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Abstract: Autism spectrum disorder (ASD) is characterized by diverse patterns of social interaction,
communication, and behavior. This study explores the application of clustering and stochastic
migration models to visualize and understand the social and neural connectivity patterns associated
with autism. The clustering model, with its strong internal connections and limited external
connections, mirrors the tight-knit social groups and communication barriers often observed in
individuals with autism. In contrast, the stochastic model, characterized by more dispersed
connections and greater adaptability, represents the variability and flexibility seen in social
interactions across typical individuals. By comparing these models, we can gain deeper insights into
the unique challenges and strengths of individuals with autism, highlighting the importance of
personalized interventions. Additionally, these models provide a visual framework for
understanding the differences in brain connectivity patterns observed in autism, with implications
for both behavioral and neural correlates. This study underscores the value of computational
models in advancing our understanding of autism and guiding effective support strategies.
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Section 1. Introduction

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition
characterized by a wide range of symptoms including difficulties in social interaction,
communication challenges, and repetitive behaviors. The heterogeneity of autism makes
it imperative to explore diverse models that can encapsulate the various behavioral and
neural patterns associated with the disorder. Computational models provide a powerful
tool to visualize and analyze these patterns, offering insights that can inform both
scientific understanding and practical interventions (Pelphrey et al., 2011; Geschwind &
Levitt, 2007).

In this study, we employ two distinct computational models to represent and understand
the connectivity patterns in individuals with autism: the clustering migration model and
the stochastic migration model. The clustering migration model is designed to mimic
the formation of tight-knit social groups, a phenomenon frequently observed in
individuals with autism (Bauminger & Kasari, 2000). This model features strong
internal connections within clusters and weak connections between clusters, reflecting
the tendency of individuals with autism to form strong bonds with specific people while
experiencing challenges in establishing connections outside their immediate social
circle (Bdolte et al., 2011). This model also incorporates reverberating signals within
clusters with limited exits, symbolizing the repetitive behaviors and restricted interests
characteristic of autism (Lord et al., 2000).

Conversely, the stochastic migration model represents a more dispersed and variable
pattern of connections. This model, characterized by medium-strength connections and
multiple exits, encapsulates the variability in social interactions observed across the
typical individual (Geschwind, 2009). Some individuals with autism, though, exhibit
greater adaptability and have a wider range of social connections, which this model
effectively captures. The stochastic model’s representation of multiple exits suggests a
higher degree of flexibility in communication and social behavior, contrasting with the
more rigid patterns depicted in the clustering model (Constantino & Todd, 2003).

Recent advancements in understanding synaptic variability and quantum effects have
furthered our knowledge of neural dynamics in ASD. For example, the use of perovskite
quantum dots in optoelectronic synaptic devices illustrates the impact of quantum
effects on synaptic function and variability, highlighting the importance of integrating
quantum mechanics into our understanding of neural processes (Jie, Qun, & Tailiang,
2022; IEEE Transactions on Nanotechnology, 2023).

By comparing these two models, we aim to highlight the diverse social and neural connectivity
patterns present in individuals with autism. The clustering model can be seen as a representation of
overconnectivity within certain neural networks, while the stochastic model may reflect a more
balanced or varied connectivity pattern (Courchesne et al., 2007). These differences in connectivity
have significant implications for understanding the neural basis of autism and for developing tailored
interventions (Uddin et al., 2013).

Understanding these patterns is crucial for designing effective interventions and support
systems. For individuals exhibiting behaviors similar to those in the clustering model, interventions
might focus on gradually increasing exposure to new social situations and strengthening weak
connections (Lord et al., 2001), enhancing communication skills and providing support to navigate
varied social interactions could be also beneficial (Landa, 2007).
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This study underscores the value of computational models in visualizing and understanding the
complex patterns of social and neural connectivity in autism. By providing a visual and conceptual
framework, these models can guide more effective and personalized strategies for supporting
individuals with autism, ultimately contributing to better outcomes and quality of life.

Methodology

This study utilizes computational models to explore the social and neural connectivity patterns
associated with autism spectrum disorder (ASD). The methodology involves the implementation of
three distinct models, each representing different aspects of connectivity and migration behavior in
a simulated neural network. The models include clustering migration, stochastic migration, and detailed
simulations of reverberating signals within neural circuits. These models are described by a series of
mathematical equations and visualized using Python libraries. Below, we detail the methodological
steps and equations used for each model.

Section 3.1 Models

Model 1: Clustering Migration (Graph 1.)

The clustering migration model simulates the formation of tight-knit social groups with strong
internal connections and weak connections between clusters.
1. Initial Positions: Cells are uniformly distributed along the x-axis:

1. Initial Positions: Cells are uniformly distributed along the x-axis:

400i ,
x; = =200+ ~— for i=012,..,N -1

2. Migration to Semicircle: Cells migrate to form a semicircle of radius 8, with clustering effects
introduced by adding Gaussian noise:
in
D6y = — for i=012,..,N~1
2)x;; = rcos (68,;) + N(0,62) where N (0,0%) ~ N (0,0.2%)
3)y1; = rsin (61;)
3. Connectivity: Strong connections are established within clusters and weak connections between
clusters:

(1)= Wtrong for i,j € G and i # j
(2w j = Wyeak for i €Cp,jEC, and i #j and m#n
Model 2: Stochastic Migration
The stochastic migration model represents more variable connectivity patterns, highlighting the
diversity within the autism spectrum.
1.  Initial Positions: Similar to Model 1, cells are uniformly distributed along the x-axis.
2. Stochastic Migration: Cells migrate to a semicircle of radius 8, with stochastic variations in their
angles:
6,; = clip (% + 7(0,72),0, n) where '(0,72) ~ ' (0,0.32)
X3; = rcos (6;;)
Y2i = 1sin (65;)
3. Connectivity Patterns: Various geometric patterns are defined (triangles, squares, hexagons,
etc.), with connections established accordingly:
Triangle: W; (i+1)mods = Wii+zymod3 =1 for i € {0,1,2}
Square: w; ;;ymod4 = w; ;,,ymod4 =1 for even i € {3,4,5,6}
Hexagon: w; ;;1ymod6 = w; 4, mod6 =1 for i € {7,8,9,10,11,12}(12)
Pentagon: w;,ymod5 =1 for i€ {13,14,15,16,17}
Heptagon: w;;,ymod7 =1 for i€ {18,19,20,21,22,23,24}
4. Medium Strength Random Connections: Additional connections are added with medium
strength:
w; j = Uniform (0.5,1.5) for i # j and (i,j) & existing edges
Model 3. Detailed Simulations of Reverberating Signals
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The detailed simulations involve modeling reverberating signals within neural circuits,
highlighting the differences in connectivity and signal propagation.
1. Circle Graph with Exits: A circle graph with 20 nodes is created, with nodes connected in a

circular manner and specific exit nodes:

2mi
X; = cos (T) fori=012,..,N—1

2mi
y; = sin (T) fori=012,..,N—1
The detailed simulations involve modeling reverberating signals within neural circuits,
highlighting the differences in connectivity and signal propagation.
1. Circle Graph with Exits: A circle graph with 20 nodes is created, with nodes connected in a

circular manner and specific exit nodes:

2mi
X; = cos (T) fori=012,..,N—1

2mi
y; = sin (T) fori=012,..,N—1
2. Reverberating Signals: Signals propagate with added noise, representing the dynamic nature of
neural communication:

x{=x; + N(0,02)

yi=yi+N(0,0%
3. Escape Probability: The escape probability at exits is defined by a Bernoulli trial:

p _ {1 if the signal escapes through the exit

e 0 otherwise
4. Number of Reverberations: The number of reverberations is controlled by the number of

iterations:
Reverberations = R

Section 3.2 Visualization

The models are visualized using Python’s Matplotlib library. For each model, the initial and
migrated positions of the cells are plotted, with connections indicated by lines. The clustering and
stochastic models are shown side-by-side for comparison, highlighting the differences in connectivity
patterns.

By applying these models, we aim to capture and analyze the diverse connectivity patterns
observed in individuals with autism, providing insights into the social and neural dynamics that
characterize the autism spectrum.

Section 4. Results

In this section, we present and interpret the results of the three computational models used to
visualize the social and neural connectivity patterns in individuals with autism spectrum disorder
(ASD). The models include the clustering migration model, the stochastic migration model, and the
detailed simulations of reverberating signals within neural circuits.

Graph 1: Clustering Migration Model

The first graph depicts the clustering migration model, where cells initially distributed along the
x axis migrate to form a semicircle with a radius of 8. This model incorporates a clustering effect by
adding Gaussian noise to the positions of the cells.

0, = N”_I 1 fori=012,..,N—1
x1; = rcos (01;) + N (0,0%) where NV(0,0%) ~ N (0,0.22)
Y1 = rsin (61

Observations:

e  Cells form distinct clusters with strong internal connections.

e  Weak connections are observed between clusters, representing limited interaction outside
immediate social groups.
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e  The clustering effect introduces slight positional perturbations, emphasizing the tendency of
individuals with autism to form tight-knit social groups and experience challenges in connecting
outside these groups.

This graph effectively models the social dynamics in autism, where strong bonds are formed
within specific groups, but communication with external groups is limited (Bauminger & Kasari,
2000; Bolte et al., 2011).

Graph 2: Stochastic Migration Model

The second graph illustrates the stochastic migration model, where cells migrate to form a
parabola with height of 8, incorporating stochastic variations in their angles. This model represents
more variable and dispersed connectivity patterns.

6,; = clip (% + 7(0,72),0, n) where '(0,72) ~ 3 (0,0.32)
X3y = 1c0s (62
Ya2i = rsin (62

Observations:

e  Cells are more evenly dispersed along the semicircle, reflecting greater variability in social
interactions.

e  The presence of medium-strength random connections between nodes suggests flexibility and
adaptability in communication.

This model captures the diversity within the autism spectrum, highlighting individuals who
exhibit a wider range of social connections and greater adaptability (Constantino & Todd, 2003;
Geschwind, 2009).

Graph 3: Reverberating Signals in Neural Circuits

The third graph simulates reverberating signals within neural circuits, highlighting differences
in connectivity and signal propagation. Two scenarios are modeled: one with 2 exits and another with
5 exits.

1. Scenario 1: Circle graph with 20 nodes and 2 exits.

2mi . (2mi
s (3. s ()
Observations:

e  Signals reverberate 20 times within the circle before exiting, representing difficulty in breaking
out of behavior loops.

e Limited exits symbolize challenges in transitioning between tasks or environments, akin to the
repetitive behaviors seen in autism.

2. Scenario 2: Circle graph with 20 nodes and 5 exits.

2mi . (2mi
e () - ()

e Signals reverberate 5 times within the circle before exiting, indicating greater ease in

Observations:

transitioning between states.
e  Multiple exits represent higher flexibility and adaptability in neural communication, akin to

individuals with more fluid social interactions.
Reverberating Signals:

x{ =x; + N (0,02)

yi =yi+N(0,0%)
Escape Probability:

P _ {1 if the signal escapes through the exit

e 0 otherwise
These simulations provide insights into the neural dynamics underlying autism. The difficulty

in breaking out of behavior loops (as seen in the first scenario) parallels the repetitive behaviors and

restricted interests in autism. The preference for continuous movements, such as watching wheels

rolling, can be attributed to the brain’s need for predictability and order (Kanner, 1943; Turner, 1999).
Conclusion
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The results of these computational models highlight the complex social and neural connectivity
patterns in individuals with autism. By visualizing these patterns, we can better understand the
unique challenges and strengths of individuals on the autism spectrum, ultimately guiding more
effective and personalized intervention strategies.

Model 1: Clustering Migration Model 2: Stochastic Migration
@ Initial Position @ Initial Position
® Migrated Position ® Migrated Position
15 4 15 4
10 4 10 4

D-ee @ ®0 000 00 OO0 OO OSDS

T
-10 =5 0 5 10 -10 =5 0 5 10

Figure 1. The protoneurons migrate from the midline (simulated as the ventricular wall) to the
semicircunference line (cortex). Note the formation of clusters in the first graph, representative of
autism and the fluid second graph representative of a typical individual.

Model 1: Clustering Migration Model 2: Typical Migration with Various Patterns

Graph 2. Cells are restricted to its clusters and have pooor cominications with other clusters,
characteristic of autism. On the right graph Cells are more evenly along the parabola, reflecting
greater variability in social interactions. The presence of medium-strength random connections
between nodes suggests flexibility and adaptability in communication in the right graph.
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Model 1: Reverberating Circle with 2 Exits Model 2: Circle with 5 Exits

Graph 3. These simulations provide insights into the neural dynamics underlying autism. The
difficulty in breaking out of behavior loops (as seen in the first scenario) parallels the repetitive
behaviors and restricted interests in autism (left grapf). The preference for continuous movements,
such as watching wheels rolling, can be attributed to the brain’s need for predictability and order
(Kanner, 1943; Turner, 1999). Right graph represents a typical circuit.

Section 5. Discussion

The computational models employed in this study provide a visual and conceptual framework
to understand the diverse social and neural connectivity patterns observed in individuals with autism
spectrum disorder (ASD). By comparing the clustering and stochastic migration models, we gain
insights into the characteristic behaviors and neural dynamics associated with autism, which have
significant implications for intervention and support strategies.

Section 5.1 Clustering Migration Model

The clustering migration model highlights the tendency of individuals with autism to form tight-
knit social groups with strong internal connections and weak connections between clusters. This
pattern can be interpreted as a reflection of the social dynamics often observed in individuals with
autism, who may form strong bonds with specific individuals or groups while experiencing
challenges in establishing and maintaining connections outside their immediate social circle
(Bauminger & Kasari, 2000; Bolte et al., 2011). The reverberating signals within clusters, with limited
exits, symbolize the repetitive behaviors and restricted interests characteristic of autism (Lord et al.,
2000).

One of the key challenges faced by individuals with autism is difficulty in breaking out of
behavior loops. The clustering model’s limited exits represent the challenges in transitioning between
tasks or environments, which is a common characteristic in autism. Repetitive behaviors and
restricted interests, often described as “stimming,” provide a sense of predictability and comfort to
individuals with autism (Turner, 1999). These behaviors can be seen as a coping mechanism to deal
with overwhelming sensory input or to self-regulate emotions (Baron-Cohen, 2008). The model
underscores the importance of interventions that gradually introduce new social situations and
strengthen weak connections, thereby facilitating greater social flexibility and adaptability (Lord et
al., 2001).

Section 5.2 Stochastic Migration Model
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Stochastic Migration Model The stochastic migration model, characterized by more variable
and dispersed connections, represents the variability in social interactions observed across the autism
spectrum (Geschwind, 2009). The model captures the diversity within the autism spectrum,
highlighting individuals who exhibit a wider range of social connections and greater adaptability.
Interventions for these individuals might focus on enhancing communication skills and providing
support to navigate varied social interactions (Landa, 2007).

Recent research on synaptic loss and cognitive deficits in neurological conditions further
emphasizes the importance of understanding synaptic variability and its impact on neural
connectivity and behavior (Malpetti et al., 2021). Additionally, advancements in quantum biology
highlight the potential influence of quantum effects on synaptic function, which could provide new
insights into the neural mechanisms underlying ASD (Montgomery, 2022).

The stochastic migration model, characterized by more variable and dispersed connections,
represents the variability in social interactions observed across the autism spectrum (Geschwind,
2009) and typical individual. Some individuals with autism exhibit greater adaptability and have a
wider range of social connections. The stochastic model’s multiple exits suggest a higher degree of
flexibility in communication and social behavior, which contrasts with the more rigid patterns
depicted in the clustering model (Constantino & Todd, 2003).

Section 5.3 Neural Connectivity and Behavioral Correlates

The observed differences in connectivity in the models have parallels in neural connectivity
patterns in individuals with autism. Research has shown that individuals with autism may exhibit
overconnectivity within certain brain regions and underconnectivity between regions, leading to
difficulties in integrating information across different neural networks (Courchesne et al., 2007;
Uddin et al., 2013). The clustering model can be seen as a representation of overconnectivity within
specific neural networks, while the stochastic model may reflect a more balanced or varied
connectivity pattern.

These neural connectivity patterns can explain some of the behavioral characteristics of autism.
For example, the preference for continuous movements and repetitive actions, such as watching
wheels rolling, can be understood as a manifestation of the brain’s need for predictability and order.
Continuous and repetitive actions provide a sense of stability and control, which can be comforting
for individuals with autism who might otherwise experience sensory overload or difficulty in
processing complex stimuli (Kanner, 1943; Turner, 1999).

Section 5.4 Implications for Intervention

Understanding these connectivity patterns is crucial for designing effective interventions and
support systems for individuals with autism. For those exhibiting behaviors similar to those in the
clustering model, interventions might focus on gradually increasing exposure to new social situations
and strengthening weak connections. This approach can help individuals develop the skills needed
to navigate more complex social environments and reduce the reliance on repetitive behaviors (Lord
et al., 2001).

For individuals resembling the stochastic model, interventions might focus on enhancing
communication skills and providing support to navigate varied social interactions. These
interventions can leverage the existing flexibility and adaptability observed in these individuals,
helping them to build more robust social networks and improve their overall social functioning
(Landa, 2007).

Conclusion

The computational models presented in this study provide valuable insights into the diverse
social and neural connectivity patterns observed in individuals with autism. By visualizing these
patterns, we can better understand the unique challenges and strengths of individuals on the autism
spectrum, ultimately guiding more effective and personalized support strategies. These models
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underscore the importance of a nuanced approach to autism intervention, one that recognizes the

variability within the spectrum and addresses the specific needs of each individual.

Section 6. Attachments

Python Code Graph 1.
import numpy as np
import matplotlib.pyplot as plt

# Parameters

num_cells = 400

radius = 8

x_positions = np.linspace(-200, 200, num_cells)

# Model 1: Clustering Migration

theta_1 = np.linspace(0, np.pi, num_cells)
x_migrated_1 = radius * np.cos(theta_1)
y_migrated_1 = radius * np.sin(theta_1)

# Adding some clustering effect by perturbing positions
cluster_effect = np.random.normal(0, 0.2, num_cells)
x_migrated_1 += cluster_effect

# Model 2: Stochastic Migration

np.random.seed(42)

theta_2 = np.linspace(0, np.pi, num_cells) + np.random.normal(0, 0.3, num_cells)
theta_2 =np.clip(theta_2, 0, np.pi) # Ensure theta_2 is within [0, pi] to stay above x-axis
x_migrated_2 = radius * np.cos(theta_2)

y_migrated_2 = radius * np.sin(theta_2)

# Plotting the results
fig, ax = plt.subplots(1, 2, figsize=(14, 7))

# Plot for Model 1

ax[0].scatter(x_positions, np.zeros(num_cells), color="blue’, label="Initial Position")
ax[0].scatter(x_migrated_1, y_migrated_1, color="red’, label="Migrated Position")
ax[0].set_title("Model 1: Clustering Migration”)

ax[0].legend()

ax[0].axis(‘equal’)

ax[0].set_xlim([-radius*1.5, radius*1.5])

ax[0].set_ylim([-1, radius*1.5])

nx.draw(G2, nx.get_node_attributes(G2, ‘pos’), ax=ax[1], with_labels=True, node_color="green’,

edge_color="black’, node_size=500, font_color="white”)

draw_reverberation(ax[1], G2, exits2, num_reverberations_model2, escape_ratio_model2,

noise_multiplier_model2)

ax[1].set_title("Model 2: Circle with 5 Exits’)
Python code Graph 2.

import numpy as np

import matplotlib.pyplot as plt

import networkx as nx

import matplotlib.animation as animation

d0i:10.20944/preprints202407.0061.v1
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# Function to create a circle graph with exits
def create_circle_graph(num_nodes, num_exits, strong_weight=2, weak_weight=0.1):
G =nx.Graph()
nodes = range(num_nodes)
for i in nodes:
G.add_node(i, pos=(np.cos(2 * np.pi * i/ num_nodes), np.sin(2 * np.pi * i / num_nodes)))
G.add_edge(i, (i + 1) % num_nodes, weight=strong_weight)

exits = np.random.choice(nodes, num_exits, replace=False)
for exit in exits:
G.add_edge(exit, (exit + num_nodes // 2) % num_nodes, weight=weak_weight)

return G, exits

# Parameters

num_nodes = 20
num_exits_modell =2
num_exits_model2 =5
num_reverberations_modell = 20
num_reverberations_model2 =5
escape_ratio_modell = 0.2
escape_ratio_model2 = 0.5

# Create graphs for both models
G1, exits1 = create_circle_graph(num_nodes, num_exits_modell)
G2, exits2 = create_circle_graph(num_nodes, num_exits_model2)

# Function to draw reverberating signals
def draw_reverberation(ax, G, exits, num_reverberations, escape_ratio):
pos = nx.get_node_attributes(G, ‘pos’)
nodes = list(G.nodes)
signals = [0] # Start at node 0
for _ in range(num_reverberations):
new_signals =[]
for signal in signals:
neighbors = list(G.neighbors(signal))
for neighbor in neighbors:
if np.random.rand() > escape_ratio or neighbor in exits:
new_signals.append(neighbor)
ax.plot([pos[signal][0], pos[neighbor][0]], [pos[signal][1], pos[neighbor][1]],
color="yellow”)
signals = new_signals

# Plot settings
fig, ax = plt.subplots(1, 2, figsize=(14, 7))

# Plot for Model 1

nx.draw(G1, nx.get_node_attributes(G1, ‘pos’), ax=ax[0], with_labels=True, node_color="red’,
edge_color="black’, node_size=500, font_color="white’)

draw_reverberation(ax[0], G1, exits1, num_reverberations_modell, escape_ratio_modell)

ax[0].set_title("Model 1: Reverberating Circle with 2 Exits’)

d0i:10.20944/preprints202407.0061.v1
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# Plot for Model 2

nx.draw(G2, nx.get_node_attributes(G2, ‘pos’), ax=ax[1], with_labels=True, node_color="green’,
edge_color="black’, node_size=500, font_color="white’)

draw_reverberation(ax[1], G2, exits2, num_reverberations_model2, escape_ratio_model2)

ax[1].set_title("Model 2: Circle with 5 Exits’)

plt.show()

plt.show()

# Plot for Model 2

ax[1].scatter(x_positions, np.zeros(num_cells), color="blue’, label="Initial Position”)
ax[1].scatter(x_migrated_2, y_migrated_2, color="green’, label="Migrated Position’)
ax[1].set_title("Model 2: Stochastic Migration’)

ax[1].legend()

ax[1].axis(‘equal’)

ax[1].set_xlim([-radius*1.5, radius*1.5])

ax[1].set_ylim([-1, radius*1.5])

plt.show()

Python codes

Graph 3.

import numpy as np

import matplotlib.pyplot as plt
import networkx as nx

# Function to create a circle graph with exits
def create_circle_graph(num_nodes, num_exits, strong_weight=2, weak_weight=0.1):
G =nx.Graph()
nodes = range(num_nodes)
for i in nodes:
G.add_node(i, pos=(np.cos(2 * np.pi * i / num_nodes), np.sin(2 * np.pi * i / num_nodes)))
G.add_edge(i, (i + 1) % num_nodes, weight=strong_weight)

exits = np.random.choice(nodes, num_exits, replace=False)
for exit in exits:
G.add_edge(exit, (exit + num_nodes // 2) % num_nodes, weight=weak_weight)

return G, exits

# Parameters

num_nodes = 20
num_exits_modell =2
num_exits_model2 =5
num_reverberations_modell = 20
num_reverberations_model2 =5
escape_ratio_modell = 0.2
escape_ratio_model2 = 0.5
noise_multiplier_modell = 10
noise_multiplier_model2 =5

# Create graphs for both models
G1, exitsl = create_circle_graph(num_nodes, num_exits_modell)
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G2, exits2 = create_circle_graph(num_nodes, num_exits_model2)

# Function to draw reverberating signals with noise and exits
def draw_reverberation(ax, G, exits, num_reverberations, escape_ratio, noise_multiplier):
pos = nx.get_node_attributes(G, ‘pos’)
nodes = list(G.nodes)
signals =[0] # Start at node 0
for _ in range(num_reverberations):
new_signals =[]
for signal in signals:
neighbors = list(G.neighbors(signal))
for neighbor in neighbors:
if np.random.rand() > escape_ratio or neighbor in exits:
new_signals.append(neighbor)
for _ in range(noise_multiplier):
noise_x = np.random.normal(0, 0.02)
noise_y = np.random.normal(0, 0.02)
ax.plot([pos[signal][0], pos[neighbor][0] + noise_x], [pos[signal][1],
pos[neighbor][1] + noise_y], color="orange”)
signals = new_signals
for exit in exits:
ax.plot([pos[exit][0], pos[(exit + num_nodes // 2) % num_nodes][0]],
[pos[exit][1], pos[(exit + num_nodes // 2) % num_nodes][1]],
color="yellow’, linewidth=2, linestyle="dashed’)

# Plot settings
fig, ax = plt.subplots(1, 2, figsize=(14, 7))

# Plot for Model 1

nx.draw(G1, nx.get_node_attributes(G1, ‘pos’), ax=ax[0], with_labels=True, node_color="red’,
edge_color="black’, node_size=500, font_color="white”)

draw_reverberation(ax[0], G1, exitsl, num_reverberations_modell, escape_ratio_modell,
noise_multiplier_modell)

ax[0].set_title("Model 1: Reverberating Circle with 2 Exits’)

# Plot for Model 2
Python code graph 3.
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