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Abstract

This study re-evaluates ROC-AUC for binary classification under severe class imbalance (<3% positives).
Despite widespread use, ROC-AUC can mask operationally salient differences among classifiers when false-
positive and false-negative costs are asymmetric. Using three benchmarks, credit-card fraud detection (0.17%),
yeast protein localization (1.35%), and ozone level detection (2.9%), we compare ROC-AUC with Matthews
Correlation Coefficient (MCC), F2-score, H-measure, and area under the precision-recall curve (PR-AUC). Our
empirical analyses span 20 classifier—sampler configurations per dataset, four classifiers (Logistic Regression,
Random Forest, XGBoost, and CatBoost) crossed with four oversampling methods plus a no-resampling
baseline (no resampling, SMOTE, Borderline-SMOTE, SVM-SMOTE, ADASYN). ROC-AUC exhibits
pronounced ceiling effects, yielding high scores even for underperforming pipelines. In contrast, MCC and F:
align more closely with deployment-relevant costs and achieve the highest Kendall’s T rank concordance
across datasets; PR-AUC provides threshold-independent ranking, and H-measure integrates cost sensitivity.
We quantify uncertainty and differences using stratified bootstrap confidence intervals, DeLong’s test for
ROC-AUC, and Friedman—-Nemenyi critical-difference diagrams, which collectively underscore ROC-AUC'’s
limited discriminative value in rare-event settings. The findings support a shift to a multi-metric evaluation
framework, recommending MCC and F: as primary indicators, supplemented by PR-AUC and H-measure
where ranking granularity and principled cost integration are required. This evidence encourages researchers
and practitioners to move beyond sole reliance on ROC-AUC when evaluating classifiers in highly imbalanced
data. Impact Statement— This paper addresses a pervasive failure mode in model evaluation: ROC-AUC often
overstates performance in highly imbalanced classification (<3% positives). Through cross-domain
experiments —credit-card fraud, yeast protein localisation, and ozone exceedance —covering 20 classifier—
sampler configurations per dataset, we show pronounced ceiling effects for ROC-AUC, while MCC and F»-
score better align with asymmetric costs; PR-AUC supports threshold-independent ranking, and H-measure
integrates principled cost weighting. Using bootstrap confidence intervals, DeLong's test, Kendall’s tau, and
Friedman-Nemenyi diagrams, we provide statistically rigorous evidence and practical guidance. The impact is
a clear, reproducible protocol: report MCC and F2 as primary, threshold-dependent indicators; accompany
them with PR-AUC and H-measure; and treat ROC-AUC as contextual, not decisive. Adopting this framework
improves decision-relevance, reduces deployment risk, and increases comparability across pipelines, samplers,
and domains. Code and metric settings are straightforward to reproduce, enabling researchers and

practitioners to upgrade evaluation practices without changing models.
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1. Introduction and Background

Rare-event binary classification remains a significant challenge across various domains,
including but not limited to fraud detection, bioinformatics, environmental monitoring,
cybersecurity, medical diagnosis, manufacturing fault detection, and autonomous systems. In these
settings, the positive class typically constitutes a small fraction of the data, making accurate detection
both technically difficult and operationally critical. Standard tools for model evaluation — particularly
Area Under the Receiver Operating Characteristic Curve (ROC-AUC)—often yield inflated
assessments due to their insensitivity to class imbalance and asymmetric error costs. As machine
learning systems become integral to decision-making in high-stakes, real-world environments, it is
essential to critically evaluate both the data preprocessing methods and performance metrics used in
model assessment. This study presents a comprehensive, metric-centred investigation of classifier
evaluation under highly imbalanced data conditions, focusing on resampling strategies and metric
behaviour. The subsections below provide background on the methodological foundations that guide
our analysis.

1.1. Resampling Strategies in Imbalanced Data

When the minority-class prior
m=Pr(y=1)<«0.J5

empirical risk minimisation with a symmetric loss favours the majority class [1]. One cure is
resampling, i.e., constructing a training set whose posterior prior ©* is closer to 0.5. Let N;, N,
denote the counts of minority (class 1) and majority (class 0) instances, and let r be an oversampling
factor applied to the minority class. After oversampling,

rN; ) " N,
T :71’N1+N0' Wlth‘r'=7(1_n*)1v—1.

A perfectly balanced set, therefore, corresponds to r = (Ny/N;). The subsections below
summarise the major families of resampling and highlight their theoretical motivations.

Random undersampling, randomly discarding the majority of instances, reduces Pr(y = 0) to
m*=0.5 [2]. While computationally attractive, it may eliminate informative majority examples and
increase estimator variance; ensemble variants such as EasyEnsemble and BalanceCascade mitigate
this by building multiple classifiers on independently undersampled subsets and aggregating their
predictions.

Random oversampling replicating minority observations to reach the desired ratio is unbiased
in expectation but can cause exact duplicate rows, leading to over-fitting [4]. The expected Bayes risk
decreases only if the learner regularises against memorisation.

To avoid duplication, synthetic minority over-sampling generates artificial instances

Xnew = X; + Alxyy — %), A~ U0,1),

where xi is a minority point and xnn one of its k minority nearest neighbours [5]. Extensions
refine the neighbourhood criterion:

e Borderline-SMOTE focuses on minority points whose nearest neighbours are predominantly

majority, increasing density near the decision boundary [6].

e SVM-SMOTE exploits the support vectors of a cost-sensitive SVM to guide synthesis [7].

o Safe-Level-SMOTE assigns a safety level SL(x;) =k™* Zle 1(y; =1) and chooses the

interpolation factor A so that the synthetic point lies closer to the parent with a higher safe-

level score to avoid generating samples in dangerous regions [8].
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e ADASYN adaptively varies the number of synthetic samples per minority point according to
the local imbalance ratio

— 6’:

T

where §; is the proportion of majority neighbours [9]. This shifts density toward sparsely

G; G,

represented minority areas.

Combining oversampling with Tomek links deletion or Edited Nearest Neighbours removes the
majority of points lying within the minority manifold, reducing class overlap [12]. Empirically,
SMOTE + ENN often yields smoother decision surfaces than either step alone [13].

Density-aware and generative approaches employ information-theoretic or generative criteria.
G-SMOTE replaces linear interpolation with a Gaussian mixture model of the minority class [14],
while GAN-based oversamplers learn p(x|y = 1) implicitly via adversarial training [15].
Theoretical analyses show that, under a Lipschitz assumption on the Bayes decision boundary,
synthetic samples drawn from a contiguous minority manifold can reduce the upper bound on the
classification error by tightening the margin [16].

1.2. Performance Metrics in Binary Classification

Let the confusion matrix for a binary classifier at threshold tbe

=1 | 9=0
1| TP@) | FN(®)
0| FP(t) | TN(®)

y
Yy

and N, =TP + FN,N, = FP + TN.

Any scalar score reduces this 2x2 matrix —or, in threshold-free form, the ranking of class scores
s(x)—to a single real number. The following subsections review metrics' principal families,
mathematical properties, and known limitations.

1.2.1. Threshold-independent Discrimination

The receiver-operating-characteristic area is
ROC — AUC = P.(s(x%) > s(x7)) = ﬂ 1(s(x™) > (x7)) dF,dF.,

where F,, F_ are the score distributions for positives and negatives [17, 18]. ROC-AUC is
equivalent to the Mann-Whitney U statistic and is invariant under strictly monotone score
transformations. Its major weakness is class-imbalance insensitivity: when N; « N, significant
changes in FP translate into tiny variations of the false-positive rate [19]. Consider a binary classifier
that assigns each instance a score s(x) and applies a threshold tto decide between positive and
negative. The two axes of its ROC curve are then

TP(t) FP(t)
TPRO =+ TTRO = o+ he

In many practical settings, the number of positive cases N; is vanishingly small compared to
negatives N,. In that extreme imbalance, the FPR denominator is effective Ny, so even a significant
absolute change in false positives (FP) produces only a barely perceptible shift in the ROC curve.
This distortion carries over to the AUC itself. Equivalently expressed as

AUC = Pr(s(x%) > s(x7)),
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the statistic is overwhelmed by comparisons among the abundant negative—negative pairs. As
long as a model avoids egregious score inversions, moderate numbers of false alarms or misses
scarcely register in AUC.

The upshot is that, under severe imbalance, nearly any non-degenerate classifier achieves an
ROC-AUC in the 0.90-0.99 range, obscuring the errors that drive operational cost. By treating false
positives and false negatives (FN) symmetrically, ROC-AUC “wins” without ever “paying” for the
mistakes that, in domains like fraud or medical diagnosis, are most consequential.

Replacing the x-axis with recall yields the precision-recall curve; its area

PR — AUC = [} P(R)dR , p=-1

© TP+FP

has a baseline equal to the minority prevalence m = ﬁ Davis and Goadrich prove that Area
0 1

Under the Precision—Recall Curve (PR-AUC) is strictly more informative than ROC-AUC when 7 is
small.

In a similar effort, the H-measure is a coherent alternative to the area under the ROC curve that
explicitly incorporates the relative cost of false positives and false negatives via a user-specified
distribution over misclassification cost-ratios. Rather than treating all operating points equally, the
H-measure defines a weighting density u(c) on the cost-ratio c € [0,1] and computes the expected
misclassification loss

L= J. [mocFPR(z,) + my(1 — ¢)FNR(z.)]u(c)dc,
0

where m; and my = 1 —my are the class priors, and 1, is the threshold minimizing the cost for
a given c. By default, one chooses u(c) to be the Beta(2,2) density, yielding a neutral prior that
neither over- nor under-emphasizes extreme cost ratios. The H-measure is then normalized by the
worst-possible expected loss under the same density, producing a summary score in [0,1]:

L
H=1-

max
In contrast to ROC-AUC —which is dominated by the vast number of negative-negative score-
pair comparisons under severe imbalance and thus remains artificially high even when a classifier
makes many costly errors—the H-measure penalizes errors proportionally to their operational
importance. In highly skewed scenarios (e.g., fraud detection, rare-disease screening), it provides a
more discriminating evaluation: classifiers that sacrifice minority-class sensitivity or incur excessive
false alarms receive a substantially lower H-measure, whereas ROC-AUC remains saturated.

1.2.2. Single-threshold Confusion-matrix Scores

The Matthews correlation coefficient (MCC) and the Ff3 score are two widely used scalars.

TP TN-FP FN

MCC = \/(TP+FP)(TP+FN)(TN+FP)(TN+FN)

€ [-1,1] [22]

MCC is a special case of Pearson’s r between prediction and truth. MCC treats both classes
symmetrically and remains well defined even when one row or column is small [23].

PR .
Fp=(1+ B BoiR B > 1 emphasises recall [24].

Unlike MCC, Fjp ignores true negatives; it is therefore sensitive to prevalence and may
exaggerate performance in dense negative regions [25]. An alternative that explicitly accounts for
prevalence is balanced accuracy

BA = 2(TPR +TNR) = = (= + 19,
2 2Ny | No

recently advocated for class-imbalance evaluation [26].
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Another related metric, Cohen’s k (kappa), is a chance-corrected measure of agreement that
quantifies how much better a classifier's predictions agree with the true labels than would be
expected by random chance [27]. For a two-category problem, let

. d
number of correct predictions pred  ytrue
© N N

and P, = Z( )

ce{0,1}

be the observed and expected agreement, respectively, where N7 ? and NI are the counts
of predicted and true instances in class c. Then
P —F

“T1-p

which ranges from -1 (complete disagreement) through 0 (no better than chance) to 1 (perfect
agreement).

Unlike raw accuracy, k corrects for any agreement that would arise simply from the marginal
class frequencies —an important feature when classes are highly imbalanced. In such settings, a naive
classifier can achieve high accuracy (and thus high F,) by always predicting the majority class, yet
its k will remain low because P, is large. Interpretive benchmarks suggest that x<0.00 indicates
“poor” agreement, 0.00-0.20 “slight,” 0.21-0.40 “fair,” 0.41-0.60 “moderate,” 0.61-0.80 “substantial,”
and > 0.80 “almost perfect.”

Cohen'’s k was deliberately excluded from our evaluation because it offers little independent
information beyond existing confusion-matrix-based metrics in the context of extreme class
imbalance. Our study employs the F, score to capture threshold-specific recall-weighted
performance, the MCC for chance-corrected balance, ROC-AUC and PR-AUC for threshold-agnostic
discrimination, and the H-measure for cost-sensitive integration. Since 1« and MCC both correct for
class-marginal effects and in practice produce virtually identical classifier rankings on ultra-skewed
data, including x would have been redundant and risked obscuring the clarity of our comparative
analysis.

1.3. Contribution of the Study

Prior work has highlighted metric pitfalls in imbalanced learning [19, 23, 29], arguing that PR
curves/PR-AUC are more informative than ROC on skewed data and that MCC is preferable to
accuracy/F1; some even propose replacing ROC-AUC outright with MCC. Yet, we still lack a
statistically rigorous, cross-domain comparison of ROC-AUC against MCC, F,, PR-AUC, and the H-
measure under ultra-imbalanced prevalence and realistic resampling pipelines. Saito & Rehmsmeier
focus on PRC vs. ROC in imbalance but do not examine MCC or H-measure or analyze sampler—
classifier pipelines. Chicco & Jurman advocate MCC over accuracy/F1 but do not position MCC
against ROC-AUC/PR-AUC/H-measure in rare-event scenarios or under resampling. Chicco &
Jurman argue MCC vs. ROC-AUC conceptually, without an empirical, multi-metric treatment
combining rare-event settings, resampling, and statistical testing. Meanwhile, Richardson et al.
reopen the debate by contending that ROC-AUC remains robust under imbalance while PR-AUC is
prevalence-sensitive—an observation that, rather than endorsing a single “best” metric, motivates a
multi-metric protocol that separates ranking from cost and thresholding. In response, we deliver a
multi-metric, cost-aligned package—MCC and F, (primary threshold-dependent metrics) with PR-
AUC (threshold-free ranking) and H-measure (principled cost integration)—evaluated in ultra-
imbalanced (<3%) regimes across resampling pipelines and supported by bootstrap confidence
intervals, DeLong’s tests, Kendall's t, and Friedman-Nemenyi analyses; we also include a
prevalence-sensitivity check showing how shifts in class balance affect PR-AUC and H-measure on
our datasets, reinforcing the need to report complementary metrics rather than rely on ROC-AUC
alone.

To address this gap, we conduct a cross-domain analysis of 20 classifier—sampler configurations
per dataset—four classifiers (logistic regression, random forest, XGBoost, and CatBoost) crossed with

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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five sampling strategies (no oversampling, SMOTE, Borderline-SMOTE, SVM-SMOTE, and
ADASYN)—on three rare-event benchmarks: credit-card fraud (0.17% positives), yeast protein
localization (POX) (1.35%), and ozone exceedance (=3%).

Our contributions are fourfold:

1. Empirical characterization of ROC-AUC in rare-event regimes. We quantify ceiling effects and
show that ROC-AUC can overstate model quality by remaining relatively insensitive to
operationally costly misclassifications when prevalence is <3%, even as false positives and false
negatives vary substantially across pipelines.

2. A pragmatic, cost-aware multi-metric alternative. Using Kendall's t rankings and paired
significance testing, we show that MCC and F, better reflect asymmetric error costs and
deployment priorities. In contrast, PR-AUC (threshold-free ranking) and the H-measure
(principled cost weighting) provide complementary views. We distill this into a portable
reporting protocol: use MCC + F; as primaries, with PR-AUC + H-measure as companions; report
ROC-AUC only with explicit caveats in ultra-imbalanced settings.

3. Statistically rigorous, resampling-aware evaluation. We pair model selection with robust
inference —stratified bootstrap confidence intervals, DeLong’s tests for ROC-AUC, Kendall's t
for rank concordance, and Friedman—-Nemenyi critical-difference analysis —to reveal practically
meaningful differences that ROC-AUC alone can mask.

4. Actionable guidance for practitioners and researchers. We provide a replicable framework for
evaluating classifiers under extreme class imbalance that integrates threshold-dependent
(MCC/F;) and threshold-free (PR-AUC/H-measure) metrics, aligns with stakeholder cost
asymmetries, and transfers across domains (finance, bioinformatics, environmental monitoring).

These contributions move beyond single-metric advocacy toward a multi-metric, cost-aligned
evaluation protocol empirically validated in ultra-imbalanced, real-world scenarios.

2. Related Work

Quantitative comparison of performance metrics has attracted sustained interest because the
choice of metric can alter scientific conclusions and deployment decisions. Early empirical surveys
[31, 32] catalogued divergences among accuracy, ROC-based, and cost-based criteria, noting that
overall accuracy

TP +TN

ACC=——
N1 +N0

is dominated by the majority class when m = N;/(N; + Ny) < 0.5.

For instance, Hanley and McNeil justified ROC-AUC as the probability that a randomly chosen
positive receives a higher score than a randomly chosen negative. However, Hand showed that AUC
implicitly assigns unequal, prevalence-dependent misclassification costs, violating many decision
contexts. Building on that critique, Davis and Goadrich derived the monotone transformation that
maps any ROC point (FPR, TPR) to (R, P) space and proved that the PR curve dominates ROC when
1 < 0.2. Saito and Rehmsmeier confirmed the theoretical claim with biomedical data, where ROC-
AUC varied less than 0.02 while PR-AUC varied over 0.50 for the same algorithms. Very recent work
has reopened the debate. Richardson et al. contend, via simulation and an epitope-prediction case
study, that ROC-AUC remains robust to imbalance, whereas PR-AUC “over-penalises” legitimate
classifiers. Their critique hinges on the fact that precision is a function of both TPR and prevalence,
making PR-AUC sensitive to evaluation-set sampling. Conversely, Zhang and Geng demonstrate that
PR-AUC’s prevalence sensitivity is a feature, not a bug, when the deployment environment shares
the same class skew. The persisting disagreement underscores the need for multi-metric reporting.

The MCC was initially proposed for protein secondary-structure prediction [22]. Chicco and
Jurman provided simulations and genomics case studies where MCC ranked classifiers more
consistently with domain utility than F1 or balanced accuracy. In 2023, these authors argued that MCC
should replace ROC-AUC as the “standard statistic” for binary classification, citing ROC’s hidden
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cost bias and MCC'’s symmetry. Itaya et al. derived asymptotic confidence intervals for single and
paired MCC estimates, enabling formal hypothesis testing between classifiers.

Elkan formalised expected cost (EC)

FN(t) FP(t)
EC(t) = CFNT + Cpp N

arguing that threshold choice must minimise EC under a user-supplied cost matrix. Hernandez-
Orallo extended ROC analysis to dominance curves, constructing the convex hull of cost points to
identify potentially optimal classifiers under all cost/prevalence pairs. Hand proposed H-measure,
integrating EC over a beta-distributed cost parameter to mitigate AUC’s hidden-cost flaw.

While discrimination metrics assess ranking, Niculescu-Mizil and Caruana compared log-loss

N
1
L= > [ilogh + (1= y)log(1 -]

i=1

with Brier score and AUC, showing that well-calibrated probabilities can be critical for cost-
sensitive decisions even when AUC is identical. Flach and Kull further decomposed log-loss into
calibration and refinement components, providing diagnostic insight complementary to ROC
analysis.

He and Garcia reviewed algorithmic and evaluation issues in imbalanced learning,
recommending PR-AUC and G-mean. More recently, Blagus and Lusa demonstrated that Fzwith 3>1
is preferable to F1 for rare disease prediction, and Imani et al. [41, 42] examined how varying class-
imbalance ratios affect classifier performance and the apparent efficacy of resampling (e.g., SMOTE
and its variants), evaluating both threshold-dependent and threshold-free metrics, including ROC-
AUC, PR-AUC, MCC, F1-score, and Cohen’s k. Complementing these findings, a comprehensive
churn-prediction review reports that ROC-AUC remains one of the most commonly reported metrics
in practice, reflecting established reporting conventions in the literature [43]. This persistence
motivates providing clearer guidance on metric selection under class imbalance.

3. Datasets

This study evaluates classifier performance on three publicly available benchmark datasets
exhibiting extreme class imbalance, see Table 1. Prior to modelling, all features were standardized to
zero mean and unit variance. As is common in many operational settings, no instance-level cost
annotations were available. Details of each dataset are provided in Subsections 3.1-3.3.

1. European Credit-Card Fraud Detection: This widely studied dataset comprises 284807 card-
transaction records, of which 492 are confirmed frauds (imbalance rate = 0.17 %). Each
observation is represented by 28 principal components derived from the original monetary
attributes.

2. UCI Yeast Protein Localisation (“POX”): The UCI Yeast benchmark contains 1484 protein
sequences described by eight physicochemical descriptors. The minority class “POX” appears in
only 20 instances (= 1.35 %).

3. UCI Ozone Level Detection: This dataset consists of 2536 hourly measurements of atmospheric
conditions, each with 73 features, and 57 recorded ozone-exceedance events (= 3 %).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Table 1. The details of the three publicly available datasets.
- . Imbalance
Dataset Positives Negatives Rate Features Source
28 PCA- i
Credit-card Fraud 492 284315 0.17% 8 PC obscgred transaction Kaggle [44]
attributes
. I . . . UCI repository
Yeast Protein Localisation 20 1464 1.35% 8 physicochemical descriptors [45]
ucI it
Ozone Level Detection 57 1791 3.00% 72 atmospheric covariates rifgfl oty

3.1. Fraud Dataset (Credit-Card Fraud Detection)

The Credit-Card Fraud Detection dataset comprises 284807 credit-card transactions made by
European cardholders over a two-day period in September 2013 [43]. Only 492 transactions are
labelled as fraudulent, representing approximately 0.17 % of the data. Each record consists of 31
features, 28 anonymized principal components (V1-V28) obtained via PCA to preserve
confidentiality, a “Time” feature (seconds elapsed since the first transaction), and “Amount”
(transaction value in Euros). The target column “Class” takes the value 0 for legitimate transactions
and 1 for fraud.

Because PCA was used to mask original feature identities, V1-V28 do not have explicit semantic
meaning; nevertheless, they capture the essential structure distinguishing fraudulent from legitimate
activity [44]. The extreme rarity of fraud events underscores why this dataset is a standard benchmark
in imbalanced-learning research [19].

3.2. Yeast Dataset (LICI version; POX Subset)

The Yeast dataset is available from the UCI Machine Learning Repository [45]. Initially, each of
the 1484 instances and 11 features describes characteristics of proteins via eight continuous features
and a single “Localization” label that can take one of ten categories (CYT, NUC, MIT, ME1, ME2,
ME3, EXC, VAC, POX, ERL). Of particular interest is the POX class, which appears only 20 times
(=1.35%) out of 1484 instances [45].

Since the UCI version encodes localization as a single categorical field, we extract the POX cases
and recode them as the positive class (1), with all other localizations merged into a single negative
class (0). This one-versus-all transformation yields a binary problem with POX representing 1.35% of
instances—thus serving as a rare-class benchmark in line with prior literature [47].

3.3. Ozone Dataset

The one-hour ozone exceedance dataset originates from the UCI Machine Learning Repository’s
Air Quality Evaluation collection [46], capturing 2536 timed atmospheric chemistry and meteorology
observations recorded at an urban monitoring station in California across multiple summer seasons.
Each record includes a suite of 73 continuous features—such as temperature, barometric pressure,
wind speed, relative humidity, and concentrations of nitrogen oxides (NOx), hydrogen cyanide
(HCN), and volatile organic compounds—paired with a binary target indicating whether the one-
hour average ozone (O3) concentration exceeded the regulatory threshold of 0.08 ppm.

Following preprocessing, entries with missing values are discarded, and the original timestamp
column is removed to focus purely on predictive measurements. To conform with prevalent
imbalance-learning benchmarks, a literature-standard split retains all 57 confirmed class 1 instances
and randomly selects the corresponding 1791 class 0 instances, producing an extreme imbalance ratio
of 31.4:1. Prior to model training, all features are standardized to zero mean and unit variance, and
the data are partitioned into stratified training and testing subsets that preserve the native class
proportions. The pronounced skew toward non-exceedance cases underscores the challenges of rare-
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event prediction. This dataset is particularly suitable for evaluating sampling techniques, ensemble
methods, and cost-sensitive learning algorithms.

3.4. Data Preprocessing

Data preprocessing was conducted uniformly across all three datasets to facilitate fair
comparison under severe class imbalance. To prevent label leakage, the target label was excluded
from the test set’s feature matrix for each dataset. All preprocessing and resampling steps were fitted
on the training split only, and the resulting fitted preprocessors (e.g., scalers, encoders) were then
applied to the test features; no statistics were re-estimated on the test data, and the test labels were
used solely for final evaluation. In the Credit Card Fraud dataset, the “Time” feature was excluded
to avoid confounding with temporal dependence under static resampling. Transaction amounts
exhibited extreme right skew and were log-transformed via

Amount,, = In(1 + Amount), [48].

Subsequently, all 29 features were standardized to zero mean and unit variance [49]. A stratified
train—test split (70%/30%) preserved the original 0.17 % fraud ratio, with oversampling techniques
applied exclusively to the training subset [44].

The multi-class localization labels were recoded into a binary target in the UCI Yeast dataset,

assigning label 1 to the “POX” class and 0 to all other localizations.

_ {1, if Localization = POX,
0, otherwise.

This yielded 20 positive and 1464 negative instances (= 1.35 %). The eight continuous features
were standardized via z-score normalization to ensure equal weighting in distance-based sampling.
A stratified 70%/30% train—test split was performed, maintaining the class ratio in both sets, with
oversampling restricted to the training partition [45].

The UCI Ozone Level Detection dataset underwent complete-case analysis: any record
containing missing values was removed, reducing the sample from 2536 to 1848 observations. The
timestamp column was dropped to avoid non-numeric data in subsequent analyses. A literature-
standard subset was constructed by retaining all 57 positive instances and randomly sampling 1791
negatives to achieve an imbalance ratio of 31.4:1. All 73 features were standardized to zero mean and
unit variance. Finally, a stratified split (70% training, 30% testing) preserved the class distribution,
with oversampling applied solely to the training set.

4. Methods

Our goal was to examine how alternative evaluation metrics behave when the minority class is
vanishingly rare, and to test whether a small, theory-driven bundle of metrics can travel intact across
disparate application areas. We therefore built a deliberately symmetrical experimental protocol: one
script, three datasets, twenty classifier—sampler variants, one set of metrics, and one statistical lens.
This section walks through each step.

4.1.  Classifier-Sampling Framework

All experiments were conducted in Python 3.11 using scikit-learn 1.5, imbalanced-learn 0.12,
CatBoost 1.3, and XGBoost 2.0. We evaluated four classifiers —logistic regression (LR) with L,
regularization, Random Forest (RF) with 300 trees (RF), XGBoost (XGB) with depth=6 and learning
rate 1=0.1, and CatBoost with 500 iterations (CB) —each under one baseline (no oversampling) and
four oversampling techniques (SMOTE, Borderline-SMOTE, SVM-SMOTE, and ADASYN). This
yields (1 +4) x 4 = 20 unique classifier—sampler configurations per dataset. We applied these 20
configurations independently to each of the three datasets, for a total of 60 model evaluations.
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Performance for each configuration was estimated via stratified 10-fold cross-validation.
Oversampling was applied only to the training set within each fold to avoid information leakage. We
recorded ROC-AUC, PR-AUC, the H-measure, MCC, F,-score, and the raw confusion-matrix counts
from every run.

4.2.  Rank-correlation Analysis Between Metrics

To quantify how consistently the candidate metrics rank the 60 classifier-sampler configurations,
we computed the pair-wise Kendall rank correlation coefficient t ([50]) for every metric pair (m,n) €
{PR — AUC,ROC — AUC, MCC, F,,H — measure}.

Let x;, and x;, denote the values of metrics m and n for configuration i (i = 1,...,N, N = 40)
Kendall’s statistic is

_ Zi<j Sgn(xim - xjm) sgn(xiy — x]'n)

W

1, u>0
and sgn(u)=4 0, u=0
-1, u<o0

The numerator counts concordant minus discordant configuration pairs, and the denominator

is the total number of unordered pairs.
#concordant — #discordant

(%)

Kendall’s rank-correlation coefficient (t) is preferred to the Pearson product-moment coefficient (r)

T =

for assessing agreement among evaluation metrics in highly imbalanced learning because it aligns
with the methodological aim—comparing metric-induced rankings rather than raw magnitudes.
Kendall T is a non-parametric statistic that depends only on the ordering of observations; it remains
invariant under any strictly monotone transformation of the metric scores and is therefore insensitive
to the heterogeneous, bounded scales of MCC (-1 ... 1), PR-AUC (0 ... 1), and ROC-AUC (0 ... 1) [51].
Unlike r, which assumes joint normality and homoscedasticity, T makes no distributional
assumptions and is robust to the heavy skew, ceiling effects, and frequent ties (e.g., TP =0, FP=0 —
identical MCC) that characterise rare-event experiments. Furthermore, t admits an intuitive
probabilistic interpretation—t = 0.60 implies 80 % concordant versus 20 % discordant pairs—
facilitating substantive discussion of metric concordance. These properties render Kendall’s
coefficient a statistically reliable and conceptually faithful measure for ranking-consistency studies
under extreme class imbalance [50, 52].

4.3. Statistical Testing and Confidence Intervals

We generated 95 % confidence intervals (Cls) for each metric via a stratified bootstrap (2000
replicates per test fold, preserving class prevalence). ROC-AUC differences between any two
classifier-sampler configurations were evaluated with the paired-sample DeLong test ([53]), and p-
values are reported. When comparing more than two methods, we applied the Friedman aligned-
ranks test followed by the Nemenyi Critical-Difference (CD) procedure (a = 0.05).

5. Results and Discussions

This section presents a detailed empirical investigation into the performance of twenty
classifier—-sampler configurations across three highly imbalanced datasets: credit card fraud
detection, Yeast protein localization, and Ozone level detection. Under extreme class imbalance, the
primary objective is to examine the sensitivity and reliability of five evaluation metrics —ROC-AUC,
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PR-AUC, Fr-score, MCC, and H-measure. Rather than comparing classifiers per se, the focus lies on
understanding how each metric responds to variations in false positives and false negatives induced
by different sampling techniques. Results highlight notable inconsistencies in ROC-AUC’s ability to
reflect practical performance costs, whereas alternative metrics demonstrate more substantial
alignment with operational realities and domain expert expectations.

5.1. Detailed Per-dataset Results (Fraud Dataset)

This section contrasts the behaviour of twenty classifier—-sampler configurations on three
thematically unrelated yet similarly skewed datasets: the credit-card fraud collection, the Yeast
protein-localisation set, and the Ozone Level Detection.

5.1.1. Fraud Dataset

Table 2 presents the results of 20 distinct classifier—sampler configurations, including the
corresponding confusion matrix components and five evaluation metrics, and all evaluations were
conducted on the test set (unseen data) of the Fraud dataset. Since the study’s objective is metric
evaluation, not model comparison, we examine how each metric responds to the dramatic swings in
FP and FN counts that arise under extreme class-imbalance. The empirical evaluation conducted on
the Fraud dataset demonstrates clearly the limitations inherent in relying on ROC-AUC as an
evaluation metric for rare-event binary classification tasks. Although ROC-AUC scores across various
classifiers and sampling methods remain consistently high, a deeper inspection of the performance
using alternative metrics reveals significant shortcomings in ROC-AUC’s reliability for highly
imbalanced datasets.

Table 2. The results on the credit-card fraud dataset.

Baseline SMOTE Borderline-SMOTE SVM-SMOTE ADASYN

RF | LR | XGB| CB | RF | LR |XGB| CB | RF | LR |XGB| CB | RF | LR |XGB| CB | RF | LR |[XGB| CB

ROC-
0.93410.95310.969 | 0.971 | 0.966 | 0.968 | 0.976 [ 0.969 | 0.930 ( 0.935 | 0.976 | 0.959 | 0.933 | 0.936 | 0.971 | 0.954 | 0.960 | 0.968 | 0.972 | 0.969
AUC

0.821]0.708 | 0.840 | 0.836 [ 0.8190.705 | 0.836 | 0.823 | 0.818 | 0.670 | 0.823 | 0.815 [ 0.827 | 0.687 | 0.834 | 0.827 0.822{0.711 | 0.827 | 0.807
AUC

Fa [0.796(0.658 [ 0.787 [ 0.805 | 0.793 | 0.237 | 0.814 | 0.783 | 0.795 | 0.448 | 0.820 | 0.787 | 0.828 | 0.522 | 0.817 | 0.804 | 0.783 | 0.090 | 0.814 | 0.766

MCC|0.855|0.731 | 0.840|0.856 [ 0.831 | 0.227|0.800 [ 0.733 | 0.851 | 0.360 | 0.845| 0.756 | 0.843 | 0.416 | 0.827 [ 0.768 | 0.814 | 0.126 | 0.800 | 0.713

H |0.761|0.574|0.756 | 0.749 { 0.727 | 0.651 | 0.752 | 0.706 | 0.732 0.558 | 0.727 | 0.702 | 0.739 | 0.587 | 0.751 | 0.751 | 0.727 | 0.638 | 0.717 | 0.698

FP 5 15 8 7 13 (2019 | 35 | 65 6 | 647 | 15 | 50 18 | 481 | 22 | 50 17 [ 6595 | 35 71

FN | 35 | 56 | 36 | 33 | 34 | 18 | 26 | 26 | 35 | 26 | 29 | 28 | 27 | 23 | 28 | 25 | 35 | 16 | 26 | 28

TP | 113 | 92 | 112 | 115 | 114 | 130 | 122 | 122 | 113 | 122 | 119 | 120 | 121 | 125 | 120 | 123 | 113 | 132 | 122 | 120

TN [85290(85280|85287|85288|85282|83276(85260|85230|85289|84648|85280(85245|85277|84814 (85273|85245|85278|78700|85260(85224

Taking the Logistic Regression classifier with ADASYN sampling as a notable example, the
ROC-AUC score is observed to be impressively high at 0.968. However, this apparently robust
performance contrasts with extremely poor values for other critical metrics: an Fa-score of just 0.090,
MCC of 0.126, and an H-measure of 0.638. Further exacerbating this discrepancy is the notably large
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number of false positives (FP=6595), illustrating clearly that the ROC-AUC cannot adequately
penalize the misclassification of negative class instances.

Similarly, another striking contradiction is observed when examining LR with SMOTE
sampling. Despite achieving a high ROC-AUC score of 0.968, this combination demonstrates poor Fz
(0.237), MCC (0.227), and H-measure (0.651) scores, compounded by an extremely high false positive
rate (FP=2019). This trend persists across multiple combinations, highlighting ROC-AUC’s inability
to reflect meaningful performance deficiencies in classifiers when dealing with highly imbalanced
datasets.

The inconsistency in performance indicated by ROC-AUC compared to more practically
relevant metrics is further exemplified by the LR classifier combined with Borderline-SMOTE
sampling, where an acceptable ROC-AUC score of 0.935 is recorded. Nonetheless, substantial
performance issues arise, as clearly evidenced by an Fz-score of 0.448, MCC of 0.360, and H-measure
of 0.558, coupled with a high false positive count (FP=647). These results underscore the critical failure
of ROC-AUC in capturing and penalizing the actual misclassification cost associated with rare-event
classes.

Conversely, metrics such as MCC, F2, and H-measure exhibit greater consistency in identifying
performance inadequacies, effectively distinguishing between well-performing and poorly
performing models. For instance, the baseline Random Forest classifier achieves strong, stable
performance across MCC (0.855), F2 (0.796), and H-measure (0.761) with low FP (5), clearly indicative
of genuine classification effectiveness.

In summary, the empirical evidence firmly establishes that despite its widespread use, ROC-
AUC frequently offers an overly optimistic and misleading assessment of classifier performance in
highly imbalanced contexts. Alternative metrics, specifically MCC, Fz, and H-measure, are more
effective and accurate indicators of genuine predictive performance and should be preferred in
evaluation methodologies involving rare-event classification.

Table 3 summarizes the analysis conducted on the Fraud dataset, encapsulating the observed
performance ranges, sensitivity to variations in false positives and false negatives, and key
observations for ROC-AUC, PR-AUC, Fr-score, MCC, and H-measure. This comparative overview
underscores significant discrepancies between ROC-AUC and alternative metrics, highlighting ROC-
AUC's insufficient sensitivity to misclassification costs in highly imbalanced datasets.

Table 3. The summary of the analysis on the Fraud dataset.

. Ob d e s ‘. .
Metric r:;g;e Sensitivity to FP/FN variations Key observations

Minimal. ROC-AUC uses the empirical FPR
ROC- 0.930-0.976 denominator (= 85 k) and therefore changes by <
AUC (A=0.046)  0.01 when FP rises from 5 (RF baseline) to 6595
(LR + ADASYN).
Moderate. Precision penalises each additional FP,
so PR-AUC drops from 0.821 to 0.704 when LR  CB baseline (FP =7) vs. CB + ADASYN (FP
0.669 — 0.839 Dbaseline is oversampled with SMOTE (FP 15 — =71): PR-AUC falls 0.836 — 0.807, a visible
(A=0.17)  2019). However, the metric is threshold-free and but still modest decline given the ten-fold
does not reflect the absolute alarm burden in the FP increase.
deployed cut-off.

LR baseline vs. LR + SMOTE: FP x1351 (15
— 2 019) yet ROC-AUC increases (0.953 —
0.968).

PR-AUC

High. By quadrupling recall weight, F, rewards
FP-heavy configurations if they gain enough TP,  RF baseline (TP =113, FP =5) vs. RF +
0.000-0.827  but collapses when precision implodes. LR + ADASYN (TP =113, FP =17): identical
(A=0.83) SMOTE attains the highest TP (130) and lowest  recall, FP x3.4 1, F, drops from 0.795 —
FN (18) yet F, = 0.237 —demonstrating severe 0.782.
precision penalty.

F2
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Ve ] ic. falls al li 1
ery‘ hzgl? and symmetric MCC, alls almost linearly MCC and F; exhibit Kendall t = 0.90 across
0125 — 0.855 with either FP or FN explosions. It ranks LR +

MCC (A~0.73) SMOTE (MCC =0.227) and LR + ADASYN (0.126)
o near the bottom despite top-quartile ROC-AUC
values, exposing their high alarm costs.

the grid (see Section 4.4), confirming
consistent ordering once a threshold is
fixed.

LR baseline (H=0.574, FP=15) vs. LR +
ADASYN (H=0.638, FP=6595): modest

0.558 — 0.761 Moderate-to-high. Reflects meaningful sensitivity numeric change, but clearly identifies

H-
(A=0.203) to FP and FN variations, providing clearer

lassifi fferine f ..
measure differentiation compared to ROC-AUC. classifiers suffering from poor precision,
aligning closer to MCC and F; in

penalizing misclassification.

Complementing the scalar summaries in Table 3, a concise cross-metric visualization aids
interpretation. Figures 1(a)-1(e) provide small-multiples radar plots that compare five evaluation
criteria— F2, H-measure, MCC, ROC-AUC, and PR-AUC—for RF, LR, XGB, and CB under each
resampling strategy. Axes are fixed across panels and scaled to [0, 1]; polygons report fold-wise
means. The purpose is illustrative: to visualize pattern and separation across metrics, complementing
the confidence-interval and rank-based analyses reported later.

Two consistent regularities are apparent across all samplers. First, ROC-AUC exhibits a ceiling
effect: for every classifier and sampler, the ROC-AUC spoke lies close to the outer ring, producing
minimal model separation. Second, the threshold-dependent/cost-aligned metrics—MCC and F2—
expose substantial differences that ROC-AUC masks. In particular, LR deteriorates sharply under
synthetic-minority schemes: under SMOTE and ADASYN, the LR polygon collapses on the MCC and
F2 axes while remaining near-maximal on ROC-AUC, indicating severe precision loss (inflated false
positives) that does not materially affect rank-based AUC. The tree/boosted models (RF, XGB, CB)
remain comparatively stable on MCC/F: across samplers, with XGB/RF typically forming the largest
polygons (i.e., strongest across the bundle).

The Baseline panel serves as a reference: ensembles dominate on MCC/Fz, while LR trails but
does not collapse. Moving to SMOTE and ADASYN, the LR degradation intensifies —MCC and F:
shrink markedly —even though PR-AUC and H-measure decline only moderately, and ROC-AUC
stays saturated. This pattern is consistent with decision-boundary distortion and score miscalibration
induced by aggressive oversampling at a prevalence of 0.17%, which disproportionately inflates false
positives at practically relevant thresholds. Borderline-SMOTE and SVM-SMOTE show the same
qualitative behavior but with milder LR degradation; ensembles retain broad, well-rounded
polygons, reflecting robustness to these resampling variants.

Taken together, the radars visualize the complementarity within the proposed metric bundle.
PR-AUC and H-measure track the MCC/F2 separations (though less dramatically), reinforcing their
role as threshold-free and cost-sensitive companions, respectively. Conversely, the near-constant
ROC-AUC across panels underscores its limited diagnostic value in this ultra-imbalanced setting.
These visual regularities align with our Kendall-t concordance results (strong agreement among
MCC/F2/H/PR-AUC; weak with ROC-AUC) and the critical-difference rankings that favor
tree/boosted models. We therefore use the radars as an intuitive summary of sampler—classifier
interactions and as corroborating evidence for the central claim: relying solely on ROC-AUC can
misrepresent practical performance, whereas a multi-metric, cost-aligned protocol reveals
operationally meaningful differences.
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(a) SMOTE (b) ADASYN
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N}
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(c) Border-SMOTE (d) SVM-SMOTE

H

(e) Baseline

Figure 1. Multi-metric radar plots for the fraud dataset across five resampling strategies. Axes are scaled to [0,1];

polygons show mean performance across cross-validation folds.

5.1.2. Yeast Dataset
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Table 4 presents the results of 20 distinct classifier—-sampler configurations, including the
corresponding confusion matrix components and five evaluation metrics, and all evaluations were
conducted on the test set (unseen data) of the Yeast dataset. The empirical evaluation conducted on
the Yeast dataset clearly demonstrates the limitations inherent in relying on ROC-AUC as an
evaluation metric for rare-event binary classification tasks. Although ROC-AUC scores across various
classifiers and sampling methods frequently appear stable or relatively high, deeper analysis using
alternative metrics uncovers significant shortcomings in ROC-AUC’s reliability for highly
imbalanced datasets.

Table 4. The results on the Yeast dataset.

Baseline SMOTE Borderline-SMOTE SVM-SMOTE ADASYN

RF | LR |XGB| CB | RF | LR |[XGB| CB | RF | LR |XGB| CB | RF | LR |XGB| CB | RF | LR |XGB| CB

ROC-
0.882(0.899|0.966(0.934|0.850{0.908 |0.8840.790|0.917{0.888|0.902(0.797]0.921{0.888|0.897(0.791|0.918 0.908|0.882(0.772
AUC

PR-
0.657]0.679|0.299(0.7220.543|0.679|0.375|0.526{0.660(0.809|0.450|0.600|0.633{0.809|0.468|0.599|0.451{0.679{0.582(0.518
AUC

F2 |0.536(0.690/0.192(0.690|0.441(0.207|0.484/0.455|0.536(0.455|0.536(0.536|0.690{0.781]0.690{0.690|0.441(0.146|0.429(0.417

MCC |0.608(0.727{0.283|0.727|0.377|0.174|0.455|0.398|0.6080.351{0.608|0.608|0.727|0.717|0.727|0.727|0.377{0.125|0.358|0.341

H |0.577(0.677|0.127|0.572|0.400(0.677]0.353(0.501|0.534(0.727|0.411(0.530|0.533(0.727|0.511(0.530{0.303(0.677|0.505(0.501

FP 1 1 1 1 7 | 92 4 6 1 26 1 1 1 3 1 1 7 | 142 | 8 9

FN | 3 2 5 2 B) 1 3 3 3 1 3 3 2 1 2 2 3 1 3 3

TP 3 4 1 4 3 5 3 3 3 5 3 3 4 5 4 4 3 5 3 3

TN | 439 | 439 | 439 | 439 | 433 | 348 | 436 | 434 | 439 | 414 | 439 | 439 | 439 | 437 | 439 | 439 | 433 | 298 | 432 | 431

For instance, the Logistic Regression classifier combined with SMOTE sampling yields an
apparently high ROC-AUC score of 0.908. However, this performance is contradicted sharply by
considerably lower scores in crucial alternative metrics such as F2 (0.207), MCC (0.174), and H-
measure (0.677). The substantial false positive rate observed in this scenario (FP=92) further
highlights ROC-AUC's inability to reflect the practical costs associated with increased false alarms
effectively.

Similarly, the XGBoost classifier combined with SMOTE sampling produces a ROC-AUC score
of 0.884, which at first glance appears moderate. However, detailed metrics including F (0.484), MCC
(0.455), and H-measure (0.353) expose critical weaknesses in performance, particularly when
considering that even a relatively modest increase in false positives (FP=4) can negatively impact the
practical effectiveness of the model.

Additionally, analysis of the Logistic Regression classifier with ADASYN sampling provides
further evidence of ROC-AUC’s limitations. Despite maintaining a high ROC-AUC score (0.908), this
combination demonstrates poor performance in alternative metrics: F2 at 0.146, MCC at 0.125, and H-
measure at 0.677. Moreover, this classifier configuration suffers from an extremely high false positive
count (FP=142), further underscoring ROC-AUC’s inadequate sensitivity to misclassification costs.

Conversely, metrics such as MCC, F2, and H-measure consistently provide a more accurate
representation of classifier performance, effectively distinguishing between models performing well
and those not. For example, the baseline Random Forest classifier achieves stable and relatively high
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scores across MCC (0.608), F2 (0.536), and H-measure (0.577) while maintaining a low false positive
count (FP=1), clearly signalling robust classification capability.

In summary, the empirical evidence from the Yeast dataset conclusively illustrates that ROC-
AUC frequently presents a misleadingly optimistic view of classifier performance in highly
imbalanced scenarios. Alternative metrics such as MCC, F2, and H-measure emerge as more reliable
and practically meaningful model performance indicators in rare-event classification problems.

Table 5 summarizes the detailed analysis conducted on the Yeast dataset, presenting the
performance range, sensitivity to false positives and false negatives, and key observations for ROC-
AUC, PR-AUC, Fr-score, MCC, and H-measure. This summary clearly highlights ROC-AUC’s
inadequacy and supports alternative metrics’ practical relevance and greater accuracy for highly
imbalanced datasets.

Table 5. The summary of the analysis on the Yeast dataset.

Observed
Metric Sensitivity to FP/FN variations Key observations
range
Minimal-to-moderate. Due to the dataset's | Logistic Regression baseline (FP=1, ROC-
ROC- 0.772-0.966 | high negative class size (= 439), ROC-AUC | AUC=0.899) vs. LR + ADASYN (FP=142, ROC-
AUC (A=0.194) | scores exhibit modest sensitivity despite | AUC=0.908): ROC-AUC  slightly increases
significant false positives variation. despite an extreme 142-fold FP rise.
LR baseline (FP=1, PR-AUC=0.679) vs. LR +
Moderate-to-high. ~ Precision  directly
0.299 - 0.809 ADASYN (FP=142, PR-AUC=0.679): limited
PR-AUC penalizes false positives, clearly reflecting
(A =0.510) numeric change despite significant FP
severe FP increases.
escalation, indicating threshold-free limitation.
LR + SMOTE: achieves high ROC-AUC (0.908)
High. Heavily sensitive to false positives,
0.146 - 0.781 but very poor F, (0.207) due to high FP (92),
F, significantly ~penalizing classifiers with
(A=0.635) clearly demonstrating sensitivity to precision

precision deterioration.
collapse.

Very high and symmetric. Significantly | LR + ADASYN yields MCC=0.125 despite ROC-

0.125-0.727 | penalizes both false positives and false | AUC=0.908, accurately reflecting severe

MCC
(A=0.602) negatives, clearly reflecting overall | classification cost due to FP (142). MCC
performance deterioration. consistently ranks high-FP scenarios lower.
XGB baseline (H=0.127, FP=1) vs. LR baseline
Moderate-to-high.  Reflects  significant
(H=0.677, FP=1): large variation indicating H-
H- 0.127-0.727 | sensitivity to variations in FP and FN,
measure’s  sensitivity to  model-specific
measure (A=0.600) | providing clearer differentiation compared

performance, aligning closely with MCC and
to ROC-AUC.
Fz.

In addition to the scalar results in Table 5, a compact cross-metric perspective provides an
integrated view. Figures 2(a)-2(e) present small-multiples radar plots for the Yeast dataset (1.35%
positives), comparing F2, H-measure, MCC, ROC-AUC, and PR-AUC for RF, LR, XGB, and CB under
each resampling strategy. Axes are fixed across panels, scaled to [0,1], and polygons report fold-wise
means. As with the Fraud radars, the goal is illustrative: to visualize patterns and separation across
metrics, complementing the following confidence-interval and rank-based analyses.

Two regularities again emerge. First, ROC-AUC remains near the outer ring for all models and
samplers, yielding limited separation. Second, threshold-dependent/cost-aligned metrics (MCC and
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F2) reveal material differences that ROC-AUC alone obscures, with PR-AUC and H-measure
generally moving in the same direction, albeit less sharply.

Dataset-specific nuances are notable. In the Baseline panel, XGB exhibits a pronounced collapse
on F2, MCC, PR-AUC, and H, despite a high ROC-AUC spoke—an archetypal instance of AUC
saturation masking practically relevant errors. CB and LR form larger, more rounded polygons, and
REF sits in between. Under SMOTE and ADASYN, LR shows a mixed profile: PR-AUC and H increase
substantially, yet MCC (and at times F2) contracts, indicating that oversampling improves ranking
and cost-weighted separation while simultaneously inflating false positives at decision-useful
thresholds (score—threshold miscalibration). Borderline-SMOTE moderates this tension, with milder
LR degradation on MCC/F: and stable ensemble performance. SVM-SMOTE yields the most balanced
polygons overall —especially for LR and CB —suggesting that margin-aware synthesis can enhance
both ranking-based and threshold-dependent metrics on Yeast.

Taken together, these radars (i) make the ROC-AUC ceiling effect visually explicit; (ii) highlight
sampler—classifier interactions that matter operationally (e.g., XGB’s baseline collapse; LR’s
oversampling trade-offs); and (iii) show PR-AUC and H-measure qualitatively tracking the MCC/F2
separations. The visual patterns are consistent with the Kendall-t concordance and critical-difference
rankings reported for Yeast, reinforcing the central claim that relying solely on ROC-AUC is
insufficient. In contrast, a multi-metric, cost-aligned protocol reveals differences of practical

consequence.
PR-AUC PR-AUC

H H
(a) SMOTE (b) ADASYN
PR-AUC PR-AUC

— RF
— IR
— XxGB
— c8
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H

(c) Border-SMOTE (d) SVM-SMOTE

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202510.0958.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 October 2025 d0i:10.20944/preprints202510.0958.v1

18 of 40

PR-AUC

(e) Baseline

Figure 2. Multi-metric radar plots for the Yeast dataset across five resampling strategies. Axes are scaled to [0,1];

polygons show mean performance across cross-validation folds.

5.1.3. Ozone Dataset

Table 4 presents the results of 20 distinct classifier—-sampler configurations, including the
corresponding confusion matrix components and five evaluation metrics, and all evaluations were
conducted on the Ozone dataset's test set (unseen data). The empirical evaluation conducted on the
Ozone dataset provides further compelling evidence of the limitations inherent in using ROC-AUC
as an evaluation metric for rare-event binary classification tasks. Despite ROC-AUC scores
consistently appearing moderate to high across multiple classifiers and sampling methods, detailed
examination using alternative metrics reveals substantial shortcomings in ROC-AUC's reliability for
highly imbalanced datasets.

Table 6. The results on the Ozone dataset.

Baseline SMOTE Borderline-SMOTE SVM-SMOTE ADASYN

RF | LR [XGB| CB | RF | LR |XGB| CB | RF | LR [XGB| CB | RF | LR |XGB| CB | RF | LR [XGB| CB

ROC-
0.882(0.881|0.875(0.894|0.863[0.8600.879(0.895|0.833(0.879|0.874(0.908|0.8560.878|0.864(0.906|0.854(0.860|0.884(0.902
AUC

PR-
0.211{0.232(0.196{0.225{0.362|0.195]0.250|0.251|0.339(0.223|0.236{0.293|0.323|0.214|0.226|0.259|0.325|0.204{0.219{0.258
AUC

F2 |0.071{0.135|0.130(0.068|0.407|0.336{0.372(0.309|0.4170.372|0.337|0.368|0.309|0.375|0.337|0.385{0.361|0.338|0.333|0.316

MCC|0.164|0.184/0.143]0.094(0.381|0.225|0.307|0.240{0.407)0.262{0.294|0.300{0.318|0.266{0.294|0.330{0.357|0.228 0.285|0.251

H |0.080{0.102|0.064(0.089|0.237(0.105|0.125/0.125]0.215{0.094|0.095(0.203|0.209{0.085|0.095{0.111{0.175(0.105|0.083{0.139

FP 1 4 7 4 |11 |57 |19 | 23| 9 |44 | 15|20 | 8 |43 |15 |16 | 9 |56 |16 | 21

FN |16 | 15 [ 15 | 16 ( 10 | 8 | 10 | 11 | 10 | 8 | 11 | 10 {12 | 8 | 11 | 10 [ 11 | 8 | 11 | 11

TP 1 2 2 1 7 9 7 6 7 9 6 7 5 9 6 7 6 9 6 6

TN | 537 | 534 | 531 | 534 | 527 | 481 | 519 | 515 | 529 | 494 | 523 | 518 | 530 | 495 | 523 | 522 | 529 | 482 | 522 | 517
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For example, the Logistic Regression classifier combined with SMOTE sampling achieves an
ROC-AUC of 0.860, which initially might suggest acceptable model performance. However, this
apparent performance contrasts sharply with notably weaker results in critical alternative metrics:
F2-score at 0.336, MCC at 0.225, and H-measure at 0.105. This combination also records a substantial
false positive rate (FP=57), highlighting ROC-AUC'’s failure to capture the practical implications of
increased false alarms adequately.

Similarly, XGBoost with Borderline-SMOTE achieves a relatively moderate ROC-AUC of 0.874,
but deeper inspection through alternative metrics reveals significant shortcomings. Despite its ROC-
AUC score, the combination yields a relatively low Fz-score (0.337), MCC (0.294), and H-measure
(0.095), alongside an elevated false positive count (FP=15). These findings further underscore ROC-
AUC’s inability to reflect misclassification costs sensitively.

Another illustrative case is observed with Logistic Regression using ADASYN sampling. The
ROC-AUC score of 0.860 might initially seem satisfactory; however, alternative metrics such as F2
(0.338), MCC (0.228), and H-measure (0.105) clearly indicate substantial deficiencies in performance.
Moreover, the high false positive count (FP=56) strongly emphasizes ROC-AUC’s limited sensitivity
to the actual cost of misclassification.

In contrast, metrics such as MCC, F2, and H-measure consistently provide a more precise
representation of classifier performance by distinguishing between models performing genuinely
well and those performing inadequately. For instance, the Random Forest classifier combined with
Borderline-SMOTE sampling exhibits relatively strong and balanced performance across MCC
(0.407), F2 (0.417), and H-measure (0.215) with a comparatively low false positive rate (FP=9), clearly
indicating effective classification performance.

In summary, empirical evidence from the Ozone dataset strongly reinforces that ROC-AUC is
often misleadingly optimistic when assessing classifier performance in highly imbalanced scenarios.
Alternative metrics, particularly MCC, F2, and H-measure, provide a more reliable and practical
assessment of classifier effectiveness in rare-event classification tasks.

Table 7 summarizes the comprehensive analysis of the Ozone dataset, capturing the observed
performance ranges, sensitivity to false positive and false negative variations, and key observations
for ROC-AUC, PR-AUC, F,-score, MCC, and H-measure. This comparative overview reinforces ROC-
AUC’s inadequacies and underscores the greater practical relevance and accuracy of MCC, F,, and
H-measure for assessing classifier performance on highly imbalanced datasets.

Table 7. The summary of the analysis on the Ozone dataset.

Observed
Metric Sensitivity to FP/FN variations Key observations
range
Minimal-to-moderate. ~ Given the
Logistic Regression baseline (FP=4, ROC-AUC=0.881)
relatively high negative class size (=
ROC- 0.833 -0.908 vs. LR + ADASYN (FP=56, ROC-AUC=0.860):
530), ROC-AUC scores remain stable
AUC (A=0.075) minimal ROC-AUC change despite a 14-fold FP rise,
despite notable increases in false
illustrating limited sensitivity.
positives.
Random Forest baseline (PR-AUC=0.211, FP=1) vs.
Moderate. Precision penalizes | RF + SMOTE (PR-AUC=0.362, FP=11): visible
PR- 0.195-0.362
increases in false positives but the | improvement in PR-AUC reflecting better precision-
AUC (A=0.167)
threshold-free nature limits sensitivity. | recall balance despite higher FP, indicating
threshold-free limitations.
0.068 - 0.417 | High. Strongly sensitive to FP; even | XGB with Borderline-SMOTE: moderate ROC-AUC
F,
(A=0.349) moderate FP increases lead to notable | (0.874) contrasts sharply with relatively low F,
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F, reductions, clearly penalizing | (0.337), clearly revealing the precision collapse

precision loss. impact with FP=15.

Very high and symmetric. Clearly
LR + SMOTE: despite ROC-AUC (0.860), MCC drops
0.094 - 0.407 | decreases with increases in FP or FN,
MCC significantly to 0.225 due to FP (57), highlighting
(A=0.313) | accurately reflecting real performance
MCC’s sensitivity to misclassification costs.
decline.

Moderate-to-high.  Captures  the
RF + SMOTE (H=0.237, FP=11) clearly outperforms
performance sensitivity to FP and FN
H- 0.064 - 0.237 LR + ADASYN (H=0.105, FP=56), effectively
variations more clearly than ROC-
measure (A=0.173) reflecting differences in false alarm costs and model
AUC, providing a more realistic
reliability.
assessment.

Beyond the scalar summaries in Table 7, a compact cross-metric view is useful. Figures 3(a)-3(e)
show small-multiples radar plots for the Ozone dataset (=3% positives), comparing F2, H-measure,
MCC, ROC-AUC, and PR-AUC for RF, LR, XGB, and CB under each resampling strategy. Axes are
fixed across panels, scaled to [0,1], and polygons report fold-wise means. As in the prior datasets,
these plots are illustrative—a compact view of pattern and separation across metrics that
complements the subsequent confidence-interval and rank-based analyses.

Two regularities recur. First, ROC-AUC lies close to the outer ring for all models and samplers,
yielding limited discriminatory power among classifiers. Second, the threshold-dependent/cost-
aligned metrics—MCC and F2—exhibit meaningful spread, with PR-AUC and H-measure generally
moving in the same qualitative direction (though less sharply), thereby visualizing the
complementarity within the proposed metric bundle.

Dataset-specific nuances are evident. In the Baseline panel, RF forms the broadest, most balanced
polygon, leading on MCC, F., and PR-AUC, while CB is competitive and LR/XGB trail —despite
uniformly high ROC-AUC for all four models. Under SMOTE, polygons contract on MCC and F:
across models (with only modest changes in PR-AUC/H), indicating that naive oversampling
degrades performance at decision-relevant thresholds even as rank-based AUC remains high.
Borderline-SMOTE and SVM-SMOTE partially recover this loss: RF again dominates on MCC/ B,
and CB closes the gap, whereas LR/XGB improve mainly on PR-AUC/H with smaller gains on
MCC/F2. The most pronounced divergence occurs under ADASYN: LR exhibits a marked increase in
PR-AUC (and occasionally H-measure) while collapsing on MCC and F: a signature of
oversampling-induced score/threshold miscalibration that inflates false positives at practical
operating points. In contrast, the ensemble methods maintain relatively rounded polygons across
samplers, reflecting greater robustness to resampling variance.

Overall, the Ozone radars (i) make the ROC-AUC ceiling effect visually explicit, (ii) reveal
consequential sampler—classifier interactions (e.g.,, ADASYN's trade-off for LR), and (iii) show PR-
AUC/H qualitatively tracking the separations exposed by MCC/F.. These visual regularities align
with the Kendall-t concordance and critical-difference rankings reported for Ozone, reinforcing the
central conclusion that relying solely on ROC-AUC is insufficient. In contrast, a multi-metric, cost-
aligned protocol surfaces operationally meaningful differences among models.
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Figure 1 Multi-metric radar plots for the Ozone dataset across five resampling strategies. Axes are scaled to [0,1];

polygons show mean performance across cross-validation folds.
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Figure 3. Multi-metric radar plots for the Ozone dataset across five resampling strategies. Axes are scaled to

[0,1]; polygons show mean performance across cross-validation folds.
5.2. Cross-Domain Kendall Rank Correlations

5.2.1. Kendall Rank Correlations Between Metrics (Fraud Dataset)

The pairwise Kendall rank correlation coefficients, summarized in Table 8 and illustrated in Fig.
4, reveal a statistically coherent structure in how the five evaluation metrics rank the 20 classifier—
sampler configurations evaluated on the Fraud dataset, exhibiting a minority class prevalence of
approximately 0.17%. Throughout the analysis, T denotes Kendall’s rank correlation coefficient, and
p-values refer to the two-sided significance level derived from the exact null distribution, following
the formulation by Kendall [50].

Table 8. Kendall rank correlations (1) and p-values between metrics on the Fraud dataset.

Metric 1 Metric 2 T p-value
PR-AUC ROC-AUC 0.337 0.039762
PR-AUC F, 0.565 0.000514
PR-AUC MCC 0.438 0.007054
PR-AUC H 0.695 0.000003
ROC-AUC F, 0.216 0.183217
ROC-AUC MCC 0.047 0.770170
ROC-AUC H 0.179 0.288378
F, MCC 0.640 0.000085

F, H 0.533 0.001043
MCC H 0.617 0.000146

An additional layer of analysis on the Fraud dataset was conducted using pairwise Kendall rank
correlation coefficients (t), accompanied by two-sided significance levels (p-values) calculated from
the exact null distribution [50]. This analysis aimed to evaluate the degree of concordance between
different performance metrics and further highlight the relative alignment or divergence of ROC-

AUC with metrics more sensitive to rare-event classification.

The results reveal a relatively weak positive correlation between PR-AUC and ROC-AUC (t =
0.337, p = 0.0398), suggesting that although some concordance exists, it is neither strong nor robust.
This weak association supports the notion that ROC-AUC may fail to track changes in precision-recall
performance under highly imbalanced conditions reliably. More notably, ROC-AUC exhibits very
low and statistically insignificant correlations with F, (t=0.216, p = 0.183), MCC (t=0.047, p = 0.770),
and H-measure (t = 0.179, p = 0.288). These findings emphasize that ROC-AUC rankings are
disconnected mainly from metrics prioritizing misclassification costs and rare-event detection
effectiveness.

In contrast, strong and statistically significant correlations are observed among the alternative
metrics. PR-AUC shows moderate-to-strong correlations with F, (t = 0.565, p = 0.0005), MCC (t =
0.438, p=0.0071), and H-measure (t=0.695, p =0.000003), indicating that these metrics capture similar
aspects of classifier performance. Similarly, F, correlates strongly with MCC (t = 0.640, p = 0.000085)
and H-measure (t = 0.533, p = 0.0010), while MCC and H-measure themselves exhibit a strong
concordance (t=0.617, p=0.0001).

These results highlight two critical insights: first, ROC-AUC is weakly aligned with metrics that
account for precision, recall, and misclassification asymmetry; second, alternative metrics such as F,
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MCC, and H-measure display substantial agreement, reinforcing their utility as complementary and

reliable indicators for performance evaluation in highly imbalanced datasets.

ROC-AUC PR-AUC

F2

MCC

T -

1
PR-AUC ROC-AUC F2

1.00

- 1.00

-0.75

0.50

0.25

0.00

Kendall’'s T

-0.25

-0.50

-0.75

-1.00

Figure 4. Kendall rank correlations (1) heatmap between metrics on the Fraud dataset.

5.2.2. Kendall Rank Correlations Between Metrics (Yeast Dataset)

The pairwise Kendall rank correlation coefficients, summarized in Table 9 and illustrated in Fig.
5, reveal a statistically coherent structure in how the five evaluation metrics rank the 20 classifier—
sampler configurations evaluated on the Yeast dataset, exhibiting a minority class prevalence of
approximately 1.35%. Throughout the analysis, T denotes Kendall’s rank correlation coefficient, and
p-values refer to the two-sided significance level derived from the exact null distribution, following
the formulation by Kendall [50].

Table 9. Kendall rank correlations (1) and p-values between metrics on the Yeast dataset.

Metric 1 Metric 2 T p-value
PR-AUC ROC-AUC 0.105 0.5424221
PR-AUC F, 0.210 0.2109304
PR-AUC MCC 0.105 0.5318615
PR-AUC H 0.840 0.0000003
ROC-AUC Fa 0.011 0.9475031
ROC-AUC MCC 0.039 0.8178395
ROC-AUC H 0.043 0.7947140
F, MCC 0.893 0.0000003
F, H 0.268 0.1132160
MCC H 0.162 0.3388544

An additional layer of analysis on the Yeast dataset was conducted using pairwise Kendall rank
correlation coefficients (t), accompanied by two-sided significance levels (p-values) calculated from

the exact null distribution [50]. This analysis aimed to assess the degree of concordance between

different performance metrics and further investigate ROC-AUC’s alignment with alternative

measures sensitive to rare-event classification.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.



https://doi.org/10.20944/preprints202510.0958.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 October 2025 d0i:10.20944/preprints202510.0958.v1

24 of 40

The results reveal an extremely weak and statistically insignificant correlation between PR-AUC
and ROC-AUC (t = 0.105, p = 0.5424), indicating a lack of meaningful concordance between these
metrics. Furthermore, ROC-AUC exhibits negligible and non-significant correlations with F, (t =
0.011, p = 0.9475), MCC (T = 0.039, p = 0.8178), and H-measure (t = 0.043, p = 0.7947). These findings
underscore the disconnect between ROC-AUC and metrics prioritizing detecting rare events and
penalizing misclassification costs.

In contrast, notable correlations are observed among alternative metrics. PR-AUC shows a
strong and statistically significant correlation with H-measure (t = 0.840, p < 0.0001), suggesting a
high degree of agreement in how these metrics rank classifier performance. F, and MCC demonstrate
a robust concordance (t = 0.893, p < 0.0001), highlighting their mutual sensitivity to class imbalances.
However, F, and H-measure (t = 0.268, p = 0.1132) and MCC and H-measure (t = 0.162, p = 0.3389)
show weaker and statistically non-significant associations.

Overall, these results emphasize two key insights: ROC-AUC shows minimal alignment with
alternative metrics, reinforcing its inadequacy in highly imbalanced scenarios; and strong
correlations among specific pairs of alternative metrics —particularly F, and MCC—demonstrate
their consistency and relevance for evaluating classifier performance in rare-event classification tasks.
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Figure 5. Kendall rank correlations (t) heatmap between metrics on the Yeast dataset.

5.2.3. Kendall Rank Correlations Between Metrics (Ozone Dataset)

The pairwise Kendall rank correlation coefficients, summarized in Table 10 and illustrated in
Fig. 6, reveal a statistically coherent structure in how the five evaluation metrics rank the 20 classifier—
sampler configurations evaluated on the Ozone dataset, exhibiting a minority class prevalence of
approximately 3.1%. Throughout the analysis, T denotes Kendall’s rank correlation coefficient, and
p-values refer to the two-sided significance level derived from the exact null distribution, following
the formulation by [50].

Table 10. Kendall rank correlations (t) and p-values between metrics on the Ozone dataset.

Metric 1 Metric 2 T p-value
PR-AUC ROC-AUC 0.053 0.773219
PR-AUC F, 0.301 0.064271
PR-AUC MCC 0.639 0.000086
PR-AUC H 0.716 0.000001
ROC-AUC F> -0.185 0.255895
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ROC-AUC MCC -0.248 0.127088
ROC-AUC H -0.168 0.318896
F, MCC 0.640 0.000085

F, H 0.343 0.034859
MCC H 0.554 0.000653

An additional layer of analysis on the Ozone dataset was conducted using pairwise Kendall rank
correlation coefficients (t), accompanied by two-sided significance levels (p-values) calculated from
the exact null distribution [50]. This analysis aimed to evaluate the degree of concordance between
different performance metrics and to assess ROC-AUC’s alignment with alternative measures
sensitive to rare-event classification.

The results show an extremely weak and statistically insignificant correlation between PR-AUC
and ROC-AUC (t=0.053, p =0.7732), suggesting almost no concordance between these metrics. More
concerningly, ROC-AUC demonstrates negative correlations with F, (t =-0.185, p = 0.2559), MCC (t
= -0.248, p = 0.1271), and H-measure (t = -0.168, p = 0.3189), though these associations are not
statistically significant. These findings indicate that ROC-AUC fails to align with alternative metrics
and may rank classifier performance inversely in some instances, further underscoring its inadequacy
for imbalanced data evaluation.

In contrast, strong and statistically significant positive correlations are observed among the
alternative metrics. PR-AUC exhibits substantial concordance with MCC (t =0.639, p = 0.000086) and
H-measure (t = 0.716, p < 0.0001), highlighting shared sensitivity to precision-recall trade-offs and
misclassification costs. Similarly, F. correlates strongly with MCC (1 = 0.640, p = 0.000085) and
moderately with H-measure (1 = 0.343, p = 0.0349), while MCC and H-measure also display a robust
association (t = 0.554, p = 0.0007).

These findings reinforce two critical insights: ROC-AUC is poorly aligned with alternative
metrics and may produce misleading performance rankings in highly imbalanced contexts;
meanwhile, the strong concordance among PR-AUC, F,, MCC, and H-measure underscores their
suitability as reliable and complementary metrics for evaluating rare-event classification
performance.
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Figure 6. Kendall rank correlations (1) heatmap between metrics on the Ozone dataset.

5.3. Cross-Metric Synthesis and Evaluation Strategy

The synthesis of results across the Fraud, Yeast, and Ozone datasets reinforces a clear hierarchy
among the evaluated metrics. Kendall’s rank correlation analyses consistently demonstrate that
T(MCC, F;) » t©(PR-AUC, MCC or F;) » t(ROC-AUC, any other metric). This ordering highlights
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MCC and F, as capturing similar operational trade-offs, PR-AUC as offering a compatible but
threshold-free perspective, and ROC-AUC as providing minimal practical guidance in ultra-
imbalanced settings. Consequently, we recommend a reporting bundle of MCC + PR-AUC, with F,
included when high recall is mission-critical, while relegating ROC-AUC to supplementary material
accompanied by explicit caution regarding its limitations. Table 11 shows that the cross-domain
analysis of the three datasets yields consistent conclusions.

Table 11. The cross-domain analysis of the three datasets.

Metric Fraud Yeast Ozone Cross-domain conclusion

Insensitive to operational

cost;  rankings  often
ROC- Nearly flat  (0.93-0.98) | Weak T with other | Range only 0.83-0.91
contradict cost-aware
AUC despite FP 5—6595 metrics (<0.10) despite FP 1—57
metrics across prevalence

levels.

Useful for global ranking;
Penalizes FP explosions | Strong t with H | Moderate
must be complemented by
PR-AUC | ({0.13); limited alarm load | (0.84), weak with | discrimination; = mid-
threshold-based metrics for

insight others table for FP-heavy runs
workload estimation.
Recall-weighted single-
Collapses when precision threshold metric aligned
Near-perfect © with | Largest dynamic span
F, implodes; rises with recall closely with MCC when
MCC (0.89) (0.07-0.42)
gains if FP moderate reflects stakeholder cost
ratios.
Most  stable  threshold-
Linear response to FP and | Strong concordance | Balances recall & FP | dependent measure;
MCC FN; largest discriminative | with F, moderate | (MCC 041 vs. ROC- | symmetric treatment of
range (0.13-0.86) with PR-AUC AUC 0.83) errors holds across

prevalence levels.

Strong t with PR- | Flags top FP inflation | Flags top FP inflation (e.g.,
Penalizes FP-heavy models

H- AUC (0.84), moderate | (e.g.,, LR+SMOTE); t = | LR+SMOTE); t = 0.72 with
(e.g., XGB+SMOTE); t=0.84
measure alignment with MCC | 0.72 with PR-AUC, =~ | PR-AUC, = 0.05 with ROC-
with PR-AUC
and F, 0.05 with ROC AUC

The findings reinforce that MCC and F,-score capture complementary aspects of model
performance, reflecting trade-offs between false positives and false negatives at a fixed decision
threshold. While MCC offers a symmetric, prevalence-agnostic summary, F» is more sensitive to recall
and proves particularly useful when the cost of false negatives outweighs that of false positives. PR-
AUC, although threshold-independent, aligns reasonably well with these metrics, providing a global
view of ranking quality that remains valuable when decision thresholds are not yet defined. ROC-
AUC, by contrast, consistently misaligns with operational needs in ultra-imbalanced settings. Its
scores remain artificially high even when models exhibit severe false-positive inflation, thus
obscuring practical deficiencies that MCC, F, and PR-AUC readily expose.

These observations point to a clear recommendation: PR-AUC and MCC should form the core
of any evaluation framework for rare-event classification. Where high recall is critical —for instance,
in fraud detection or medical screening —the inclusion of F, offers additional insight aligned with
stakeholder priorities. ROC-AUC may only be reported for completeness or legacy comparisons if
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accompanied by a clear disclaimer outlining its insensitivity to class imbalance and misalignment
with operational costs.

These conclusions are not merely theoretical; they translate into actionable strategies for
practitioners working with datasets where the minority class comprises less than 3% of the
population. The primary recommendation is to adopt PR-AUC to evaluate global ranking ability and
MCC as a threshold-specific measure of balanced performance. In domains where false negatives
carry disproportionate risk, such as missed fraud cases or undiagnosed patients, the F,-score is a vital
complement, emphasizing recall without discarding the need for precision.

The consistent misbehavior of ROC-AUC in our study warrants caution. In multiple cases, ROC-
AUC ranked models favorably even when both MCC and PR-AUC indicated poor discriminative
performance. For example, the combination of Logistic Regression with SMOTE in the fraud dataset
achieved a ROC-AUC well above 0.90 despite a massive spike in false positives (FP = 2019, MCC =
0.23), effectively masking operational failure. Such discordance between ROC and MCC rankings —
especially when discrepancies exceed 10 percentile points—should be treated as a red flag in model
validation pipelines.

Oversampling methods, too, must be evaluated contextually. While techniques like SMOTE can
offer measurable gains in some domains (e.g., the Yeast dataset), they may introduce detrimental
artifacts elsewhere. It is therefore critical that researchers assess the impact of oversampling not only
on headline metrics but also on raw confusion-matrix components.

Finally, in settings where the economic or human cost of misclassification is asymmetric, the
flexible F_f family offers tailored sensitivity. Selecting (3 between 2 and 4 allows evaluators to reflect
real-world stakes —emphasizing recall where it matters most, while retaining the interpretability of
a single scalar score.

5.4. Statistical Testing and Confidence Intervals

To assess the statistical reliability of performance estimates, 95% confidence intervals were
constructed for each evaluation metric using a stratified bootstrap procedure. This involved
generating 2000 resampled replicates per test fold while maintaining the original class distribution to
preserve the inherent imbalance structure. Pairwise comparisons of ROC-AUC values between
classifier-sampler configurations were conducted using the DeLong test for correlated receiver
operating characteristic curves ([53]), with corresponding p-values reported. We employed the
Friedman aligned-ranks test for comparisons involving more than two configurations, followed by
the Nemenyi post hoc procedure to identify statistically significant differences at a family-wise
significance level of o =0.05.

5.4.1. Bootstrap Cls and DeLong Test (Fraud Dataset)

Figures 7(a)—(e) display stratified-bootstrap 95 % confidence intervals (CIs) for the Fraud data,
while Figure 8 gives the ROC-AUC critical-difference (CD) diagram computed from 200 bootstrap
resamples.
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Figure 7. (a-e) Bootstrap-based 95 % confidence intervals for each evaluation metric on the Fraud dataset.

The ROC-AUC scores reported in Figure 7(a) exhibit a strong ceiling effect across all classifier—
sampler configurations evaluated on the Ozone dataset. Every method achieves an ROC-AUC of at
least 0.92, with fifteen out of twenty configurations densely concentrated within the narrow 0.94-0.97
interval. These overlaps in confidence intervals (Cls) reflect the saturation of ROC-AUC under
conditions of extreme class imbalance. This observation is quantitatively confirmed by the critical
difference (CD) diagram in Figure 8, where only the top-ranked Borderline-SMOTE + CatBoost and
the lowest-ranked Borderline-SMOTE + Random Forest are distinguishable beyond the Nemenyi
threshold (CD = 2.96). All remaining methods fall within the critical band, rendering ROC-AUC
largely ineffective in resolving meaningful differences among most classifiers—an outcome
consistent with its known limitations in highly imbalanced domains [54].

By contrast, other evaluation metrics provide a more precise and discriminative perspective.
Figure 7(b) shows the PR-AUC results distribute the same twenty methods across a substantially
broader interval (0.62-0.88). Baseline XGBoost and SVM-SMOTE + XGBoost emerge as top
performers (mean PR-AUC = 0.87; CI: 0.83-0.90), while SMOTE + Logistic Regression and ADASYN
+ Logistic Regression are positioned at the bottom (= 0.65; CI: 0.61-0.69). Metrics based on confusion-
matrix outcomes further support this stratification: MCC and F, (8 = 2), presented in Figures 7(c) and
7(d), respectively, rank SVM-SMOTE + Random Forest and Borderline-SMOTE + XGBoost among the
highest (MCC = 0.88; F, = 0.82), while all logistic-regression variants remain under MCC = 0.30,
indicating inferior performance.

Further refinement is provided by the H-measure in Figure 7(e), which incorporates cost
sensitivity and penalizes excessive false positives. Here, Baseline Random Forest and SVM-SMOTE
+ CatBoost occupy the top positions (H = 0.78), despite not being among the leaders under ROC-AUC.
Compared to the bottom six, the top eight H-measure configurations present non-overlapping Cls,
confirming a statistically and practically significant separation that ROC-AUC fails to detect.

Rank-correlation analyses reinforce these discrepancies. As reported in Table 8, Kendall’'s t
coefficients reveal strong concordance between PR-AUC and the H-measure, and between F, and
MCC (0.64 < t < 0.70), but substantially weaker alignment between ROC-AUC and any other metric
(t = 0.04-0.33). The CD diagram in Figure 8 visually supports this conclusion, as configurations
clustered centrally under ROC-AUC rankings are widely dispersed in the rankings of other metrics.
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These results underscore ROC-AUC’s persistent misalignment with metrics that better reflect the
trade-offs relevant in rare-event binary classification.

Critical-difference diagram - ROC-AUC (Fraud, 200 bootstraps)
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Figure 8. Nemenyi critical-difference diagram derived from 200 stratified bootstrap resamples of the test fold on
the Fraud dataset.

5.4.2. Bootstrap Cls and DeLong Test (Yeast Dataset)

Figures 9(a-e) show bootstrap-based 95 % confidence intervals for each evaluation metric, while

Figure 10 reports a Nemenyi critical-difference diagram derived from 200 stratified bootstrap
resamples of the test fold.
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Forest plot of PR-AUC for Yeast dataset
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Forest plot of MCC for Yeast dataset
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Forest plot of H for Yeast dataset
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Figure 9. a-e) Bootstrap-based 95 % confidence intervals for each evaluation metric on the Yeast dataset.

Figure 9(a) illustrates the distribution of ROC-AUC scores across all classifier—sampler
combinations evaluated on the Yeast dataset. Despite underlying architectural and sampling
differences, nearly all configurations attain ROC-AUC values exceeding 0.75, with nine methods
clustering within the narrow 0.85-0.90 interval and displaying substantially overlapping bootstrap
confidence intervals. The critical difference (CD) diagram in Figure 10 corroborates this compression:
no method pair exceeds the Nemenyi threshold (CD = 2.96) in average rank. This inability of ROC-
AUC to distinguish between models is consistent with its known ceiling effect in highly imbalanced
settings, where the abundance of negative-class samples artificially inflates the curve’s area—even
for classifiers with limited discriminative ability [54].

In contrast, alternative metrics such as PR-AUC, MCC, F,, and the H-measure offer a
substantially more informative view of model performance. As depicted in Figure 9(b), PR-AUC
distributes the same twenty configurations across a wide range (0.20-0.85), with SVM-SMOTE paired
with logistic regression achieving the highest performance (mean = 0.82; CI: 0.71-0.93), while the
Baseline XGB variant falls to the bottom (mean = 0.38; CI: 0.28-0.50). MCC and F, scores, shown in
Figures 9(c) and 9(d), respectively, reveal similar rankings: the SVM-SMOTE variants dominate,
followed by logistic regression with no resampling or with borderline-SMOTE, while ROS and
ADASYN configurations underperform significantly. These critical distinctions, invisible under
ROC-AUC, become pronounced through threshold-sensitive or cost-aware metrics.

Further reinforcing this pattern, the H-measure (Figure 9(e)) adds a probabilistic cost framework
to the evaluation [55]. It sharply penalizes models that produce excessive false positives, demoting
Baseline XGB to the bottom quartile despite its superficially strong ROC-AUC. Notably, the bootstrap
confidence intervals of the top five methods under the H-measure do not overlap with those of the
bottom eight, indicating a statistically and operationally meaningful separation in model quality.

Rank-based correlation analyses support these findings. Table 9 presents Kendall’s t coefficients,
which demonstrate high agreement between PR-AUC and the H-measure, as well as between F, and
MCC (0.84 <1<0.89). In contrast, correlations between ROC-AUC and any other metric are negligible
(t = 0.01-0.10), underscoring its divergence from metrics that emphasize positive-class fidelity and
real-world utility. Together with the CD analysis, these results confirm that ROC-AUC fails to
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provide meaningful or reliable rankings in extreme class imbalance. In contrast, PR-AUC, MCC, F,,
and the H-measure offer more sensitive and discriminative evaluation frameworks.

Critical-Difference Diagram - ROC-AUC (Yeast, 200 bootstraps)
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Figure 10. Nemenyi critical-difference diagram derived from 200 stratified bootstrap resamples of the test fold

on the Yeast dataset.

5.4.3. Bootstrap Cls and DeLong Test (Ozone Dataset)

Figures 11(a-e) present stratified-bootstrap 95 % confidence intervals (Cls) for every evaluation
metric on the Ozone data, and Figure 12 shows the Nemenyi critical-difference (CD) diagram

obtained from 200 bootstrap resamples of the identical test fold.
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Ozone dataset: H
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Figure 11. a-e) Bootstrap-based 95 % confidence intervals for each evaluation metric on the Ozone dataset.

The evaluation of classifier-sampler configurations on the Ozone dataset reveals similar
limitations of ROC-AUC observed in previous benchmarks. As shown in Figure 11(a), all twenty
configurations achieve ROC-AUC scores between 0.75 and 0.93, with thirteen methods tightly
clustered within the 0.83-0.90 interval and exhibiting largely overlapping 95% confidence intervals.
The critical difference (CD) diagram in Figure 12 confirms that only the two extremal
configurations—Borderline-SMOTE with CatBoost at the top and Borderline-SMOTE with Random
Forest at the bottom —differ by more than the Nemenyi threshold (CD = 2.96). The remaining eighteen
methods are statistically indistinguishable under ROC-AUC, reaffirming the ceiling-effect
phenomenon in imbalanced settings, where abundant negative examples lead to inflated area-under-
curve estimates despite limited model utility [54].

By contrast, alternative metrics reveal substantially greater discriminatory power. Figure 11(b)
presents the PR-AUC results, ranging from 0.18 to 0.65. Here, SMOTE combined with Random Forest
clearly outperforms other methods (mean = 0.62; CI: 0.49-0.75), while SMOTE with Logistic
Regression ranks lowest (mean = 0.14; CI: 0.10-0.22). This ranking pattern is echoed in both the MCC
(Figure 11c) and the F, score (Figure 11d), where oversampled Random Forest models consistently
lead, followed by SVM-SMOTE variants. In contrast, most baseline and ADASYN-based methods
perform poorly, with MCC values falling below 0.25.

Further insights are obtained from the H-measure (Figure 1le), which incorporates a
probabilistic cost model to penalize false positives more explicitly [55]. Notably, the H-measure
elevates SMOTE + RF and Borderline-SMOTE + RF to the top of the rankings —despite their mid-
range ROC-AUC scores—while relegating Baseline CatBoost and XGBoost models to the lower
quartile. Moreover, the top six configurations under the H-measure exhibit non-overlapping
confidence intervals compared to the bottom nine, signifying statistically and operationally
meaningful differences that ROC-AUC entirely masks.

Rank correlation analyses further support this divergence in ranking behavior. Table 10 shows
that Kendall’s T coefficients between PR-AUC and the H-measure and between F, and MCC remain
moderate to high (0.64 < t<0.72), confirming their alignment in prioritizing models that balance recall
and precision. In contrast, the correlation between ROC-AUC and any other metric is negligible or
negative (t ranging from -0.25 to 0.05), highlighting its persistent misalignment with cost-sensitive
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and threshold-dependent performance measures. Together with the CD diagram in Figure 12, these
findings underscore ROC-AUC’s limited utility as a ranking criterion in severe class imbalance,
where more nuanced metrics offer more precise and more actionable discrimination among
competing models.

Critical-Difference diagram - ROC-AUC (Ozone, 200 bootstraps)
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Figure 12. Nemenyi critical-difference diagram derived from 200 stratified bootstrap resamples of the test fold

on the Ozone dataset.

6. Conclusion

This study comprehensively evaluated performance metrics for binary classification in highly
imbalanced domains, where the minority class constitutes less than 3% of instances. Using three
representative datasets—credit card fraud detection (0.17% prevalence), yeast protein localization
(1.35%), and ozone level detection (2.9%)—we demonstrated that the widely adopted ROC-AUC
metric is inadequate in such settings. Its threshold-free formulation and normalization over the
majority class lead to saturation effects and poor sensitivity to false positives and false negatives. As
a result, ROC-AUC often assigns inflated scores to classifiers with low operational utility.

Beyond empirical rankings, we introduced robust statistical testing protocols to evaluate metric
behaviour. For each metric, we computed 95% confidence intervals using stratified bootstrapping,
while DelLong’s paired-sample test was applied to compare ROC-AUC values. When evaluating
more than two methods, we employed the Friedman aligned-rank test followed by the Nemenyi
critical-difference procedure. These rigorous statistical techniques confirmed that ROC-AUC fails to
meaningfully differentiate among most classifier—sampler combinations, often masking substantial
variation revealed by other metrics. In contrast, PR-AUC, MCC, F,, and H-measure exposed
statistically significant performance gaps that ROC-AUC completely overlooked.

Our results consistently identified the MCC and F,-score as the most robust and operationally
meaningful metrics. Both demonstrated strong alignment (Kendall’s T = 0.89), balancing precision
and recall under fixed thresholds. The H-measure contributed a cost-sensitive and decision-theoretic
dimension to model evaluation, offering valuable nuance despite some sensitivity to parameter
assumptions. PR-AUC, although threshold-free, provided complementary insights by ranking
models based on positive-class precision and recall trade-offs.

These findings offer a clear recommendation: ROC-AUC should no longer be the default
evaluation metric in rare-event classification. Instead, researchers and practitioners should adopt a
multi-metric reporting strategy, led by MCC and F; for threshold-based evaluation, with PR-AUC
and H-measure used to provide additional perspectives on model ranking and cost trade-offs. This
approach enables a statistically sound and operationally relevant understanding of model
performance, particularly in high-stakes domains where misclassification costs are asymmetric and
minority detection is critical.
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Limitations and Future Work

Despite the strength of the evidence presented, several limitations warrant acknowledgment. (i)
The empirical analysis is restricted to three publicly available datasets spanning finance,
bioinformatics, and environmental monitoring; evaluating additional domains—such as
cybersecurity intrusion detection, clinical event prediction, and autonomous driving —would better
assess external validity under diverse operational constraints. (ii) The study focuses exclusively on
tabular data. Although the recommended bundle—MCC and F; as threshold-dependent metrics,
with PR-AUC and H-measure as complementary, threshold-free and cost-sensitive views—is, in
principle, model- and modality-agnostic because it operates on predicted scores and confusion
matrices, metric behaviour may differ in high-dimensional, unstructured modalities (e.g., computer
vision and natural language processing) due to differences in score calibration, class-conditional
score distributions, and training practices (e.g., focal or class-balanced losses, hard-negative mining,
augmentation/mix-up, prompt-based few-shot regimes). Future studies on non-tabular benchmarks
employing contemporary architectures (e.g.,, CNNs/ViTs for imaging; transformers for text) and
modality-appropriate imbalance treatments, with explicit attention to calibration and
clinically/operationally relevant operating regions (e.g., low-FPR screening), could test
generalizability and reveal any modality-specific adjustments (e.g., alternative thresholding policies
or H-measure cost priors). (iii) Adaptive threshold-selection procedures and cost-sensitive loss
functions were not considered; integrating such mechanisms may further align MCC and F, with
stakeholder risk tolerances and deployment objectives. (iv) Dynamic settings —including streaming
data and concept drift—were outside the scope; examining how MCC, F,, H-measure, and PR-AUC
perform under temporal and distributional shifts would inform use in evolving systems. (v) Finally,
while the analysis employed bootstrap confidence intervals and rank-based statistical tests, future
work could leverage more advanced inferential frameworks—such as Bayesian ranking models or
multi-metric decision analysis—to strengthen the reliability of metric comparisons in extremely
imbalanced regimes.
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