

Article

Not peer-reviewed version

Why ROC-AUC Alone Is Insufficient for Highly Imbalanced Data: In-Depth Evaluation of MCC, F2-Score, H-Measure, and AUC-Based Metrics for Rare-Event Binary Classification

[Mehdi Imani](#)*, [Majid Joudaki](#), [Ayoub Bagheri](#), [Hamid R. Arabnia](#)

Posted Date: 14 October 2025

doi: [10.20944/preprints202510.0958.v1](https://doi.org/10.20944/preprints202510.0958.v1)

Keywords: binary classification; evaluation metrics; H-measure; imbalanced data; MCC; PR-AUC; ROC-AUC

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Why ROC-AUC Alone Is Insufficient for Highly Imbalanced Data: In-Depth Evaluation of MCC, F2-Score, H-Measure, and AUC-Based Metrics for Rare-Event Binary Classification

Mehdi Imani ^{1,*}, Majid Joudaki ², Ayoub Bagheri ³ and Hamid R. Arabnia ⁴

¹ Department of Computer and System Sciences, Stockholm University, 10691 Stockholm, Sweden

² Department of Computer Engineering, Faculty of Engineering, Ayatollah Boroujerdi University, 69199-69737, Boroujerd, Iran

³ Department of Methodology and Statistics, Utrecht University, Padualaan 14, 3584 CH, Utrecht, The Netherlands

⁴ School of Computing, University of Georgia, Athens, GA 30602, USA

* Correspondence: m.imani@gmail.com

Abstract

This study re-evaluates ROC-AUC for binary classification under severe class imbalance (<3% positives). Despite widespread use, ROC-AUC can mask operationally salient differences among classifiers when false-positive and false-negative costs are asymmetric. Using three benchmarks, credit-card fraud detection (0.17%), yeast protein localization (1.35%), and ozone level detection (2.9%), we compare ROC-AUC with Matthews Correlation Coefficient (MCC), F₂-score, H-measure, and area under the precision-recall curve (PR-AUC). Our empirical analyses span 20 classifier-sampler configurations per dataset, four classifiers (Logistic Regression, Random Forest, XGBoost, and CatBoost) crossed with four oversampling methods plus a no-resampling baseline (no resampling, SMOTE, Borderline-SMOTE, SVM-SMOTE, ADASYN). ROC-AUC exhibits pronounced ceiling effects, yielding high scores even for underperforming pipelines. In contrast, MCC and F₂ align more closely with deployment-relevant costs and achieve the highest Kendall's τ rank concordance across datasets; PR-AUC provides threshold-independent ranking, and H-measure integrates cost sensitivity. We quantify uncertainty and differences using stratified bootstrap confidence intervals, DeLong's test for ROC-AUC, and Friedman-Nemenyi critical-difference diagrams, which collectively underscore ROC-AUC's limited discriminative value in rare-event settings. The findings support a shift to a multi-metric evaluation framework, recommending MCC and F₂ as primary indicators, supplemented by PR-AUC and H-measure where ranking granularity and principled cost integration are required. This evidence encourages researchers and practitioners to move beyond sole reliance on ROC-AUC when evaluating classifiers in highly imbalanced data. Impact Statement— This paper addresses a pervasive failure mode in model evaluation: ROC-AUC often overstates performance in highly imbalanced classification (<3% positives). Through cross-domain experiments—credit-card fraud, yeast protein localisation, and ozone exceedance—covering 20 classifier-sampler configurations per dataset, we show pronounced ceiling effects for ROC-AUC, while MCC and F₂-score better align with asymmetric costs; PR-AUC supports threshold-independent ranking, and H-measure integrates principled cost weighting. Using bootstrap confidence intervals, DeLong's test, Kendall's tau, and Friedman-Nemenyi diagrams, we provide statistically rigorous evidence and practical guidance. The impact is a clear, reproducible protocol: report MCC and F₂ as primary, threshold-dependent indicators; accompany them with PR-AUC and H-measure; and treat ROC-AUC as contextual, not decisive. Adopting this framework improves decision-relevance, reduces deployment risk, and increases comparability across pipelines, samplers, and domains. Code and metric settings are straightforward to reproduce, enabling researchers and practitioners to upgrade evaluation practices without changing models.

Keywords: binary classification; evaluation metrics; H-measure; imbalanced data; MCC; PR-AUC; ROC-AUC

1. Introduction and Background

Rare-event binary classification remains a significant challenge across various domains, including but not limited to fraud detection, bioinformatics, environmental monitoring, cybersecurity, medical diagnosis, manufacturing fault detection, and autonomous systems. In these settings, the positive class typically constitutes a small fraction of the data, making accurate detection both technically difficult and operationally critical. Standard tools for model evaluation—particularly Area Under the Receiver Operating Characteristic Curve (ROC-AUC)—often yield inflated assessments due to their insensitivity to class imbalance and asymmetric error costs. As machine learning systems become integral to decision-making in high-stakes, real-world environments, it is essential to critically evaluate both the data preprocessing methods and performance metrics used in model assessment. This study presents a comprehensive, metric-centred investigation of classifier evaluation under highly imbalanced data conditions, focusing on resampling strategies and metric behaviour. The subsections below provide background on the methodological foundations that guide our analysis.

1.1. Resampling Strategies in Imbalanced Data

When the minority-class prior

$$\pi = \Pr(y = 1) \ll 0.5,$$

empirical risk minimisation with a symmetric loss favours the majority class [1]. One cure is resampling, i.e., constructing a training set whose posterior prior π^* is closer to 0.5. Let N_1 , N_0 denote the counts of minority (class 1) and majority (class 0) instances, and let r be an oversampling factor applied to the minority class. After oversampling,

$$\pi^* = \frac{r N_1}{r N_1 + N_0}, \quad \text{with } r = \frac{\pi^*}{(1 - \pi^*)} \frac{N_0}{N_1}.$$

A perfectly balanced set, therefore, corresponds to $r = (N_0/N_1)$. The subsections below summarise the major families of resampling and highlight their theoretical motivations.

Random undersampling, randomly discarding the majority of instances, reduces $\Pr(y = 0)$ to $\pi^* \approx 0.5$ [2]. While computationally attractive, it may eliminate informative majority examples and increase estimator variance; ensemble variants such as EasyEnsemble and BalanceCascade mitigate this by building multiple classifiers on independently undersampled subsets and aggregating their predictions.

Random oversampling replicating minority observations to reach the desired ratio is unbiased in expectation but can cause exact duplicate rows, leading to over-fitting [4]. The expected Bayes risk decreases only if the learner regularises against memorisation.

To avoid duplication, synthetic minority over-sampling generates artificial instances

$$x_{new} = x_i + \lambda(x_{NN} - x_i), \quad \lambda \sim \mathcal{U}(0,1),$$

where x_i is a minority point and x_{NN} one of its k minority nearest neighbours [5]. Extensions refine the neighbourhood criterion:

- *Borderline-SMOTE* focuses on minority points whose nearest neighbours are predominantly majority, increasing density near the decision boundary [6].
- *SVM-SMOTE* exploits the support vectors of a cost-sensitive SVM to guide synthesis [7].
- *Safe-Level-SMOTE* assigns a safety level $SL(x_i) = k^{-1} \sum_{j=1}^k 1(y_j = 1)$ and chooses the interpolation factor λ so that the synthetic point lies closer to the parent with a higher safe-level score to avoid generating samples in dangerous regions [8].

- *ADASYN* adaptively varies the number of synthetic samples per minority point according to the local imbalance ratio

$$G_i = \frac{\delta_i}{\sum_j \delta_j} G,$$

where δ_i is the proportion of majority neighbours [9]. This shifts density toward sparsely represented minority areas.

Combining oversampling with Tomek links deletion or Edited Nearest Neighbours removes the majority of points lying within the minority manifold, reducing class overlap [12]. Empirically, SMOTE + ENN often yields smoother decision surfaces than either step alone [13].

Density-aware and generative approaches employ information-theoretic or generative criteria. G-SMOTE replaces linear interpolation with a Gaussian mixture model of the minority class [14], while GAN-based oversamplers learn $p(x | y = 1)$ implicitly via adversarial training [15]. Theoretical analyses show that, under a Lipschitz assumption on the Bayes decision boundary, synthetic samples drawn from a contiguous minority manifold can reduce the upper bound on the classification error by tightening the margin [16].

1.2. Performance Metrics in Binary Classification

Let the confusion matrix for a binary classifier at threshold t be

		$\hat{y} = 1$	$\hat{y} = 0$
		$TP(t)$	$FN(t)$
$y = 1$	$FP(t)$	$TN(t)$	
$y = 0$			

and $N_1 = TP + FN, N_0 = FP + TN$.

Any scalar score reduces this 2×2 matrix—or, in threshold-free form, the ranking of class scores $s(x)$ —to a single real number. The following subsections review metrics' principal families, mathematical properties, and known limitations.

1.2.1. Threshold-independent Discrimination

The receiver-operating-characteristic area is

$$ROC - AUC = P_r(s(x^+) > s(x^-)) = \iint 1(s(x^+) > s(x^-)) dF_+ dF_-,$$

where F_+, F_- are the score distributions for positives and negatives [17, 18]. ROC-AUC is equivalent to the Mann-Whitney U statistic and is invariant under strictly monotone score transformations. Its major weakness is class-imbalance insensitivity: when $N_1 \ll N_0$, significant changes in FP translate into tiny variations of the false-positive rate [19]. Consider a binary classifier that assigns each instance a score $s(x)$ and applies a threshold t to decide between positive and negative. The two axes of its ROC curve are then

$$TPR(t) = \frac{TP(t)}{TP(t) + FN(t)}, \quad FPR(t) = \frac{FP(t)}{FP(t) + TN(t)}.$$

In many practical settings, the number of positive cases N_1 is vanishingly small compared to negatives N_0 . In that extreme imbalance, the FPR denominator is effective N_0 , so even a significant absolute change in false positives (FP) produces only a barely perceptible shift in the ROC curve.

This distortion carries over to the AUC itself. Equivalently expressed as

$$AUC = \Pr(s(x^+) > s(x^-)),$$

the statistic is overwhelmed by comparisons among the abundant negative–negative pairs. As long as a model avoids egregious score inversions, moderate numbers of false alarms or misses scarcely register in AUC.

The upshot is that, under severe imbalance, nearly any non-degenerate classifier achieves an ROC-AUC in the 0.90–0.99 range, obscuring the errors that drive operational cost. By treating false positives and false negatives (FN) symmetrically, ROC-AUC “wins” without ever “paying” for the mistakes that, in domains like fraud or medical diagnosis, are most consequential.

Replacing the x-axis with recall yields the precision–recall curve; its area

$$PR - AUC = \int_0^1 P(R)dR \quad , \quad P = \frac{TP}{TP+FP}$$

has a baseline equal to the minority prevalence $\pi = \frac{N_1}{N_0+N_1}$. Davis and Goadrich prove that Area Under the Precision–Recall Curve (PR-AUC) is strictly more informative than ROC-AUC when π is small.

In a similar effort, the H-measure is a coherent alternative to the area under the ROC curve that explicitly incorporates the relative cost of false positives and false negatives via a user-specified distribution over misclassification cost-ratios. Rather than treating all operating points equally, the H-measure defines a weighting density $u(c)$ on the cost-ratio $c \in [0,1]$ and computes the expected misclassification loss

$$\hat{L} = \int_0^1 [\pi_0 c FPR(\tau_c) + \pi_1 (1 - c) FNR(\tau_c)] u(c) dc,$$

where π_1 and $\pi_0 = 1 - \pi_1$ are the class priors, and τ_c is the threshold minimizing the cost for a given c . By default, one chooses $u(c)$ to be the Beta(2,2) density, yielding a neutral prior that neither over- nor under-emphasizes extreme cost ratios. The H-measure is then normalized by the worst-possible expected loss under the same density, producing a summary score in [0,1]:

$$H = 1 - \frac{\hat{L}}{L_{max}}.$$

In contrast to ROC-AUC—which is dominated by the vast number of negative–negative score-pair comparisons under severe imbalance and thus remains artificially high even when a classifier makes many costly errors—the H-measure penalizes errors proportionally to their operational importance. In highly skewed scenarios (e.g., fraud detection, rare-disease screening), it provides a more discriminating evaluation: classifiers that sacrifice minority-class sensitivity or incur excessive false alarms receive a substantially lower H-measure, whereas ROC-AUC remains saturated.

1.2.2. Single-threshold Confusion-matrix Scores

The Matthews correlation coefficient (MCC) and the F_β score are two widely used scalars.

$$MCC = \frac{TP \cdot TN - FP \cdot FN}{\sqrt{(TP+FP)(TP+FN)(TN+FP)(TN+FN)}} \in [-1,1] \quad [22]$$

MCC is a special case of Pearson’s r between prediction and truth. MCC treats both classes symmetrically and remains well defined even when one row or column is small [23].

$$F_\beta = (1 + \beta^2) \frac{PR}{\beta^2 P + R}, \quad \beta > 1 \text{ emphasises recall} \quad [24].$$

Unlike MCC, F_β ignores true negatives; it is therefore sensitive to prevalence and may exaggerate performance in dense negative regions [25]. An alternative that explicitly accounts for prevalence is balanced accuracy

$$BA = \frac{1}{2} (TPR + TNR) = \frac{1}{2} \left(\frac{TP}{N_1} + \frac{TN}{N_0} \right),$$

recently advocated for class-imbalance evaluation [26].

Another related metric, Cohen's κ (kappa), is a chance-corrected measure of agreement that quantifies how much better a classifier's predictions agree with the true labels than would be expected by random chance [27]. For a two-category problem, let

$$P_o = \frac{\text{number of correct predictions}}{N} \text{ and } P_e = \sum_{c \in \{0,1\}} \left(\frac{N_c^{\text{pred}}}{N} \times \frac{N_c^{\text{true}}}{N} \right)$$

be the observed and expected agreement, respectively, where N_c^{pred} and N_c^{true} are the counts of predicted and true instances in class c . Then

$$\kappa = \frac{P_o - P_e}{1 - P_e}$$

which ranges from -1 (complete disagreement) through 0 (no better than chance) to 1 (perfect agreement).

Unlike raw accuracy, κ corrects for any agreement that would arise simply from the marginal class frequencies—an important feature when classes are highly imbalanced. In such settings, a naive classifier can achieve high accuracy (and thus high P_o) by always predicting the majority class, yet its κ will remain low because P_e is large. Interpretive benchmarks suggest that $\kappa < 0.00$ indicates "poor" agreement, $0.00\text{--}0.20$ "slight," $0.21\text{--}0.40$ "fair," $0.41\text{--}0.60$ "moderate," $0.61\text{--}0.80$ "substantial," and > 0.80 "almost perfect."

Cohen's κ was deliberately excluded from our evaluation because it offers little independent information beyond existing confusion-matrix-based metrics in the context of extreme class imbalance. Our study employs the F_2 score to capture threshold-specific recall-weighted performance, the MCC for chance-corrected balance, ROC-AUC and PR-AUC for threshold-agnostic discrimination, and the H-measure for cost-sensitive integration. Since κ and MCC both correct for class-marginal effects and in practice produce virtually identical classifier rankings on ultra-skewed data, including κ would have been redundant and risked obscuring the clarity of our comparative analysis.

1.3. Contribution of the Study

Prior work has highlighted metric pitfalls in imbalanced learning [19, 23, 29], arguing that PR curves/PR-AUC are more informative than ROC on skewed data and that MCC is preferable to accuracy/F1; some even propose replacing ROC-AUC outright with MCC. Yet, we still lack a statistically rigorous, cross-domain comparison of ROC-AUC against MCC, F_2 , PR-AUC, and the H-measure under ultra-imbalanced prevalence and realistic resampling pipelines. Saito & Rehmsmeier focus on PRC vs. ROC in imbalance but do not examine MCC or H-measure or analyze sampler-classifier pipelines. Chicco & Jurman advocate MCC over accuracy/F1 but do not position MCC against ROC-AUC/PR-AUC/H-measure in rare-event scenarios or under resampling. Chicco & Jurman argue MCC vs. ROC-AUC conceptually, without an empirical, multi-metric treatment combining rare-event settings, resampling, and statistical testing. Meanwhile, Richardson et al. reopen the debate by contending that ROC-AUC remains robust under imbalance while PR-AUC is prevalence-sensitive—an observation that, rather than endorsing a single "best" metric, motivates a multi-metric protocol that separates ranking from cost and thresholding. In response, we deliver a multi-metric, cost-aligned package—MCC and F_2 (primary threshold-dependent metrics) with PR-AUC (threshold-free ranking) and H-measure (principled cost integration)—evaluated in ultra-imbalanced ($<3\%$) regimes across resampling pipelines and supported by bootstrap confidence intervals, DeLong's tests, Kendall's τ , and Friedman–Nemenyi analyses; we also include a prevalence-sensitivity check showing how shifts in class balance affect PR-AUC and H-measure on our datasets, reinforcing the need to report complementary metrics rather than rely on ROC-AUC alone.

To address this gap, we conduct a cross-domain analysis of 20 classifier–sampler configurations per dataset—four classifiers (logistic regression, random forest, XGBoost, and CatBoost) crossed with

five sampling strategies (no oversampling, SMOTE, Borderline-SMOTE, SVM-SMOTE, and ADASYN)—on three rare-event benchmarks: credit-card fraud (0.17% positives), yeast protein localization (POX) (1.35%), and ozone exceedance ($\approx 3\%$).

Our contributions are fourfold:

1. Empirical characterization of ROC-AUC in rare-event regimes. We quantify ceiling effects and show that ROC-AUC can overstate model quality by remaining relatively insensitive to operationally costly misclassifications when prevalence is $< 3\%$, even as false positives and false negatives vary substantially across pipelines.
2. A pragmatic, cost-aware multi-metric alternative. Using Kendall's τ rankings and paired significance testing, we show that MCC and F_2 better reflect asymmetric error costs and deployment priorities. In contrast, PR-AUC (threshold-free ranking) and the H-measure (principled cost weighting) provide complementary views. We distill this into a portable reporting protocol: use MCC + F_2 as primaries, with PR-AUC + H-measure as companions; report ROC-AUC only with explicit caveats in ultra-imbalanced settings.
3. Statistically rigorous, resampling-aware evaluation. We pair model selection with robust inference—stratified bootstrap confidence intervals, DeLong's tests for ROC-AUC, Kendall's τ for rank concordance, and Friedman–Nemenyi critical-difference analysis—to reveal practically meaningful differences that ROC-AUC alone can mask.
4. Actionable guidance for practitioners and researchers. We provide a replicable framework for evaluating classifiers under extreme class imbalance that integrates threshold-dependent (MCC/ F_2) and threshold-free (PR-AUC/H-measure) metrics, aligns with stakeholder cost asymmetries, and transfers across domains (finance, bioinformatics, environmental monitoring).

These contributions move beyond single-metric advocacy toward a multi-metric, cost-aligned evaluation protocol empirically validated in ultra-imbalanced, real-world scenarios.

2. Related Work

Quantitative comparison of performance metrics has attracted sustained interest because the choice of metric can alter scientific conclusions and deployment decisions. Early empirical surveys [31, 32] catalogued divergences among accuracy, ROC-based, and cost-based criteria, noting that overall accuracy

$$ACC = \frac{TP + TN}{N_1 + N_0}$$

is dominated by the majority class when $\pi = N_1/(N_1 + N_0) \ll 0.5$.

For instance, Hanley and McNeil justified ROC-AUC as the probability that a randomly chosen positive receives a higher score than a randomly chosen negative. However, Hand showed that AUC implicitly assigns unequal, prevalence-dependent misclassification costs, violating many decision contexts. Building on that critique, Davis and Goadrich derived the monotone transformation that maps any ROC point (FPR, TPR) to (R, P) space and proved that the PR curve dominates ROC when $\pi < 0.2$. Saito and Rehmsmeier confirmed the theoretical claim with biomedical data, where ROC-AUC varied less than 0.02 while PR-AUC varied over 0.50 for the same algorithms. Very recent work has reopened the debate. Richardson et al. contend, via simulation and an epitope-prediction case study, that ROC-AUC remains robust to imbalance, whereas PR-AUC “over-penalises” legitimate classifiers. Their critique hinges on the fact that precision is a function of both TPR and prevalence, making PR-AUC sensitive to evaluation-set sampling. Conversely, Zhang and Geng demonstrate that PR-AUC’s prevalence sensitivity is a feature, not a bug, when the deployment environment shares the same class skew. The persisting disagreement underscores the need for multi-metric reporting.

The MCC was initially proposed for protein secondary-structure prediction [22]. Chicco and Jurman provided simulations and genomics case studies where MCC ranked classifiers more consistently with domain utility than F_1 or balanced accuracy. In 2023, these authors argued that MCC should replace ROC-AUC as the “standard statistic” for binary classification, citing ROC’s hidden

cost bias and MCC's symmetry. Itaya et al. derived asymptotic confidence intervals for single and paired MCC estimates, enabling formal hypothesis testing between classifiers.

Elkan formalised expected cost (EC)

$$EC(t) = C_{FN} \frac{FN(t)}{N} + C_{FP} \frac{FP(t)}{N},$$

arguing that threshold choice must minimise EC under a user-supplied cost matrix. Hernández-Orallo extended ROC analysis to dominance curves, constructing the convex hull of cost points to identify potentially optimal classifiers under all cost/prevalence pairs. Hand proposed H-measure, integrating EC over a beta-distributed cost parameter to mitigate AUC's hidden-cost flaw.

While discrimination metrics assess ranking, Niculescu-Mizil and Caruana compared log-loss

$$L = -\frac{1}{N} \sum_{i=1}^N [y_i \log \hat{p}_i + (1 - y_i) \log (1 - \hat{p}_i)]$$

with Brier score and AUC, showing that well-calibrated probabilities can be critical for cost-sensitive decisions even when AUC is identical. Flach and Kull further decomposed log-loss into calibration and refinement components, providing diagnostic insight complementary to ROC analysis.

He and Garcia reviewed algorithmic and evaluation issues in imbalanced learning, recommending PR-AUC and G-mean. More recently, Blagus and Lusa demonstrated that F_β with $\beta > 1$ is preferable to F_1 for rare disease prediction, and Imani et al. [41, 42] examined how varying class-imbalance ratios affect classifier performance and the apparent efficacy of resampling (e.g., SMOTE and its variants), evaluating both threshold-dependent and threshold-free metrics, including ROC-AUC, PR-AUC, MCC, F1-score, and Cohen's κ . Complementing these findings, a comprehensive churn-prediction review reports that ROC-AUC remains one of the most commonly reported metrics in practice, reflecting established reporting conventions in the literature [43]. This persistence motivates providing clearer guidance on metric selection under class imbalance.

3. Datasets

This study evaluates classifier performance on three publicly available benchmark datasets exhibiting extreme class imbalance, see Table 1. Prior to modelling, all features were standardized to zero mean and unit variance. As is common in many operational settings, no instance-level cost annotations were available. Details of each dataset are provided in Subsections 3.1–3.3.

1. European Credit-Card Fraud Detection: This widely studied dataset comprises 284807 card-transaction records, of which 492 are confirmed frauds (imbalance rate $\approx 0.17\%$). Each observation is represented by 28 principal components derived from the original monetary attributes.
2. UCI Yeast Protein Localisation ("POX"): The UCI Yeast benchmark contains 1484 protein sequences described by eight physicochemical descriptors. The minority class "POX" appears in only 20 instances ($\approx 1.35\%$).
3. UCI Ozone Level Detection: This dataset consists of 2536 hourly measurements of atmospheric conditions, each with 73 features, and 57 recorded ozone-exceedance events ($\approx 3\%$).

Table 1. The details of the three publicly available datasets.

Dataset	Positives	Negatives	Imbalance Rate	Features	Source
<i>Credit-card Fraud</i>	492	284315	0.17%	28 PCA-obscured transaction attributes	Kaggle [44]
<i>Yeast Protein Localisation</i>	20	1464	1.35%	8 physicochemical descriptors	UCI repository [45]
<i>Ozone Level Detection</i>	57	1791	3.00%	72 atmospheric covariates	UCI repository [46]

3.1. Fraud Dataset (Credit-Card Fraud Detection)

The Credit-Card Fraud Detection dataset comprises 284807 credit-card transactions made by European cardholders over a two-day period in September 2013 [43]. Only 492 transactions are labelled as fraudulent, representing approximately 0.17 % of the data. Each record consists of 31 features, 28 anonymized principal components (V1–V28) obtained via PCA to preserve confidentiality, a “Time” feature (seconds elapsed since the first transaction), and “Amount” (transaction value in Euros). The target column “Class” takes the value 0 for legitimate transactions and 1 for fraud.

Because PCA was used to mask original feature identities, V1–V28 do not have explicit semantic meaning; nevertheless, they capture the essential structure distinguishing fraudulent from legitimate activity [44]. The extreme rarity of fraud events underscores why this dataset is a standard benchmark in imbalanced-learning research [19].

3.2. Yeast Dataset (UCI version; POX Subset)

The Yeast dataset is available from the UCI Machine Learning Repository [45]. Initially, each of the 1484 instances and 11 features describes characteristics of proteins via eight continuous features and a single “Localization” label that can take one of ten categories (CYT, NUC, MIT, ME1, ME2, ME3, EXC, VAC, POX, ERL). Of particular interest is the POX class, which appears only 20 times ($\approx 1.35\%$) out of 1484 instances [45].

Since the UCI version encodes localization as a single categorical field, we extract the POX cases and recode them as the positive class (1), with all other localizations merged into a single negative class (0). This one-versus-all transformation yields a binary problem with POX representing 1.35% of instances—thus serving as a rare-class benchmark in line with prior literature [47].

3.3. Ozone Dataset

The one-hour ozone exceedance dataset originates from the UCI Machine Learning Repository’s Air Quality Evaluation collection [46], capturing 2536 timed atmospheric chemistry and meteorology observations recorded at an urban monitoring station in California across multiple summer seasons. Each record includes a suite of 73 continuous features—such as temperature, barometric pressure, wind speed, relative humidity, and concentrations of nitrogen oxides (NO_x), hydrogen cyanide (HCN), and volatile organic compounds—paired with a binary target indicating whether the one-hour average ozone (O₃) concentration exceeded the regulatory threshold of 0.08 ppm.

Following preprocessing, entries with missing values are discarded, and the original timestamp column is removed to focus purely on predictive measurements. To conform with prevalent imbalance-learning benchmarks, a literature-standard split retains all 57 confirmed class 1 instances and randomly selects the corresponding 1791 class 0 instances, producing an extreme imbalance ratio of 31.4:1. Prior to model training, all features are standardized to zero mean and unit variance, and the data are partitioned into stratified training and testing subsets that preserve the native class proportions. The pronounced skew toward non-exceedance cases underscores the challenges of rare-

event prediction. This dataset is particularly suitable for evaluating sampling techniques, ensemble methods, and cost-sensitive learning algorithms.

3.4. Data Preprocessing

Data preprocessing was conducted uniformly across all three datasets to facilitate fair comparison under severe class imbalance. To prevent label leakage, the target label was excluded from the test set's feature matrix for each dataset. All preprocessing and resampling steps were fitted on the training split only, and the resulting fitted preprocessors (e.g., scalers, encoders) were then applied to the test features; no statistics were re-estimated on the test data, and the test labels were used solely for final evaluation. In the Credit Card Fraud dataset, the "Time" feature was excluded to avoid confounding with temporal dependence under static resampling. Transaction amounts exhibited extreme right skew and were log-transformed via

$$Amount_{log} = \ln(1 + Amount), [48].$$

Subsequently, all 29 features were standardized to zero mean and unit variance [49]. A stratified train-test split (70%/30%) preserved the original 0.17 % fraud ratio, with oversampling techniques applied exclusively to the training subset [44].

The multi-class localization labels were recoded into a binary target in the UCI Yeast dataset, assigning label 1 to the "POX" class and 0 to all other localizations.

$$y = \begin{cases} 1, & \text{if Localization} = \text{POX}, \\ 0, & \text{otherwise.} \end{cases}$$

This yielded 20 positive and 1464 negative instances ($\approx 1.35\%$). The eight continuous features were standardized via z-score normalization to ensure equal weighting in distance-based sampling. A stratified 70%/30% train-test split was performed, maintaining the class ratio in both sets, with oversampling restricted to the training partition [45].

The UCI Ozone Level Detection dataset underwent complete-case analysis: any record containing missing values was removed, reducing the sample from 2536 to 1848 observations. The timestamp column was dropped to avoid non-numeric data in subsequent analyses. A literature-standard subset was constructed by retaining all 57 positive instances and randomly sampling 1791 negatives to achieve an imbalance ratio of 31.4:1. All 73 features were standardized to zero mean and unit variance. Finally, a stratified split (70% training, 30% testing) preserved the class distribution, with oversampling applied solely to the training set.

4. Methods

Our goal was to examine how alternative evaluation metrics behave when the minority class is vanishingly rare, and to test whether a small, theory-driven bundle of metrics can travel intact across disparate application areas. We therefore built a deliberately symmetrical experimental protocol: one script, three datasets, twenty classifier-sampler variants, one set of metrics, and one statistical lens. This section walks through each step.

4.1. Classifier-Sampling Framework

All experiments were conducted in Python 3.11 using scikit-learn 1.5, imbalanced-learn 0.12, CatBoost 1.3, and XGBoost 2.0. We evaluated four classifiers—logistic regression (LR) with L_2 regularization, Random Forest (RF) with 300 trees (RF), XGBoost (XGB) with depth = 6 and learning rate $\eta = 0.1$, and CatBoost with 500 iterations (CB)—each under one baseline (no oversampling) and four oversampling techniques (SMOTE, Borderline-SMOTE, SVM-SMOTE, and ADASYN). This yields $(1 + 4) \times 4 = 20$ unique classifier-sampler configurations per dataset. We applied these 20 configurations independently to each of the three datasets, for a total of 60 model evaluations.

Performance for each configuration was estimated via stratified 10-fold cross-validation. Oversampling was applied only to the training set within each fold to avoid information leakage. We recorded ROC-AUC, PR-AUC, the H-measure, MCC, F_2 -score, and the raw confusion-matrix counts from every run.

4.2. Rank-correlation Analysis Between Metrics

To quantify how consistently the candidate metrics rank the 60 classifier-sampler configurations, we computed the pair-wise Kendall rank correlation coefficient τ ([50]) for every metric pair $(m, n) \in \{\text{PR - AUC, ROC - AUC, MCC, } F_2, \text{H - measure}\}$.

Let x_{im} and x_{in} denote the values of metrics m and n for configuration i ($i = 1, \dots, N$, $N = 40$) . Kendall's statistic is

$$\tau_{mn} = \frac{\sum_{i < j} \text{sgn}(x_{im} - x_{jm}) \text{sgn}(x_{in} - x_{jn})}{\binom{N}{2}}$$

$$\text{and } \text{sgn}(u) = \begin{cases} 1, & u > 0 \\ 0, & u = 0 \\ -1, & u < 0 \end{cases}$$

The numerator counts concordant minus discordant configuration pairs, and the denominator is the total number of unordered pairs.

$$\tau = \frac{\#\text{concordant} - \#\text{discordant}}{\binom{40}{2}}$$

Kendall's rank-correlation coefficient (τ) is preferred to the Pearson product-moment coefficient (r) for assessing agreement among evaluation metrics in highly imbalanced learning because it aligns with the methodological aim—comparing metric-induced rankings rather than raw magnitudes. Kendall τ is a non-parametric statistic that depends only on the ordering of observations; it remains invariant under any strictly monotone transformation of the metric scores and is therefore insensitive to the heterogeneous, bounded scales of MCC (-1 ... 1), PR-AUC (0 ... 1), and ROC-AUC (0 ... 1) [51]. Unlike r , which assumes joint normality and homoscedasticity, τ makes no distributional assumptions and is robust to the heavy skew, ceiling effects, and frequent ties (e.g., TP = 0, FP = 0 \rightarrow identical MCC) that characterise rare-event experiments. Furthermore, τ admits an intuitive probabilistic interpretation— $\tau = 0.60$ implies 80 % concordant versus 20 % discordant pairs—facilitating substantive discussion of metric concordance. These properties render Kendall's coefficient a statistically reliable and conceptually faithful measure for ranking-consistency studies under extreme class imbalance [50, 52].

4.3. Statistical Testing and Confidence Intervals

We generated 95 % confidence intervals (CIs) for each metric via a stratified bootstrap (2000 replicates per test fold, preserving class prevalence). ROC-AUC differences between any two classifier-sampler configurations were evaluated with the paired-sample DeLong test ([53]), and p-values are reported. When comparing more than two methods, we applied the Friedman aligned-ranks test followed by the Nemenyi Critical-Difference (CD) procedure ($\alpha = 0.05$).

5. Results and Discussions

This section presents a detailed empirical investigation into the performance of twenty classifier-sampler configurations across three highly imbalanced datasets: credit card fraud detection, Yeast protein localization, and Ozone level detection. Under extreme class imbalance, the primary objective is to examine the sensitivity and reliability of five evaluation metrics—ROC-AUC,

PR-AUC, F_2 -score, MCC, and H-measure. Rather than comparing classifiers per se, the focus lies on understanding how each metric responds to variations in false positives and false negatives induced by different sampling techniques. Results highlight notable inconsistencies in ROC-AUC's ability to reflect practical performance costs, whereas alternative metrics demonstrate more substantial alignment with operational realities and domain expert expectations.

5.1. Detailed Per-dataset Results (Fraud Dataset)

This section contrasts the behaviour of twenty classifier–sampler configurations on three thematically unrelated yet similarly skewed datasets: the credit-card fraud collection, the Yeast protein-localisation set, and the Ozone Level Detection.

5.1.1. Fraud Dataset

Table 2 presents the results of 20 distinct classifier–sampler configurations, including the corresponding confusion matrix components and five evaluation metrics, and all evaluations were conducted on the test set (unseen data) of the Fraud dataset. Since the study's objective is metric evaluation, not model comparison, we examine how each metric responds to the dramatic swings in FP and FN counts that arise under extreme class-imbalance. The empirical evaluation conducted on the Fraud dataset demonstrates clearly the limitations inherent in relying on ROC-AUC as an evaluation metric for rare-event binary classification tasks. Although ROC-AUC scores across various classifiers and sampling methods remain consistently high, a deeper inspection of the performance using alternative metrics reveals significant shortcomings in ROC-AUC's reliability for highly imbalanced datasets.

Table 2. The results on the credit-card fraud dataset.

Baseline				SMOTE				Borderline-SMOTE				SVM-SMOTE				ADASYN				
	RF	LR	XGB	CB	RF	LR	XGB	CB	RF	LR	XGB	CB	RF	LR	XGB	CB	RF	LR	XGB	CB
ROC-AUC	0.934	0.953	0.969	0.971	0.966	0.968	0.976	0.969	0.930	0.935	0.976	0.959	0.933	0.936	0.971	0.954	0.960	0.968	0.972	0.969
PR-AUC	0.821	0.708	0.840	0.836	0.819	0.705	0.836	0.823	0.818	0.670	0.823	0.815	0.827	0.687	0.834	0.827	0.822	0.711	0.827	0.807
F_2	0.796	0.658	0.787	0.805	0.793	0.237	0.814	0.783	0.795	0.448	0.820	0.787	0.828	0.522	0.817	0.804	0.783	0.090	0.814	0.766
MCC	0.855	0.731	0.840	0.856	0.831	0.227	0.800	0.733	0.851	0.360	0.845	0.756	0.843	0.416	0.827	0.768	0.814	0.126	0.800	0.713
H	0.761	0.574	0.756	0.749	0.727	0.651	0.752	0.706	0.732	0.558	0.727	0.702	0.739	0.587	0.751	0.751	0.727	0.638	0.717	0.698
FP	5	15	8	7	13	2019	35	65	6	647	15	50	18	481	22	50	17	6595	35	71
FN	35	56	36	33	34	18	26	26	35	26	29	28	27	23	28	25	35	16	26	28
TP	113	92	112	115	114	130	122	122	113	122	119	120	121	125	120	123	113	132	122	120
TN	85290	85280	85287	85288	85282	83276	85260	85230	85289	84648	85280	85245	85277	84814	85273	85245	85278	78700	85260	85224

Taking the Logistic Regression classifier with ADASYN sampling as a notable example, the ROC-AUC score is observed to be impressively high at 0.968. However, this apparently robust performance contrasts with extremely poor values for other critical metrics: an F_2 -score of just 0.090, MCC of 0.126, and an H-measure of 0.638. Further exacerbating this discrepancy is the notably large

number of false positives (FP=6595), illustrating clearly that the ROC-AUC cannot adequately penalize the misclassification of negative class instances.

Similarly, another striking contradiction is observed when examining LR with SMOTE sampling. Despite achieving a high ROC-AUC score of 0.968, this combination demonstrates poor F_2 (0.237), MCC (0.227), and H-measure (0.651) scores, compounded by an extremely high false positive rate (FP=2019). This trend persists across multiple combinations, highlighting ROC-AUC's inability to reflect meaningful performance deficiencies in classifiers when dealing with highly imbalanced datasets.

The inconsistency in performance indicated by ROC-AUC compared to more practically relevant metrics is further exemplified by the LR classifier combined with Borderline-SMOTE sampling, where an acceptable ROC-AUC score of 0.935 is recorded. Nonetheless, substantial performance issues arise, as clearly evidenced by an F_2 -score of 0.448, MCC of 0.360, and H-measure of 0.558, coupled with a high false positive count (FP=647). These results underscore the critical failure of ROC-AUC in capturing and penalizing the actual misclassification cost associated with rare-event classes.

Conversely, metrics such as MCC, F_2 , and H-measure exhibit greater consistency in identifying performance inadequacies, effectively distinguishing between well-performing and poorly performing models. For instance, the baseline Random Forest classifier achieves strong, stable performance across MCC (0.855), F_2 (0.796), and H-measure (0.761) with low FP (5), clearly indicative of genuine classification effectiveness.

In summary, the empirical evidence firmly establishes that despite its widespread use, ROC-AUC frequently offers an overly optimistic and misleading assessment of classifier performance in highly imbalanced contexts. Alternative metrics, specifically MCC, F_2 , and H-measure, are more effective and accurate indicators of genuine predictive performance and should be preferred in evaluation methodologies involving rare-event classification.

Table 3 summarizes the analysis conducted on the Fraud dataset, encapsulating the observed performance ranges, sensitivity to variations in false positives and false negatives, and key observations for ROC-AUC, PR-AUC, F_2 -score, MCC, and H-measure. This comparative overview underscores significant discrepancies between ROC-AUC and alternative metrics, highlighting ROC-AUC's insufficient sensitivity to misclassification costs in highly imbalanced datasets.

Table 3. The summary of the analysis on the Fraud dataset.

Metric	Observed range	Sensitivity to FP/FN variations	Key observations
ROC-AUC	0.930 – 0.976 ($\Delta \approx 0.046$)	<i>Minimal.</i> ROC-AUC uses the empirical FPR denominator (≈ 85 k) and therefore changes by < 0.01 when FP rises from 5 (RF baseline) to 6595 (LR + ADASYN).	LR baseline vs. LR + SMOTE: FP $\times 135 \uparrow$ (15 \rightarrow 2 019) yet ROC-AUC increases (0.953 \rightarrow 0.968).
PR-AUC	0.669 – 0.839 ($\Delta \approx 0.17$)	<i>Moderate.</i> Precision penalises each additional FP, so PR-AUC drops from 0.821 to 0.704 when LR baseline is oversampled with SMOTE (FP 15 \rightarrow 2019). However, the metric is threshold-free and does not reflect the absolute alarm burden in the deployed cut-off.	CB baseline (FP = 7) vs. CB + ADASYN (FP = 71): PR-AUC falls 0.836 \rightarrow 0.807, a visible but still modest decline given the ten-fold FP increase.
F_2	0.000 – 0.827 ($\Delta \approx 0.83$)	<i>High.</i> By quadrupling recall weight, F_2 rewards FP-heavy configurations if they gain enough TP, but collapses when precision implodes. LR + SMOTE attains the highest TP (130) and lowest FN (18) yet $F_2 = 0.237$ – demonstrating severe precision penalty.	RF baseline (TP = 113, FP = 5) vs. RF + ADASYN (TP = 113, FP = 17): identical recall, FP $\times 3.4 \uparrow$, F_2 drops from 0.795 \rightarrow 0.782.

MCC	0.125 – 0.855 ($\Delta \approx 0.73$)	<i>Very high and symmetric.</i> MCC falls almost linearly with either FP or FN explosions. It ranks LR + SMOTE (MCC = 0.227) and LR + ADASYN (0.126) near the bottom despite top-quartile ROC-AUC values, exposing their high alarm costs.	MCC and F_2 exhibit Kendall $\tau \approx 0.90$ across the grid (see Section 4.4), confirming consistent ordering once a threshold is fixed.
H-measure	0.558 – 0.761 ($\Delta \approx 0.203$)	Moderate-to-high. Reflects meaningful sensitivity to FP and FN variations, providing clearer differentiation compared to ROC-AUC.	LR baseline ($H=0.574$, FP=15) vs. LR + ADASYN ($H=0.638$, FP=6595): modest numeric change, but clearly identifies classifiers suffering from poor precision, aligning closer to MCC and F_2 in penalizing misclassification.

Complementing the scalar summaries in Table 3, a concise cross-metric visualization aids interpretation. Figures 1(a)–1(e) provide small-multiples radar plots that compare five evaluation criteria— F_2 , H-measure, MCC, ROC-AUC, and PR-AUC—for RF, LR, XGB, and CB under each resampling strategy. Axes are fixed across panels and scaled to [0, 1]; polygons report fold-wise means. The purpose is illustrative: to visualize pattern and separation across metrics, complementing the confidence-interval and rank-based analyses reported later.

Two consistent regularities are apparent across all samplers. First, ROC-AUC exhibits a ceiling effect: for every classifier and sampler, the ROC-AUC spoke lies close to the outer ring, producing minimal model separation. Second, the threshold-dependent/cost-aligned metrics—MCC and F_2 —expose substantial differences that ROC-AUC masks. In particular, LR deteriorates sharply under synthetic-minority schemes: under SMOTE and ADASYN, the LR polygon collapses on the MCC and F_2 axes while remaining near-maximal on ROC-AUC, indicating severe precision loss (inflated false positives) that does not materially affect rank-based AUC. The tree/boosted models (RF, XGB, CB) remain comparatively stable on MCC/ F_2 across samplers, with XGB/RF typically forming the largest polygons (i.e., strongest across the bundle).

The Baseline panel serves as a reference: ensembles dominate on MCC/ F_2 , while LR trails but does not collapse. Moving to SMOTE and ADASYN, the LR degradation intensifies—MCC and F_2 shrink markedly—even though PR-AUC and H-measure decline only moderately, and ROC-AUC stays saturated. This pattern is consistent with decision-boundary distortion and score miscalibration induced by aggressive oversampling at a prevalence of 0.17%, which disproportionately inflates false positives at practically relevant thresholds. Borderline-SMOTE and SVM-SMOTE show the same qualitative behavior but with milder LR degradation; ensembles retain broad, well-rounded polygons, reflecting robustness to these resampling variants.

Taken together, the radars visualize the complementarity within the proposed metric bundle. PR-AUC and H-measure track the MCC/ F_2 separations (though less dramatically), reinforcing their role as threshold-free and cost-sensitive companions, respectively. Conversely, the near-constant ROC-AUC across panels underscores its limited diagnostic value in this ultra-imbalanced setting. These visual regularities align with our Kendall- τ concordance results (strong agreement among MCC/ F_2 /H/PR-AUC; weak with ROC-AUC) and the critical-difference rankings that favor tree/boosted models. We therefore use the radars as an intuitive summary of sampler-classifier interactions and as corroborating evidence for the central claim: relying solely on ROC-AUC can misrepresent practical performance, whereas a multi-metric, cost-aligned protocol reveals operationally meaningful differences.

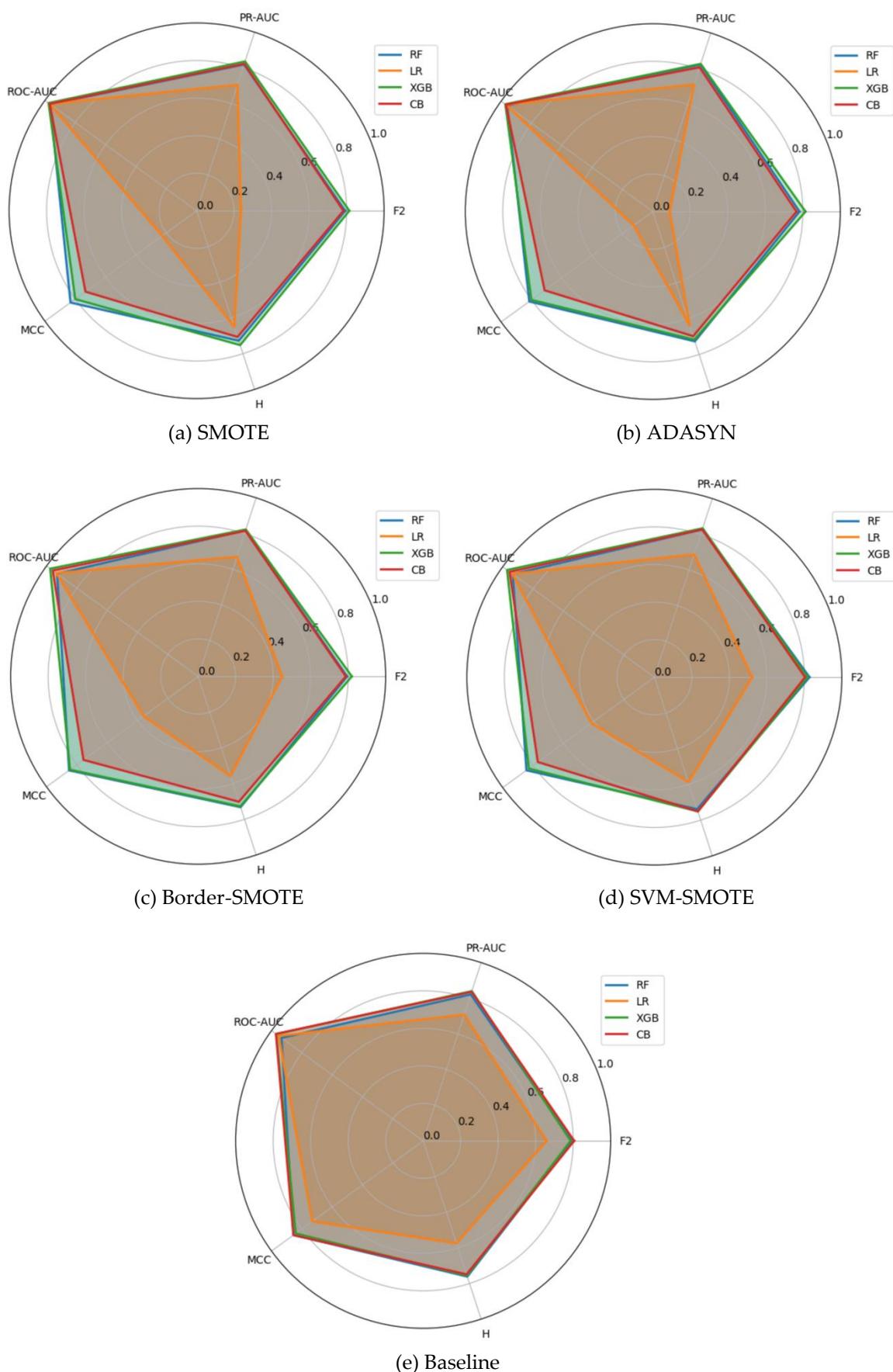


Figure 1. Multi-metric radar plots for the fraud dataset across five resampling strategies. Axes are scaled to [0,1]; polygons show mean performance across cross-validation folds.

5.1.2. Yeast Dataset

Table 4 presents the results of 20 distinct classifier–sampler configurations, including the corresponding confusion matrix components and five evaluation metrics, and all evaluations were conducted on the test set (unseen data) of the Yeast dataset. The empirical evaluation conducted on the Yeast dataset clearly demonstrates the limitations inherent in relying on ROC-AUC as an evaluation metric for rare-event binary classification tasks. Although ROC-AUC scores across various classifiers and sampling methods frequently appear stable or relatively high, deeper analysis using alternative metrics uncovers significant shortcomings in ROC-AUC's reliability for highly imbalanced datasets.

Table 4. The results on the Yeast dataset.

	Baseline				SMOTE				Borderline-SMOTE				SVM-SMOTE				ADASYN			
	RF	LR	XGB	CB	RF	LR	XGB	CB	RF	LR	XGB	CB	RF	LR	XGB	CB	RF	LR	XGB	CB
ROC-AUC	0.882	0.899	0.966	0.934	0.850	0.908	0.884	0.790	0.917	0.888	0.902	0.797	0.921	0.888	0.897	0.791	0.918	0.908	0.882	0.772
PR-AUC	0.657	0.679	0.299	0.722	0.543	0.679	0.375	0.526	0.660	0.809	0.450	0.600	0.633	0.809	0.468	0.599	0.451	0.679	0.582	0.518
F_2	0.536	0.690	0.192	0.690	0.441	0.207	0.484	0.455	0.536	0.455	0.536	0.536	0.690	0.781	0.690	0.690	0.441	0.146	0.429	0.417
MCC	0.608	0.727	0.283	0.727	0.377	0.174	0.455	0.398	0.608	0.351	0.608	0.608	0.727	0.717	0.727	0.727	0.377	0.125	0.358	0.341
H	0.577	0.677	0.127	0.572	0.400	0.677	0.353	0.501	0.534	0.727	0.411	0.530	0.533	0.727	0.511	0.530	0.303	0.677	0.505	0.501
FP	1	1	1	1	7	92	4	6	1	26	1	1	1	3	1	1	7	142	8	9
FN	3	2	5	2	3	1	3	3	3	1	3	3	2	1	2	2	3	1	3	3
TP	3	4	1	4	3	5	3	3	3	5	3	3	4	5	4	4	3	5	3	3
TN	439	439	439	439	433	348	436	434	439	414	439	439	439	437	439	439	433	298	432	431

For instance, the Logistic Regression classifier combined with SMOTE sampling yields an apparently high ROC-AUC score of 0.908. However, this performance is contradicted sharply by considerably lower scores in crucial alternative metrics such as F_2 (0.207), MCC (0.174), and H-measure (0.677). The substantial false positive rate observed in this scenario (FP=92) further highlights ROC-AUC's inability to reflect the practical costs associated with increased false alarms effectively.

Similarly, the XGBoost classifier combined with SMOTE sampling produces a ROC-AUC score of 0.884, which at first glance appears moderate. However, detailed metrics including F_2 (0.484), MCC (0.455), and H-measure (0.353) expose critical weaknesses in performance, particularly when considering that even a relatively modest increase in false positives (FP=4) can negatively impact the practical effectiveness of the model.

Additionally, analysis of the Logistic Regression classifier with ADASYN sampling provides further evidence of ROC-AUC's limitations. Despite maintaining a high ROC-AUC score (0.908), this combination demonstrates poor performance in alternative metrics: F_2 at 0.146, MCC at 0.125, and H-measure at 0.677. Moreover, this classifier configuration suffers from an extremely high false positive count (FP=142), further underscoring ROC-AUC's inadequate sensitivity to misclassification costs.

Conversely, metrics such as MCC, F_2 , and H-measure consistently provide a more accurate representation of classifier performance, effectively distinguishing between models performing well and those not. For example, the baseline Random Forest classifier achieves stable and relatively high

scores across MCC (0.608), F_2 (0.536), and H-measure (0.577) while maintaining a low false positive count ($FP=1$), clearly signalling robust classification capability.

In summary, the empirical evidence from the Yeast dataset conclusively illustrates that ROC-AUC frequently presents a misleadingly optimistic view of classifier performance in highly imbalanced scenarios. Alternative metrics such as MCC, F_2 , and H-measure emerge as more reliable and practically meaningful model performance indicators in rare-event classification problems.

Table 5 summarizes the detailed analysis conducted on the Yeast dataset, presenting the performance range, sensitivity to false positives and false negatives, and key observations for ROC-AUC, PR-AUC, F_2 -score, MCC, and H-measure. This summary clearly highlights ROC-AUC's inadequacy and supports alternative metrics' practical relevance and greater accuracy for highly imbalanced datasets.

Table 5. The summary of the analysis on the Yeast dataset.

Metric	Observed range	Sensitivity to FP/FN variations	Key observations
ROC-AUC	0.772 – 0.966 ($\Delta \approx 0.194$)	Minimal-to-moderate. Due to the dataset's high negative class size (≈ 439), ROC-AUC scores exhibit modest sensitivity despite significant false positives variation.	Logistic Regression baseline ($FP=1$, ROC-AUC=0.899) vs. LR + ADASYN ($FP=142$, ROC-AUC=0.908): ROC-AUC slightly increases despite an extreme 142-fold FP rise.
PR-AUC	0.299 – 0.809 ($\Delta \approx 0.510$)	Moderate-to-high. Precision directly penalizes false positives, clearly reflecting severe FP increases.	LR baseline ($FP=1$, PR-AUC=0.679) vs. LR + ADASYN ($FP=142$, PR-AUC=0.679): limited numeric change despite significant FP escalation, indicating threshold-free limitation.
F_2	0.146 – 0.781 ($\Delta \approx 0.635$)	High. Heavily sensitive to false positives, significantly penalizing classifiers with precision deterioration.	LR + SMOTE: achieves high ROC-AUC (0.908) but very poor F_2 (0.207) due to high FP (92), clearly demonstrating sensitivity to precision collapse.
MCC	0.125 – 0.727 ($\Delta \approx 0.602$)	Very high and symmetric. Significantly penalizes both false positives and false negatives, clearly reflecting overall performance deterioration.	LR + ADASYN yields MCC=0.125 despite ROC-AUC=0.908, accurately reflecting severe classification cost due to FP (142). MCC consistently ranks high-FP scenarios lower.
H-measure	0.127 – 0.727 ($\Delta \approx 0.600$)	Moderate-to-high. Reflects significant sensitivity to variations in FP and FN, providing clearer differentiation compared to ROC-AUC.	XGB baseline ($H=0.127$, $FP=1$) vs. LR baseline ($H=0.677$, $FP=1$): large variation indicating H-measure's sensitivity to model-specific performance, aligning closely with MCC and F_2 .

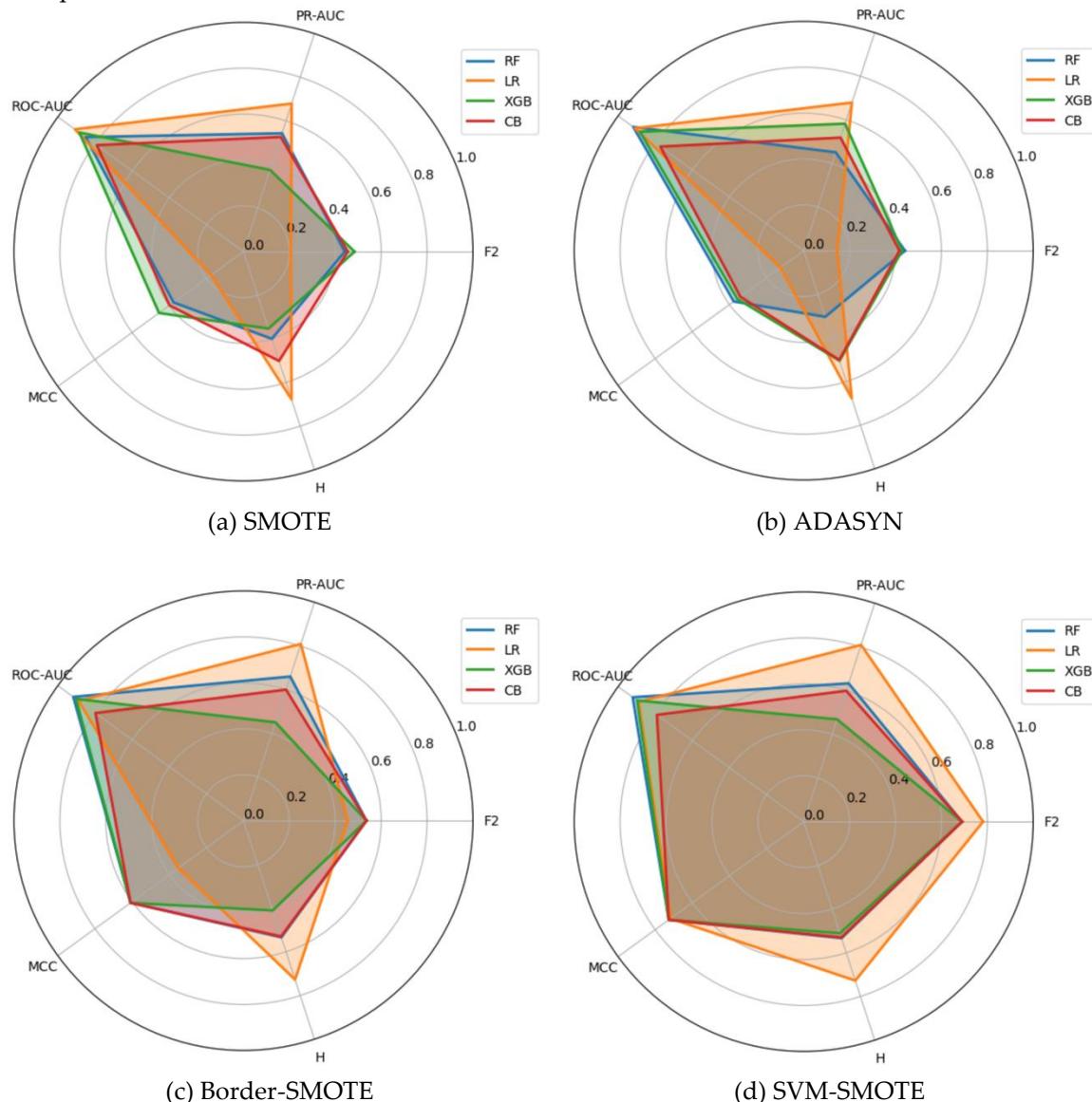
In addition to the scalar results in Table 5, a compact cross-metric perspective provides an integrated view. Figures 2(a)–2(e) present small-multiples radar plots for the Yeast dataset (1.35% positives), comparing F_2 , H-measure, MCC, ROC-AUC, and PR-AUC for RF, LR, XGB, and CB under each resampling strategy. Axes are fixed across panels, scaled to [0,1], and polygons report fold-wise means. As with the Fraud radars, the goal is illustrative: to visualize patterns and separation across metrics, complementing the following confidence-interval and rank-based analyses.

Two regularities again emerge. First, ROC-AUC remains near the outer ring for all models and samplers, yielding limited separation. Second, threshold-dependent/cost-aligned metrics (MCC and

F_2) reveal material differences that ROC-AUC alone obscures, with PR-AUC and H-measure generally moving in the same direction, albeit less sharply.

Dataset-specific nuances are notable. In the Baseline panel, XGB exhibits a pronounced collapse on F_2 , MCC, PR-AUC, and H, despite a high ROC-AUC spoke—an archetypal instance of AUC saturation masking practically relevant errors. CB and LR form larger, more rounded polygons, and RF sits in between. Under SMOTE and ADASYN, LR shows a mixed profile: PR-AUC and H increase substantially, yet MCC (and at times F_2) contracts, indicating that oversampling improves ranking and cost-weighted separation while simultaneously inflating false positives at decision-useful thresholds (score-threshold miscalibration). Borderline-SMOTE moderates this tension, with milder LR degradation on MCC/ F_2 and stable ensemble performance. SVM-SMOTE yields the most balanced polygons overall—especially for LR and CB—suggesting that margin-aware synthesis can enhance both ranking-based and threshold-dependent metrics on Yeast.

Taken together, these radars (i) make the ROC-AUC ceiling effect visually explicit; (ii) highlight sampler-classifier interactions that matter operationally (e.g., XGB’s baseline collapse; LR’s oversampling trade-offs); and (iii) show PR-AUC and H-measure qualitatively tracking the MCC/ F_2 separations. The visual patterns are consistent with the Kendall- τ concordance and critical-difference rankings reported for Yeast, reinforcing the central claim that relying solely on ROC-AUC is insufficient. In contrast, a multi-metric, cost-aligned protocol reveals differences of practical consequence.



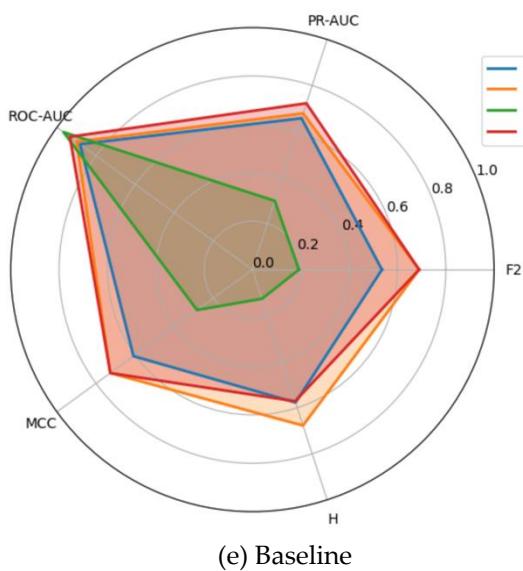


Figure 2. Multi-metric radar plots for the Yeast dataset across five resampling strategies. Axes are scaled to [0,1]; polygons show mean performance across cross-validation folds.

5.1.3. Ozone Dataset

Table 4 presents the results of 20 distinct classifier–sampler configurations, including the corresponding confusion matrix components and five evaluation metrics, and all evaluations were conducted on the Ozone dataset's test set (unseen data). The empirical evaluation conducted on the Ozone dataset provides further compelling evidence of the limitations inherent in using ROC-AUC as an evaluation metric for rare-event binary classification tasks. Despite ROC-AUC scores consistently appearing moderate to high across multiple classifiers and sampling methods, detailed examination using alternative metrics reveals substantial shortcomings in ROC-AUC's reliability for highly imbalanced datasets.

Table 6. The results on the Ozone dataset.

	Baseline				SMOTE				Borderline-SMOTE				SVM-SMOTE				ADASYN			
	RF	LR	XGB	CB	RF	LR	XGB	CB	RF	LR	XGB	CB	RF	LR	XGB	CB	RF	LR	XGB	CB
ROC-AUC	0.882	0.881	0.875	0.894	0.863	0.860	0.879	0.895	0.833	0.879	0.874	0.908	0.856	0.878	0.864	0.906	0.854	0.860	0.884	0.902
PR-AUC	0.211	0.232	0.196	0.225	0.362	0.195	0.250	0.251	0.339	0.223	0.236	0.293	0.323	0.214	0.226	0.259	0.325	0.204	0.219	0.258
F2	0.071	0.135	0.130	0.068	0.407	0.336	0.372	0.309	0.417	0.372	0.337	0.368	0.309	0.375	0.337	0.385	0.361	0.338	0.333	0.316
MCC	0.164	0.184	0.143	0.094	0.381	0.225	0.307	0.240	0.407	0.262	0.294	0.300	0.318	0.266	0.294	0.330	0.357	0.228	0.285	0.251
H	0.080	0.102	0.064	0.089	0.237	0.105	0.125	0.125	0.215	0.094	0.095	0.203	0.209	0.085	0.095	0.111	0.175	0.105	0.083	0.139
FP	1	4	7	4	11	57	19	23	9	44	15	20	8	43	15	16	9	56	16	21
FN	16	15	15	16	10	8	10	11	10	8	11	10	12	8	11	10	11	8	11	11
TP	1	2	2	1	7	9	7	6	7	9	6	7	5	9	6	7	6	9	6	6
TN	537	534	531	534	527	481	519	515	529	494	523	518	530	495	523	522	529	482	522	517

For example, the Logistic Regression classifier combined with SMOTE sampling achieves an ROC-AUC of 0.860, which initially might suggest acceptable model performance. However, this apparent performance contrasts sharply with notably weaker results in critical alternative metrics: F_2 -score at 0.336, MCC at 0.225, and H-measure at 0.105. This combination also records a substantial false positive rate (FP=57), highlighting ROC-AUC's failure to capture the practical implications of increased false alarms adequately.

Similarly, XGBoost with Borderline-SMOTE achieves a relatively moderate ROC-AUC of 0.874, but deeper inspection through alternative metrics reveals significant shortcomings. Despite its ROC-AUC score, the combination yields a relatively low F_2 -score (0.337), MCC (0.294), and H-measure (0.095), alongside an elevated false positive count (FP=15). These findings further underscore ROC-AUC's inability to reflect misclassification costs sensitively.

Another illustrative case is observed with Logistic Regression using ADASYN sampling. The ROC-AUC score of 0.860 might initially seem satisfactory; however, alternative metrics such as F_2 (0.338), MCC (0.228), and H-measure (0.105) clearly indicate substantial deficiencies in performance. Moreover, the high false positive count (FP=56) strongly emphasizes ROC-AUC's limited sensitivity to the actual cost of misclassification.

In contrast, metrics such as MCC, F_2 , and H-measure consistently provide a more precise representation of classifier performance by distinguishing between models performing genuinely well and those performing inadequately. For instance, the Random Forest classifier combined with Borderline-SMOTE sampling exhibits relatively strong and balanced performance across MCC (0.407), F_2 (0.417), and H-measure (0.215) with a comparatively low false positive rate (FP=9), clearly indicating effective classification performance.

In summary, empirical evidence from the Ozone dataset strongly reinforces that ROC-AUC is often misleadingly optimistic when assessing classifier performance in highly imbalanced scenarios. Alternative metrics, particularly MCC, F_2 , and H-measure, provide a more reliable and practical assessment of classifier effectiveness in rare-event classification tasks.

Table 7 summarizes the comprehensive analysis of the Ozone dataset, capturing the observed performance ranges, sensitivity to false positive and false negative variations, and key observations for ROC-AUC, PR-AUC, F_2 -score, MCC, and H-measure. This comparative overview reinforces ROC-AUC's inadequacies and underscores the greater practical relevance and accuracy of MCC, F_2 , and H-measure for assessing classifier performance on highly imbalanced datasets.

Table 7. The summary of the analysis on the Ozone dataset.

Metric	Observed range	Sensitivity to FP/FN variations	Key observations
ROC-AUC	0.833 – 0.908 ($\Delta \approx 0.075$)	Minimal-to-moderate. Given the relatively high negative class size (≈ 530), ROC-AUC scores remain stable despite notable increases in false positives.	Logistic Regression baseline (FP=4, ROC-AUC=0.881) vs. LR + ADASYN (FP=56, ROC-AUC=0.860): minimal ROC-AUC change despite a 14-fold FP rise, illustrating limited sensitivity.
PR-AUC	0.195 – 0.362 ($\Delta \approx 0.167$)	Moderate. Precision penalizes increases in false positives but the threshold-free nature limits sensitivity.	Random Forest baseline (PR-AUC=0.211, FP=1) vs. RF + SMOTE (PR-AUC=0.362, FP=11): visible improvement in PR-AUC reflecting better precision-recall balance despite higher FP, indicating threshold-free limitations.
F_2	0.068 – 0.417 ($\Delta \approx 0.349$)	High. Strongly sensitive to FP; even moderate FP increases lead to notable	XGB with Borderline-SMOTE: moderate ROC-AUC (0.874) contrasts sharply with relatively low F_2

		F_2 reductions, clearly penalizing precision loss.	(0.337), clearly revealing the precision collapse impact with $FP=15$.
MCC	0.094 – 0.407 ($\Delta \approx 0.313$)	Very high and symmetric. Clearly decreases with increases in FP or FN, accurately reflecting real performance decline.	LR + SMOTE: despite ROC-AUC (0.860), MCC drops significantly to 0.225 due to FP (57), highlighting MCC's sensitivity to misclassification costs.
H-measure	0.064 – 0.237 ($\Delta \approx 0.173$)	Moderate-to-high. Captures the performance sensitivity to FP and FN variations more clearly than ROC-AUC, providing a more realistic assessment.	RF + SMOTE ($H=0.237$, $FP=11$) clearly outperforms LR + ADASYN ($H=0.105$, $FP=56$), effectively reflecting differences in false alarm costs and model reliability.

Beyond the scalar summaries in Table 7, a compact cross-metric view is useful. Figures 3(a)–3(e) show small-multiples radar plots for the Ozone dataset ($\approx 3\%$ positives), comparing F_2 , H-measure, MCC, ROC-AUC, and PR-AUC for RF, LR, XGB, and CB under each resampling strategy. Axes are fixed across panels, scaled to $[0,1]$, and polygons report fold-wise means. As in the prior datasets, these plots are illustrative—a compact view of pattern and separation across metrics that complements the subsequent confidence-interval and rank-based analyses.

Two regularities recur. First, ROC-AUC lies close to the outer ring for all models and samplers, yielding limited discriminatory power among classifiers. Second, the threshold-dependent/cost-aligned metrics—MCC and F_2 —exhibit meaningful spread, with PR-AUC and H-measure generally moving in the same qualitative direction (though less sharply), thereby visualizing the complementarity within the proposed metric bundle.

Dataset-specific nuances are evident. In the Baseline panel, RF forms the broadest, most balanced polygon, leading on MCC, F_2 , and PR-AUC, while CB is competitive and LR/XGB trail—despite uniformly high ROC-AUC for all four models. Under SMOTE, polygons contract on MCC and F_2 across models (with only modest changes in PR-AUC/H), indicating that naive oversampling degrades performance at decision-relevant thresholds even as rank-based AUC remains high. Borderline-SMOTE and SVM-SMOTE partially recover this loss: RF again dominates on MCC/ F_2 , and CB closes the gap, whereas LR/XGB improve mainly on PR-AUC/H with smaller gains on MCC/ F_2 . The most pronounced divergence occurs under ADASYN: LR exhibits a marked increase in PR-AUC (and occasionally H-measure) while collapsing on MCC and F_2 , a signature of oversampling-induced score/threshold miscalibration that inflates false positives at practical operating points. In contrast, the ensemble methods maintain relatively rounded polygons across samplers, reflecting greater robustness to resampling variance.

Overall, the Ozone radars (i) make the ROC-AUC ceiling effect visually explicit, (ii) reveal consequential sampler–classifier interactions (e.g., ADASYN's trade-off for LR), and (iii) show PR-AUC/H qualitatively tracking the separations exposed by MCC/ F_2 . These visual regularities align with the Kendall- τ concordance and critical-difference rankings reported for Ozone, reinforcing the central conclusion that relying solely on ROC-AUC is insufficient. In contrast, a multi-metric, cost-aligned protocol surfaces operationally meaningful differences among models.

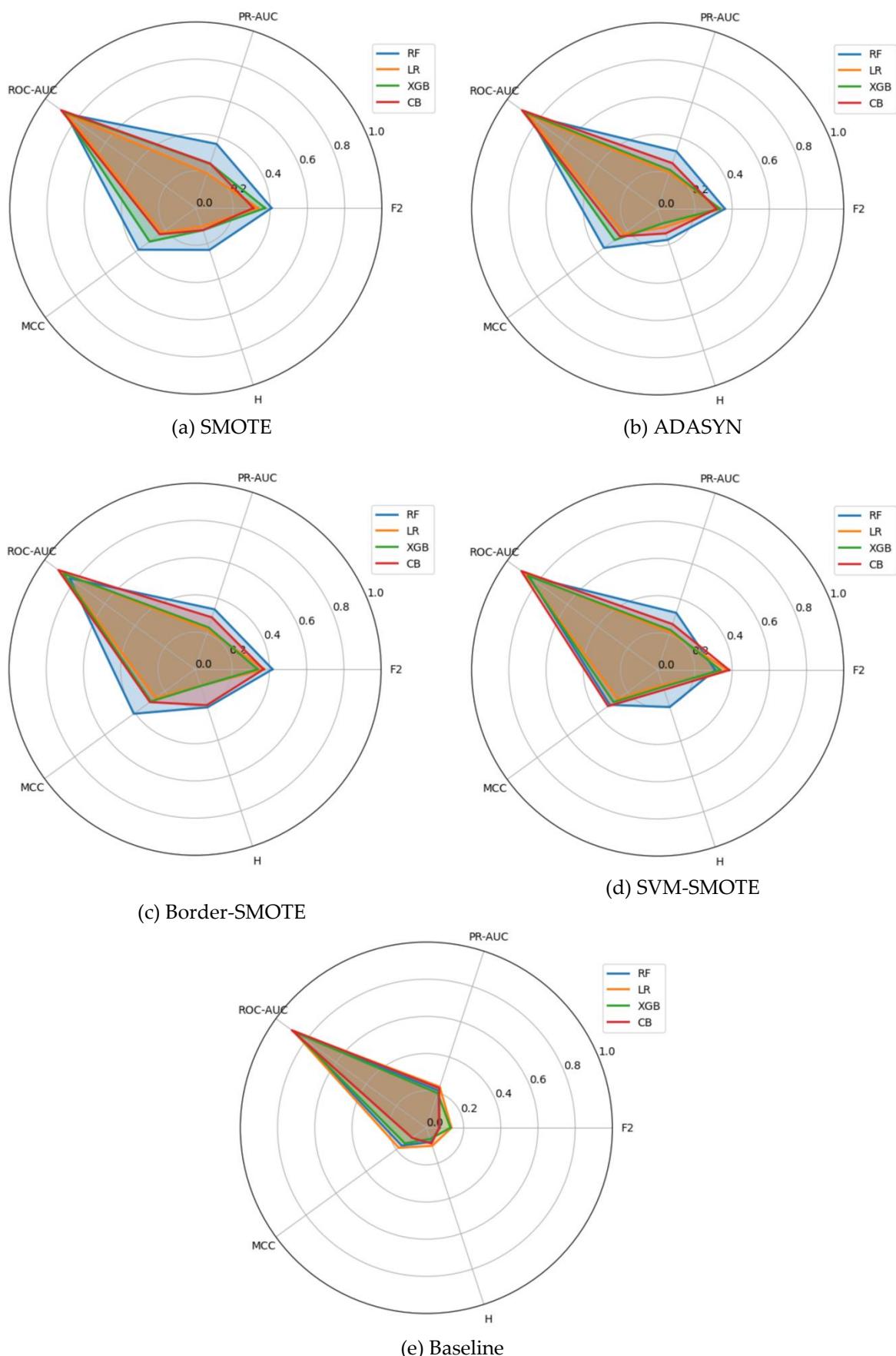


Figure 1 Multi-metric radar plots for the Ozone dataset across five resampling strategies. Axes are scaled to [0,1]; polygons show mean performance across cross-validation folds.

Figure 3. Multi-metric radar plots for the Ozone dataset across five resampling strategies. Axes are scaled to [0,1]; polygons show mean performance across cross-validation folds.

5.2. Cross-Domain Kendall Rank Correlations

5.2.1. Kendall Rank Correlations Between Metrics (Fraud Dataset)

The pairwise Kendall rank correlation coefficients, summarized in Table 8 and illustrated in Fig. 4, reveal a statistically coherent structure in how the five evaluation metrics rank the 20 classifier-sampler configurations evaluated on the Fraud dataset, exhibiting a minority class prevalence of approximately 0.17%. Throughout the analysis, τ denotes Kendall's rank correlation coefficient, and p -values refer to the two-sided significance level derived from the exact null distribution, following the formulation by Kendall [50].

Table 8. Kendall rank correlations (τ) and p -values between metrics on the Fraud dataset.

Metric 1	Metric 2	τ	p-value
PR-AUC	ROC-AUC	0.337	0.039762
PR-AUC	F_2	0.565	0.000514
PR-AUC	MCC	0.438	0.007054
PR-AUC	H	0.695	0.000003
ROC-AUC	F_2	0.216	0.183217
ROC-AUC	MCC	0.047	0.770170
ROC-AUC	H	0.179	0.288378
F_2	MCC	0.640	0.000085
F_2	H	0.533	0.001043
MCC	H	0.617	0.000146

An additional layer of analysis on the Fraud dataset was conducted using pairwise Kendall rank correlation coefficients (τ), accompanied by two-sided significance levels (p -values) calculated from the exact null distribution [50]. This analysis aimed to evaluate the degree of concordance between different performance metrics and further highlight the relative alignment or divergence of ROC-AUC with metrics more sensitive to rare-event classification.

The results reveal a relatively weak positive correlation between PR-AUC and ROC-AUC ($\tau = 0.337$, $p = 0.0398$), suggesting that although some concordance exists, it is neither strong nor robust. This weak association supports the notion that ROC-AUC may fail to track changes in precision-recall performance under highly imbalanced conditions reliably. More notably, ROC-AUC exhibits very low and statistically insignificant correlations with F_2 ($\tau = 0.216$, $p = 0.183$), MCC ($\tau = 0.047$, $p = 0.770$), and H-measure ($\tau = 0.179$, $p = 0.288$). These findings emphasize that ROC-AUC rankings are disconnected mainly from metrics prioritizing misclassification costs and rare-event detection effectiveness.

In contrast, strong and statistically significant correlations are observed among the alternative metrics. PR-AUC shows moderate-to-strong correlations with F_2 ($\tau = 0.565$, $p = 0.0005$), MCC ($\tau = 0.438$, $p = 0.0071$), and H-measure ($\tau = 0.695$, $p = 0.000003$), indicating that these metrics capture similar aspects of classifier performance. Similarly, F_2 correlates strongly with MCC ($\tau = 0.640$, $p = 0.000085$) and H-measure ($\tau = 0.533$, $p = 0.0010$), while MCC and H-measure themselves exhibit a strong concordance ($\tau = 0.617$, $p = 0.0001$).

These results highlight two critical insights: first, ROC-AUC is weakly aligned with metrics that account for precision, recall, and misclassification asymmetry; second, alternative metrics such as F_2 ,

MCC, and H-measure display substantial agreement, reinforcing their utility as complementary and reliable indicators for performance evaluation in highly imbalanced datasets.

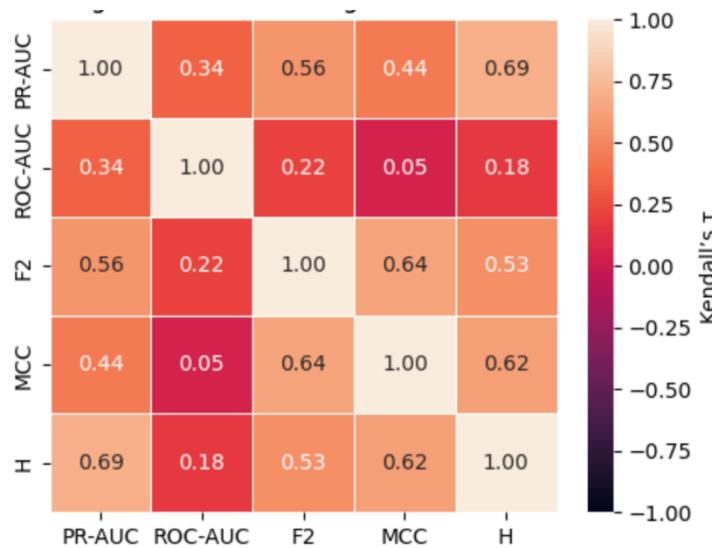


Figure 4. Kendall rank correlations (τ) heatmap between metrics on the Fraud dataset.

5.2.2. Kendall Rank Correlations Between Metrics (Yeast Dataset)

The pairwise Kendall rank correlation coefficients, summarized in Table 9 and illustrated in Fig. 5, reveal a statistically coherent structure in how the five evaluation metrics rank the 20 classifier-sampler configurations evaluated on the Yeast dataset, exhibiting a minority class prevalence of approximately 1.35%. Throughout the analysis, τ denotes Kendall's rank correlation coefficient, and p -values refer to the two-sided significance level derived from the exact null distribution, following the formulation by Kendall [50].

Table 9. Kendall rank correlations (τ) and p -values between metrics on the Yeast dataset.

Metric 1	Metric 2	τ	p -value
PR-AUC	ROC-AUC	0.105	0.5424221
PR-AUC	F_2	0.210	0.2109304
PR-AUC	MCC	0.105	0.5318615
PR-AUC	H	0.840	0.0000003
ROC-AUC	F_2	0.011	0.9475031
ROC-AUC	MCC	0.039	0.8178395
ROC-AUC	H	0.043	0.7947140
F_2	MCC	0.893	0.0000003
F_2	H	0.268	0.1132160
MCC	H	0.162	0.3388544

An additional layer of analysis on the Yeast dataset was conducted using pairwise Kendall rank correlation coefficients (τ), accompanied by two-sided significance levels (p -values) calculated from the exact null distribution [50]. This analysis aimed to assess the degree of concordance between different performance metrics and further investigate ROC-AUC's alignment with alternative measures sensitive to rare-event classification.

The results reveal an extremely weak and statistically insignificant correlation between PR-AUC and ROC-AUC ($\tau = 0.105$, $p = 0.5424$), indicating a lack of meaningful concordance between these metrics. Furthermore, ROC-AUC exhibits negligible and non-significant correlations with F_2 ($\tau = 0.011$, $p = 0.9475$), MCC ($\tau = 0.039$, $p = 0.8178$), and H-measure ($\tau = 0.043$, $p = 0.7947$). These findings underscore the disconnect between ROC-AUC and metrics prioritizing detecting rare events and penalizing misclassification costs.

In contrast, notable correlations are observed among alternative metrics. PR-AUC shows a strong and statistically significant correlation with H-measure ($\tau = 0.840$, $p < 0.0001$), suggesting a high degree of agreement in how these metrics rank classifier performance. F_2 and MCC demonstrate a robust concordance ($\tau = 0.893$, $p < 0.0001$), highlighting their mutual sensitivity to class imbalances. However, F_2 and H-measure ($\tau = 0.268$, $p = 0.1132$) and MCC and H-measure ($\tau = 0.162$, $p = 0.3389$) show weaker and statistically non-significant associations.

Overall, these results emphasize two key insights: ROC-AUC shows minimal alignment with alternative metrics, reinforcing its inadequacy in highly imbalanced scenarios; and strong correlations among specific pairs of alternative metrics—particularly F_2 and MCC—demonstrate their consistency and relevance for evaluating classifier performance in rare-event classification tasks.

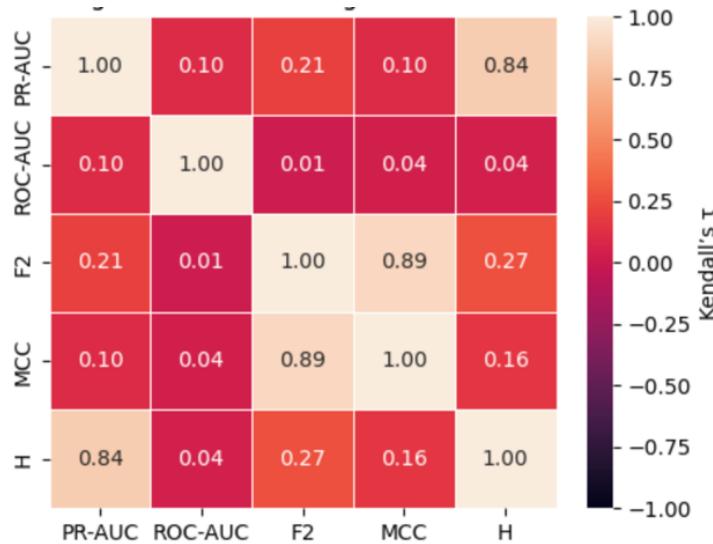


Figure 5. Kendall rank correlations (τ) heatmap between metrics on the Yeast dataset.

5.2.3. Kendall Rank Correlations Between Metrics (Ozone Dataset)

The pairwise Kendall rank correlation coefficients, summarized in Table 10 and illustrated in Fig. 6, reveal a statistically coherent structure in how the five evaluation metrics rank the 20 classifier-sampler configurations evaluated on the Ozone dataset, exhibiting a minority class prevalence of approximately 3.1%. Throughout the analysis, τ denotes Kendall's rank correlation coefficient, and p -values refer to the two-sided significance level derived from the exact null distribution, following the formulation by [50].

Table 10. Kendall rank correlations (τ) and p -values between metrics on the Ozone dataset.

Metric 1	Metric 2	τ	p -value
PR-AUC	ROC-AUC	0.053	0.773219
PR-AUC	F_2	0.301	0.064271
PR-AUC	MCC	0.639	0.000086
PR-AUC	H	0.716	0.000001
ROC-AUC	F_2	-0.185	0.255895

ROC-AUC	MCC	-0.248	0.127088
ROC-AUC	H	-0.168	0.318896
F_2	MCC	0.640	0.000085
F_2	H	0.343	0.034859
MCC	H	0.554	0.000653

An additional layer of analysis on the Ozone dataset was conducted using pairwise Kendall rank correlation coefficients (τ), accompanied by two-sided significance levels (p-values) calculated from the exact null distribution [50]. This analysis aimed to evaluate the degree of concordance between different performance metrics and to assess ROC-AUC's alignment with alternative measures sensitive to rare-event classification.

The results show an extremely weak and statistically insignificant correlation between PR-AUC and ROC-AUC ($\tau = 0.053$, $p = 0.7732$), suggesting almost no concordance between these metrics. More concerningly, ROC-AUC demonstrates negative correlations with F_2 ($\tau = -0.185$, $p = 0.2559$), MCC ($\tau = -0.248$, $p = 0.1271$), and H-measure ($\tau = -0.168$, $p = 0.3189$), though these associations are not statistically significant. These findings indicate that ROC-AUC fails to align with alternative metrics and may rank classifier performance inversely in some instances, further underscoring its inadequacy for imbalanced data evaluation.

In contrast, strong and statistically significant positive correlations are observed among the alternative metrics. PR-AUC exhibits substantial concordance with MCC ($\tau = 0.639$, $p = 0.000086$) and H-measure ($\tau = 0.716$, $p < 0.0001$), highlighting shared sensitivity to precision-recall trade-offs and misclassification costs. Similarly, F_2 correlates strongly with MCC ($\tau = 0.640$, $p = 0.000085$) and moderately with H-measure ($\tau = 0.343$, $p = 0.0349$), while MCC and H-measure also display a robust association ($\tau = 0.554$, $p = 0.0007$).

These findings reinforce two critical insights: ROC-AUC is poorly aligned with alternative metrics and may produce misleading performance rankings in highly imbalanced contexts; meanwhile, the strong concordance among PR-AUC, F_2 , MCC, and H-measure underscores their suitability as reliable and complementary metrics for evaluating rare-event classification performance.

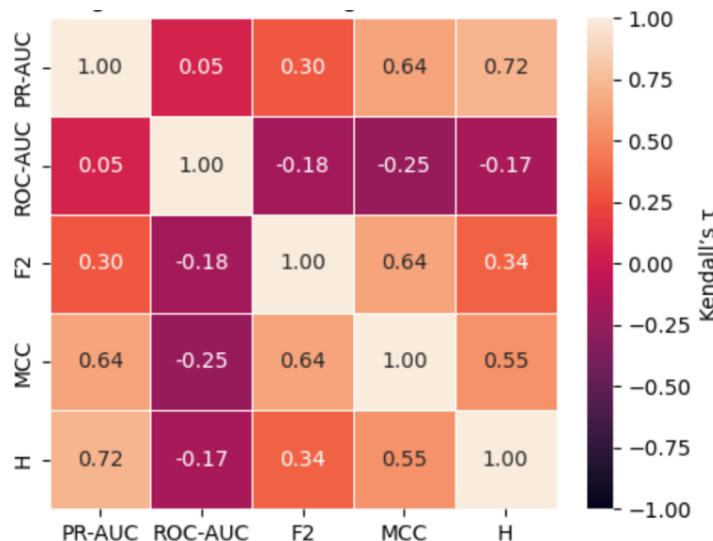


Figure 6. Kendall rank correlations (τ) heatmap between metrics on the Ozone dataset.

5.3. Cross-Metric Synthesis and Evaluation Strategy

The synthesis of results across the Fraud, Yeast, and Ozone datasets reinforces a clear hierarchy among the evaluated metrics. Kendall's rank correlation analyses consistently demonstrate that $\tau(\text{MCC}, \text{F}_2) \gg \tau(\text{PR-AUC}, \text{MCC} \text{ or } \text{F}_2) \gg \tau(\text{ROC-AUC}, \text{any other metric})$. This ordering highlights

MCC and F_2 as capturing similar operational trade-offs, PR-AUC as offering a compatible but threshold-free perspective, and ROC-AUC as providing minimal practical guidance in ultra-imbalanced settings. Consequently, we recommend a reporting bundle of MCC + PR-AUC, with F_2 included when high recall is mission-critical, while relegating ROC-AUC to supplementary material accompanied by explicit caution regarding its limitations. Table 11 shows that the cross-domain analysis of the three datasets yields consistent conclusions.

Table 11. The cross-domain analysis of the three datasets.

Metric	Fraud	Yeast	Ozone	Cross-domain conclusion
ROC-AUC	Nearly flat (0.93–0.98) despite FP 5→6595	Weak τ with other metrics (≤ 0.10)	Range only 0.83–0.91 despite FP 1→57	Insensitive to operational cost; rankings often contradict cost-aware metrics across prevalence levels.
PR-AUC	Penalizes FP explosions ($\downarrow 0.13$); limited alarm load insight	Strong τ with H (0.84), weak with others	Moderate discrimination; mid-table for FP-heavy runs	Useful for global ranking; must be complemented by threshold-based metrics for workload estimation.
F_2	Collapses when precision implodes; rises with recall gains if FP moderate	Near-perfect τ with MCC (0.89)	Largest dynamic span (0.07–0.42)	Recall-weighted single-threshold metric aligned closely with MCC when β reflects stakeholder cost ratios.
MCC	Linear response to FP and FN; largest discriminative range (0.13–0.86)	Strong concordance with F_2 , moderate with PR-AUC	Balances recall & FP (MCC 0.41 vs. ROC-AUC 0.83)	Most stable threshold-dependent measure; symmetric treatment of errors holds across prevalence levels.
H-measure	Penalizes FP-heavy models (e.g., XGB+SMOTE); $\tau = 0.84$ with PR-AUC	Strong τ with PR-AUC (0.84), moderate alignment with MCC and F_2	Flags top FP inflation (e.g., LR+SMOTE); $\tau = 0.72$ with PR-AUC, ≈ 0.05 with ROC-AUC	Flags top FP inflation (e.g., LR+SMOTE); $\tau = 0.72$ with PR-AUC, ≈ 0.05 with ROC-AUC

The findings reinforce that MCC and F_2 -score capture complementary aspects of model performance, reflecting trade-offs between false positives and false negatives at a fixed decision threshold. While MCC offers a symmetric, prevalence-agnostic summary, F_2 is more sensitive to recall and proves particularly useful when the cost of false negatives outweighs that of false positives. PR-AUC, although threshold-independent, aligns reasonably well with these metrics, providing a global view of ranking quality that remains valuable when decision thresholds are not yet defined. ROC-AUC, by contrast, consistently misaligns with operational needs in ultra-imbalanced settings. Its scores remain artificially high even when models exhibit severe false-positive inflation, thus obscuring practical deficiencies that MCC, F_2 , and PR-AUC readily expose.

These observations point to a clear recommendation: PR-AUC and MCC should form the core of any evaluation framework for rare-event classification. Where high recall is critical—for instance, in fraud detection or medical screening—the inclusion of F_2 offers additional insight aligned with stakeholder priorities. ROC-AUC may only be reported for completeness or legacy comparisons if

accompanied by a clear disclaimer outlining its insensitivity to class imbalance and misalignment with operational costs.

These conclusions are not merely theoretical; they translate into actionable strategies for practitioners working with datasets where the minority class comprises less than 3% of the population. The primary recommendation is to adopt PR-AUC to evaluate global ranking ability and MCC as a threshold-specific measure of balanced performance. In domains where false negatives carry disproportionate risk, such as missed fraud cases or undiagnosed patients, the F_2 -score is a vital complement, emphasizing recall without discarding the need for precision.

The consistent misbehavior of ROC-AUC in our study warrants caution. In multiple cases, ROC-AUC ranked models favorably even when both MCC and PR-AUC indicated poor discriminative performance. For example, the combination of Logistic Regression with SMOTE in the fraud dataset achieved a ROC-AUC well above 0.90 despite a massive spike in false positives (FP = 2019, MCC = 0.23), effectively masking operational failure. Such discordance between ROC and MCC rankings—especially when discrepancies exceed 10 percentile points—should be treated as a red flag in model validation pipelines.

Oversampling methods, too, must be evaluated contextually. While techniques like SMOTE can offer measurable gains in some domains (e.g., the Yeast dataset), they may introduce detrimental artifacts elsewhere. It is therefore critical that researchers assess the impact of oversampling not only on headline metrics but also on raw confusion-matrix components.

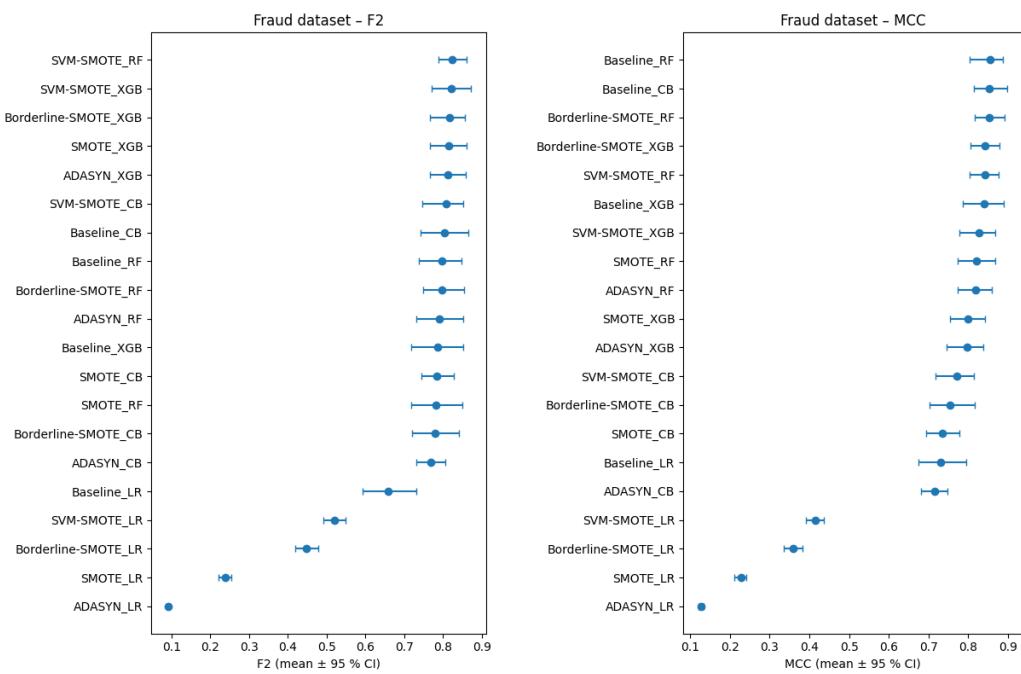
Finally, in settings where the economic or human cost of misclassification is asymmetric, the flexible F_β family offers tailored sensitivity. Selecting β between 2 and 4 allows evaluators to reflect real-world stakes—emphasizing recall where it matters most, while retaining the interpretability of a single scalar score.

5.4. Statistical Testing and Confidence Intervals

To assess the statistical reliability of performance estimates, 95% confidence intervals were constructed for each evaluation metric using a stratified bootstrap procedure. This involved generating 2000 resampled replicates per test fold while maintaining the original class distribution to preserve the inherent imbalance structure. Pairwise comparisons of ROC-AUC values between classifier-sampler configurations were conducted using the DeLong test for correlated receiver operating characteristic curves ([53]), with corresponding p -values reported. We employed the Friedman aligned-ranks test for comparisons involving more than two configurations, followed by the Nemenyi post hoc procedure to identify statistically significant differences at a family-wise significance level of $\alpha = 0.05$.

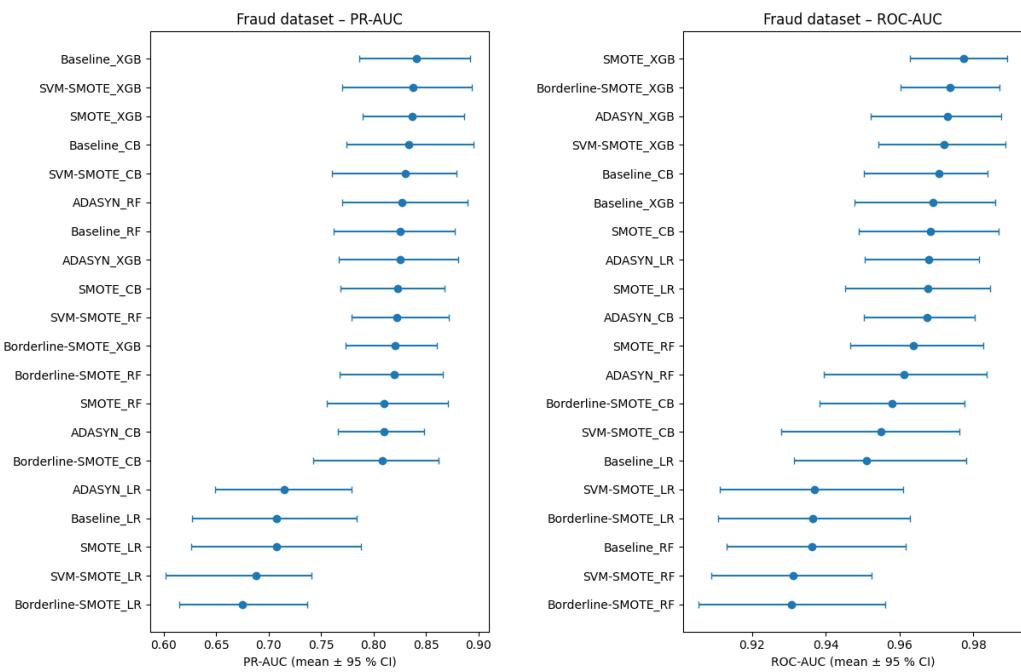
5.4.1. Bootstrap CIs and DeLong Test (Fraud Dataset)

Figures 7(a)–(e) display stratified-bootstrap 95 % confidence intervals (CIs) for the Fraud data, while Figure 8 gives the ROC-AUC critical-difference (CD) diagram computed from 200 bootstrap resamples.



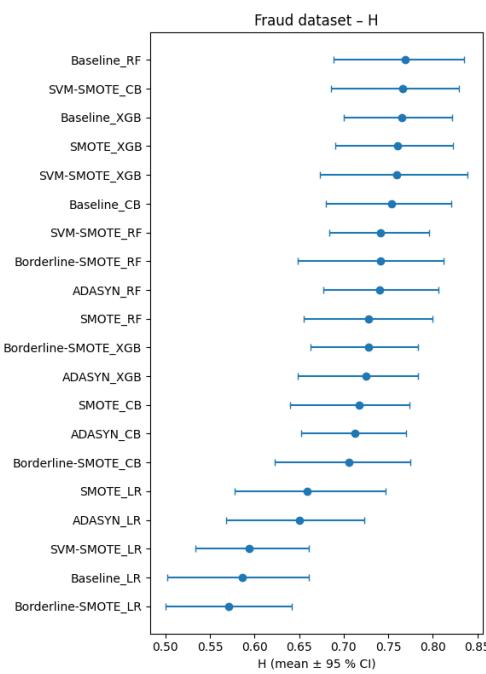
7.a

7.b



7.c

7.d



7.e

Figure 7. (a-e) Bootstrap-based 95 % confidence intervals for each evaluation metric on the Fraud dataset.

The ROC-AUC scores reported in Figure 7(a) exhibit a strong ceiling effect across all classifier-sampler configurations evaluated on the Ozone dataset. Every method achieves an ROC-AUC of at least 0.92, with fifteen out of twenty configurations densely concentrated within the narrow 0.94–0.97 interval. These overlaps in confidence intervals (CIs) reflect the saturation of ROC-AUC under conditions of extreme class imbalance. This observation is quantitatively confirmed by the critical difference (CD) diagram in Figure 8, where only the top-ranked Borderline-SMOTE + CatBoost and the lowest-ranked Borderline-SMOTE + Random Forest are distinguishable beyond the Nemenyi threshold ($CD \approx 2.96$). All remaining methods fall within the critical band, rendering ROC-AUC largely ineffective in resolving meaningful differences among most classifiers—an outcome consistent with its known limitations in highly imbalanced domains [54].

By contrast, other evaluation metrics provide a more precise and discriminative perspective. Figure 7(b) shows the PR-AUC results distribute the same twenty methods across a substantially broader interval (0.62–0.88). Baseline XGBoost and SVM-SMOTE + XGBoost emerge as top performers (mean PR-AUC ≈ 0.87 ; CI: 0.83–0.90), while SMOTE + Logistic Regression and ADASYN + Logistic Regression are positioned at the bottom (≈ 0.65 ; CI: 0.61–0.69). Metrics based on confusion-matrix outcomes further support this stratification: MCC and F_2 ($\beta = 2$), presented in Figures 7(c) and 7(d), respectively, rank SVM-SMOTE + Random Forest and Borderline-SMOTE + XGBoost among the highest ($MCC \approx 0.88$; $F_2 \approx 0.82$), while all logistic-regression variants remain under $MCC = 0.30$, indicating inferior performance.

Further refinement is provided by the H-measure in Figure 7(e), which incorporates cost sensitivity and penalizes excessive false positives. Here, Baseline Random Forest and SVM-SMOTE + CatBoost occupy the top positions ($H \approx 0.78$), despite not being among the leaders under ROC-AUC. Compared to the bottom six, the top eight H-measure configurations present non-overlapping CIs, confirming a statistically and practically significant separation that ROC-AUC fails to detect.

Rank-correlation analyses reinforce these discrepancies. As reported in Table 8, Kendall's τ coefficients reveal strong concordance between PR-AUC and the H-measure, and between F_2 and MCC ($0.64 \leq \tau \leq 0.70$), but substantially weaker alignment between ROC-AUC and any other metric ($\tau \approx 0.04$ –0.33). The CD diagram in Figure 8 visually supports this conclusion, as configurations clustered centrally under ROC-AUC rankings are widely dispersed in the rankings of other metrics.

These results underscore ROC-AUC's persistent misalignment with metrics that better reflect the trade-offs relevant in rare-event binary classification.

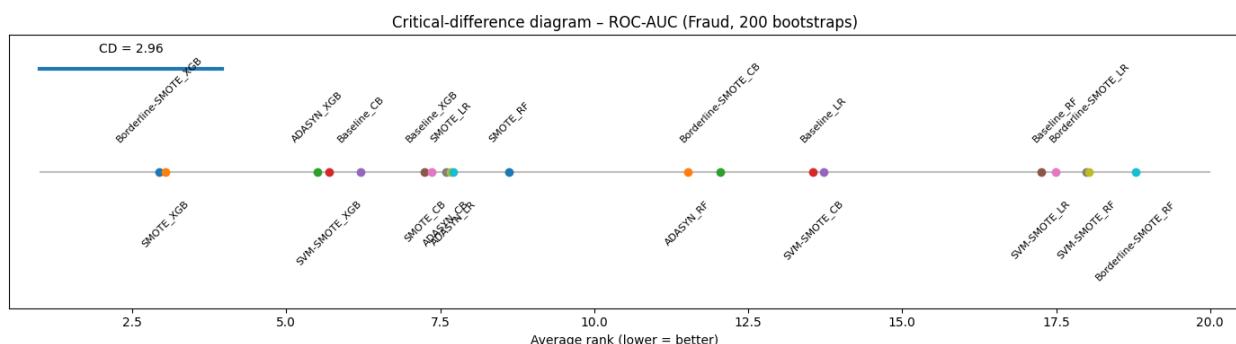
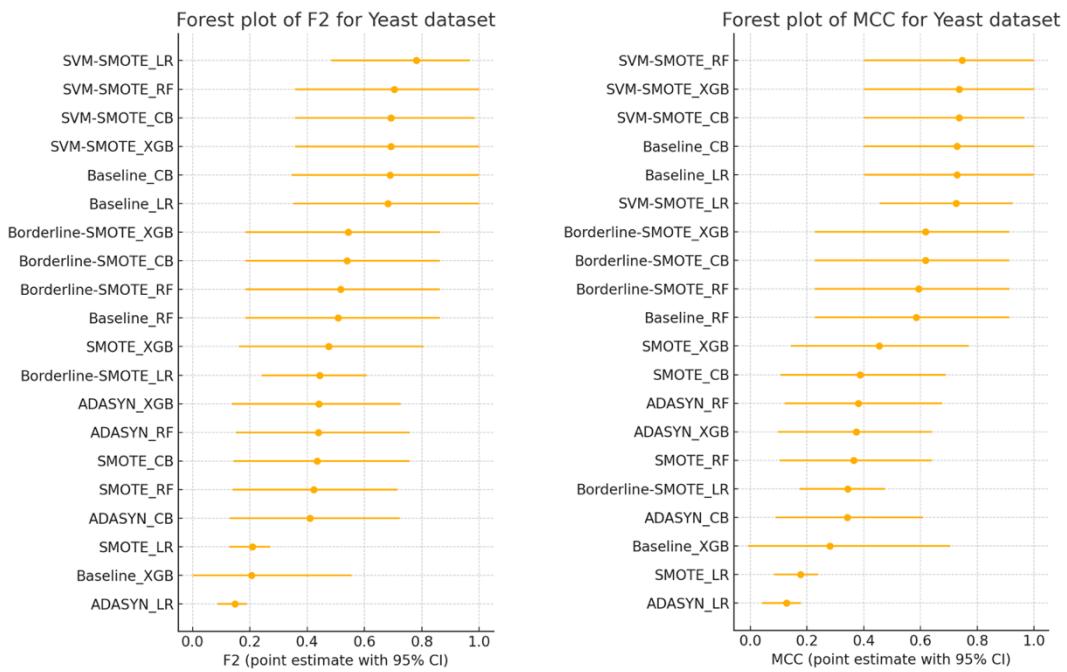


Figure 8. Nemenyi critical-difference diagram derived from 200 stratified bootstrap resamples of the test fold on the Fraud dataset.

5.4.2. Bootstrap CIs and DeLong Test (Yeast Dataset)

Figures 9(a-e) show bootstrap-based 95 % confidence intervals for each evaluation metric, while Figure 10 reports a Nemenyi critical-difference diagram derived from 200 stratified bootstrap resamples of the test fold.

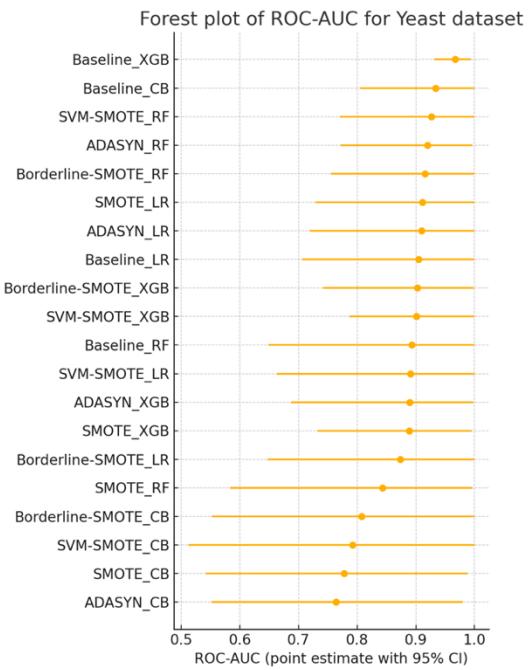


9.a

9.b



9.c



9.d

9.e

Figure 9. a-e) Bootstrap-based 95 % confidence intervals for each evaluation metric on the Yeast dataset.

Figure 9(a) illustrates the distribution of ROC-AUC scores across all classifier-sampler combinations evaluated on the Yeast dataset. Despite underlying architectural and sampling differences, nearly all configurations attain ROC-AUC values exceeding 0.75, with nine methods clustering within the narrow 0.85–0.90 interval and displaying substantially overlapping bootstrap confidence intervals. The critical difference (CD) diagram in Figure 10 corroborates this compression: no method pair exceeds the Nemenyi threshold ($CD \approx 2.96$) in average rank. This inability of ROC-AUC to distinguish between models is consistent with its known ceiling effect in highly imbalanced settings, where the abundance of negative-class samples artificially inflates the curve's area—even for classifiers with limited discriminative ability [54].

In contrast, alternative metrics such as PR-AUC, MCC, F_2 , and the H-measure offer a substantially more informative view of model performance. As depicted in Figure 9(b), PR-AUC distributes the same twenty configurations across a wide range (0.20–0.85), with SVM-SMOTE paired with logistic regression achieving the highest performance (mean ≈ 0.82 ; CI: 0.71–0.93), while the Baseline XGB variant falls to the bottom (mean ≈ 0.38 ; CI: 0.28–0.50). MCC and F_2 scores, shown in Figures 9(c) and 9(d), respectively, reveal similar rankings: the SVM-SMOTE variants dominate, followed by logistic regression with no resampling or with borderline-SMOTE, while ROS and ADASYN configurations underperform significantly. These critical distinctions, invisible under ROC-AUC, become pronounced through threshold-sensitive or cost-aware metrics.

Further reinforcing this pattern, the H-measure (Figure 9(e)) adds a probabilistic cost framework to the evaluation [55]. It sharply penalizes models that produce excessive false positives, demoting Baseline XGB to the bottom quartile despite its superficially strong ROC-AUC. Notably, the bootstrap confidence intervals of the top five methods under the H-measure do not overlap with those of the bottom eight, indicating a statistically and operationally meaningful separation in model quality.

Rank-based correlation analyses support these findings. Table 9 presents Kendall's τ coefficients, which demonstrate high agreement between PR-AUC and the H-measure, as well as between F_2 and MCC ($0.84 \leq \tau \leq 0.89$). In contrast, correlations between ROC-AUC and any other metric are negligible ($\tau \approx 0.01$ –0.10), underscoring its divergence from metrics that emphasize positive-class fidelity and real-world utility. Together with the CD analysis, these results confirm that ROC-AUC fails to

provide meaningful or reliable rankings in extreme class imbalance. In contrast, PR-AUC, MCC, F_2 , and the H-measure offer more sensitive and discriminative evaluation frameworks.

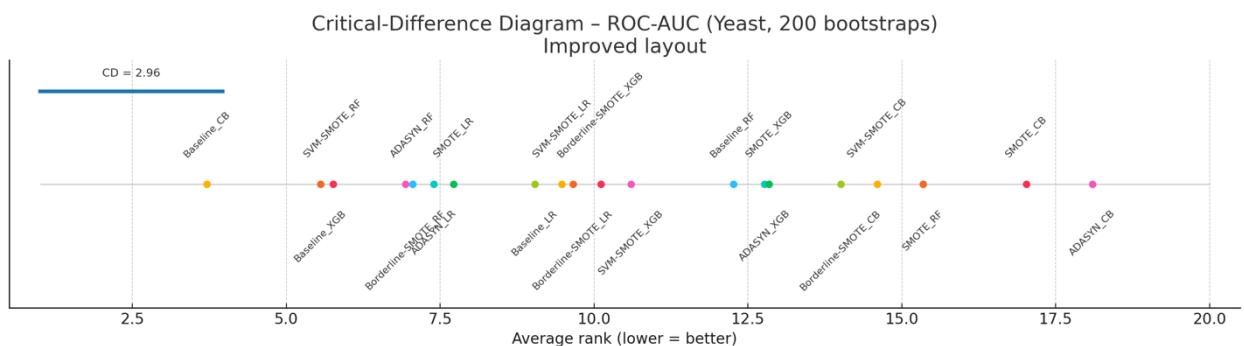
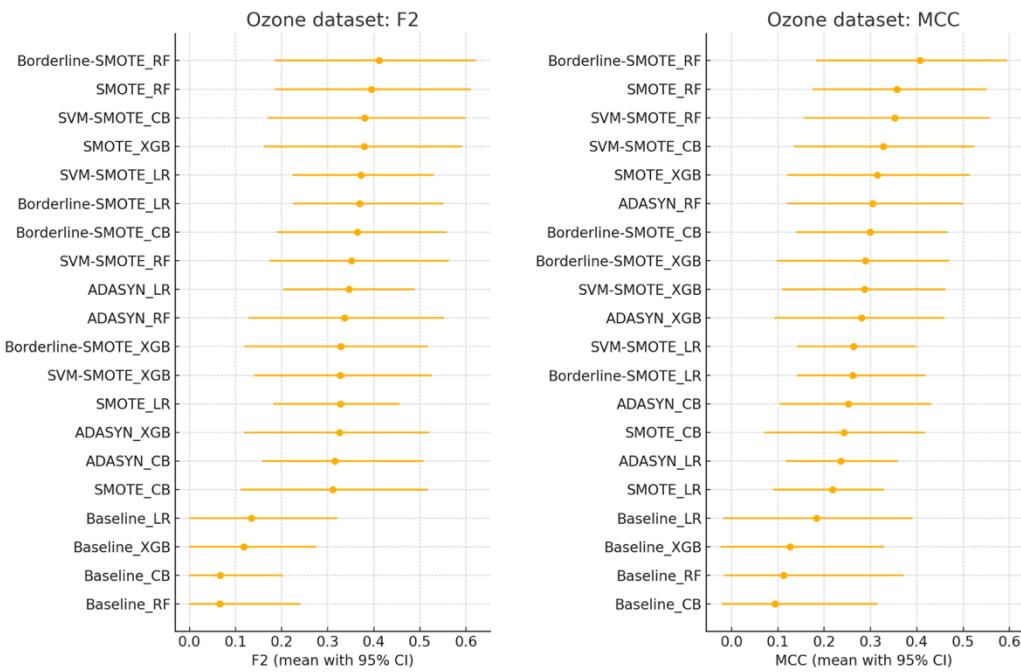


Figure 10. Nemenyi critical-difference diagram derived from 200 stratified bootstrap resamples of the test fold on the Yeast dataset.

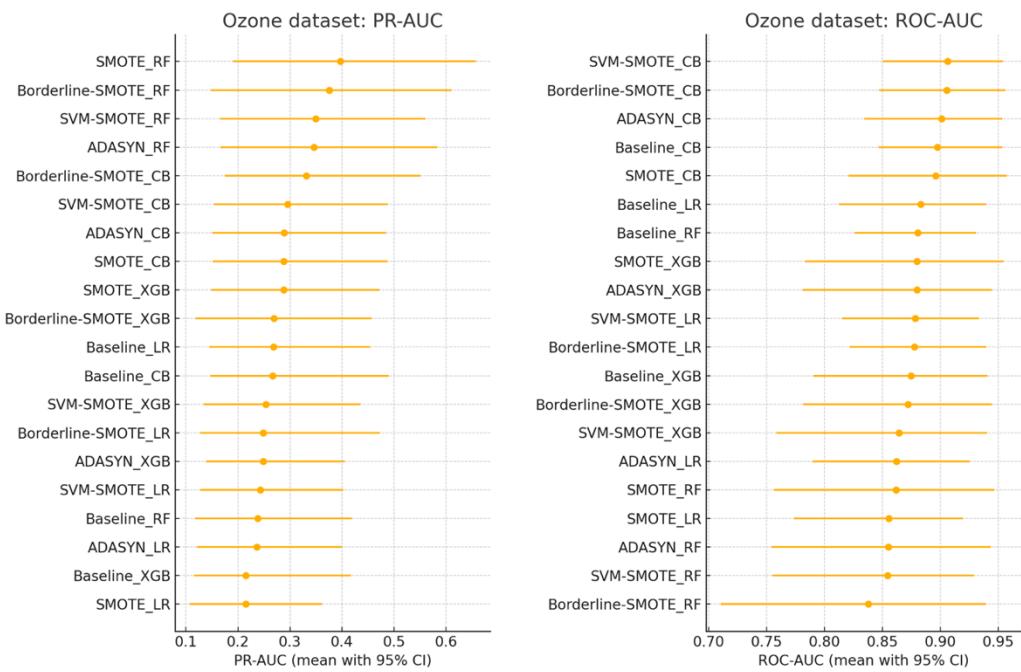
5.4.3. Bootstrap CIs and DeLong Test (Ozone Dataset)

Figures 11(a-e) present stratified-bootstrap 95 % confidence intervals (CIs) for every evaluation metric on the Ozone data, and Figure 12 shows the Nemenyi critical-difference (CD) diagram obtained from 200 bootstrap resamples of the identical test fold.



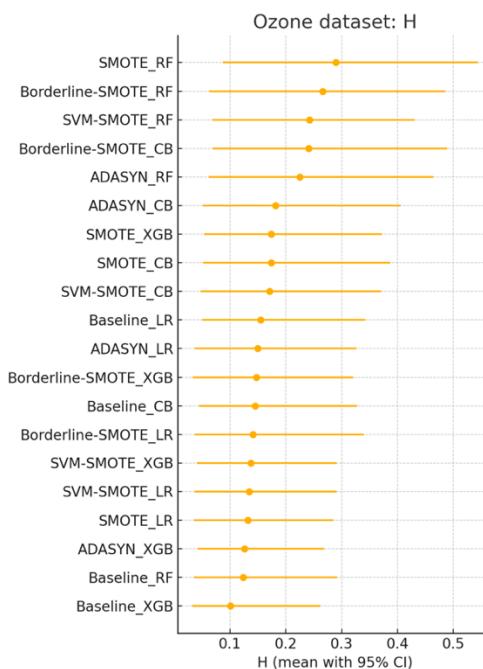
11.a

11.b



11.c

11.d



11.e

Figure 11. a-e) Bootstrap-based 95 % confidence intervals for each evaluation metric on the Ozone dataset.

The evaluation of classifier–sampler configurations on the Ozone dataset reveals similar limitations of ROC-AUC observed in previous benchmarks. As shown in Figure 11(a), all twenty configurations achieve ROC-AUC scores between 0.75 and 0.93, with thirteen methods tightly clustered within the 0.83–0.90 interval and exhibiting largely overlapping 95% confidence intervals. The critical difference (CD) diagram in Figure 12 confirms that only the two extremal configurations—Borderline-SMOTE with CatBoost at the top and Borderline-SMOTE with Random Forest at the bottom—differ by more than the Nemenyi threshold ($CD \approx 2.96$). The remaining eighteen methods are statistically indistinguishable under ROC-AUC, reaffirming the ceiling-effect phenomenon in imbalanced settings, where abundant negative examples lead to inflated area-under-the-curve estimates despite limited model utility [54].

By contrast, alternative metrics reveal substantially greater discriminatory power. Figure 11(b) presents the PR-AUC results, ranging from 0.18 to 0.65. Here, SMOTE combined with Random Forest clearly outperforms other methods (mean ≈ 0.62 ; CI: 0.49–0.75), while SMOTE with Logistic Regression ranks lowest (mean ≈ 0.14 ; CI: 0.10–0.22). This ranking pattern is echoed in both the MCC (Figure 11c) and the F_2 score (Figure 11d), where oversampled Random Forest models consistently lead, followed by SVM-SMOTE variants. In contrast, most baseline and ADASYN-based methods perform poorly, with MCC values falling below 0.25.

Further insights are obtained from the H-measure (Figure 11e), which incorporates a probabilistic cost model to penalize false positives more explicitly [55]. Notably, the H-measure elevates SMOTE + RF and Borderline-SMOTE + RF to the top of the rankings—despite their mid-range ROC-AUC scores—while relegating Baseline CatBoost and XGBoost models to the lower quartile. Moreover, the top six configurations under the H-measure exhibit non-overlapping confidence intervals compared to the bottom nine, signifying statistically and operationally meaningful differences that ROC-AUC entirely masks.

Rank correlation analyses further support this divergence in ranking behavior. Table 10 shows that Kendall's τ coefficients between PR-AUC and the H-measure and between F_2 and MCC remain moderate to high ($0.64 \leq \tau \leq 0.72$), confirming their alignment in prioritizing models that balance recall and precision. In contrast, the correlation between ROC-AUC and any other metric is negligible or negative (τ ranging from -0.25 to 0.05), highlighting its persistent misalignment with cost-sensitive

and threshold-dependent performance measures. Together with the CD diagram in Figure 12, these findings underscore ROC-AUC's limited utility as a ranking criterion in severe class imbalance, where more nuanced metrics offer more precise and more actionable discrimination among competing models.

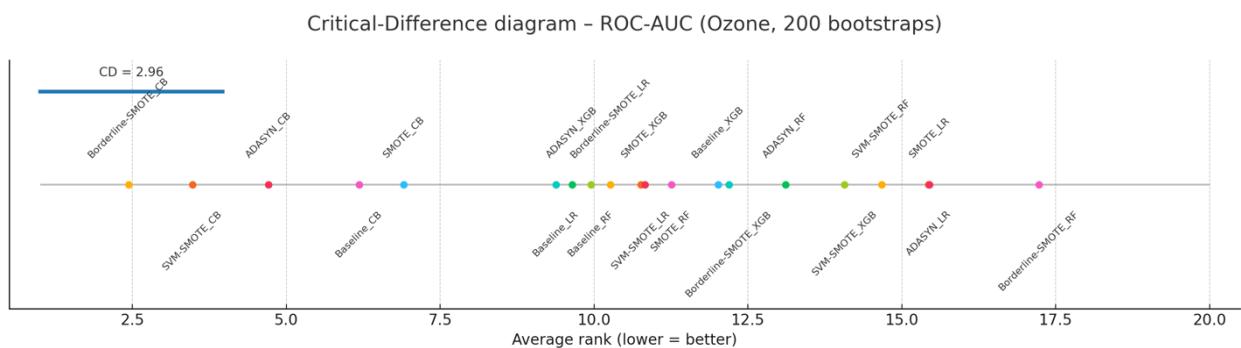


Figure 12. Nemenyi critical-difference diagram derived from 200 stratified bootstrap resamples of the test fold on the Ozone dataset.

6. Conclusion

This study comprehensively evaluated performance metrics for binary classification in highly imbalanced domains, where the minority class constitutes less than 3% of instances. Using three representative datasets—credit card fraud detection (0.17% prevalence), yeast protein localization (1.35%), and ozone level detection (2.9%)—we demonstrated that the widely adopted ROC-AUC metric is inadequate in such settings. Its threshold-free formulation and normalization over the majority class lead to saturation effects and poor sensitivity to false positives and false negatives. As a result, ROC-AUC often assigns inflated scores to classifiers with low operational utility.

Beyond empirical rankings, we introduced robust statistical testing protocols to evaluate metric behaviour. For each metric, we computed 95% confidence intervals using stratified bootstrapping, while DeLong's paired-sample test was applied to compare ROC-AUC values. When evaluating more than two methods, we employed the Friedman aligned-rank test followed by the Nemenyi critical-difference procedure. These rigorous statistical techniques confirmed that ROC-AUC fails to meaningfully differentiate among most classifier-sampler combinations, often masking substantial variation revealed by other metrics. In contrast, PR-AUC, MCC, F_2 , and H-measure exposed statistically significant performance gaps that ROC-AUC completely overlooked.

Our results consistently identified the MCC and F_2 -score as the most robust and operationally meaningful metrics. Both demonstrated strong alignment (Kendall's $\tau \approx 0.89$), balancing precision and recall under fixed thresholds. The H-measure contributed a cost-sensitive and decision-theoretic dimension to model evaluation, offering valuable nuance despite some sensitivity to parameter assumptions. PR-AUC, although threshold-free, provided complementary insights by ranking models based on positive-class precision and recall trade-offs.

These findings offer a clear recommendation: ROC-AUC should no longer be the default evaluation metric in rare-event classification. Instead, researchers and practitioners should adopt a multi-metric reporting strategy, led by MCC and F_2 for threshold-based evaluation, with PR-AUC and H-measure used to provide additional perspectives on model ranking and cost trade-offs. This approach enables a statistically sound and operationally relevant understanding of model performance, particularly in high-stakes domains where misclassification costs are asymmetric and minority detection is critical.

Limitations and Future Work

Despite the strength of the evidence presented, several limitations warrant acknowledgment. (i) The empirical analysis is restricted to three publicly available datasets spanning finance, bioinformatics, and environmental monitoring; evaluating additional domains—such as cybersecurity intrusion detection, clinical event prediction, and autonomous driving—would better assess external validity under diverse operational constraints. (ii) The study focuses exclusively on tabular data. Although the recommended bundle—MCC and F_2 as threshold-dependent metrics, with PR-AUC and H-measure as complementary, threshold-free and cost-sensitive views—is, in principle, model- and modality-agnostic because it operates on predicted scores and confusion matrices, metric behaviour may differ in high-dimensional, unstructured modalities (e.g., computer vision and natural language processing) due to differences in score calibration, class-conditional score distributions, and training practices (e.g., focal or class-balanced losses, hard-negative mining, augmentation/mix-up, prompt-based few-shot regimes). Future studies on non-tabular benchmarks employing contemporary architectures (e.g., CNNs/ViT for imaging; transformers for text) and modality-appropriate imbalance treatments, with explicit attention to calibration and clinically/operationally relevant operating regions (e.g., low-FPR screening), could test generalizability and reveal any modality-specific adjustments (e.g., alternative thresholding policies or H-measure cost priors). (iii) Adaptive threshold-selection procedures and cost-sensitive loss functions were not considered; integrating such mechanisms may further align MCC and F_2 with stakeholder risk tolerances and deployment objectives. (iv) Dynamic settings—including streaming data and concept drift—were outside the scope; examining how MCC, F_2 , H-measure, and PR-AUC perform under temporal and distributional shifts would inform use in evolving systems. (v) Finally, while the analysis employed bootstrap confidence intervals and rank-based statistical tests, future work could leverage more advanced inferential frameworks—such as Bayesian ranking models or multi-metric decision analysis—to strengthen the reliability of metric comparisons in extremely imbalanced regimes.

Author Contributions: Conceptualization, M.I.; Methodology, M.I.; Software, M.I.; Validation, M.I., M.J., and A.B.; Formal analysis, M.I.; Investigation, M.I. and M.J.; Resources, M.I. and M.J.; Data curation, M.I. and M.J.; Writing—original draft preparation, M.I.; Writing—review and editing, M.J., A.B., and H.R.A.; Visualization, M.I.; Supervision, A.B., and H.R.A.; Project administration, M.I. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets analysed in this study are openly available from Kaggle—Credit Card Fraud Detection [44]—and from the UCI Machine Learning Repository: Yeast and Ozone Level Detection [46].

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. C. Elkan, "The foundations of cost-sensitive learning," in *Proceedings of the 17th International Joint Conference on Artificial Intelligence*, Morgan Kaufmann, 2001, pp. 973–978.
2. M. Kubat and S. Matwin, "Addressing the curse of imbalanced training sets: one-sided selection," in *Proceedings of the 14th International Conference on Machine Learning*, Morgan Kaufmann, 1997, pp. 179–186.
3. W. X.-Y., J., and Z.-H. Zhou, "Exploratory undersampling for class-imbalance learning," *IEEE Transactions on Systems, Man, and Cybernetics – Part B*, vol. 39, no. 2, pp. 539–550, 2009.
4. C. Drummond and R. C. Holte, "C4.5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling." 2003.
5. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, "SMOTE: Synthetic minority over-sampling technique," *Journal of Artificial Intelligence Research*, vol. 16, pp. 321–357, 2002.

6. H. Han, W.-Y. Wang, and B.-H. Mao, "Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning," in *Proceedings of the International Conference on Intelligent Computing*, Springer, 2005, pp. 878–887.
7. H. N. Nguyen, E. W. Cooper, and K. Kamei, "Borderline over-sampling for imbalanced data classification," *International Journal of Knowledge Engineering and Soft Data Paradigms*, vol. 3, no. 1, pp. 4–21, 2011.
8. C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap, "Safe-level-SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem," in *Proceedings of the 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining*, Springer, 2009, pp. 475–482.
9. H. He, Y. Bai, E. A. Garcia, and S. Li, "ADASYN: Adaptive synthetic sampling approach for imbalanced learning," in *Proceedings of the IEEE International Joint Conference on Neural Networks*, IEEE, 2008, pp. 1322–1328.
10. I. Tomek, "Two modifications of CNN," *IEEE Transactions on Systems, Man, and Cybernetics*, vol. 6, no. 11, pp. 769–772, 1976.
11. D. L. Wilson, "Asymptotic properties of nearest neighbor rules using edited data," *IEEE Transactions on Systems, Man, and Cybernetics*, vol. 2, no. 3, pp. 408–421, 1972.
12. G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, "A study of the behavior of several methods for balancing machine learning training data," *SIGKDD Explorations*, vol. 6, no. 1, pp. 20–29, 2004.
13. M. Imani and H. R. Arabnia, "Hyperparameter optimization and combined data sampling techniques in machine learning for customer churn prediction: a comparative analysis," *Technologies*, vol. 11, no. 6, p. 167, 2023. doi:10.3390/technologies11060167
14. G. Douzas and F. Bacao, "G-SMOTE: A GMM-based synthetic minority oversampling technique for imbalanced learning," *Information Sciences*, vol. 512, pp. 1–25, 2019.
15. G. Mariani, F. Scheidegger, R. Istrate, J. Alakuijala, C. Bekas, and A. Malossi, "BAGAN: Data augmentation with balancing GAN." 2018.
16. Q. Wei and J. Liu, "Theoretical analysis of synthetic sampling for class imbalance," *Machine Learning*, vol. 112, pp. 4073–4102, 2023.
17. J. A. Hanley and B. J. McNeil, "The meaning and use of the area under a receiver operating characteristic (ROC) curve," *Radiology*, vol. 143, no. 1, pp. 29–36, 1982.
18. T. Fawcett, "An introduction to ROC analysis," *Pattern Recognition Letters*, vol. 27, no. 8, pp. 861–874, 2006.
19. T. Saito and M. Rehmsmeier, "The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets," *PLOS ONE*, vol. 10, no. 3, p. 0118432, 2015.
20. J. Davis and M. Goadrich, "The relationship between precision-recall and ROC curves," in *Proceedings of the 23rd International Conference on Machine Learning*, ACM, 2006, pp. 233–240.
21. D. J. Hand, "Measuring classifier performance: a coherent alternative to the area under the ROC curve," *Machine Learning*, vol. 77, no. 1, pp. 103–123, 2009.
22. B. W. Matthews, "Comparison of the predicted and observed secondary structure of T4 phage lysozyme," *Biochimica et Biophysica Acta – Protein Structure*, vol. 405, no. 2, pp. 442–451, 1975.
23. D. Chicco and G. Jurman, "The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation," *BMC Genomics*, vol. 21, p. 6, 2020.
24. P. Christen, T. Ranbaduge, and A. Vatsalan, "A review of the F-measure: Its history, properties, criticism, and alternatives," *ACM Computing Surveys*, 2023, doi: 10.1145/3606367.
25. D. M. W. Powers, "Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation," *Journal of Machine Learning Technologies*, vol. 2, no. 1, pp. 37–63, 2011.
26. K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buhmann, "The balanced accuracy and its posterior distribution," in *Proceedings of the 20th International Conference on Pattern Recognition*, IEEE, 2010, pp. 3121–3124.
27. J. Cohen, "A coefficient of agreement for nominal scales," *Educational and Psychological Measurement*, vol. 20, no. 1, pp. 37–46, 1960.
28. J. R. Landis and G. G. Koch, "The measurement of observer agreement for categorical data," *biometrics*, pp. 159–174, 1977.

29. D. Chicco and G. Jurman, "The Matthews correlation coefficient (MCC) should replace the ROC AUC as the standard metric for assessing binary classification," *BioData Mining*, vol. 16, 4, 2023, doi: [10.1186/s13040-023-00322-4](https://doi.org/10.1186/s13040-023-00322-4).

30. E. Richardson, R. Trevizani, J. A. Greenbaum, H. Carter, M. Nielsen, and B. Peters, "The receiver operating characteristic curve accurately assesses imbalanced datasets," *Patterns*, vol. 31;5(6):100994, doi: [10.1016/j.patter.2024.100994](https://doi.org/10.1016/j.patter.2024.100994).

31. F. Provost and T. Fawcett, "Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions," in *Proceedings of the Third International Conference on Knowledge Discovery and Data Mining*, AAAI Press, 1997, pp. 43–48.

32. M. Sokolova and G. Lapalme, "A systematic analysis of performance measures for classification tasks," *Information Processing & Management*, vol. 45, no. 4, pp. 427–437, 2009.

33. Q. Zhang and X. Geng, "Rethinking AUPRC under class imbalance," in *Proceedings of the 38th Conference on Neural Information Processing Systems*, 2024.

34. Y. Itaya, J. Tamura, K. Hayashi, and K. Yamamoto, "Asymptotic properties of Matthews correlation coefficient," *Statistics in Medicine*, vol. 44, no. 1–2, p. 10303, 2025.

35. J. Hernández-Orallo, "ROC curves for regression," *Pattern Recognition*, vol. 46, no. 12, pp. 3395–3411, 2013.

36. D. J. Hand, "Evaluating diagnostic tests: The area under the ROC curve and the balance of errors," *Statistics in Medicine*, vol. 29, no. 14, pp. 1502–1510, Jun. 2010, doi: [10.1002/sim.3859](https://doi.org/10.1002/sim.3859).

37. A. Niculescu-Mizil and R. Caruana, "Predicting good probabilities with supervised learning," in *Proceedings of the 22nd International Conference on Machine Learning*, ACM, 2005, pp. 625–632.

38. P. A. Flach and M. Kull, "Precision–recall-gain curves: PR analysis done right," in *Advances in Neural Information Processing Systems 28*, 2015, pp. 838–846.

39. H. He and E. A. Garcia, "Learning from imbalanced data," *IEEE Transactions on Knowledge and Data Engineering*, vol. 21, no. 9, pp. 1263–1284, 2009.

40. R. Blagus and L. Lusa, "SMOTE for high-dimensional class-imbalanced data," *BMC Bioinformatics*, vol. 16, p. 362, 2015.

41. M. Imani, Z. Ghaderpour, M. Joudaki, and A. Beikmohammadi, "The Impact of SMOTE and ADASYN on Random Forest and Advanced Gradient Boosting Techniques in Telecom Customer Churn Prediction," in *10th International Conference on Web Research (ICWR*, Tehran, Iran, Islamic Republic of, 2024, pp. 202-209, doi: [10.1109/ICWR61162.2024.10533320](https://doi.org/10.1109/ICWR61162.2024.10533320).

42. M. Imani, A. Beikmohammadi, and H. R. Arabnia, "Comprehensive analysis of random forest and XGBoost performance with SMOTE, ADASYN, and GNUS under varying imbalance levels," *Technologies*, vol. 13, no. 3, p. 88, 2025. doi: [10.3390/technologies13030088](https://doi.org/10.3390/technologies13030088)

43. M. Imani, M. Joudaki, A. Beikmohammadi, and H. R. Arabnia, "Customer churn prediction: A systematic review of recent advances, trends, and challenges in machine learning and deep learning," *Machine Learning and Knowledge Extraction*, vol. 7, no. 3, p. 105, 2025, doi: [10.3390/make7030105](https://doi.org/10.3390/make7030105).

44. A. Dal Pozzolo, G. Boracchi, O. Caelen, C. Alippi, and G. Bontempi, "Credit Card Fraud Detection: A Realistic Modeling and a Novel Learning Strategy," *IEEE Transactions on Neural Networks and Learning Systems*, vol. 29, no. 8, pp. 3784–3797, 2015.

45. K. Nakai, "Yeast [Dataset]. UCI Machine Learning Repository." 1991. doi: [10.24432/C5KG68](https://doi.org/10.24432/C5KG68).

46. K. Zhang, W. Fan, and X. Yuan, *Ozone Level Detection [Dataset]*. UCI Machine Learning Repository, 2008. doi: [10.24432/C5NG6W](https://doi.org/10.24432/C5NG6W).

47. R. C. Prati, G. E. A. P. A. Batista, M. C. Monard, and A. A. Freitas, "KEEL: A Software Tool to Assess Evolutionary Algorithms for Data Mining Problems," *Soft Computing*, vol. 15, no. 11, pp. 2101–2113, 2015.

48. C. C. Aggarwal, *Data Mining: The Textbook*. Cham, Switzerland: Springer, 2015.

49. Y. Liu, Y. Wang, X. Chen, Y. H. Woon, and K. Y. Wong, "Standardization and Normalization of Quantitative Data in Medical Research," *Journal of Biomedical Research*, vol. 22, no. 3, pp. 193–200, 2008.

50. M. G. Kendall, "A new measure of rank correlation," *Biometrika*, vol. 30, no. 1–2, pp. 81–93, 1938.

51. H. Abdi, "The Kendall rank correlation coefficient," *Encyclopedia of Measurement and Statistics*, pp. 508–510, 2007.

52. W. J. Conover, *Practical Nonparametric Statistics*, 3rd ed. John Wiley & Sons, 1999.

53. E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson, "Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach," *Biometrics*, vol. 44, no. 3, pp. 837–845, 1988, doi: [10.2307/2531595](https://doi.org/10.2307/2531595).
54. J. Demsar, "Statistical comparisons of classifiers over multiple data sets," *JMLR*, vol. 7, pp. 1-30, 2006.
55. D. J. Hand and C. Anagnostopoulos, "A better beta for the H-measure of classifier performance," *Pattern Recogn*, vol. 46, pp. 923-933, 2013.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.