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Abstract: Autism spectrum disorder (ASD) is characterized by diverse patterns of social interaction, 
communication, and behavior. This study explores the application of clustering and stochastic 
migration models to visualize and understand the social and neural connectivity patterns associated 
with autism. The clustering model, with its strong internal connections and limited external 
connections, mirrors the tight-knit social groups and communication barriers often observed in 
individuals with autism. In contrast, the stochastic model, characterized by more dispersed 
connections and greater adaptability, represents the variability and flexibility seen in social 
interactions across typical individuals. By comparing these models, we can gain deeper insights into 
the unique challenges and strengths of individuals with autism, highlighting the importance of 
personalized interventions. Additionally, these models provide a visual framework for 
understanding the differences in brain connectivity patterns observed in autism, with implications 
for both behavioral and neural correlates. This study underscores the value of computational 
models in advancing our understanding of autism and guiding effective support strategies. 
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By comparing these two models, we aim to highlight the diverse social and neural connectivity 

patterns present in individuals with autism. The clustering model can be seen as a representation of 
overconnectivity within certain neural networks, while the stochastic model may reflect a more 
balanced or varied connectivity pattern (Courchesne et al., 2007). These differences in connectivity 
have significant implications for understanding the neural basis of autism and for developing tailored 
interventions (Uddin et al., 2013). 

Understanding these patterns is crucial for designing effective interventions and support 
systems. For individuals exhibiting behaviors similar to those in the clustering model, interventions 
might focus on gradually increasing exposure to new social situations and strengthening weak 
connections (Lord et al., 2001), enhancing communication skills and providing support to navigate 
varied social interactions could be also beneficial (Landa, 2007). 

Section 1. Introduction 

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition 
characterized by a wide range of symptoms including difficulties in social interaction, 
communication challenges, and repetitive behaviors. The heterogeneity of autism makes 
it imperative to explore diverse models that can encapsulate the various behavioral and 
neural patterns associated with the disorder. Computational models provide a powerful 
tool to visualize and analyze these patterns, offering insights that can inform both 
scientific understanding and practical interventions (Pelphrey et al., 2011; Geschwind & 
Levitt, 2007). 

In this study, we employ two distinct computational models to represent and understand 
the connectivity patterns in individuals with autism: the clustering migration model and 
the stochastic migration model. The clustering migration model is designed to mimic 
the formation of tight-knit social groups, a phenomenon frequently observed in 
individuals with autism (Bauminger & Kasari, 2000). This model features strong 
internal connections within clusters and weak connections between clusters, reflecting 
the tendency of individuals with autism to form strong bonds with specific people while 
experiencing challenges in establishing connections outside their immediate social 
circle (Bölte et al., 2011). This model also incorporates reverberating signals within 
clusters with limited exits, symbolizing the repetitive behaviors and restricted interests 
characteristic of autism (Lord et al., 2000). 

Conversely, the stochastic migration model represents a more dispersed and variable 
pattern of connections. This model, characterized by medium-strength connections and 
multiple exits, encapsulates the variability in social interactions observed across the 
typical individual (Geschwind, 2009). Some individuals with autism, though, exhibit 
greater adaptability and have a wider range of social connections, which this model 
effectively captures. The stochastic model’s representation of multiple exits suggests a 
higher degree of flexibility in communication and social behavior, contrasting with the 
more rigid patterns depicted in the clustering model (Constantino & Todd, 2003). 

Recent advancements in understanding synaptic variability and quantum effects have 
furthered our knowledge of neural dynamics in ASD. For example, the use of perovskite 
quantum dots in optoelectronic synaptic devices illustrates the impact of quantum 
effects on synaptic function and variability, highlighting the importance of integrating 
quantum mechanics into our understanding of neural processes (Jie, Qun, & Tailiang, 
2022; IEEE Transactions on Nanotechnology, 2023). 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 July 2024                   doi:10.20944/preprints202407.0061.v1

https://doi.org/10.20944/preprints202407.0061.v1


 3 

 

This study underscores the value of computational models in visualizing and understanding the 
complex patterns of social and neural connectivity in autism. By providing a visual and conceptual 
framework, these models can guide more effective and personalized strategies for supporting 
individuals with autism, ultimately contributing to better outcomes and quality of life. 

Methodology 

This study utilizes computational models to explore the social and neural connectivity patterns 
associated with autism spectrum disorder (ASD). The methodology involves the implementation of 
three distinct models, each representing different aspects of connectivity and migration behavior in 
a simulated neural network. The models include clustering migration, stochastic migration, and detailed 
simulations of reverberating signals within neural circuits. These models are described by a series of 
mathematical equations and visualized using Python libraries. Below, we detail the methodological 
steps and equations used for each model. 

Section 3.1 Models 

Model 1: Clustering Migration (Graph 1.) 
The clustering migration model simulates the formation of tight-knit social groups with strong 

internal connections and weak connections between clusters. 
1. Initial Positions: Cells are uniformly distributed along the x-axis: 
1. Initial Positions: Cells are uniformly distributed along the 𝑥𝑥-axis: 

𝑥𝑥𝑖𝑖 = −200 +
400𝑖𝑖
𝑁𝑁 − 1

  for  𝑖𝑖 = 0,1,2, … ,𝑁𝑁 − 1 

2. Migration to Semicircle: Cells migrate to form a semicircle of radius 8, with clustering effects 
introduced by adding Gaussian noise: 

1)𝜃𝜃1𝑖𝑖 =
𝑖𝑖𝑖𝑖

𝑁𝑁 − 1
  for  𝑖𝑖 = 0,1,2, … ,𝑁𝑁 − 1

2)𝑥𝑥1𝑖𝑖′ = 𝑟𝑟cos (𝜃𝜃1𝑖𝑖) + 𝒩𝒩(0,𝜎𝜎2)  where  𝒩𝒩(0,𝜎𝜎2) ∼ 𝒩𝒩(0, 0.22)
3)𝑦𝑦1𝑖𝑖′ = 𝑟𝑟sin (𝜃𝜃1𝑖𝑖)

 

3. Connectivity: Strong connections are established within clusters and weak connections between 
clusters: 

(1)= 𝑤𝑤strong   for  𝑖𝑖, 𝑗𝑗 ∈ 𝐶𝐶𝑘𝑘  and  𝑖𝑖 ≠ 𝑗𝑗
(2)𝑤𝑤𝑖𝑖,𝑗𝑗 = 𝑤𝑤weak   for  𝑖𝑖 ∈ 𝐶𝐶𝑚𝑚, 𝑗𝑗 ∈ 𝐶𝐶𝑛𝑛  and  𝑖𝑖 ≠ 𝑗𝑗  and  𝑚𝑚 ≠ 𝑛𝑛 

Model 2: Stochastic Migration 
The stochastic migration model represents more variable connectivity patterns, highlighting the 

diversity within the autism spectrum. 
1. Initial Positions: Similar to Model 1, cells are uniformly distributed along the 𝑥𝑥-axis. 
2. Stochastic Migration: Cells migrate to a semicircle of radius 8, with stochastic variations in their 

angles: 

𝜃𝜃2𝑖𝑖 = clip �
𝑖𝑖𝑖𝑖

𝑁𝑁 − 1
+ 𝒩𝒩(0, 𝜏𝜏2), 0,𝜋𝜋�   where  𝒩𝒩(0, 𝜏𝜏2) ∼ 𝒩𝒩(0, 0.32)

𝑥𝑥2𝑖𝑖′  = 𝑟𝑟cos (𝜃𝜃2𝑖𝑖)
𝑦𝑦2𝑖𝑖′  = 𝑟𝑟sin (𝜃𝜃2𝑖𝑖)

 

3. Connectivity Patterns: Various geometric patterns are defined (triangles, squares, hexagons, 
etc.), with connections established accordingly: 
Triangle: 𝑤𝑤𝑖𝑖,(𝑖𝑖+1)mod3 = 𝑤𝑤𝑖𝑖,(𝑖𝑖+2)mod3 = 1  for 𝑖𝑖 ∈ {0,1,2} 
Square: 𝑤𝑤𝑖𝑖,(𝑖𝑖+1)mod4 = 𝑤𝑤𝑖𝑖,(𝑖𝑖+2)mod4 = 1  for even 𝑖𝑖 ∈ {3,4,5,6} 
Hexagon: 𝑤𝑤𝑖𝑖,(𝑖𝑖+1)mod6 = 𝑤𝑤𝑖𝑖,(𝑖𝑖+2)mod6 = 1  for 𝑖𝑖 ∈ {7,8,9,10,11,12}(12) 
Pentagon: 𝑤𝑤𝑖𝑖,(𝑖𝑖+1)mod5 = 1  for 𝑖𝑖 ∈ {13,14,15,16,17} 
Heptagon: 𝑤𝑤𝑖𝑖,(𝑖𝑖+1)mod7 = 1  for 𝑖𝑖 ∈ {18,19,20,21,22,23,24} 

4. Medium Strength Random Connections: Additional connections are added with medium 
strength: 

𝑤𝑤𝑖𝑖,𝑗𝑗 = Uniform (0.5,1.5)  for  𝑖𝑖 ≠ 𝑗𝑗  and  (𝑖𝑖, 𝑗𝑗) ∉  existing edges  
Model 3. Detailed Simulations of Reverberating Signals 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 July 2024                   doi:10.20944/preprints202407.0061.v1

https://doi.org/10.20944/preprints202407.0061.v1


 4 

 

The detailed simulations involve modeling reverberating signals within neural circuits, 
highlighting the differences in connectivity and signal propagation. 
1. Circle Graph with Exits: A circle graph with 20 nodes is created, with nodes connected in a 

circular manner and specific exit nodes: 

𝑥𝑥𝑖𝑖 = cos �
2𝜋𝜋𝜋𝜋
𝑁𝑁
�   for  𝑖𝑖 = 0,1,2, … ,𝑁𝑁 − 1

𝑦𝑦𝑖𝑖 = sin �
2𝜋𝜋𝜋𝜋
𝑁𝑁
�   for  𝑖𝑖 = 0,1,2, … ,𝑁𝑁 − 1

 

The detailed simulations involve modeling reverberating signals within neural circuits, 
highlighting the differences in connectivity and signal propagation. 
1. Circle Graph with Exits: A circle graph with 20 nodes is created, with nodes connected in a 

circular manner and specific exit nodes: 

𝑥𝑥𝑖𝑖 = cos �
2𝜋𝜋𝜋𝜋
𝑁𝑁
�   for  𝑖𝑖 = 0,1,2, … ,𝑁𝑁 − 1

𝑦𝑦𝑖𝑖 = sin �
2𝜋𝜋𝜋𝜋
𝑁𝑁
�   for  𝑖𝑖 = 0,1,2, … ,𝑁𝑁 − 1

 

2. Reverberating Signals: Signals propagate with added noise, representing the dynamic nature of 
neural communication: 

𝑥𝑥𝑖𝑖′ = 𝑥𝑥𝑖𝑖 + 𝒩𝒩(0,𝜎𝜎2)
𝑦𝑦𝑖𝑖′ = 𝑦𝑦𝑖𝑖 + 𝒩𝒩(0,𝜎𝜎2) 

3. Escape Probability: The escape probability at exits is defined by a Bernoulli trial: 

𝑃𝑃escape = �1  if the signal escapes through the exit 
0  otherwise 

 

4. Number of Reverberations: The number of reverberations is controlled by the number of 
iterations: 

 Reverberations = 𝑅𝑅 

Section 3.2 Visualization 

The models are visualized using Python’s Matplotlib library. For each model, the initial and 
migrated positions of the cells are plotted, with connections indicated by lines. The clustering and 
stochastic models are shown side-by-side for comparison, highlighting the differences in connectivity 
patterns. 

By applying these models, we aim to capture and analyze the diverse connectivity patterns 
observed in individuals with autism, providing insights into the social and neural dynamics that 
characterize the autism spectrum. 

Section 4. Results 

In this section, we present and interpret the results of the three computational models used to 
visualize the social and neural connectivity patterns in individuals with autism spectrum disorder 
(ASD). The models include the clustering migration model, the stochastic migration model, and the 
detailed simulations of reverberating signals within neural circuits. 

Graph 1: Clustering Migration Model 
The first graph depicts the clustering migration model, where cells initially distributed along the 

𝑥𝑥 axis migrate to form a semicircle with a radius of 8. This model incorporates a clustering effect by 
adding Gaussian noise to the positions of the cells. 

𝜃𝜃1𝑖𝑖 =
𝑖𝑖𝑖𝑖

𝑁𝑁 − 1
  for  𝑖𝑖 = 0,1,2, … ,𝑁𝑁 − 1

𝑥𝑥1𝑖𝑖′  = 𝑟𝑟cos (𝜃𝜃1𝑖𝑖) + 𝒩𝒩(0,𝜎𝜎2)  where  𝒩𝒩(0,𝜎𝜎2) ∼ 𝒩𝒩(0, 0.22)
𝑦𝑦1𝑖𝑖′  = 𝑟𝑟sin (𝜃𝜃1𝑖𝑖)

 

Observations: 
• Cells form distinct clusters with strong internal connections. 
• Weak connections are observed between clusters, representing limited interaction outside 

immediate social groups. 
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• The clustering effect introduces slight positional perturbations, emphasizing the tendency of 
individuals with autism to form tight-knit social groups and experience challenges in connecting 
outside these groups. 
This graph effectively models the social dynamics in autism, where strong bonds are formed 

within specific groups, but communication with external groups is limited (Bauminger & Kasari, 
2000; Bölte et al., 2011). 

Graph 2: Stochastic Migration Model 
The second graph illustrates the stochastic migration model, where cells migrate to form a 

parabola with height of 8, incorporating stochastic variations in their angles. This model represents 
more variable and dispersed connectivity patterns. 

𝜃𝜃2𝑖𝑖 = clip �
𝑖𝑖𝑖𝑖

𝑁𝑁 − 1
+ 𝒩𝒩(0, 𝜏𝜏2), 0,𝜋𝜋�   where  𝒩𝒩(0, 𝜏𝜏2) ∼ 𝒩𝒩(0, 0.32)

𝑥𝑥2𝑖𝑖′  = 𝑟𝑟cos (𝜃𝜃2𝑖𝑖)
𝑦𝑦2𝑖𝑖′  = 𝑟𝑟sin (𝜃𝜃2𝑖𝑖)

 

Observations: 
• Cells are more evenly dispersed along the semicircle, reflecting greater variability in social 

interactions. 
• The presence of medium-strength random connections between nodes suggests flexibility and 

adaptability in communication. 
This model captures the diversity within the autism spectrum, highlighting individuals who 

exhibit a wider range of social connections and greater adaptability (Constantino & Todd, 2003; 
Geschwind, 2009). 

Graph 3: Reverberating Signals in Neural Circuits 
The third graph simulates reverberating signals within neural circuits, highlighting differences 

in connectivity and signal propagation. Two scenarios are modeled: one with 2 exits and another with 
5 exits. 
1. Scenario 1: Circle graph with 20 nodes and 2 exits. 

𝑥𝑥𝑖𝑖 = cos �
2𝜋𝜋𝜋𝜋
𝑁𝑁
� ,  𝑦𝑦𝑖𝑖 = sin �

2𝜋𝜋𝜋𝜋
𝑁𝑁
� 

Observations: 
• Signals reverberate 20 times within the circle before exiting, representing difficulty in breaking 

out of behavior loops. 
• Limited exits symbolize challenges in transitioning between tasks or environments, akin to the 

repetitive behaviors seen in autism. 
2. Scenario 2: Circle graph with 20 nodes and 5 exits. 

𝑥𝑥𝑖𝑖 = cos �
2𝜋𝜋𝜋𝜋
𝑁𝑁
� ,  𝑦𝑦𝑖𝑖 = sin �

2𝜋𝜋𝜋𝜋
𝑁𝑁
� 

Observations: 
• Signals reverberate 5 times within the circle before exiting, indicating greater ease in 

transitioning between states. 
• Multiple exits represent higher flexibility and adaptability in neural communication, akin to 

individuals with more fluid social interactions. 
Reverberating Signals: 

𝑥𝑥𝑖𝑖′ = 𝑥𝑥𝑖𝑖 + 𝒩𝒩(0,𝜎𝜎2)
𝑦𝑦𝑖𝑖′ = 𝑦𝑦𝑖𝑖 + 𝒩𝒩(0,𝜎𝜎2) 

Escape Probability: 

𝑃𝑃escape = �1  if the signal escapes through the exit 
0  otherwise 

 

These simulations provide insights into the neural dynamics underlying autism. The difficulty 
in breaking out of behavior loops (as seen in the first scenario) parallels the repetitive behaviors and 
restricted interests in autism. The preference for continuous movements, such as watching wheels 
rolling, can be attributed to the brain’s need for predictability and order (Kanner, 1943; Turner, 1999). 

Conclusion 
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The results of these computational models highlight the complex social and neural connectivity 
patterns in individuals with autism. By visualizing these patterns, we can better understand the 
unique challenges and strengths of individuals on the autism spectrum, ultimately guiding more 
effective and personalized intervention strategies. 

 
Figure 1. The protoneurons migrate from the midline (simulated as the ventricular wall) to the 
semicircunference line (cortex). Note the formation of clusters in the first graph, representative of 
autism and the fluid second graph representative of a typical individual. 

 
Graph 2. Cells are restricted to its clusters and have pooor cominications with other clusters, 
characteristic of autism. On the right graph Cells are more evenly along the parabola, reflecting 
greater variability in social interactions. The presence of medium-strength random connections 
between nodes suggests flexibility and adaptability in communication in the right graph. 
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Graph 3. These simulations provide insights into the neural dynamics underlying autism. The 
difficulty in breaking out of behavior loops (as seen in the first scenario) parallels the repetitive 
behaviors and restricted interests in autism (left grapf). The preference for continuous movements, 
such as watching wheels rolling, can be attributed to the brain’s need for predictability and order 
(Kanner, 1943; Turner, 1999). Right graph represents a typical circuit. 

Section 5. Discussion 

The computational models employed in this study provide a visual and conceptual framework 
to understand the diverse social and neural connectivity patterns observed in individuals with autism 
spectrum disorder (ASD). By comparing the clustering and stochastic migration models, we gain 
insights into the characteristic behaviors and neural dynamics associated with autism, which have 
significant implications for intervention and support strategies. 

Section 5.1 Clustering Migration Model 

The clustering migration model highlights the tendency of individuals with autism to form tight-
knit social groups with strong internal connections and weak connections between clusters. This 
pattern can be interpreted as a reflection of the social dynamics often observed in individuals with 
autism, who may form strong bonds with specific individuals or groups while experiencing 
challenges in establishing and maintaining connections outside their immediate social circle 
(Bauminger & Kasari, 2000; Bölte et al., 2011). The reverberating signals within clusters, with limited 
exits, symbolize the repetitive behaviors and restricted interests characteristic of autism (Lord et al., 
2000). 

One of the key challenges faced by individuals with autism is difficulty in breaking out of 
behavior loops. The clustering model’s limited exits represent the challenges in transitioning between 
tasks or environments, which is a common characteristic in autism. Repetitive behaviors and 
restricted interests, often described as “stimming,” provide a sense of predictability and comfort to 
individuals with autism (Turner, 1999). These behaviors can be seen as a coping mechanism to deal 
with overwhelming sensory input or to self-regulate emotions (Baron-Cohen, 2008). The model 
underscores the importance of interventions that gradually introduce new social situations and 
strengthen weak connections, thereby facilitating greater social flexibility and adaptability (Lord et 
al., 2001). 

Section 5.2 Stochastic Migration Model 
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Stochastic Migration Model The stochastic migration model, characterized by more variable 
and dispersed connections, represents the variability in social interactions observed across the autism 
spectrum (Geschwind, 2009). The model captures the diversity within the autism spectrum, 
highlighting individuals who exhibit a wider range of social connections and greater adaptability. 
Interventions for these individuals might focus on enhancing communication skills and providing 
support to navigate varied social interactions (Landa, 2007). 

Recent research on synaptic loss and cognitive deficits in neurological conditions further 
emphasizes the importance of understanding synaptic variability and its impact on neural 
connectivity and behavior (Malpetti et al., 2021). Additionally, advancements in quantum biology 
highlight the potential influence of quantum effects on synaptic function, which could provide new 
insights into the neural mechanisms underlying ASD (Montgomery, 2022). 

The stochastic migration model, characterized by more variable and dispersed connections, 
represents the variability in social interactions observed across the autism spectrum (Geschwind, 
2009) and typical individual. Some individuals with autism exhibit greater adaptability and have a 
wider range of social connections. The stochastic model’s multiple exits suggest a higher degree of 
flexibility in communication and social behavior, which contrasts with the more rigid patterns 
depicted in the clustering model (Constantino & Todd, 2003). 

Section 5.3 Neural Connectivity and Behavioral Correlates 

The observed differences in connectivity in the models have parallels in neural connectivity 
patterns in individuals with autism. Research has shown that individuals with autism may exhibit 
overconnectivity within certain brain regions and underconnectivity between regions, leading to 
difficulties in integrating information across different neural networks (Courchesne et al., 2007; 
Uddin et al., 2013). The clustering model can be seen as a representation of overconnectivity within 
specific neural networks, while the stochastic model may reflect a more balanced or varied 
connectivity pattern. 

These neural connectivity patterns can explain some of the behavioral characteristics of autism. 
For example, the preference for continuous movements and repetitive actions, such as watching 
wheels rolling, can be understood as a manifestation of the brain’s need for predictability and order. 
Continuous and repetitive actions provide a sense of stability and control, which can be comforting 
for individuals with autism who might otherwise experience sensory overload or difficulty in 
processing complex stimuli (Kanner, 1943; Turner, 1999). 

Section 5.4 Implications for Intervention 

Understanding these connectivity patterns is crucial for designing effective interventions and 
support systems for individuals with autism. For those exhibiting behaviors similar to those in the 
clustering model, interventions might focus on gradually increasing exposure to new social situations 
and strengthening weak connections. This approach can help individuals develop the skills needed 
to navigate more complex social environments and reduce the reliance on repetitive behaviors (Lord 
et al., 2001). 

For individuals resembling the stochastic model, interventions might focus on enhancing 
communication skills and providing support to navigate varied social interactions. These 
interventions can leverage the existing flexibility and adaptability observed in these individuals, 
helping them to build more robust social networks and improve their overall social functioning 
(Landa, 2007). 

Conclusion 

The computational models presented in this study provide valuable insights into the diverse 
social and neural connectivity patterns observed in individuals with autism. By visualizing these 
patterns, we can better understand the unique challenges and strengths of individuals on the autism 
spectrum, ultimately guiding more effective and personalized support strategies. These models 
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underscore the importance of a nuanced approach to autism intervention, one that recognizes the 
variability within the spectrum and addresses the specific needs of each individual. 

Section 6. Attachments 

Python Code Graph 1. 
import numpy as np 
import matplotlib.pyplot as plt 
 
# Parameters 
num_cells = 400 
radius = 8 
x_positions = np.linspace(-200, 200, num_cells) 
 
# Model 1: Clustering Migration 
theta_1 = np.linspace(0, np.pi, num_cells) 
x_migrated_1 = radius * np.cos(theta_1) 
y_migrated_1 = radius * np.sin(theta_1) 
 
# Adding some clustering effect by perturbing positions 
cluster_effect = np.random.normal(0, 0.2, num_cells) 
x_migrated_1 += cluster_effect 
 
# Model 2: Stochastic Migration 
np.random.seed(42) 
theta_2 = np.linspace(0, np.pi, num_cells) + np.random.normal(0, 0.3, num_cells) 
theta_2 = np.clip(theta_2, 0, np.pi)  # Ensure theta_2 is within [0, pi] to stay above x-axis 
x_migrated_2 = radius * np.cos(theta_2) 
y_migrated_2 = radius * np.sin(theta_2) 
 
# Plotting the results 
fig, ax = plt.subplots(1, 2, figsize=(14, 7)) 
 
# Plot for Model 1 
ax[0].scatter(x_positions, np.zeros(num_cells), color=‘blue’, label=‘Initial Position’) 
ax[0].scatter(x_migrated_1, y_migrated_1, color=‘red’, label=‘Migrated Position’) 
ax[0].set_title(‘Model 1: Clustering Migration’) 
ax[0].legend() 
ax[0].axis(‘equal’) 
ax[0].set_xlim([-radius*1.5, radius*1.5]) 
ax[0].set_ylim([-1, radius*1.5]) 
 
nx.draw(G2, nx.get_node_attributes(G2, ‘pos’), ax=ax[1], with_labels=True, node_color=‘green’, 

edge_color=‘black’, node_size=500, font_color=‘white’) 
draw_reverberation(ax[1], G2, exits2, num_reverberations_model2, escape_ratio_model2, 

noise_multiplier_model2) 
ax[1].set_title(‘Model 2: Circle with 5 Exits’) 
Python code Graph 2.  
import numpy as np 
import matplotlib.pyplot as plt 
import networkx as nx 
import matplotlib.animation as animation 
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# Function to create a circle graph with exits 
def create_circle_graph(num_nodes, num_exits, strong_weight=2, weak_weight=0.1): 
    G = nx.Graph() 
    nodes = range(num_nodes) 
    for i in nodes: 
        G.add_node(i, pos=(np.cos(2 * np.pi * i / num_nodes), np.sin(2 * np.pi * i / num_nodes))) 
        G.add_edge(i, (i + 1) % num_nodes, weight=strong_weight) 
     
    exits = np.random.choice(nodes, num_exits, replace=False) 
    for exit in exits: 
        G.add_edge(exit, (exit + num_nodes // 2) % num_nodes, weight=weak_weight) 
     
    return G, exits 
 
# Parameters 
num_nodes = 20 
num_exits_model1 = 2 
num_exits_model2 = 5 
num_reverberations_model1 = 20 
num_reverberations_model2 = 5 
escape_ratio_model1 = 0.2 
escape_ratio_model2 = 0.5 
 
# Create graphs for both models 
G1, exits1 = create_circle_graph(num_nodes, num_exits_model1) 
G2, exits2 = create_circle_graph(num_nodes, num_exits_model2) 
 
# Function to draw reverberating signals 
def draw_reverberation(ax, G, exits, num_reverberations, escape_ratio): 
    pos = nx.get_node_attributes(G, ‘pos’) 
    nodes = list(G.nodes) 
    signals = [0]  # Start at node 0 
    for _ in range(num_reverberations): 
        new_signals = [] 
        for signal in signals: 
            neighbors = list(G.neighbors(signal)) 
            for neighbor in neighbors: 
                if np.random.rand() > escape_ratio or neighbor in exits: 
                    new_signals.append(neighbor) 
                    ax.plot([pos[signal][0], pos[neighbor][0]], [pos[signal][1], pos[neighbor][1]], 

color=‘yellow’) 
        signals = new_signals 
 
# Plot settings 
fig, ax = plt.subplots(1, 2, figsize=(14, 7)) 
 
# Plot for Model 1 
nx.draw(G1, nx.get_node_attributes(G1, ‘pos’), ax=ax[0], with_labels=True, node_color=‘red’, 

edge_color=‘black’, node_size=500, font_color=‘white’) 
draw_reverberation(ax[0], G1, exits1, num_reverberations_model1, escape_ratio_model1) 
ax[0].set_title(‘Model 1: Reverberating Circle with 2 Exits’) 
 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 July 2024                   doi:10.20944/preprints202407.0061.v1

https://doi.org/10.20944/preprints202407.0061.v1


 11 

 

# Plot for Model 2 
nx.draw(G2, nx.get_node_attributes(G2, ‘pos’), ax=ax[1], with_labels=True, node_color=‘green’, 

edge_color=‘black’, node_size=500, font_color=‘white’) 
draw_reverberation(ax[1], G2, exits2, num_reverberations_model2, escape_ratio_model2) 
ax[1].set_title(‘Model 2: Circle with 5 Exits’) 
 
plt.show() 
 
plt.show() 
# Plot for Model 2 
ax[1].scatter(x_positions, np.zeros(num_cells), color=‘blue’, label=‘Initial Position’) 
ax[1].scatter(x_migrated_2, y_migrated_2, color=‘green’, label=‘Migrated Position’) 
ax[1].set_title(‘Model 2: Stochastic Migration’) 
ax[1].legend() 
ax[1].axis(‘equal’) 
ax[1].set_xlim([-radius*1.5, radius*1.5]) 
ax[1].set_ylim([-1, radius*1.5]) 
 
plt.show() 
Python codes 
Graph 3.  
import numpy as np 
import matplotlib.pyplot as plt 
import networkx as nx 
 
# Function to create a circle graph with exits 
def create_circle_graph(num_nodes, num_exits, strong_weight=2, weak_weight=0.1): 
    G = nx.Graph() 
    nodes = range(num_nodes) 
    for i in nodes: 
        G.add_node(i, pos=(np.cos(2 * np.pi * i / num_nodes), np.sin(2 * np.pi * i / num_nodes))) 
        G.add_edge(i, (i + 1) % num_nodes, weight=strong_weight) 
     
    exits = np.random.choice(nodes, num_exits, replace=False) 
    for exit in exits: 
        G.add_edge(exit, (exit + num_nodes // 2) % num_nodes, weight=weak_weight) 
     
    return G, exits 
 
# Parameters 
num_nodes = 20 
num_exits_model1 = 2 
num_exits_model2 = 5 
num_reverberations_model1 = 20 
num_reverberations_model2 = 5 
escape_ratio_model1 = 0.2 
escape_ratio_model2 = 0.5 
noise_multiplier_model1 = 10 
noise_multiplier_model2 = 5 
 
# Create graphs for both models 
G1, exits1 = create_circle_graph(num_nodes, num_exits_model1) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 July 2024                   doi:10.20944/preprints202407.0061.v1

https://doi.org/10.20944/preprints202407.0061.v1


 12 

 

G2, exits2 = create_circle_graph(num_nodes, num_exits_model2) 
 
# Function to draw reverberating signals with noise and exits 
def draw_reverberation(ax, G, exits, num_reverberations, escape_ratio, noise_multiplier): 
    pos = nx.get_node_attributes(G, ‘pos’) 
    nodes = list(G.nodes) 
    signals = [0]  # Start at node 0 
    for _ in range(num_reverberations): 
        new_signals = [] 
        for signal in signals: 
            neighbors = list(G.neighbors(signal)) 
            for neighbor in neighbors: 
                if np.random.rand() > escape_ratio or neighbor in exits: 
                    new_signals.append(neighbor) 
                    for _ in range(noise_multiplier): 
                        noise_x = np.random.normal(0, 0.02) 
                        noise_y = np.random.normal(0, 0.02) 
                        ax.plot([pos[signal][0], pos[neighbor][0] + noise_x], [pos[signal][1], 

pos[neighbor][1] + noise_y], color=‘orange’) 
        signals = new_signals 
        for exit in exits: 
            ax.plot([pos[exit][0], pos[(exit + num_nodes // 2) % num_nodes][0]], 
                    [pos[exit][1], pos[(exit + num_nodes // 2) % num_nodes][1]],  
                    color=‘yellow’, linewidth=2, linestyle=‘dashed’) 
 
# Plot settings 
fig, ax = plt.subplots(1, 2, figsize=(14, 7)) 
 
# Plot for Model 1 
nx.draw(G1, nx.get_node_attributes(G1, ‘pos’), ax=ax[0], with_labels=True, node_color=‘red’, 

edge_color=‘black’, node_size=500, font_color=‘white’) 
draw_reverberation(ax[0], G1, exits1, num_reverberations_model1, escape_ratio_model1, 

noise_multiplier_model1) 
ax[0].set_title(‘Model 1: Reverberating Circle with 2 Exits’) 
 
# Plot for Model 2 
Python code graph 3.  
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