The MCC was initially proposed for protein secondary-structure prediction [22]. Chicco and 

Jurman provided simulations and genomics case studies where MCC ranked classifiers more 

consistently with domain utility than F1 or balanced accuracy. In 2023, these authors argued that MCC 

should replace ROC-AUC as the “standard statistic” for binary classification, citing ROC’s hidden 
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cost bias and MCC’s symmetry. Itaya et al. derived asymptotic confidence intervals for single and 

paired MCC estimates, enabling formal hypothesis testing between classifiers. 

Elkan formalised expected cost (EC) 

EC(t) = 𝐶𝐹𝑁

𝐹𝑁(𝑡)

𝑁
+ 𝐶𝐹𝑃

𝐹𝑃(𝑡)

𝑁
, 

 

arguing that threshold choice must minimise EC under a user-supplied cost matrix. Hernández-

Orallo extended ROC analysis to dominance curves, constructing the convex hull of cost points to 

identify potentially optimal classifiers under all cost/prevalence pairs. Hand proposed H-measure, 

integrating EC over a beta-distributed cost parameter to mitigate AUC’s hidden-cost flaw. 

While discrimination metrics assess ranking, Niculescu-Mizil and Caruana compared log-loss 

L = −
1

𝑁
∑[𝑦𝑖 log 𝑝̂𝑖 +  (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑝̂𝑖)]

𝑁

𝑖=1

 

 

with Brier score and AUC, showing that well-calibrated probabilities can be critical for cost-

sensitive decisions even when AUC is identical. Flach and Kull further decomposed log-loss into 

calibration and refinement components, providing diagnostic insight complementary to ROC 

analysis. 

He and Garcia reviewed algorithmic and evaluation issues in imbalanced learning, 

recommending PR-AUC and G-mean. More recently, Blagus and Lusa demonstrated that 𝐹𝛽with β>1 

is preferable to F1 for rare disease prediction, and Imani et al. [41, 42] examined how varying class-

imbalance ratios affect classifier performance and the apparent efficacy of resampling (e.g., SMOTE 

and its variants), evaluating both threshold-dependent and threshold-free metrics, including ROC-

AUC, PR-AUC, MCC, F1-score, and Cohen’s κ. Complementing these findings, a comprehensive 

churn-prediction review reports that ROC-AUC remains one of the most commonly reported metrics 

in practice, reflecting established reporting conventions in the literature [43]. This persistence 

motivates providing clearer guidance on metric selection under class imbalance. 

3. Datasets 

This study evaluates classifier performance on three publicly available benchmark datasets 

exhibiting extreme class imbalance, see Table 1. Prior to modelling, all features were standardized to 

zero mean and unit variance. As is common in many operational settings, no instance-level cost 

annotations were available. Details of each dataset are provided in Subsections 3.1–3.3. 

1. European Credit-Card Fraud Detection: This widely studied dataset comprises 284807 card-

transaction records, of which 492 are confirmed frauds (imbalance rate ≈ 0.17 %). Each 

observation is represented by 28 principal components derived from the original monetary 

attributes. 

2. UCI Yeast Protein Localisation (“POX”): The UCI Yeast benchmark contains 1484 protein 

sequences described by eight physicochemical descriptors. The minority class “POX” appears in 

only 20 instances (≈ 1.35 %). 

3. UCI Ozone Level Detection: This dataset consists of 2536 hourly measurements of atmospheric 

conditions, each with 73 features, and 57 recorded ozone-exceedance events (≈ 3 %). 

  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 October 2025 doi:10.20944/preprints202510.0958.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0958.v1
http://creativecommons.org/licenses/by/4.0/


 8 of 40 

 

Table 1. The details of the three publicly available datasets. 

Dataset Positives Negatives 
Imbalance 

Rate 
Features Source 

Credit-card Fraud 492 284315 0.17% 
28 PCA-obscured transaction 

attributes 
Kaggle [44] 

Yeast Protein Localisation 20 1464 1.35% 8 physicochemical descriptors 
UCI repository 

[45] 

Ozone Level Detection 57 1791 3.00% 72 atmospheric covariates 
UCI repository 

[46] 

3.1. Fraud Dataset (Credit-Card Fraud Detection) 

The Credit-Card Fraud Detection dataset comprises 284807 credit-card transactions made by 

European cardholders over a two-day period in September 2013 [43]. Only 492 transactions are 

labelled as fraudulent, representing approximately 0.17 % of the data. Each record consists of 31 

features, 28 anonymized principal components (V1–V28) obtained via PCA to preserve 

confidentiality, a “Time” feature (seconds elapsed since the first transaction), and “Amount” 

(transaction value in Euros). The target column “Class” takes the value 0 for legitimate transactions 

and 1 for fraud. 

Because PCA was used to mask original feature identities, V1–V28 do not have explicit semantic 

meaning; nevertheless, they capture the essential structure distinguishing fraudulent from legitimate 

activity [44]. The extreme rarity of fraud events underscores why this dataset is a standard benchmark 

in imbalanced-learning research [19]. 

3.2. Yeast Dataset (UCI version; POX Subset) 

The Yeast dataset is available from the UCI Machine Learning Repository [45]. Initially, each of 

the 1484 instances and 11 features describes characteristics of proteins via eight continuous features 

and a single “Localization” label that can take one of ten categories (CYT, NUC, MIT, ME1, ME2, 

ME3, EXC, VAC, POX, ERL). Of particular interest is the POX class, which appears only 20 times 

(≈1.35%) out of 1484 instances [45]. 

Since the UCI version encodes localization as a single categorical field, we extract the POX cases 

and recode them as the positive class (1), with all other localizations merged into a single negative 

class (0). This one-versus-all transformation yields a binary problem with POX representing 1.35% of 

instances—thus serving as a rare-class benchmark in line with prior literature [47]. 

3.3. Ozone Dataset 

The one-hour ozone exceedance dataset originates from the UCI Machine Learning Repository’s 

Air Quality Evaluation collection [46], capturing 2536 timed atmospheric chemistry and meteorology 

observations recorded at an urban monitoring station in California across multiple summer seasons. 

Each record includes a suite of 73 continuous features—such as temperature, barometric pressure, 

wind speed, relative humidity, and concentrations of nitrogen oxides (NOx), hydrogen cyanide 

(HCN), and volatile organic compounds—paired with a binary target indicating whether the one-

hour average ozone (O₃) concentration exceeded the regulatory threshold of 0.08 ppm. 

Following preprocessing, entries with missing values are discarded, and the original timestamp 

column is removed to focus purely on predictive measurements. To conform with prevalent 

imbalance-learning benchmarks, a literature-standard split retains all 57 confirmed class 1 instances 

and randomly selects the corresponding 1791 class 0 instances, producing an extreme imbalance ratio 

of 31.4:1. Prior to model training, all features are standardized to zero mean and unit variance, and 

the data are partitioned into stratified training and testing subsets that preserve the native class 

proportions. The pronounced skew toward non-exceedance cases underscores the challenges of rare-
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event prediction. This dataset is particularly suitable for evaluating sampling techniques, ensemble 

methods, and cost-sensitive learning algorithms. 

3.4. Data Preprocessing 

Data preprocessing was conducted uniformly across all three datasets to facilitate fair 

comparison under severe class imbalance. To prevent label leakage, the target label was excluded 

from the test set’s feature matrix for each dataset. All preprocessing and resampling steps were fitted 

on the training split only, and the resulting fitted preprocessors (e.g., scalers, encoders) were then 

applied to the test features; no statistics were re-estimated on the test data, and the test labels were 

used solely for final evaluation. In the Credit Card Fraud dataset, the “Time” feature was excluded 

to avoid confounding with temporal dependence under static resampling. Transaction amounts 

exhibited extreme right skew and were log-transformed via  

 

𝐴𝑚𝑜𝑢𝑛𝑡𝑙𝑜𝑔 = 𝑙𝑛(1 + 𝐴𝑚𝑜𝑢𝑛𝑡), [48].  

Subsequently, all 29 features were standardized to zero mean and unit variance [49]. A stratified 

train–test split (70%/30%) preserved the original 0.17 % fraud ratio, with oversampling techniques 

applied exclusively to the training subset [44]. 

The multi‐class localization labels were recoded into a binary target in the UCI Yeast dataset, 

assigning label 1 to the “POX” class and 0 to all other localizations. 

 

𝑦 = {
1, 𝑖𝑓 𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = POX,
0,                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

This yielded 20 positive and 1464 negative instances (≈ 1.35 %). The eight continuous features 

were standardized via z-score normalization to ensure equal weighting in distance-based sampling. 

A stratified 70%/30% train–test split was performed, maintaining the class ratio in both sets, with 

oversampling restricted to the training partition [45]. 

The UCI Ozone Level Detection dataset underwent complete‐case analysis: any record 

containing missing values was removed, reducing the sample from 2536 to 1848 observations. The 

timestamp column was dropped to avoid non-numeric data in subsequent analyses. A literature‐

standard subset was constructed by retaining all 57 positive instances and randomly sampling 1791 

negatives to achieve an imbalance ratio of 31.4:1. All 73 features were standardized to zero mean and 

unit variance. Finally, a stratified split (70% training, 30% testing) preserved the class distribution, 

with oversampling applied solely to the training set. 

4. Methods 

Our goal was to examine how alternative evaluation metrics behave when the minority class is 

vanishingly rare, and to test whether a small, theory-driven bundle of metrics can travel intact across 

disparate application areas. We therefore built a deliberately symmetrical experimental protocol: one 

script, three datasets, twenty classifier–sampler variants, one set of metrics, and one statistical lens. 

This section walks through each step. 

4.1.  Classifier-Sampling Framework 

All experiments were conducted in Python 3.11 using scikit-learn 1.5, imbalanced-learn 0.12, 

CatBoost 1.3, and XGBoost 2.0. We evaluated four classifiers—logistic regression (LR) with L₂ 

regularization, Random Forest (RF) with 300 trees (RF), XGBoost (XGB) with depth = 6 and learning 

rate η = 0.1, and CatBoost with 500 iterations (CB)—each under one baseline (no oversampling) and 

four oversampling techniques (SMOTE, Borderline-SMOTE, SVM-SMOTE, and ADASYN). This 

yields (1 + 4) × 4 = 20 unique classifier–sampler configurations per dataset. We applied these 20 

configurations independently to each of the three datasets, for a total of 60 model evaluations. 
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Performance for each configuration was estimated via stratified 10-fold cross-validation. 

Oversampling was applied only to the training set within each fold to avoid information leakage. We 

recorded ROC-AUC, PR-AUC, the H-measure, MCC, F₂-score, and the raw confusion-matrix counts 

from every run. 

4.2.  Rank-correlation Analysis Between Metrics 

To quantify how consistently the candidate metrics rank the 60 classifier-sampler configurations, 

we computed the pair-wise Kendall rank correlation coefficient τ ([50]) for every metric pair (m, n) ∈

{PR − AUC, ROC − AUC, MCC, 𝐹2, H − measure}. 

Let 𝑥𝑖𝑚 and 𝑥𝑖𝑛 denote the values of metrics 𝑚 and 𝑛 for configuration 𝑖 (𝑖 = 1, … , 𝑁,   𝑁 = 40)  . 

Kendall’s statistic is 

τ𝑚𝑛 =
∑ 𝑠𝑔𝑛(𝑥𝑖𝑚 − 𝑥𝑗𝑚) 𝑠𝑔𝑛(𝑥𝑖𝑛 − 𝑥𝑗𝑛)𝑖<𝑗

(
𝑁
2

)
 

and 𝑠𝑔𝑛(𝑢) = {
1,       𝑢 > 0
0,       𝑢 = 0

−1,         𝑢 < 0 
 

The numerator counts concordant minus discordant configuration pairs, and the denominator 

is the total number of unordered pairs. 

τ =
#concordant − #discordant

(
40
2

)
 

Kendall’s rank-correlation coefficient (τ) is preferred to the Pearson product-moment coefficient (r) 

for assessing agreement among evaluation metrics in highly imbalanced learning because it aligns 

with the methodological aim—comparing metric-induced rankings rather than raw magnitudes. 

Kendall τ is a non-parametric statistic that depends only on the ordering of observations; it remains 

invariant under any strictly monotone transformation of the metric scores and is therefore insensitive 

to the heterogeneous, bounded scales of MCC (-1 … 1), PR-AUC (0 … 1), and ROC-AUC (0 … 1) [51]. 

Unlike 𝑟 , which assumes joint normality and homoscedasticity, τ makes no distributional 

assumptions and is robust to the heavy skew, ceiling effects, and frequent ties (e.g., TP = 0, FP = 0 → 

identical MCC) that characterise rare-event experiments. Furthermore, τ admits an intuitive 

probabilistic interpretation—τ = 0.60 implies 80 % concordant versus 20 % discordant pairs—

facilitating substantive discussion of metric concordance. These properties render Kendall’s 

coefficient a statistically reliable and conceptually faithful measure for ranking-consistency studies 

under extreme class imbalance [50, 52]. 

4.3. Statistical Testing and Confidence Intervals 

We generated 95 % confidence intervals (CIs) for each metric via a stratified bootstrap (2000 

replicates per test fold, preserving class prevalence). ROC-AUC differences between any two 

classifier-sampler configurations were evaluated with the paired-sample DeLong test ([53]), and p-

values are reported. When comparing more than two methods, we applied the Friedman aligned-

ranks test followed by the Nemenyi Critical-Difference (CD) procedure (α = 0.05). 

5. Results and Discussions 

This section presents a detailed empirical investigation into the performance of twenty 

classifier–sampler configurations across three highly imbalanced datasets: credit card fraud 

detection, Yeast protein localization, and Ozone level detection. Under extreme class imbalance, the 

primary objective is to examine the sensitivity and reliability of five evaluation metrics—ROC-AUC, 
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PR-AUC, F₂-score, MCC, and H-measure. Rather than comparing classifiers per se, the focus lies on 

understanding how each metric responds to variations in false positives and false negatives induced 

by different sampling techniques. Results highlight notable inconsistencies in ROC-AUC’s ability to 

reflect practical performance costs, whereas alternative metrics demonstrate more substantial 

alignment with operational realities and domain expert expectations. 

5.1. Detailed Per-dataset Results (Fraud Dataset) 

This section contrasts the behaviour of twenty classifier–sampler configurations on three 

thematically unrelated yet similarly skewed datasets: the credit-card fraud collection, the Yeast 

protein-localisation set, and the Ozone Level Detection. 

5.1.1. Fraud Dataset 

Table 2 presents the results of 20 distinct classifier–sampler configurations, including the 

corresponding confusion matrix components and five evaluation metrics, and all evaluations were 

conducted on the test set (unseen data) of the Fraud dataset. Since the study’s objective is metric 

evaluation, not model comparison, we examine how each metric responds to the dramatic swings in 

FP and FN counts that arise under extreme class-imbalance. The empirical evaluation conducted on 

the Fraud dataset demonstrates clearly the limitations inherent in relying on ROC-AUC as an 

evaluation metric for rare-event binary classification tasks. Although ROC-AUC scores across various 

classifiers and sampling methods remain consistently high, a deeper inspection of the performance 

using alternative metrics reveals significant shortcomings in ROC-AUC’s reliability for highly 

imbalanced datasets. 

Table 2. The results on the credit-card fraud dataset. 

 

 
Baseline SMOTE Borderline-SMOTE SVM-SMOTE ADASYN 

 RF LR XGB CB RF LR XGB CB RF LR XGB CB RF LR XGB CB RF LR XGB CB 

ROC-

AUC 
0.934 0.953 0.969 0.971 0.966 0.968 0.976 0.969 0.930 0.935 0.976 0.959 0.933 0.936 0.971 0.954 0.960 0.968 0.972 0.969 

PR-

AUC 
0.821 0.708 0.840 0.836 0.819 0.705 0.836 0.823 0.818 0.670 0.823 0.815 0.827 0.687 0.834 0.827 0.822 0.711 0.827 0.807 

F2 0.796 0.658 0.787 0.805 0.793 0.237 0.814 0.783 0.795 0.448 0.820 0.787 0.828 0.522 0.817 0.804 0.783 0.090 0.814 0.766 

MCC 0.855 0.731 0.840 0.856 0.831 0.227 0.800 0.733 0.851 0.360 0.845 0.756 0.843 0.416 0.827 0.768 0.814 0.126 0.800 0.713 

H 0.761 0.574 0.756 0.749 0.727 0.651 0.752 0.706 0.732 0.558 0.727 0.702 0.739 0.587 0.751 0.751 0.727 0.638 0.717 0.698 

FP 5 15 8 7 13 2019 35 65 6 647 15 50 18 481 22 50 17 6595 35 71 

FN 35 56 36 33 34 18 26 26 35 26 29 28 27 23 28 25 35 16 26 28 

TP 113 92 112 115 114 130 122 122 113 122 119 120 121 125 120 123 113 132 122 120 

TN 85290 85280 85287 85288 85282 83276 85260 85230 85289 84648 85280 85245 85277 84814 85273 85245 85278 78700 85260 85224 

Taking the Logistic Regression classifier with ADASYN sampling as a notable example, the 

ROC-AUC score is observed to be impressively high at 0.968. However, this apparently robust 

performance contrasts with extremely poor values for other critical metrics: an F2-score of just 0.090, 

MCC of 0.126, and an H-measure of 0.638. Further exacerbating this discrepancy is the notably large 
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number of false positives (FP=6595), illustrating clearly that the ROC-AUC cannot adequately 

penalize the misclassification of negative class instances. 

Similarly, another striking contradiction is observed when examining LR with SMOTE 

sampling. Despite achieving a high ROC-AUC score of 0.968, this combination demonstrates poor F2 

(0.237), MCC (0.227), and H-measure (0.651) scores, compounded by an extremely high false positive 

rate (FP=2019). This trend persists across multiple combinations, highlighting ROC-AUC’s inability 

to reflect meaningful performance deficiencies in classifiers when dealing with highly imbalanced 

datasets. 

The inconsistency in performance indicated by ROC-AUC compared to more practically 

relevant metrics is further exemplified by the LR classifier combined with Borderline-SMOTE 

sampling, where an acceptable ROC-AUC score of 0.935 is recorded. Nonetheless, substantial 

performance issues arise, as clearly evidenced by an F2-score of 0.448, MCC of 0.360, and H-measure 

of 0.558, coupled with a high false positive count (FP=647). These results underscore the critical failure 

of ROC-AUC in capturing and penalizing the actual misclassification cost associated with rare-event 

classes. 

Conversely, metrics such as MCC, F2, and H-measure exhibit greater consistency in identifying 

performance inadequacies, effectively distinguishing between well-performing and poorly 

performing models. For instance, the baseline Random Forest classifier achieves strong, stable 

performance across MCC (0.855), F2 (0.796), and H-measure (0.761) with low FP (5), clearly indicative 

of genuine classification effectiveness. 

In summary, the empirical evidence firmly establishes that despite its widespread use, ROC-

AUC frequently offers an overly optimistic and misleading assessment of classifier performance in 

highly imbalanced contexts. Alternative metrics, specifically MCC, F2, and H-measure, are more 

effective and accurate indicators of genuine predictive performance and should be preferred in 

evaluation methodologies involving rare-event classification. 

Table 3 summarizes the analysis conducted on the Fraud dataset, encapsulating the observed 

performance ranges, sensitivity to variations in false positives and false negatives, and key 

observations for ROC-AUC, PR-AUC, F₂-score, MCC, and H-measure. This comparative overview 

underscores significant discrepancies between ROC-AUC and alternative metrics, highlighting ROC-

AUC's insufficient sensitivity to misclassification costs in highly imbalanced datasets. 

Table 3. The summary of the analysis on the Fraud dataset. 

Metric 
Observed 

range 
Sensitivity to FP/FN variations Key observations 

ROC-

AUC 

0.930 – 0.976 

(∆ ≈ 0.046) 

Minimal. ROC-AUC uses the empirical FPR 

denominator (≈ 85 k) and therefore changes by < 

0.01 when FP rises from 5 (RF baseline) to 6595 

(LR + ADASYN). 

LR baseline vs. LR + SMOTE: FP ×135↑ (15 

→ 2 019) yet ROC-AUC increases (0.953 → 

0.968). 

PR-AUC 
0.669 – 0.839 

(∆ ≈ 0.17) 

Moderate. Precision penalises each additional FP, 

so PR-AUC drops from 0.821 to 0.704 when LR 

baseline is oversampled with SMOTE (FP 15 → 

2019). However, the metric is threshold-free and 

does not reflect the absolute alarm burden in the 

deployed cut-off. 

CB baseline (FP = 7) vs. CB + ADASYN (FP 

= 71): PR-AUC falls 0.836 → 0.807, a visible 

but still modest decline given the ten-fold 

FP increase. 

F2 
0.000 – 0.827 

(∆ ≈ 0.83) 

High. By quadrupling recall weight, F₂ rewards 

FP-heavy configurations if they gain enough TP, 

but collapses when precision implodes. LR + 

SMOTE attains the highest TP (130) and lowest 

FN (18) yet F₂ = 0.237—demonstrating severe 

precision penalty. 

RF baseline (TP = 113, FP = 5) vs. RF + 

ADASYN (TP = 113, FP = 17): identical 

recall, FP ×3.4 ↑, F₂ drops from 0.795 → 

0.782. 
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MCC 
0.125 – 0.855 

(∆ ≈ 0.73) 

Very high and symmetric. MCC falls almost linearly 

with either FP or FN explosions. It ranks LR + 

SMOTE (MCC = 0.227) and LR + ADASYN (0.126) 

near the bottom despite top-quartile ROC-AUC 

values, exposing their high alarm costs. 

MCC and F₂ exhibit Kendall τ ≈ 0.90 across 

the grid (see Section 4.4), confirming 

consistent ordering once a threshold is 

fixed. 

H-

measure 

0.558 – 0.761 

(∆ ≈ 0.203) 

 

Moderate-to-high. Reflects meaningful sensitivity 

to FP and FN variations, providing clearer 

differentiation compared to ROC-AUC. 

LR baseline (H=0.574, FP=15) vs. LR + 

ADASYN (H=0.638, FP=6595): modest 

numeric change, but clearly identifies 

classifiers suffering from poor precision, 

aligning closer to MCC and F₂ in 

penalizing misclassification. 

Complementing the scalar summaries in Table 3, a concise cross-metric visualization aids 

interpretation. Figures 1(a)–1(e) provide small-multiples radar plots that compare five evaluation 

criteria— F2, H-measure, MCC, ROC-AUC, and PR-AUC—for RF, LR, XGB, and CB under each 

resampling strategy. Axes are fixed across panels and scaled to [0, 1]; polygons report fold-wise 

means. The purpose is illustrative: to visualize pattern and separation across metrics, complementing 

the confidence-interval and rank-based analyses reported later. 

Two consistent regularities are apparent across all samplers. First, ROC-AUC exhibits a ceiling 

effect: for every classifier and sampler, the ROC-AUC spoke lies close to the outer ring, producing 

minimal model separation. Second, the threshold-dependent/cost-aligned metrics—MCC and F2—

expose substantial differences that ROC-AUC masks. In particular, LR deteriorates sharply under 

synthetic-minority schemes: under SMOTE and ADASYN, the LR polygon collapses on the MCC and 

F2 axes while remaining near-maximal on ROC-AUC, indicating severe precision loss (inflated false 

positives) that does not materially affect rank-based AUC. The tree/boosted models (RF, XGB, CB) 

remain comparatively stable on MCC/F2 across samplers, with XGB/RF typically forming the largest 

polygons (i.e., strongest across the bundle). 

The Baseline panel serves as a reference: ensembles dominate on MCC/F2, while LR trails but 

does not collapse. Moving to SMOTE and ADASYN, the LR degradation intensifies—MCC and F2 

shrink markedly—even though PR-AUC and H-measure decline only moderately, and ROC-AUC 

stays saturated. This pattern is consistent with decision-boundary distortion and score miscalibration 

induced by aggressive oversampling at a prevalence of 0.17%, which disproportionately inflates false 

positives at practically relevant thresholds. Borderline-SMOTE and SVM-SMOTE show the same 

qualitative behavior but with milder LR degradation; ensembles retain broad, well-rounded 

polygons, reflecting robustness to these resampling variants. 

Taken together, the radars visualize the complementarity within the proposed metric bundle. 

PR-AUC and H-measure track the MCC/F2 separations (though less dramatically), reinforcing their 

role as threshold-free and cost-sensitive companions, respectively. Conversely, the near-constant 

ROC-AUC across panels underscores its limited diagnostic value in this ultra-imbalanced setting. 

These visual regularities align with our Kendall-τ concordance results (strong agreement among 

MCC/F2/H/PR-AUC; weak with ROC-AUC) and the critical-difference rankings that favor 

tree/boosted models. We therefore use the radars as an intuitive summary of sampler–classifier 

interactions and as corroborating evidence for the central claim: relying solely on ROC-AUC can 

misrepresent practical performance, whereas a multi-metric, cost-aligned protocol reveals 

operationally meaningful differences. 
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(a) SMOTE (b) ADASYN 

  

(c) Border-SMOTE (d) SVM-SMOTE 

 

(e) Baseline 

Figure 1. Multi-metric radar plots for the fraud dataset across five resampling strategies. Axes are scaled to [0,1]; 

polygons show mean performance across cross-validation folds. 

5.1.2. Yeast Dataset 
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Table 4 presents the results of 20 distinct classifier–sampler configurations, including the 

corresponding confusion matrix components and five evaluation metrics, and all evaluations were 

conducted on the test set (unseen data) of the Yeast dataset. The empirical evaluation conducted on 

the Yeast dataset clearly demonstrates the limitations inherent in relying on ROC-AUC as an 

evaluation metric for rare-event binary classification tasks. Although ROC-AUC scores across various 

classifiers and sampling methods frequently appear stable or relatively high, deeper analysis using 

alternative metrics uncovers significant shortcomings in ROC-AUC’s reliability for highly 

imbalanced datasets. 

Table 4. The results on the Yeast dataset. 

 Baseline SMOTE Borderline-SMOTE SVM-SMOTE ADASYN 

 RF LR XGB CB RF LR XGB CB RF LR XGB CB RF LR XGB CB RF LR XGB CB 

ROC-

AUC 
0.882 0.899 0.966 0.934 0.850 0.908 0.884 0.790 0.917 0.888 0.902 0.797 0.921 0.888 0.897 0.791 0.918 0.908 0.882 0.772 

PR-

AUC 
0.657 0.679 0.299 0.722 0.543 0.679 0.375 0.526 0.660 0.809 0.450 0.600 0.633 0.809 0.468 0.599 0.451 0.679 0.582 0.518 

F2 0.536 0.690 0.192 0.690 0.441 0.207 0.484 0.455 0.536 0.455 0.536 0.536 0.690 0.781 0.690 0.690 0.441 0.146 0.429 0.417 

MCC 0.608 0.727 0.283 0.727 0.377 0.174 0.455 0.398 0.608 0.351 0.608 0.608 0.727 0.717 0.727 0.727 0.377 0.125 0.358 0.341 

H 0.577 0.677 0.127 0.572 0.400 0.677 0.353 0.501 0.534 0.727 0.411 0.530 0.533 0.727 0.511 0.530 0.303 0.677 0.505 0.501 

FP 1 1 1 1 7 92 4 6 1 26 1 1 1 3 1 1 7 142 8 9 

FN 3 2 5 2 3 1 3 3 3 1 3 3 2 1 2 2 3 1 3 3 

TP 3 4 1 4 3 5 3 3 3 5 3 3 4 5 4 4 3 5 3 3 

TN 439 439 439 439 433 348 436 434 439 414 439 439 439 437 439 439 433 298 432 431 

For instance, the Logistic Regression classifier combined with SMOTE sampling yields an 

apparently high ROC-AUC score of 0.908. However, this performance is contradicted sharply by 

considerably lower scores in crucial alternative metrics such as F2 (0.207), MCC (0.174), and H-

measure (0.677). The substantial false positive rate observed in this scenario (FP=92) further 

highlights ROC-AUC's inability to reflect the practical costs associated with increased false alarms 

effectively. 

Similarly, the XGBoost classifier combined with SMOTE sampling produces a ROC-AUC score 

of 0.884, which at first glance appears moderate. However, detailed metrics including F (0.484), MCC 

(0.455), and H-measure (0.353) expose critical weaknesses in performance, particularly when 

considering that even a relatively modest increase in false positives (FP=4) can negatively impact the 

practical effectiveness of the model. 

Additionally, analysis of the Logistic Regression classifier with ADASYN sampling provides 

further evidence of ROC-AUC’s limitations. Despite maintaining a high ROC-AUC score (0.908), this 

combination demonstrates poor performance in alternative metrics: F2 at 0.146, MCC at 0.125, and H-

measure at 0.677. Moreover, this classifier configuration suffers from an extremely high false positive 

count (FP=142), further underscoring ROC-AUC’s inadequate sensitivity to misclassification costs. 

Conversely, metrics such as MCC, F2, and H-measure consistently provide a more accurate 

representation of classifier performance, effectively distinguishing between models performing well 

and those not. For example, the baseline Random Forest classifier achieves stable and relatively high 
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scores across MCC (0.608), F2 (0.536), and H-measure (0.577) while maintaining a low false positive 

count (FP=1), clearly signalling robust classification capability. 

In summary, the empirical evidence from the Yeast dataset conclusively illustrates that ROC-

AUC frequently presents a misleadingly optimistic view of classifier performance in highly 

imbalanced scenarios. Alternative metrics such as MCC, F2, and H-measure emerge as more reliable 

and practically meaningful model performance indicators in rare-event classification problems. 

Table 5 summarizes the detailed analysis conducted on the Yeast dataset, presenting the 

performance range, sensitivity to false positives and false negatives, and key observations for ROC-

AUC, PR-AUC, F₂-score, MCC, and H-measure. This summary clearly highlights ROC-AUC’s 

inadequacy and supports alternative metrics’ practical relevance and greater accuracy for highly 

imbalanced datasets. 

Table 5. The summary of the analysis on the Yeast dataset. 

Metric 
Observed 

range 
Sensitivity to FP/FN variations Key observations 

ROC-

AUC 

0.772 – 0.966 

(∆ ≈ 0.194) 

Minimal-to-moderate. Due to the dataset's 

high negative class size (≈ 439), ROC-AUC 

scores exhibit modest sensitivity despite 

significant false positives variation. 

Logistic Regression baseline (FP=1, ROC-

AUC=0.899) vs. LR + ADASYN (FP=142, ROC-

AUC=0.908): ROC-AUC slightly increases 

despite an extreme 142-fold FP rise. 

PR-AUC 
0.299 – 0.809 

(∆ ≈ 0.510) 

Moderate-to-high. Precision directly 

penalizes false positives, clearly reflecting 

severe FP increases. 

LR baseline (FP=1, PR-AUC=0.679) vs. LR + 

ADASYN (FP=142, PR-AUC=0.679): limited 

numeric change despite significant FP 

escalation, indicating threshold-free limitation. 

F₂ 
0.146 – 0.781 

(∆ ≈ 0.635) 

High. Heavily sensitive to false positives, 

significantly penalizing classifiers with 

precision deterioration. 

LR + SMOTE: achieves high ROC-AUC (0.908) 

but very poor F₂ (0.207) due to high FP (92), 

clearly demonstrating sensitivity to precision 

collapse. 

MCC 
0.125 – 0.727 

(∆ ≈ 0.602) 

Very high and symmetric. Significantly 

penalizes both false positives and false 

negatives, clearly reflecting overall 

performance deterioration. 

LR + ADASYN yields MCC=0.125 despite ROC-

AUC=0.908, accurately reflecting severe 

classification cost due to FP (142). MCC 

consistently ranks high-FP scenarios lower. 

H-

measure 

0.127 – 0.727 

(∆ ≈ 0.600) 

Moderate-to-high. Reflects significant 

sensitivity to variations in FP and FN, 

providing clearer differentiation compared 

to ROC-AUC. 

XGB baseline (H=0.127, FP=1) vs. LR baseline 

(H=0.677, FP=1): large variation indicating H-

measure’s sensitivity to model-specific 

performance, aligning closely with MCC and 

F₂. 

In addition to the scalar results in Table 5, a compact cross-metric perspective provides an 

integrated view. Figures 2(a)–2(e) present small-multiples radar plots for the Yeast dataset (1.35% 

positives), comparing F2, H-measure, MCC, ROC-AUC, and PR-AUC for RF, LR, XGB, and CB under 

each resampling strategy. Axes are fixed across panels, scaled to [0,1], and polygons report fold-wise 

means. As with the Fraud radars, the goal is illustrative: to visualize patterns and separation across 

metrics, complementing the following confidence-interval and rank-based analyses. 

Two regularities again emerge. First, ROC-AUC remains near the outer ring for all models and 

samplers, yielding limited separation. Second, threshold-dependent/cost-aligned metrics (MCC and 
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F2) reveal material differences that ROC-AUC alone obscures, with PR-AUC and H-measure 

generally moving in the same direction, albeit less sharply. 

Dataset-specific nuances are notable. In the Baseline panel, XGB exhibits a pronounced collapse 

on F2, MCC, PR-AUC, and H, despite a high ROC-AUC spoke—an archetypal instance of AUC 

saturation masking practically relevant errors. CB and LR form larger, more rounded polygons, and 

RF sits in between. Under SMOTE and ADASYN, LR shows a mixed profile: PR-AUC and H increase 

substantially, yet MCC (and at times F2) contracts, indicating that oversampling improves ranking 

and cost-weighted separation while simultaneously inflating false positives at decision-useful 

thresholds (score–threshold miscalibration). Borderline-SMOTE moderates this tension, with milder 

LR degradation on MCC/F2 and stable ensemble performance. SVM-SMOTE yields the most balanced 

polygons overall—especially for LR and CB—suggesting that margin-aware synthesis can enhance 

both ranking-based and threshold-dependent metrics on Yeast. 

Taken together, these radars (i) make the ROC-AUC ceiling effect visually explicit; (ii) highlight 

sampler–classifier interactions that matter operationally (e.g., XGB’s baseline collapse; LR’s 

oversampling trade-offs); and (iii) show PR-AUC and H-measure qualitatively tracking the MCC/F2 

separations. The visual patterns are consistent with the Kendall-τ concordance and critical-difference 

rankings reported for Yeast, reinforcing the central claim that relying solely on ROC-AUC is 

insufficient. In contrast, a multi-metric, cost-aligned protocol reveals differences of practical 

consequence. 

  

(a) SMOTE (b) ADASYN 

  

(c) Border-SMOTE (d) SVM-SMOTE 
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(e) Baseline 

Figure 2. Multi-metric radar plots for the Yeast dataset across five resampling strategies. Axes are scaled to [0,1]; 

polygons show mean performance across cross-validation folds. 

5.1.3.  Ozone Dataset 

Table 4 presents the results of 20 distinct classifier–sampler configurations, including the 

corresponding confusion matrix components and five evaluation metrics, and all evaluations were 

conducted on the Ozone dataset's test set (unseen data). The empirical evaluation conducted on the 

Ozone dataset provides further compelling evidence of the limitations inherent in using ROC-AUC 

as an evaluation metric for rare-event binary classification tasks. Despite ROC-AUC scores 

consistently appearing moderate to high across multiple classifiers and sampling methods, detailed 

examination using alternative metrics reveals substantial shortcomings in ROC-AUC’s reliability for 

highly imbalanced datasets. 

Table 6. The results on the Ozone dataset. 

 Baseline SMOTE Borderline-SMOTE SVM-SMOTE ADASYN 

 RF LR XGB CB RF LR XGB CB RF LR XGB CB RF LR XGB CB RF LR XGB CB 

ROC-

AUC 
0.882 0.881 0.875 0.894 0.863 0.860 0.879 0.895 0.833 0.879 0.874 0.908 0.856 0.878 0.864 0.906 0.854 0.860 0.884 0.902 

PR-

AUC 
0.211 0.232 0.196 0.225 0.362 0.195 0.250 0.251 0.339 0.223 0.236 0.293 0.323 0.214 0.226 0.259 0.325 0.204 0.219 0.258 

F2 0.071 0.135 0.130 0.068 0.407 0.336 0.372 0.309 0.417 0.372 0.337 0.368 0.309 0.375 0.337 0.385 0.361 0.338 0.333 0.316 

MCC 0.164 0.184 0.143 0.094 0.381 0.225 0.307 0.240 0.407 0.262 0.294 0.300 0.318 0.266 0.294 0.330 0.357 0.228 0.285 0.251 

H 0.080 0.102 0.064 0.089 0.237 0.105 0.125 0.125 0.215 0.094 0.095 0.203 0.209 0.085 0.095 0.111 0.175 0.105 0.083 0.139 

FP 1 4 7 4 11 57 19 23 9 44 15 20 8 43 15 16 9 56 16 21 

FN 16 15 15 16 10 8 10 11 10 8 11 10 12 8 11 10 11 8 11 11 

TP 1 2 2 1 7 9 7 6 7 9 6 7 5 9 6 7 6 9 6 6 

TN 537 534 531 534 527 481 519 515 529 494 523 518 530 495 523 522 529 482 522 517 
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For example, the Logistic Regression classifier combined with SMOTE sampling achieves an 

ROC-AUC of 0.860, which initially might suggest acceptable model performance. However, this 

apparent performance contrasts sharply with notably weaker results in critical alternative metrics: 

F2-score at 0.336, MCC at 0.225, and H-measure at 0.105. This combination also records a substantial 

false positive rate (FP=57), highlighting ROC-AUC’s failure to capture the practical implications of 

increased false alarms adequately. 

Similarly, XGBoost with Borderline-SMOTE achieves a relatively moderate ROC-AUC of 0.874, 

but deeper inspection through alternative metrics reveals significant shortcomings. Despite its ROC-

AUC score, the combination yields a relatively low F2-score (0.337), MCC (0.294), and H-measure 

(0.095), alongside an elevated false positive count (FP=15). These findings further underscore ROC-

AUC’s inability to reflect misclassification costs sensitively. 

Another illustrative case is observed with Logistic Regression using ADASYN sampling. The 

ROC-AUC score of 0.860 might initially seem satisfactory; however, alternative metrics such as F2 

(0.338), MCC (0.228), and H-measure (0.105) clearly indicate substantial deficiencies in performance. 

Moreover, the high false positive count (FP=56) strongly emphasizes ROC-AUC’s limited sensitivity 

to the actual cost of misclassification. 

In contrast, metrics such as MCC, F2, and H-measure consistently provide a more precise 

representation of classifier performance by distinguishing between models performing genuinely 

well and those performing inadequately. For instance, the Random Forest classifier combined with 

Borderline-SMOTE sampling exhibits relatively strong and balanced performance across MCC 

(0.407), F2 (0.417), and H-measure (0.215) with a comparatively low false positive rate (FP=9), clearly 

indicating effective classification performance. 

In summary, empirical evidence from the Ozone dataset strongly reinforces that ROC-AUC is 

often misleadingly optimistic when assessing classifier performance in highly imbalanced scenarios. 

Alternative metrics, particularly MCC, F2, and H-measure, provide a more reliable and practical 

assessment of classifier effectiveness in rare-event classification tasks. 

Table 7 summarizes the comprehensive analysis of the Ozone dataset, capturing the observed 

performance ranges, sensitivity to false positive and false negative variations, and key observations 

for ROC-AUC, PR-AUC, F₂-score, MCC, and H-measure. This comparative overview reinforces ROC-

AUC’s inadequacies and underscores the greater practical relevance and accuracy of MCC, F₂, and 

H-measure for assessing classifier performance on highly imbalanced datasets. 

Table 7. The summary of the analysis on the Ozone dataset. 

Metric 
Observed 

range 
Sensitivity to FP/FN variations Key observations 

ROC-

AUC 

0.833 – 0.908 

(∆ ≈ 0.075) 

Minimal-to-moderate. Given the 

relatively high negative class size (≈ 

530), ROC-AUC scores remain stable 

despite notable increases in false 

positives. 

Logistic Regression baseline (FP=4, ROC-AUC=0.881) 

vs. LR + ADASYN (FP=56, ROC-AUC=0.860): 

minimal ROC-AUC change despite a 14-fold FP rise, 

illustrating limited sensitivity. 

PR-

AUC 

0.195 – 0.362 

(∆ ≈ 0.167) 

Moderate. Precision penalizes 

increases in false positives but the 

threshold-free nature limits sensitivity. 

Random Forest baseline (PR-AUC=0.211, FP=1) vs. 

RF + SMOTE (PR-AUC=0.362, FP=11): visible 

improvement in PR-AUC reflecting better precision-

recall balance despite higher FP, indicating 

threshold-free limitations. 

F₂ 
0.068 – 0.417 

(∆ ≈ 0.349) 

High. Strongly sensitive to FP; even 

moderate FP increases lead to notable 

XGB with Borderline-SMOTE: moderate ROC-AUC 

(0.874) contrasts sharply with relatively low F₂ 
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F₂ reductions, clearly penalizing 

precision loss. 

(0.337), clearly revealing the precision collapse 

impact with FP=15. 

MCC 
0.094 – 0.407 

(∆ ≈ 0.313) 

Very high and symmetric. Clearly 

decreases with increases in FP or FN, 

accurately reflecting real performance 

decline. 

LR + SMOTE: despite ROC-AUC (0.860), MCC drops 

significantly to 0.225 due to FP (57), highlighting 

MCC’s sensitivity to misclassification costs. 

H-

measure 

0.064 – 0.237 

(∆ ≈ 0.173) 

Moderate-to-high. Captures the 

performance sensitivity to FP and FN 

variations more clearly than ROC-

AUC, providing a more realistic 

assessment. 

RF + SMOTE (H=0.237, FP=11) clearly outperforms 

LR + ADASYN (H=0.105, FP=56), effectively 

reflecting differences in false alarm costs and model 

reliability. 

Beyond the scalar summaries in Table 7, a compact cross-metric view is useful. Figures 3(a)–3(e) 

show small-multiples radar plots for the Ozone dataset (≈3% positives), comparing F2, H-measure, 

MCC, ROC-AUC, and PR-AUC for RF, LR, XGB, and CB under each resampling strategy. Axes are 

fixed across panels, scaled to [0,1], and polygons report fold-wise means. As in the prior datasets, 

these plots are illustrative—a compact view of pattern and separation across metrics that 

complements the subsequent confidence-interval and rank-based analyses. 

Two regularities recur. First, ROC-AUC lies close to the outer ring for all models and samplers, 

yielding limited discriminatory power among classifiers. Second, the threshold-dependent/cost-

aligned metrics—MCC and F2—exhibit meaningful spread, with PR-AUC and H-measure generally 

moving in the same qualitative direction (though less sharply), thereby visualizing the 

complementarity within the proposed metric bundle. 

Dataset-specific nuances are evident. In the Baseline panel, RF forms the broadest, most balanced 

polygon, leading on MCC, F2, and PR-AUC, while CB is competitive and LR/XGB trail—despite 

uniformly high ROC-AUC for all four models. Under SMOTE, polygons contract on MCC and F2 

across models (with only modest changes in PR-AUC/H), indicating that naive oversampling 

degrades performance at decision-relevant thresholds even as rank-based AUC remains high. 

Borderline-SMOTE and SVM-SMOTE partially recover this loss: RF again dominates on MCC/ F2, 

and CB closes the gap, whereas LR/XGB improve mainly on PR-AUC/H with smaller gains on 

MCC/F2. The most pronounced divergence occurs under ADASYN: LR exhibits a marked increase in 

PR-AUC (and occasionally H-measure) while collapsing on MCC and F2, a signature of 

oversampling-induced score/threshold miscalibration that inflates false positives at practical 

operating points. In contrast, the ensemble methods maintain relatively rounded polygons across 

samplers, reflecting greater robustness to resampling variance. 

Overall, the Ozone radars (i) make the ROC-AUC ceiling effect visually explicit, (ii) reveal 

consequential sampler–classifier interactions (e.g., ADASYN’s trade-off for LR), and (iii) show PR-

AUC/H qualitatively tracking the separations exposed by MCC/F2. These visual regularities align 

with the Kendall-τ concordance and critical-difference rankings reported for Ozone, reinforcing the 

central conclusion that relying solely on ROC-AUC is insufficient. In contrast, a multi-metric, cost-

aligned protocol surfaces operationally meaningful differences among models. 
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(a) SMOTE (b) ADASYN 

  

(c) Border-SMOTE 
(d) SVM-SMOTE 

 

(e) Baseline 

Figure 1 Multi-metric radar plots for the Ozone dataset across five resampling strategies. Axes are scaled to [0,1]; 

polygons show mean performance across cross-validation folds. 
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Figure 3. Multi-metric radar plots for the Ozone dataset across five resampling strategies. Axes are scaled to 

[0,1]; polygons show mean performance across cross-validation folds. 

5.2. Cross-Domain Kendall Rank Correlations 

5.2.1. Kendall Rank Correlations Between Metrics (Fraud Dataset) 

The pairwise Kendall rank correlation coefficients, summarized in Table 8 and illustrated in Fig. 

4, reveal a statistically coherent structure in how the five evaluation metrics rank the 20 classifier–

sampler configurations evaluated on the Fraud dataset, exhibiting a minority class prevalence of 

approximately 0.17%. Throughout the analysis, τ denotes Kendall’s rank correlation coefficient, and 

p-values refer to the two-sided significance level derived from the exact null distribution, following 

the formulation by Kendall [50]. 

Table 8. Kendall rank correlations (τ) and p-values between metrics on the Fraud dataset. 

Metric 1 Metric 2 τ p-value 

PR-AUC ROC-AUC 0.337 0.039762 

PR-AUC F₂ 0.565 0.000514 

PR-AUC MCC 0.438 0.007054 

PR-AUC H 0.695 0.000003 

ROC-AUC F₂ 0.216 0.183217 

ROC-AUC MCC 0.047 0.770170 

ROC-AUC H 0.179 0.288378 

F₂ MCC 0.640 0.000085 

F₂ H 0.533 0.001043 

MCC H 0.617 0.000146 

An additional layer of analysis on the Fraud dataset was conducted using pairwise Kendall rank 

correlation coefficients (τ), accompanied by two-sided significance levels (p-values) calculated from 

the exact null distribution [50]. This analysis aimed to evaluate the degree of concordance between 

different performance metrics and further highlight the relative alignment or divergence of ROC-

AUC with metrics more sensitive to rare-event classification. 

The results reveal a relatively weak positive correlation between PR-AUC and ROC-AUC (τ = 

0.337, p = 0.0398), suggesting that although some concordance exists, it is neither strong nor robust. 

This weak association supports the notion that ROC-AUC may fail to track changes in precision-recall 

performance under highly imbalanced conditions reliably. More notably, ROC-AUC exhibits very 

low and statistically insignificant correlations with F₂ (τ = 0.216, p = 0.183), MCC (τ = 0.047, p = 0.770), 

and H-measure (τ = 0.179, p = 0.288). These findings emphasize that ROC-AUC rankings are 

disconnected mainly from metrics prioritizing misclassification costs and rare-event detection 

effectiveness. 

In contrast, strong and statistically significant correlations are observed among the alternative 

metrics. PR-AUC shows moderate-to-strong correlations with F₂ (τ = 0.565, p = 0.0005), MCC (τ = 

0.438, p = 0.0071), and H-measure (τ = 0.695, p = 0.000003), indicating that these metrics capture similar 

aspects of classifier performance. Similarly, F₂ correlates strongly with MCC (τ = 0.640, p = 0.000085) 

and H-measure (τ = 0.533, p = 0.0010), while MCC and H-measure themselves exhibit a strong 

concordance (τ = 0.617, p = 0.0001). 

These results highlight two critical insights: first, ROC-AUC is weakly aligned with metrics that 

account for precision, recall, and misclassification asymmetry; second, alternative metrics such as F₂, 
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MCC, and H-measure display substantial agreement, reinforcing their utility as complementary and 

reliable indicators for performance evaluation in highly imbalanced datasets. 

 

 

Figure 4. Kendall rank correlations (τ) heatmap between metrics on the Fraud dataset. 

5.2.2. Kendall Rank Correlations Between Metrics (Yeast Dataset) 

The pairwise Kendall rank correlation coefficients, summarized in Table 9 and illustrated in Fig. 

5, reveal a statistically coherent structure in how the five evaluation metrics rank the 20 classifier–

sampler configurations evaluated on the Yeast dataset, exhibiting a minority class prevalence of 

approximately 1.35%. Throughout the analysis, τ denotes Kendall’s rank correlation coefficient, and 

p-values refer to the two-sided significance level derived from the exact null distribution, following 

the formulation by Kendall [50]. 

Table 9. Kendall rank correlations (τ) and p-values between metrics on the Yeast dataset. 

Metric 1 Metric 2 τ p-value 

PR-AUC ROC-AUC 0.105 0.5424221 

PR-AUC F₂ 0.210 0.2109304 

PR-AUC MCC 0.105 0.5318615 

PR-AUC H 0.840 0.0000003 

ROC-AUC F₂ 0.011 0.9475031 

ROC-AUC MCC 0.039 0.8178395 

ROC-AUC H 0.043 0.7947140 

F₂ MCC 0.893 0.0000003 

F₂ H 0.268 0.1132160 

MCC H 0.162 0.3388544 

An additional layer of analysis on the Yeast dataset was conducted using pairwise Kendall rank 

correlation coefficients (τ), accompanied by two-sided significance levels (p-values) calculated from 

the exact null distribution [50]. This analysis aimed to assess the degree of concordance between 

different performance metrics and further investigate ROC-AUC’s alignment with alternative 

measures sensitive to rare-event classification. 
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The results reveal an extremely weak and statistically insignificant correlation between PR-AUC 

and ROC-AUC (τ = 0.105, p = 0.5424), indicating a lack of meaningful concordance between these 

metrics. Furthermore, ROC-AUC exhibits negligible and non-significant correlations with F₂ (τ = 

0.011, p = 0.9475), MCC (τ = 0.039, p = 0.8178), and H-measure (τ = 0.043, p = 0.7947). These findings 

underscore the disconnect between ROC-AUC and metrics prioritizing detecting rare events and 

penalizing misclassification costs. 

In contrast, notable correlations are observed among alternative metrics. PR-AUC shows a 

strong and statistically significant correlation with H-measure (τ = 0.840, p < 0.0001), suggesting a 

high degree of agreement in how these metrics rank classifier performance. F₂ and MCC demonstrate 

a robust concordance (τ = 0.893, p < 0.0001), highlighting their mutual sensitivity to class imbalances. 

However, F₂ and H-measure (τ = 0.268, p = 0.1132) and MCC and H-measure (τ = 0.162, p = 0.3389) 

show weaker and statistically non-significant associations. 

Overall, these results emphasize two key insights: ROC-AUC shows minimal alignment with 

alternative metrics, reinforcing its inadequacy in highly imbalanced scenarios; and strong 

correlations among specific pairs of alternative metrics—particularly F₂ and MCC—demonstrate 

their consistency and relevance for evaluating classifier performance in rare-event classification tasks. 

 

Figure 5. Kendall rank correlations (τ) heatmap between metrics on the Yeast dataset. 

5.2.3. Kendall Rank Correlations Between Metrics (Ozone Dataset) 

The pairwise Kendall rank correlation coefficients, summarized in Table 10 and illustrated in 

Fig. 6, reveal a statistically coherent structure in how the five evaluation metrics rank the 20 classifier–

sampler configurations evaluated on the Ozone dataset, exhibiting a minority class prevalence of 

approximately 3.1%. Throughout the analysis, τ denotes Kendall’s rank correlation coefficient, and 

p-values refer to the two-sided significance level derived from the exact null distribution, following 

the formulation by [50]. 

Table 10. Kendall rank correlations (τ) and p-values between metrics on the Ozone dataset. 

Metric 1 Metric 2 τ p-value 

PR-AUC ROC-AUC 0.053 0.773219 

PR-AUC F₂ 0.301 0.064271 

PR-AUC MCC 0.639 0.000086 

PR-AUC H 0.716 0.000001 

ROC-AUC F₂ -0.185 0.255895 
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ROC-AUC MCC -0.248 0.127088 

ROC-AUC H -0.168 0.318896 

F₂ MCC 0.640 0.000085 

F₂ H 0.343 0.034859 

MCC H 0.554 0.000653 

An additional layer of analysis on the Ozone dataset was conducted using pairwise Kendall rank 

correlation coefficients (τ), accompanied by two-sided significance levels (p-values) calculated from 

the exact null distribution [50]. This analysis aimed to evaluate the degree of concordance between 

different performance metrics and to assess ROC-AUC’s alignment with alternative measures 

sensitive to rare-event classification. 

The results show an extremely weak and statistically insignificant correlation between PR-AUC 

and ROC-AUC (τ = 0.053, p = 0.7732), suggesting almost no concordance between these metrics. More 

concerningly, ROC-AUC demonstrates negative correlations with F₂ (τ = -0.185, p = 0.2559), MCC (τ 

= -0.248, p = 0.1271), and H-measure (τ = -0.168, p = 0.3189), though these associations are not 

statistically significant. These findings indicate that ROC-AUC fails to align with alternative metrics 

and may rank classifier performance inversely in some instances, further underscoring its inadequacy 

for imbalanced data evaluation. 

In contrast, strong and statistically significant positive correlations are observed among the 

alternative metrics. PR-AUC exhibits substantial concordance with MCC (τ = 0.639, p = 0.000086) and 

H-measure (τ = 0.716, p < 0.0001), highlighting shared sensitivity to precision-recall trade-offs and 

misclassification costs. Similarly, F₂ correlates strongly with MCC (τ = 0.640, p = 0.000085) and 

moderately with H-measure (τ = 0.343, p = 0.0349), while MCC and H-measure also display a robust 

association (τ = 0.554, p = 0.0007). 

These findings reinforce two critical insights: ROC-AUC is poorly aligned with alternative 

metrics and may produce misleading performance rankings in highly imbalanced contexts; 

meanwhile, the strong concordance among PR-AUC, F₂, MCC, and H-measure underscores their 

suitability as reliable and complementary metrics for evaluating rare-event classification 

performance. 

 

Figure 6. Kendall rank correlations (τ) heatmap between metrics on the Ozone dataset. 

5.3. Cross-Metric Synthesis and Evaluation Strategy 

The synthesis of results across the Fraud, Yeast, and Ozone datasets reinforces a clear hierarchy 

among the evaluated metrics. Kendall’s rank correlation analyses consistently demonstrate that 

τ(MCC, F₂) ≫ τ(PR-AUC, MCC or F₂) ≫ τ(ROC-AUC, any other metric). This ordering highlights 
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MCC and F₂ as capturing similar operational trade-offs, PR-AUC as offering a compatible but 

threshold-free perspective, and ROC-AUC as providing minimal practical guidance in ultra-

imbalanced settings. Consequently, we recommend a reporting bundle of MCC + PR-AUC, with F₂ 

included when high recall is mission-critical, while relegating ROC-AUC to supplementary material 

accompanied by explicit caution regarding its limitations. Table 11 shows that the cross-domain 

analysis of the three datasets yields consistent conclusions. 

Table 11. The cross-domain analysis of the three datasets. 

Metric Fraud Yeast Ozone Cross-domain conclusion 

ROC-

AUC 

Nearly flat (0.93–0.98) 

despite FP 5→6595 

Weak τ with other 

metrics (≤0.10) 

Range only 0.83–0.91 

despite FP 1→57 

Insensitive to operational 

cost; rankings often 

contradict cost-aware 

metrics across prevalence 

levels. 

PR-AUC 

Penalizes FP explosions 

(↓0.13); limited alarm load 

insight 

Strong τ with H 

(0.84), weak with 

others 

Moderate 

discrimination; mid-

table for FP-heavy runs 

Useful for global ranking; 

must be complemented by 

threshold-based metrics for 

workload estimation. 

F₂ 

Collapses when precision 

implodes; rises with recall 

gains if FP moderate 

Near-perfect τ with 

MCC (0.89) 

Largest dynamic span 

(0.07–0.42) 

Recall-weighted single-

threshold metric aligned 

closely with MCC when β 

reflects stakeholder cost 

ratios. 

MCC 

Linear response to FP and 

FN; largest discriminative 

range (0.13–0.86) 

Strong concordance 

with F₂, moderate 

with PR-AUC 

Balances recall & FP 

(MCC 0.41 vs. ROC-

AUC 0.83) 

Most stable threshold-

dependent measure; 

symmetric treatment of 

errors holds across 

prevalence levels. 

H-

measure 

Penalizes FP-heavy models 

(e.g., XGB+SMOTE); τ = 0.84 

with PR-AUC 

Strong τ with PR-

AUC (0.84), moderate 

alignment with MCC 

and F₂ 

Flags top FP inflation 

(e.g., LR+SMOTE); τ = 

0.72 with PR-AUC, ≈ 

0.05 with ROC 

Flags top FP inflation (e.g., 

LR+SMOTE); τ = 0.72 with 

PR-AUC, ≈ 0.05 with ROC-

AUC 

The findings reinforce that MCC and F₂-score capture complementary aspects of model 

performance, reflecting trade-offs between false positives and false negatives at a fixed decision 

threshold. While MCC offers a symmetric, prevalence-agnostic summary, F₂ is more sensitive to recall 

and proves particularly useful when the cost of false negatives outweighs that of false positives. PR-

AUC, although threshold-independent, aligns reasonably well with these metrics, providing a global 

view of ranking quality that remains valuable when decision thresholds are not yet defined. ROC-

AUC, by contrast, consistently misaligns with operational needs in ultra-imbalanced settings. Its 

scores remain artificially high even when models exhibit severe false-positive inflation, thus 

obscuring practical deficiencies that MCC, F₂, and PR-AUC readily expose. 

These observations point to a clear recommendation: PR-AUC and MCC should form the core 

of any evaluation framework for rare-event classification. Where high recall is critical—for instance, 

in fraud detection or medical screening—the inclusion of F₂ offers additional insight aligned with 

stakeholder priorities. ROC-AUC may only be reported for completeness or legacy comparisons if 
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accompanied by a clear disclaimer outlining its insensitivity to class imbalance and misalignment 

with operational costs. 

These conclusions are not merely theoretical; they translate into actionable strategies for 

practitioners working with datasets where the minority class comprises less than 3% of the 

population. The primary recommendation is to adopt PR-AUC to evaluate global ranking ability and 

MCC as a threshold-specific measure of balanced performance. In domains where false negatives 

carry disproportionate risk, such as missed fraud cases or undiagnosed patients, the F₂-score is a vital 

complement, emphasizing recall without discarding the need for precision. 

The consistent misbehavior of ROC-AUC in our study warrants caution. In multiple cases, ROC-

AUC ranked models favorably even when both MCC and PR-AUC indicated poor discriminative 

performance. For example, the combination of Logistic Regression with SMOTE in the fraud dataset 

achieved a ROC-AUC well above 0.90 despite a massive spike in false positives (FP = 2019, MCC = 

0.23), effectively masking operational failure. Such discordance between ROC and MCC rankings—

especially when discrepancies exceed 10 percentile points—should be treated as a red flag in model 

validation pipelines. 

Oversampling methods, too, must be evaluated contextually. While techniques like SMOTE can 

offer measurable gains in some domains (e.g., the Yeast dataset), they may introduce detrimental 

artifacts elsewhere. It is therefore critical that researchers assess the impact of oversampling not only 

on headline metrics but also on raw confusion-matrix components. 

Finally, in settings where the economic or human cost of misclassification is asymmetric, the 

flexible F_β family offers tailored sensitivity. Selecting β between 2 and 4 allows evaluators to reflect 

real-world stakes—emphasizing recall where it matters most, while retaining the interpretability of 

a single scalar score. 

5.4. Statistical Testing and Confidence Intervals 

To assess the statistical reliability of performance estimates, 95% confidence intervals were 

constructed for each evaluation metric using a stratified bootstrap procedure. This involved 

generating 2000 resampled replicates per test fold while maintaining the original class distribution to 

preserve the inherent imbalance structure. Pairwise comparisons of ROC-AUC values between 

classifier–sampler configurations were conducted using the DeLong test for correlated receiver 

operating characteristic curves ([53]), with corresponding p-values reported. We employed the 

Friedman aligned-ranks test for comparisons involving more than two configurations, followed by 

the Nemenyi post hoc procedure to identify statistically significant differences at a family-wise 

significance level of α = 0.05. 

5.4.1. Bootstrap CIs and DeLong Test (Fraud Dataset) 

Figures 7(a)–(e) display stratified-bootstrap 95 % confidence intervals (CIs) for the Fraud data, 

while Figure 8 gives the ROC-AUC critical-difference (CD) diagram computed from 200 bootstrap 

resamples.  
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7.e 

Figure 7. (a-e) Bootstrap-based 95 % confidence intervals for each evaluation metric on the Fraud dataset. 

The ROC-AUC scores reported in Figure 7(a) exhibit a strong ceiling effect across all classifier–

sampler configurations evaluated on the Ozone dataset. Every method achieves an ROC-AUC of at 

least 0.92, with fifteen out of twenty configurations densely concentrated within the narrow 0.94–0.97 

interval. These overlaps in confidence intervals (CIs) reflect the saturation of ROC-AUC under 

conditions of extreme class imbalance. This observation is quantitatively confirmed by the critical 

difference (CD) diagram in Figure 8, where only the top-ranked Borderline-SMOTE + CatBoost and 

the lowest-ranked Borderline-SMOTE + Random Forest are distinguishable beyond the Nemenyi 

threshold (CD ≈ 2.96). All remaining methods fall within the critical band, rendering ROC-AUC 

largely ineffective in resolving meaningful differences among most classifiers—an outcome 

consistent with its known limitations in highly imbalanced domains [54]. 

By contrast, other evaluation metrics provide a more precise and discriminative perspective. 

Figure 7(b) shows the PR-AUC results distribute the same twenty methods across a substantially 

broader interval (0.62–0.88). Baseline XGBoost and SVM-SMOTE + XGBoost emerge as top 

performers (mean PR-AUC ≈ 0.87; CI: 0.83–0.90), while SMOTE + Logistic Regression and ADASYN 

+ Logistic Regression are positioned at the bottom (≈ 0.65; CI: 0.61–0.69). Metrics based on confusion-

matrix outcomes further support this stratification: MCC and F₂ (β = 2), presented in Figures 7(c) and 

7(d), respectively, rank SVM-SMOTE + Random Forest and Borderline-SMOTE + XGBoost among the 

highest (MCC ≈ 0.88; F₂ ≈ 0.82), while all logistic-regression variants remain under MCC = 0.30, 

indicating inferior performance. 

Further refinement is provided by the H-measure in Figure 7(e), which incorporates cost 

sensitivity and penalizes excessive false positives. Here, Baseline Random Forest and SVM-SMOTE 

+ CatBoost occupy the top positions (H ≈ 0.78), despite not being among the leaders under ROC-AUC. 

Compared to the bottom six, the top eight H-measure configurations present non-overlapping CIs, 

confirming a statistically and practically significant separation that ROC-AUC fails to detect. 

Rank-correlation analyses reinforce these discrepancies. As reported in Table 8, Kendall’s τ 

coefficients reveal strong concordance between PR-AUC and the H-measure, and between F₂ and 

MCC (0.64 ≤ τ ≤ 0.70), but substantially weaker alignment between ROC-AUC and any other metric 

(τ ≈ 0.04–0.33). The CD diagram in Figure 8 visually supports this conclusion, as configurations 

clustered centrally under ROC-AUC rankings are widely dispersed in the rankings of other metrics. 
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These results underscore ROC-AUC’s persistent misalignment with metrics that better reflect the 

trade-offs relevant in rare-event binary classification. 

 

Figure 8. Nemenyi critical-difference diagram derived from 200 stratified bootstrap resamples of the test fold on 

the Fraud dataset. 

5.4.2. Bootstrap CIs and DeLong Test (Yeast Dataset) 

Figures 9(a-e) show bootstrap-based 95 % confidence intervals for each evaluation metric, while 

Figure 10 reports a Nemenyi critical-difference diagram derived from 200 stratified bootstrap 

resamples of the test fold. 
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9.e 

Figure 9. a-e) Bootstrap-based 95 % confidence intervals for each evaluation metric on the Yeast dataset. 

Figure 9(a) illustrates the distribution of ROC-AUC scores across all classifier–sampler 

combinations evaluated on the Yeast dataset. Despite underlying architectural and sampling 

differences, nearly all configurations attain ROC-AUC values exceeding 0.75, with nine methods 

clustering within the narrow 0.85–0.90 interval and displaying substantially overlapping bootstrap 

confidence intervals. The critical difference (CD) diagram in Figure 10 corroborates this compression: 

no method pair exceeds the Nemenyi threshold (CD ≈ 2.96) in average rank. This inability of ROC-

AUC to distinguish between models is consistent with its known ceiling effect in highly imbalanced 

settings, where the abundance of negative-class samples artificially inflates the curve’s area—even 

for classifiers with limited discriminative ability [54]. 

In contrast, alternative metrics such as PR-AUC, MCC, F₂, and the H-measure offer a 

substantially more informative view of model performance. As depicted in Figure 9(b), PR-AUC 

distributes the same twenty configurations across a wide range (0.20–0.85), with SVM-SMOTE paired 

with logistic regression achieving the highest performance (mean ≈ 0.82; CI: 0.71–0.93), while the 

Baseline XGB variant falls to the bottom (mean ≈ 0.38; CI: 0.28–0.50). MCC and F₂ scores, shown in 

Figures 9(c) and 9(d), respectively, reveal similar rankings: the SVM-SMOTE variants dominate, 

followed by logistic regression with no resampling or with borderline-SMOTE, while ROS and 

ADASYN configurations underperform significantly. These critical distinctions, invisible under 

ROC-AUC, become pronounced through threshold-sensitive or cost-aware metrics. 

Further reinforcing this pattern, the H-measure (Figure 9(e)) adds a probabilistic cost framework 

to the evaluation [55]. It sharply penalizes models that produce excessive false positives, demoting 

Baseline XGB to the bottom quartile despite its superficially strong ROC-AUC. Notably, the bootstrap 

confidence intervals of the top five methods under the H-measure do not overlap with those of the 

bottom eight, indicating a statistically and operationally meaningful separation in model quality. 

Rank-based correlation analyses support these findings. Table 9 presents Kendall’s τ coefficients, 

which demonstrate high agreement between PR-AUC and the H-measure, as well as between F₂ and 

MCC (0.84 ≤ τ ≤ 0.89). In contrast, correlations between ROC-AUC and any other metric are negligible 

(τ ≈ 0.01–0.10), underscoring its divergence from metrics that emphasize positive-class fidelity and 

real-world utility. Together with the CD analysis, these results confirm that ROC-AUC fails to 
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provide meaningful or reliable rankings in extreme class imbalance. In contrast, PR-AUC, MCC, F₂, 

and the H-measure offer more sensitive and discriminative evaluation frameworks. 

 

Figure 10. Nemenyi critical-difference diagram derived from 200 stratified bootstrap resamples of the test fold 

on the Yeast dataset. 

5.4.3. Bootstrap CIs and DeLong Test (Ozone Dataset) 

Figures 11(a-e) present stratified-bootstrap 95 % confidence intervals (CIs) for every evaluation 

metric on the Ozone data, and Figure 12 shows the Nemenyi critical-difference (CD) diagram 

obtained from 200 bootstrap resamples of the identical test fold.  
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11.e 

Figure 11. a-e) Bootstrap-based 95 % confidence intervals for each evaluation metric on the Ozone dataset. 

The evaluation of classifier–sampler configurations on the Ozone dataset reveals similar 

limitations of ROC-AUC observed in previous benchmarks. As shown in Figure 11(a), all twenty 

configurations achieve ROC-AUC scores between 0.75 and 0.93, with thirteen methods tightly 

clustered within the 0.83–0.90 interval and exhibiting largely overlapping 95% confidence intervals. 

The critical difference (CD) diagram in Figure 12 confirms that only the two extremal 

configurations—Borderline-SMOTE with CatBoost at the top and Borderline-SMOTE with Random 

Forest at the bottom—differ by more than the Nemenyi threshold (CD ≈ 2.96). The remaining eighteen 

methods are statistically indistinguishable under ROC-AUC, reaffirming the ceiling-effect 

phenomenon in imbalanced settings, where abundant negative examples lead to inflated area-under-

curve estimates despite limited model utility [54]. 

By contrast, alternative metrics reveal substantially greater discriminatory power. Figure 11(b) 

presents the PR-AUC results, ranging from 0.18 to 0.65. Here, SMOTE combined with Random Forest 

clearly outperforms other methods (mean ≈ 0.62; CI: 0.49–0.75), while SMOTE with Logistic 

Regression ranks lowest (mean ≈ 0.14; CI: 0.10–0.22). This ranking pattern is echoed in both the MCC 

(Figure 11c) and the F₂ score (Figure 11d), where oversampled Random Forest models consistently 

lead, followed by SVM-SMOTE variants. In contrast, most baseline and ADASYN-based methods 

perform poorly, with MCC values falling below 0.25. 

Further insights are obtained from the H-measure (Figure 11e), which incorporates a 

probabilistic cost model to penalize false positives more explicitly [55]. Notably, the H-measure 

elevates SMOTE + RF and Borderline-SMOTE + RF to the top of the rankings—despite their mid-

range ROC-AUC scores—while relegating Baseline CatBoost and XGBoost models to the lower 

quartile. Moreover, the top six configurations under the H-measure exhibit non-overlapping 

confidence intervals compared to the bottom nine, signifying statistically and operationally 

meaningful differences that ROC-AUC entirely masks. 

Rank correlation analyses further support this divergence in ranking behavior. Table 10 shows 

that Kendall’s τ coefficients between PR-AUC and the H-measure and between F₂ and MCC remain 

moderate to high (0.64 ≤ τ ≤ 0.72), confirming their alignment in prioritizing models that balance recall 

and precision. In contrast, the correlation between ROC-AUC and any other metric is negligible or 

negative (τ ranging from –0.25 to 0.05), highlighting its persistent misalignment with cost-sensitive 
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and threshold-dependent performance measures. Together with the CD diagram in Figure 12, these 

findings underscore ROC-AUC’s limited utility as a ranking criterion in severe class imbalance, 

where more nuanced metrics offer more precise and more actionable discrimination among 

competing models. 

 

Figure 12. Nemenyi critical-difference diagram derived from 200 stratified bootstrap resamples of the test fold 

on the Ozone dataset. 

6. Conclusion 

This study comprehensively evaluated performance metrics for binary classification in highly 

imbalanced domains, where the minority class constitutes less than 3% of instances. Using three 

representative datasets—credit card fraud detection (0.17% prevalence), yeast protein localization 

(1.35%), and ozone level detection (2.9%)—we demonstrated that the widely adopted ROC-AUC 

metric is inadequate in such settings. Its threshold-free formulation and normalization over the 

majority class lead to saturation effects and poor sensitivity to false positives and false negatives. As 

a result, ROC-AUC often assigns inflated scores to classifiers with low operational utility. 

Beyond empirical rankings, we introduced robust statistical testing protocols to evaluate metric 

behaviour. For each metric, we computed 95% confidence intervals using stratified bootstrapping, 

while DeLong’s paired-sample test was applied to compare ROC-AUC values. When evaluating 

more than two methods, we employed the Friedman aligned-rank test followed by the Nemenyi 

critical-difference procedure. These rigorous statistical techniques confirmed that ROC-AUC fails to 

meaningfully differentiate among most classifier–sampler combinations, often masking substantial 

variation revealed by other metrics. In contrast, PR-AUC, MCC, F₂, and H-measure exposed 

statistically significant performance gaps that ROC-AUC completely overlooked. 

Our results consistently identified the MCC and F₂-score as the most robust and operationally 

meaningful metrics. Both demonstrated strong alignment (Kendall’s τ ≈ 0.89), balancing precision 

and recall under fixed thresholds. The H-measure contributed a cost-sensitive and decision-theoretic 

dimension to model evaluation, offering valuable nuance despite some sensitivity to parameter 

assumptions. PR-AUC, although threshold-free, provided complementary insights by ranking 

models based on positive-class precision and recall trade-offs. 

These findings offer a clear recommendation: ROC-AUC should no longer be the default 

evaluation metric in rare-event classification. Instead, researchers and practitioners should adopt a 

multi-metric reporting strategy, led by MCC and F₂ for threshold-based evaluation, with PR-AUC 

and H-measure used to provide additional perspectives on model ranking and cost trade-offs. This 

approach enables a statistically sound and operationally relevant understanding of model 

performance, particularly in high-stakes domains where misclassification costs are asymmetric and 

minority detection is critical. 
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Limitations and Future Work 

Despite the strength of the evidence presented, several limitations warrant acknowledgment. (i) 

The empirical analysis is restricted to three publicly available datasets spanning finance, 

bioinformatics, and environmental monitoring; evaluating additional domains—such as 

cybersecurity intrusion detection, clinical event prediction, and autonomous driving—would better 

assess external validity under diverse operational constraints. (ii) The study focuses exclusively on 

tabular data. Although the recommended bundle—MCC and F₂ as threshold-dependent metrics, 

with PR-AUC and H-measure as complementary, threshold-free and cost-sensitive views—is, in 

principle, model- and modality-agnostic because it operates on predicted scores and confusion 

matrices, metric behaviour may differ in high-dimensional, unstructured modalities (e.g., computer 

vision and natural language processing) due to differences in score calibration, class-conditional 

score distributions, and training practices (e.g., focal or class-balanced losses, hard-negative mining, 

augmentation/mix-up, prompt-based few-shot regimes). Future studies on non-tabular benchmarks 

employing contemporary architectures (e.g., CNNs/ViTs for imaging; transformers for text) and 

modality-appropriate imbalance treatments, with explicit attention to calibration and 

clinically/operationally relevant operating regions (e.g., low–FPR screening), could test 

generalizability and reveal any modality-specific adjustments (e.g., alternative thresholding policies 

or H-measure cost priors). (iii) Adaptive threshold-selection procedures and cost-sensitive loss 

functions were not considered; integrating such mechanisms may further align MCC and F₂ with 

stakeholder risk tolerances and deployment objectives. (iv) Dynamic settings—including streaming 

data and concept drift—were outside the scope; examining how MCC, F₂, H-measure, and PR-AUC 

perform under temporal and distributional shifts would inform use in evolving systems. (v) Finally, 

while the analysis employed bootstrap confidence intervals and rank-based statistical tests, future 

work could leverage more advanced inferential frameworks—such as Bayesian ranking models or 

multi-metric decision analysis—to strengthen the reliability of metric comparisons in extremely 

imbalanced regimes.  
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