
Article Not peer-reviewed version

Simulation-Based Development of

Internet of Cyber-Things Using DEVS

Bernard Phillip Zeigler * , Laurent Capocchi , Jean François Santucci

Posted Date: 19 May 2025

doi: 10.20944/preprints202505.1355.v1

Keywords: Internet of Things; Cyberphysical Systems; DEVS; System Entity Structure; model-driven

engineering methodology; Simulation

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/535831
https://sciprofiles.com/profile/1253134
https://sciprofiles.com/profile/1215704

Article

Simulation-Based Development of Internet of
Cyber-Things Using DEVS
B.P Zeigler 1,†,‡,* , L. Capocchi 2,‡ and J.F Santucci 2,‡

1 RTSync Corp., 6909 W. Ray Road, Chandler, 85226, AZ, USA; zeigler@rtsync.com
2 SPE UMR CNRS 6134, University of Corsica ”Pasquale Paoli”, Campus Grimaldi, CORTE, 20250, FRANCE;

capocchi@univ-corse.fr (L.C.); santucci@univ-corse.fr (J.F.S.)
* Correspondence: zeigler@rtsync.com
‡ These authors contributed equally to this work.

Abstract: Internet of Things (IoT) is about networking smart devices to share information, while
Cyberphysical Systems (CPS) is about integrating computational intelligence directly into physical
processes to enable control and automation. CPS goes beyond connecting devices to include real-time
processing and decision-making capabilities. We will call the combined ecosystem the Internet of
Cyber-Things (IoCT), to convey a vision where smart devices are not just connected but are also
tightly integrated with physical control systems—a network where digital and physical realms work
harmoniously. Simulation-based development of a combined Internet of Things (IoCT) and Cyber-
Physical Systems (CPS) using DEVS (Discrete Event System Specification) is an approach that leverages
simulation techniques to design, analyze, and optimize systems in which smart devices (IoCT) interact
closely with real-world control processes (CPS). This methodology allows developers to virtually
build, test and implement complex systems within the same formal framework. In this review, we
will show that DEVS has the necessary properties, including model expressiveness and development
continuity, to serve as an IoCT simulation-based development language. We will illustrate with several
examples to show the wide applicability to IoCT systems. We will demonstrate the added value of the
System Entity Structure (SES) to enhance expressiveness, scalability, and flexibility in IoCT system
design, making it a powerful tool for managing complexity and enabling efficient simulation and
deployment. In addition, we will formulate conditions that are necessary and sufficient for IoCT
system development and show how DEVS-based model-driven engineering methodology helps to
meet them.

Keywords: IoCT; DEVS; SES; IoT; IoCT system design; modular design; IoCT simulation frameworks

1. Introduction
Internet of Cyber-Things (IoCT) [1] refers to systems designed within the paradigms of Internet

of Things (IoT), emphasizing the the connectivity of devices ("Things") with robust, cyber-enabled
control over physical processes (CPS).

The combined paradigm recognizes that an internet backbone not only connects devices but
can actively manage and control physical systems in real time [1]. The combination suggests the
overarching goal of a seamless integration and coordination of smart devices, bolstered by advanced
cyber capabilities that control and optimize physical dynamics [1]. In such a network, digital and analog
information flows through channels between sensors and effectors under the control of computational
intelligence [1,2].

Simulation-based development involves creating virtual models of a system to study its perfor-
mance, behavior, and potential failure modes under different conditions. By simulating the system,
designers can iterate rapidly on design choices, validate functionality, and optimize performance.
Through detailed simulation, designers gain insights into how cyber components (software, network
protocols) and physical entities (sensors, actuators) interact, ensuring that real-time constraints and

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 doi:10.20944/preprints202505.1355.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0003-0636-1352
https://orcid.org/0000-0002-0793-8742
https://orcid.org/0000-0002-9143-532X
https://doi.org/10.20944/preprints202505.1355.v1
http://creativecommons.org/licenses/by/4.0/

2 of 24

performance requirements are met. Such simulation also allows for comprehensive testing under
varied environmental conditions and scenarios, mitigating the risk of failure when the system is
deployed in the real world. When simulation is employed early in development, the high costs of
early-stage physical prototyping can be minimized or even eliminated, reducing the need for expensive
physical prototypes with associated development costs and potential downtime.

Simulation-based development addresses the role of communication and control in IoCT by
representing interactions such as sensor data transmission, actuator commands, and control logic as
streams of discrete events. Simulation supports examining how data flows through the network and
how control decisions are made in real time, which is crucial when merging the loosely coupled nature
of IoT with the stringent requirements of CPS. By running simulations, developers can subject the
system models to various challenges including communication delays, system failures, and unexpected
physical process behaviors. These simulations help to identify potential bottlenecks or design flaws,
enabling iterative refinements before actual hardware deployment.

We propose that essential requirements for a language to support the development of IoCT
systems are model expressiveness and model continuity for all stages of the process including design,
simulation, and implementation (see Figure 1).

Basically, model expressiveness is the ability to express required functionality in a form that can be
easily coded, simulated, and verified. Included in expressiveness is the ability to support construction
of simulation models that combine discrete event logic with continuous system dynamics which is
particularly useful in CPS where physical processes involve continuous variables (e.g., temperature,
motion). Expressiveness also includes the ability to incrementally add or modify model components,
which is especially useful as IoCT technologies continue to evolve.

Likewise, model continuity refers to the ability to transition the "same" description from stage to
stage in the development process, where by "same", we mean that little or no modification is needed in
such transitions. Included in continuity is capturing and handling the stringent timing requirements
typical of IoCT applications, ensuring that the simulated responses closely mimic real-world behaviors.

The Discrete Event System Specification (DEVS) formalism [3] is a formal modeling and simulation
framework that allows systems to be described as a set of discrete events. It offers a modular and
hierarchical approach, where individual components (atomic models) can be composed to form more
complex structures (coupled models). This makes it ideal for modeling both the asynchronous events of
IoT devices and the real-time processes of CPS. DEVS enables component-based, hierarchical modular
construction, and dynamic changes in structure to support intelligent, adaptive, and autonomous
behavior characteristic of IoCT systems [4–6]. DEVS Atomic Models enable each IoT device or CPS
component to be modeled as an atomic (independent) entity with defined states and transitions
triggered by discrete events. DEVS coupling concepts connect atomic components to form coupled
models that represent larger subsystems or the entire system. This hierarchy helps manage complexity
and supports system evolution.

In this paper, we will show that DEVS has the necessary model expressiveness and continuity
properties to serve as an IoCT Design language. We will illustrate with several examples to show
wide applicability. We will demonstrate the added value of the System Entity Structure (SES) to
enhance expressiveness, scalability, and flexibility in IoCT system design, making it a powerful tool for
managing complexity and enabling efficient simulation and deployment.

Figure 1 illustrates the stages and the requirements for an IoCT Design Language. On the left
side of Figure 1 we conceptualize an IoCT system as interacting with its environment through sensors
and effectors (also called actuators), and on the right side, three basic stages of the development
of such a system are shown as Design, Simulation, and Implementation. In the design stage, the
focus is on system architecture, often using high-level design tools [7], with the environment and the
sensor/effector interaction minimally represented. Model continuity allows transferring the designed
model to be evaluated in the simulation stage and deployed in the implementation stage with minimal
changes. Currently, an IoCT design language that supports these requirements is lacking [8]. On the

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 doi:10.20944/preprints202505.1355.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1355.v1
http://creativecommons.org/licenses/by/4.0/

3 of 24

other hand, DEVS model expressiveness is manifested in its support of hierarchical and modular model
construction. These characteristics enable the implementation and verification of smaller models,
which can then be coupled to form a complete model. In this process, a family of models emerges in
which the models can be reused and integrated with multiple other models. Moreover, DEVS allows for
the simulation of these models alongside in the context of previously constructed models that can apply
to both discrete-event and continuous systems [9]. Furthermore, DEVS supports model continuity in
which only the simulator needs to be changed to run from abstract time to real-time [10,11] while the
model remains substantially the same.

Figure 1. Stages and the requirements for an IoCT Design Language. The DEVS formalism provides the model
expressiveness needed for IoCT functional design and supports the model continuity needed to transition from
stage to stage.

The remainder of this paper is organized as follows. Section 3 provides a review of the DEVS
formalism and the SES, which serve as foundational frameworks for the modeling and simulation
(M&S) of complex systems. Section 3 presents requirements for IoCT design and development and
summarizes how DEVS serves as a language to help users address these requirements.

Section 4 presents a series of illustrative examples demonstrating the application of DEVS in
designing IoCT systems. These examples include: home automation, the CAIDE architecture, the
Actuation Conflict Management (ACM) framework, and swarm-based systems. Section 5 offers a
discussion on how the presented examples highlight the expressiveness of DEVS for capturing dynamic
and complex behaviors and its continuity in seamlessly transitioning simulation models to real-world
implementations. It also compares these features with those of other widely used formalisms.

Finally, Section 6 concludes the paper by summarizing the key findings and discussing limitations
of DEVS-based IoCT system design. It then discusses how model-driven engineering can help address
such limitations. Finally, we outline future directions for further leveraging DEVS in IoCT system
design.

2. Background in DEVS and SES
DEVS Atomic and Coupled Models specify Mathematical Systems [12], one of the earliest forms

of general system specification that combined both the automaton formalism of computer science
and the dynamic systems models of control theory [13]. DEVS Atomic model specify the dynamic
input/output and state behavior of atomic components (elements that are not further decomposed in
the model).

DEVS Coupled models include components and their couplings - connections from output ports
of components to input ports of other components. As illustrated in Figure 2, component models can
themselves be coupled models (as well as atomic models) leading to hierarchical structures. Closure

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 doi:10.20944/preprints202505.1355.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1355.v1
http://creativecommons.org/licenses/by/4.0/

4 of 24

under coupling of DEVS models is an important theorem that justifies the confidence in managing the
complexity of hierarchical models. The theorem states that the resultant of coupling well-defined
DEVS models is itself a well-defined DEVS model, i.e, is equivalent in its input/output behavior as a
DEVS atomic model [3]. As we will show, such Hierarchical Modular Composition supports the model
construction needed for development of IoCT systems.

Figure 2. Illustration of a coupled model with one input and one output, comprising an atomic model and a
secondary coupled model that includes three additional atomic models.

The System Entity Structure (SES) is a declarative knowledge representation scheme that charac-
terizes the structure of a family of models in terms of decompositions, component taxonomies, and
coupling specifications. Formalized by a set of axioms [11], the SES is used to define and construct
hierarchical modular DEVS models. As an ontology for M&S, it concentrates a relatively few basic
relations as follows:

• Aspect expresses a way of decomposing a system into components and is relation between
the parent and the children. For instance, IoCTSmartApp in Figure 3 is an entity composed
of Sensors and Actuators. Sensors and Actuators are each represented as components (called
multi-entities) that are decomposed into one or more Sensor and Actuator, respectively. An aspect
holds the coupling relations that will connect the components (children) to create a coupled
model for the parent. An entity that has no aspects (decompositions) is the smallest indivisible
element and is represented by an atomic DEVS model.

• Specialization expresses the variants that a component can assume within a decomposition.
Smoke detector, WaterLeakageDetection or ThermalSensor can replace any of the Sensors and
Smartphone, WindowController or AirConditioner can replace any of the Actuators in Figure 3.

The corresponding constrained natural language of the SES description depicted in Figure 3
appears as follows:

From the IoCTDecomp perspective, IoCTSmartApp is made of Sensors and Actuators!
From the SensorMult perspective, Sensors is made of more than one Sensor!
From the ActuatorMult perspective, Actuators is made of more than one Actuator!
Sensor can be SmokeDetector,WaterleakageDetection,or ThermalSenor in SensorType!
Actuator can be Smartphone, WindowController, or AirConditioner in ActuatorType!

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 doi:10.20944/preprints202505.1355.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1355.v1
http://creativecommons.org/licenses/by/4.0/

5 of 24

Figure 3. IoCT smart App SES design. Sensors and Actuators are defined as specialization. A sensor entity can be
smoke detector or thermal sensor. A actuator can be smartphone or air conditioner.

The SES specifies hierarchical coupled models and makes it easier to create them. Indeed, tools
exist that help users define SES’s in a constrained form of natural language as well interfaces to prune
such models [11]. A specific model is chosen from the SES family of models by selecting from the
available choices in a process called pruning. This results in several Pruned Entity Structures (PES),
which can then be automatically converted to simulatable DEVS models, thus enabling comparison of
alternative architectures [14].

Two other properties of DEVS are applicable to IoCT system design and will be expanded on
later:

• DEVS Universality: DEVS models can represent a wide variety of system types including contin-
uous, discrete, finite state, etc. [15]. For instance, when addressing actuation and other service
access conflicts in IoCT systems, the rules managing such conflicts are typically specified using
particular formalisms. For example, ECA (Event-Condition-Action) rules are widely used for high
level specification of controllers in Cyber-Physical Systems and smart environments composed
of devices equipped with sensors and actuators. Due to the DEVS universality these descrip-
tion formalisms can be expressed in DEVS models and integrated with other components in a
composition hierarchy.

• Dynamic Structure DEVS: a type of DEVS model that can change its own structure while run-
ning [16,17]. The ability to change a model’s structure during its simulation is highly interesting
in the IoCT domain, where a system can update the list of available devices (sensors or actuators)
upon discovering a new context.

3. Requirements for IoCT Design and Development
The identified traits of the DEVS formalism—modularity, event-driven behavior, concurrency,

adaptability, scalability, and model continuity—are essential and sufficient for dealing with the com-
plexities of IoCT systems design and development. IoCT systems are inherently heterogeneous, with
diverse devices and components that must interact seamlessly. IoCT systems are characterized by
several critical requirements:

• Heterogeneity: IoCT systems typically comprise a diverse array of devices, sensors, and actua-
tors, each with distinct communication protocols, data formats, and computational capabilities.
An effective modeling formalism must accommodate this heterogeneity and enable seamless
interaction between these diverse components.

• Real-Time and Event-Driven Behavior: Many IoCT applications require real-time processing of
sensor data, with decision-making based on specific events. For example, a smart thermostat

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 doi:10.20944/preprints202505.1355.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1355.v1
http://creativecommons.org/licenses/by/4.0/

6 of 24

must respond immediately to temperature fluctuations, while a smart city traffic management
system must process sensor inputs in real time to optimize traffic flow.

• Concurrency and Synchronization: The dynamic and distributed nature of IoCT systems often
necessitates the concurrent operation of multiple devices or subsystems. These devices must
interact and synchronize effectively to ensure that the system operates cohesively, without conflicts
or performance degradation.

• Adaptability: IoCT systems must be able to adapt to changing environmental conditions, such as
the failure of components, the introduction of new devices, or network disruptions. A modeling
approach must therefore support flexible system structures capable of responding to such dynamic
conditions.

• Scalability: As IoCT systems grow in size and complexity, the ability to scale the system without
introducing instability or performance issues becomes critical. A modeling formalism must
support scalable architectures that can accommodate the addition of new components or the
expansion of existing ones.

• Model-to-Execution Continuity: An IoCT system must transition smoothly from the design phase
to the simulation and execution phases. This requires that the behavior modeled during the
design phase is accurately reflected in the real-world execution of the system.

DEVS’s modular and hierarchical approach addresses this heterogeneity by enabling the design
of complex systems as compositions of simpler, reusable models. Furthermore, IoCT systems often
require real-time responses to sensor data, and DEVS’s event-driven nature allows it to model the
time-based behaviors that are critical for such applications. The ability of DEVS to handle concurrent
events and synchronize multiple interacting processes makes it ideal for modeling the distributed,
concurrent nature of IoCT systems, where multiple devices must operate in parallel and remain
synchronized. Additionally, IoCT systems must be adaptive to changing conditions, such as device
failures or network disruptions, and DEVS supports dynamic model structures that allow for this
flexibility. DEVS also facilitates scalability by allowing models to grow incrementally, an important
feature for large-scale IoCT systems. Finally, DEVS’s model continuity ensures that the system’s
behavior remains consistent throughout the development lifecycle, from design to simulation and
real-world execution. This continuity is crucial for ensuring that IoCT systems perform as intended
when deployed.

Secondary studies on IoCT systems highlight these same traits as essential, reinforcing that DEVS’s
modularity, real-time event handling, concurrency management, adaptability, scalability, and smooth
transition across stages are not only sufficient but minimal for modeling IoCT systems effectively.
While other formalisms, such as state machines, Petri nets, and UML, may address some aspects of
IoCT design, they lack the comprehensive support for concurrency, event-driven behavior, and model
continuity that DEVS offers. Thus, DEVS provides a robust and minimal set of traits that make it an
ideal candidate for IoCT system design and simulation.

4. DEVS Design Principles for IoCT Systems: Practical Examples
This section is dedicated to presenting several examples highlighting the enhanced expressiveness

and continuity offered by DEVS in the field of IoCT systems.

4.1. DEVS Architecture for Home Automation

Faizel and Wainer [9] provide a DEVS specification of a home automation architecture, validated
through a case study integrating multiple sensors and actuators. They developed DEVS atomic models
for the different functional aspects that are required such as sensor polling, data transmission, and
data-sharing algorithms, which were then combined into a complete coupled model for execution
on devices. A communication network of nodes was designed as a next level coupled model to
integrate the device component models. DEVS-based simulations showed the desired behavior, which
was to effectively combine sensor readings and exchanged messages to agree on common values. A

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 doi:10.20944/preprints202505.1355.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1355.v1
http://creativecommons.org/licenses/by/4.0/

7 of 24

home automation application demonstrated the practical use of their approach. The application of
DEVS model continuity was manifested in their hardware construction. Using Cadmium version 2, a
C++ implementation of DEVS, the C++ classes employed for simulation were flashed (deployed) on
micro-controller firmware with only slight modifications in code. One exception was that the message
broker model was replaced with a commercial equivalent. Details are described in [9].

In [18], the authors demonstrate the suitability of the DEVS formalism for modeling synchronous
automata and verifying execution strategies in the context of IoCT system design. They validate their
approach using a pedagogical case study: the development of an application to control room lighting.
In this work, the behavior of a DEVS model is represented as specifications of a finite state automaton.
However, these DEVS specifications encapsulate both the state automaton and the execution machine.
The key advantage of using DEVS lies in its flexibility to define multiple strategies through distinct
DEVS model specifications.

The traditional IoCT system design process typically involves: (i) defining the behavior of
IoCT components in a library (ii) designing the coupling between components in the library and
(iii) executing the resulting coupling. If errors are detected, the designer must redefine component
behaviors, particularly those of the execution machine, to handle time conflicts within the ambient
system.

In [18], the authors proposed an alternative approach based on DEVS M&S. Instead of waiting
until the implementation phase to identify potential conflicts, they introduced an initial phase where
the behavior of IoCT components and execution machines is modeled and simulated using DEVS.
Once the simulations yield successful results, the designer can confidently implement the system
behavior within an IoCT framework. We will also discuss the advantages of DEVS in managing access
conflicts in IoCT systems in Section 4.3.

We review how the features of this application illuminate DEVS mode expressiveness and conti-
nuity:

• Model expressiveness:

– Employs hierarchical, modular construction to achieve incrementally verifiable functionality
– Interacts with Sensors and Actuators in a dynamic environment

• Model continuity:

– DEVS Simulation engine was expressed in programming language (Cadmum V2, Python)
for development

– DEVS models were converted to firmware for real-time execution

4.2. DEVS IoCT System: Real-time Monitoring, Management, Forecasting

Developed using the DEVS formalism, the Cloud-Based Analysis and Integration for Data Ef-
ficiency (CAIDE) framework has been successfully applied to Solar Irradiance Sensor Farms [19].
The system’s design leverages DEVS, Model-Based Systems Engineering (MBSE) [20], and an IoT
infrastructure to deploy and analyze solar plants in dynamic environments. In addition to managing
multiple sensor farms simultaneously, the framework continuously enhances predictive models in real
time by dynamically adapting and retraining them to ensure forecasts remain accurate and up-to-date.

As illustrated in Figure 4, the system was developed as a hierarchical DEVS coupled model,
featuring two primary components: Farms and cloud-based training with big data services. Each Farm
comprises atomic models that perform data processing, interface with solar sensors, and coordinate
through a central Fog server. The DEVS architecture allows these components to run in sequential,
parallel, or distributed configurations, ensuring scalability. The working system was demonstrated
in a complex scenario where multiple solar irradiance sensor farms were linked to a centralized
management system, highlighting its significant implications for solar plant deployment and the
future of renewable energy technologies.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 doi:10.20944/preprints202505.1355.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1355.v1
http://creativecommons.org/licenses/by/4.0/

8 of 24

Figure 4. IoCT Solar System Architecture designed and implemented using DEVS syooirt for expressiveness and
continuity.

As above, we review how the features of this application illuminate DEVS mode expressiveness
and continuity:

• Model expressiveness:

– DEVS supports expression of the CAIDE architecture which is layered with sensor, Fog, and
cloud layers, consistent with IoCT Layered Architecture.

– DEVS atomic models express the required temporal interaction with solar sensors.
– DEVS modularity provides the flexible basis to support the variable functionality required

for AI/ML analysis and retraining.

• Model continuity:

– The DEVS Simulation engine was employed in Python for development.
– A DEVS real-time execution engine continues to implement essentially the same model that

resulted from the initial design.

4.3. Conflict Management in IoCT System DevsOps

In managing IoCT conflicts, rigorous validation is essential to detect issues by analyzing both
the events generated by smart applications and the resulting actions on shared actuators. As these
applications increasingly control common IoCT devices—especially actuators that produce tangible
physical effects—the risk of actuation conflicts grows. These conflicts manifest either directly, when
multiple applications vie for the same actuator, or indirectly, when applications influence shared
physical properties.

To mitigate these challenges, actuation conflicts must be addressed during the design phase, rather
than relying on end users to resolve them. The goal is to implement Actuation Conflict Management
(ACM) mechanisms that proactively identify and resolve both direct and indirect conflicts early in
the system’s lifecycle (see Figure 5). Validation plays a critical role in this process by simulating IoCT
application events and actuator responses, ensuring that the ACM specifications remain robust and
effective in real-world scenarios.

This approach work builds upon the M&S approach outlined in recent research [21], proposing a
method that integrates M&S into the design of IoCT systems (Figure 5). The methodology leverages

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 doi:10.20944/preprints202505.1355.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1355.v1
http://creativecommons.org/licenses/by/4.0/

9 of 24

the DEVS formalism within the DEVSimPy multi-platform framework [22,23], facilitating robust and
flexible system Design. DEVSimPy is an advanced wxPython cross-platform General User Interface
for the M&S of systems based on the DEVS formalism. With DEVSimPy, a user can construct a DEVS
model for a system by interconnecting atomic and coupled models instantiated from libraries.

Figure 5. DEVS M&S inside the custom ACM Design process with its three levels: The Logical ACM Design, Model
validation and Model Deployment.

Figure 5 shows the custom ACM Design process that include the following levels:
Figure 5 illustrates a custom ACM design process organized into three main levels:

• Logical ACM Design: At this stage, the logical properties of custom ACMs—such as completeness,
safety, and liveness—are formally verified using techniques like model checking [24,25]. These
ACMs are defined by the designer as finite-state machines (FSMs), forming the basis for further
validation.

• Model Validation: This level assesses the impact of conflict resolution on the environment through
DEVS simulation. The DEVS ACM model incorporates temporal properties (for example, event
delays and state durations) derived from the ACM FSM, ensuring that the temporal behavior of
the system is accurately captured.

• Model Deployment At this level, the temporal properties of custom DEVS ACMs are formally
verified using various asynchronous execution machine strategies associated with the ACM
FSM. DEVS formalism is employed to simulate different implementation approaches, which
allows for experimentation with various hardware platforms that have unique asynchronous
timing specifications. Moreover, different middleware/EDGE solutions (e.g., node-red [26] and
ThingML [27]) can be explored through the automatic implementation of the DEVS simulation
kernel tailored to the target middleware.

The approach described above integrates an innovative Actuation Conflict Management (ACM)
mechanism that identifies and resolves conflicts stemming from spatial and temporal competition
among application flows. In IoCT systems, such conflicts occur when safety properties—whether
related to actuators or the environment—are violated. For example, conflicts can emerge when multiple
application flows attempt to control the same actuator, thereby compromising one of its features. These
conflicts are classified as direct (see Figure 6(a)) when they target a single device, or indirect (see
Figure 6(b)) when application flows affect environmental properties inconsistently.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 doi:10.20944/preprints202505.1355.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1355.v1
http://creativecommons.org/licenses/by/4.0/

10 of 24

Figure 6. IoCT systems face two conflict types: (a) Direct conflicts, where N application flows compete for an
actuator’s resources; (b) Indirect conflicts, where N application flows affect MM devices through environmental
characteristics (e.g., noise). An ACM DEVS Coupled Model is introduced to simulate and validate resolutions for
both conflict types.

This simulation-based approach intercepts all interactions between application flows (actions)
and IoCT devices (actuators) to detect potential direct and indirect conflicts. It validates resolution
strategies implemented by a dedicated ACM component (Figure 6(c)).

DEVS models were utilized at an early stage of the ACM Design process, enabling simulation-
based validation of the ACM mechanism prior to deployment in physical environments. The results
demonstrate the expressiveness of the DEVS formalism in specifying and validating the ACM compo-
nent, ensuring its seamless integration and functionality within simulated physical environments.

The ACM coupled DEVS model consists of two atomic models: a DEVS Synchronizer, which
receives events from application flows and drives the evolution of the Logical Behavior based on the
inputs it transmits (Figure 7).

Figure 7. The ACM component model, featuring its Synchronizer and Logical Behavior models, is embedded
within a Physical Environment that includes Application flows and IoCT Devices (Actuators).

Designers leverage a Logical Behavior model—typically represented as a Finite State Machine
(FSM)—to specify conflict resolution rules through defined state transitions and output functions. An
execution engine triggers these functions based on incoming inputs, producing the corresponding
outputs. Although model checking is effective at validating the logical correctness of the FSM, it does
not address issues related to synchronization and timing.

A robust synchronization policy is crucial to maintaining the Logical Behavior’s desired properties.
The Synchronizer DEVS model manages input events from IoCT application flows by synchronizing
and serializing them according to a pre-defined strategy. This strategy might involve various alterna-
tives such as waiting for all inputs before triggering outputs, sending inputs immediately, or following
specific time intervals.

Figure 8) illustrates an example of modeling a custom Actuation Conflict Management (ACM)
system in a smart home environment using DEVSimPy, with a focus on conflict detection in IoCT-based
smart homes. In this scenario, 216 application flows control 37 actuators—including windows, air
conditioners, and lights. Conflicts occur when multiple applications attempt to manage the same
actuator; for example, applications 14 and 134 simultaneously controlling the TV. In total, there are
3124 direct conflicts and 673 indirect conflicts. The custom ACM component detects and resolves both
types—addressing direct conflicts (such as conflicting TV commands) as well as indirect conflicts (like
ambient noise interference between the speaker and TV)—thereby validating the ACM rules.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 doi:10.20944/preprints202505.1355.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1355.v1
http://creativecommons.org/licenses/by/4.0/

11 of 24

Figure 8. The DEVSimPy model of the Smart Home scenario integrates the ACM model with the coupled
application flows and actuators. The Synchronizer and LogicalBehavior models are part of the ACM coupled.
model.

Due to DEVS model continuity, the DEVS simulation engine was successfully mapped to mid-
dleware solutions such as Node-RED and ThingML, enabling straightforward integration with IoCT
infrastructures. The objective is to support the orchestration and deployment of IoCT systems whose
software components can be deployed over IoCT, edge, and cloud infrastructures. The ACM simula-
tion model can be part of the chosen deployment solution, as the DEVS abstract simulator is portable
across any platform [10,18].

Thanks to the DEVS formalism, the approach supports deployment across diverse hardware
platforms with varying timing characteristics, underscoring its adaptability and portability. By lever-
aging the DEVS formalism within the DEVSimPy framework, this work effectively bridges the gap
between simulation and practical IoCT implementations—ensuring that validation performed during
the design phase translates seamlessly into real-world applications.

Another application where sensor access conflicts arise is smart parking. Smart parking systems
optimize the use of parking spaces by integrating driver behavior and sensor data. A major challenge
in this field is creating a robust model that can manage cumulative parking conflicts—situations
where multiple drivers vie for available parking in a dynamic environment that depends on both user
behavior and real-time sensor input. With modern sensor networks, parking spaces can be equipped
with sensors that monitor availability in real time. In [28], the authors propose a DEVS-based Modeling
and Simulation approach that develops conflict management strategies using estimated travel times to
desired locations within an area. DEVS is favored for this application because (i) its explicit inclusion
of elapsed time as an essential state variable and the associated time-advance function provides an
effective framework for managing time advances in both simulation and real-time scenarios, and (ii)
its hierarchical, modular structure supports the construction of conflict models for individual drivers
that can be reused in difference scenarios.

Figure 9 depicts the DEVSimPy simulation model for the smart parking system. The simulation
starts with the Space atomic models—representing sensors—that are grouped together into a Zone
coupled model. Next, the UserLink atomic model aggregates data from these sensors and transmits it
to the drivers. The User model then filters and processes the available parking spaces based on specific
criteria, passing the pertinent information to the Travel model. The Travel model evaluates this data
according to various decision policies and selects an appropriate parking space. Finally, this decision
is forwarded to the AccessConflictManagement model, which resolves conflicts between users by
applying multiple algorithms to effectively manage competition.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 doi:10.20944/preprints202505.1355.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1355.v1
http://creativecommons.org/licenses/by/4.0/

12 of 24

Figure 9. The DEVSimPy simulation model integrates all the DEVS atomic models along with their interconnec-
tions. The simulation considers 10 drivers and 10 parking spaces. A Conflict_Collector model is employed to
gather simulation outputs, which are subsequently used for result analysis.

Thanks to DEVS model continuity, the "space" models can be directly linked to an API that
delivers real-time sensor data from an operational parking lot. By incorporating user authentication
and switching the DEVS simulation kernel to real-time mode, this model becomes suitable for mobile
application deployment. In this configuration, the mobile app enables city drivers to locate available
parking spaces and occupy them. In fact, this DEVS-based simulation model was deployed within a
mobile application—as illustrated in Figure 10—for the city of Bastia in Corsica, France.

Figure 10. Mobile app that embed the Smart parking DEVS simulation model for the Bastia city (Corsica - France)
which is equipped with more than 400 presence sensors on the roads.

To summarize, the features of this application that illuminate DEVS model expressiveness and
continuity are:

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 doi:10.20944/preprints202505.1355.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1355.v1
http://creativecommons.org/licenses/by/4.0/

13 of 24

• Model expressiveness: DEVS ability to express concurrent multiple streams of temporal events en-
abled simulation-based validation of the actuator coordination mechanism prior to its deployment
ensuring its seamless integration and functionality within simulated physical environments.

• Model continuity:

– The DEVS simulation engine can be mapped to middleware implementations enabling
straightforward integration with IoCT infrastructures.

– DEVS supports deployment across diverse hardware platforms with varying timing charac-
teristics, underscoring its adaptability and portability.

– DEVS bridges the gap between simulation and practical IoCT implementation, enabling
design-phase validation to be translated effectively to real-world applications.

4.4. DEVS IoCT Development: Dynamic Structure for Adaptive Unmanned Swarm Systems

In [17] Zhang et al. emphasized the model expressiveness capability of DEVS, especially its
dynamic structure feature, in application to M&S of unmanned swarm systems (USS). Such systems have
broad applicability to a variety of domains including military, agriculture, aerospace, etc. Arguing that
traditional modeling methods cannot effectively describe the dynamics of USS, they show how to apply
DEVS to design, simulate, and implement such IoCT systems. The article shows how DEVS enables
description of the unmanned component platforms from both behavioral and structural perspectives.
In the former, DEVS atomic components model the microscopic behaviors; in the latter, DEVS coupling
relationships describe the collaborative structure between unmanned platforms.

Particularly, Figure 11 illustrates how swarm growth and self-optimization for surveillance by USS
is supported by dynamic structure DEVS. The capability to dynamically add and delete sub-models
and input and output ports, and to change port connection relationships enables such systems to
make structural adjustments in response to environmental changes. They perform such adaptation in
accordance with given goals and structure change rules during simulation operation. A DEVS-based
synchronization mechanism supports implementation of coordinated actions and changes in structure
as required for adaptive behavior.

Figure 11. Dynamic Structure DEVS Objective: minimize overlapping coverage areas. Figure copied and modified
with permission.

The hierarchical, modular structure of the USS and its environment is sketched in Figure 12 using
the SES on top and the block diagram form at the bottom. The Swarm is decomposed into a Controller
and Unmanned Autonomous Vehicles (UAVs), each of which are coupled models containing maneu-
verability and terrain feature detection atomic models. The USS implements adaptive reconnaissance

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 doi:10.20944/preprints202505.1355.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1355.v1
http://creativecommons.org/licenses/by/4.0/

14 of 24

in the sense that UAVs adaptively adjust their positions in the area under surveillance, or exit the
mission, following rules such as:

• Deploy a UAV when an area is not being surveilled.
• If a UAV sustains damage exceeding 50 per cent, it must be withdrawn from the mission.
• When a UAV experiences interference, it should exit the interference zone.
• In cases where UAV reconnaissance areas overlap, the UAV with greater damage must vacate the

area.

Figure 12. Hierarchical, modular structure of an unmanned swarm system and its environment is described in the
SES (top of figure) and depicted by the hierarchical coupled model (figure bottom). Figure copied and modified
with permission.

Such rules are implemented in the model using the dynamic structure capability of DEVS. Further,
the temporal properties of DEVS are well suited to model the synchronization mechanism. The latter
is necessary because UAVs can take different amounts of time to finish their assigned tasks due to
the heterogeneity of rule application and environmental effects such as damage and interference.
Synchronization is implemented by having the controller wait for all UAVs to report that they have
completed the preceding task, before issuing the order to proceed to the next task.

Figure 13 leverages the SES to express how synchronization can be implemented in a decentral-
ized manner as opposed to the centralized one just discussed. In the former, the central controller
is absent and its functionality is implemented by the individual UAVs. While DEVS expresses the
synchronization behavior required in either case, the SES expresses the alternative implementations em-
ploying different aspects (decomposition sub-trees) for the centralized and decentralized alternatives,
respectively. Figure 14 illustrates such an SES description.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 doi:10.20944/preprints202505.1355.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1355.v1
http://creativecommons.org/licenses/by/4.0/

15 of 24

Figure 13. Sketch of the system Entity Structure for unmanned swqrm system centralized and decentralized
synchronization. This SES is described by the text in Figure 14.

Figure 14. Example of a SES description using constrained natural language. The text specifies a hierarchical
coupled model that can be constructed from one ot the two aspects corresponding to centralized and decentralized
control (shown in yellow and green, respectively.

The first line in the fragment of Figure 14 defines an aspect called topLevel that decomposes
the overall model SwarmNEnvironment into UAVSwarm and Environment components. Subsequent
lines for this aspect declare coupling relations that state how output ports of sender components
connect to input ports of receiver components. The yellow and green highlighted lines define two
different aspects for decomposing the UAVSwarm component corresponding to those shown in color
in Figure 13, respectively. In these lines coupling relations express connections from a coupled model
input port to one more of its components input ports (called External Input Coupling) as well as
conversely, from component output ports to output ports of the parent coupled model (called External
Output Coupling),

4.5. Integration of Cyber Components with IoT devices in IoCT Systems

While IoT design focuses on communication and control of sensors and effectors, CPS design
emphasizes the interaction between digital and physical components. As indicated above, applications
become more demanding, the two thrusts are converging toward a more complete methodology, called
Internet of Cyber-Things (IOCT) that combines their capabilities [29].

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 doi:10.20944/preprints202505.1355.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1355.v1
http://creativecommons.org/licenses/by/4.0/

16 of 24

Figure 15 presents an architecture that harnesses the DEVS formalism to define the building blocks
for both computational and control-theoretic functionalities essential to intelligent CPS design [30].
A related implementation, discussed in [31], exploits DEVS model continuity to efficiently develop
embedded controllers for robotic systems. This same continuity supports the design, simulation, and
implementation of similar concepts for USS systems as well.

Figure 15. Architecture that leverages DEVS capability to express building blocks for both the computational and
control-theoretic functions required for intelligent cyber-physical system design.

In this use case, the features that illuminate DEVS model expressiveness and continuity are:

• Model expressiveness:

– DEVS Atomic functions capture microscopic behaviors (messages, timing, decisions)
– DEVS atomic and coupled models support synchronization.
– DEVS Hierarchical modular structure expresses collaborative interaction in centralized and

decentralized control.
– DEVS Dynamic structure enables the structural changes needed for adaptive behavior.

• Model continuity:

– DEVS supports definition of building blocks and architectural patterns for IoCT system
design.

– DEVS Execution engines can be implemented in diverse technologies such as virtualization,
hardware, embedded system, and bioware.

5. Discussion
In the following we summarize the properties of the DEVS formalism that were elucidated in

the examples given above to support the claims for its validity as an IoCT design language based on
its model expressiveness and continuity. This is followed by a review of other formalisms that can
address these features with a comparison of their relative adequacy.

5.1. DEVS Properties for Model Expressiveness and Model Continuity

DEVS is a strong candidate for the expressiveness of IoCT system design due to its ability to model
heterogeneous, dynamic, and event-driven environments while ensuring modularity, hierarchy, and
formal validation. IoCT systems are inherently complex and distributed, involving diverse components
that operate at different time scales and require flexible interaction mechanisms. DEVS offers key
advantages that align well with these characteristics:

• Modeling of Asynchronous and Event-Driven Behavior: IoCT systems rely on asynchronous
interactions among devices, sensors, and actuators. DEVS, as a discrete-event formalism, naturally
represents systems where state changes occur at discrete time instants, making it well-suited for
capturing real-world IoCT dynamic [32]. It represents state changes at discrete time intervals,
making it adept at modeling real-world dynamics in IoCT environments [33];

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 doi:10.20944/preprints202505.1355.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1355.v1
http://creativecommons.org/licenses/by/4.0/

17 of 24

• Hierarchical and Modular Structure: DEVS enables hierarchical composition of models, allowing
IoCT architectures to be designed in layers—such as edge, fog, and cloud computing—while
maintaining encapsulation and interoperability between components [34]. This modularity
enhances the reusability of models across different applications [32].

• Separation of Concerns (Structure vs. Execution): IoCT systems often require separating func-
tional behavior from execution strategies. DEVS achieves this through its atomic models (defining
component behavior) and coupled models (specifying interactions and execution flow), providing
a clear separation between computation and communication [35].

• Support for Concurrency and Synchronization: IoCT components often involve multiple in-
teracting subsystems that require concurrent processing. DEVS inherently supports parallel
discrete-event simulation (P-DEVS), making it suitable for modeling concurrency, synchroniza-
tion mechanisms, and conflict resolution in distributed IoCT systems [36].

• Adaptability to Dynamic Environments: IoCT applications demand adaptability due to changing
conditions and evolving requirements. Dynamic Structure DEVS (DS-DEVS) extends DEVS by
allowing on-the-fly reconfiguration, which is essential for modeling adaptive behavior in IoCT
networks [37]. Adaptive decision-making frameworks, such as the one proposed by Wang et al.,
utilize layers that sense, decide, and execute actions based on dynamic conditions [38].

• Validation through Discrete-Event Simulation: A critical aspect of IoCT system design is ver-
ifying whether execution strategies remain conformant with the intended functional model
while incorporating real-world constraints. DEVS provides a rigorous simulation-based valida-
tion framework, allowing designers to test control strategies, real-time constraints, and system
reliability before deployment [37].

• Interoperability with Other Modeling Approaches: IoCT system design often integrates multiple
modeling paradigms, such as synchronous automata, Petri nets, and state machines [39]. DEVS
can coexist with and complement these models, making it a flexible bridge for heterogeneous
system design.

By capturing both system structure and execution dynamics, while enabling modularity, adapt-
ability, and validation, DEVS emerges as a powerful and expressive framework for IoCT system
modeling and simulation.

Table 1 lists properties of the DEVS formalism related to model expressiveness, defined as its
ability to express functional aspects of IoCT systems.

Table 1. Model Expressiveness: Ability to Express Required Functionality in IoCT systems.

DEVS Properties Expressiveness Features
DEVS atomic model func-
tions

capture microscopic behaviors (messages, timing,
decisions), express temporal interaction with sensors
and actuators

DEVS hierarchical modu-
lar construction

supports incrementally verifiable functionality, ex-
presses collaborative interaction in centralized and
decentralized control, expresses the IoCT architec-
ture which is layered with sensor, Fog, and cloud
layers

DEVS modularity provides flexible support for the variable functional-
ity required for AI/ML model analysis and retrain-
ing

DEVS temporal properties express concurrent multiple streams of temporal
events enabling simulation-based validation of the
coordination and synchronization mechanisms

DEVS dynamic structure enables structural changes needed for adaptive be-
havior

DEVS system-theory basis supports definition of building blocks and architec-
tural patterns for intelligent hybrid cyber-physical
system design

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 doi:10.20944/preprints202505.1355.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1355.v1
http://creativecommons.org/licenses/by/4.0/

18 of 24

Model continuity refers to the ability to transition a system description seamlessly across different
stages of development—design, simulation, and execution—with minimal or no modifications. This is
particularly important in IoCT system development, where models need to remain consistent across
heterogeneous platforms and real-world constraints. DEVS provides a formal and modular approach
that supports model continuity in the following ways:

• Transition from Design to Simulation: DEVS provides a formal specification that allows IoCT
models to be directly simulated without reinterpreting their structure or behavior. The same
model used in design can be executed in a discrete-event simulation environment, ensuring
that functional behaviors (e.g., message passing, event synchronization, timing constraints) are
validated early. The hierarchical and modular nature of DEVS allows developers to incrementally
refine their models while preserving core behavioral properties. For example, IoCT system
architects can design DEVS models representing sensor interactions, data aggregation, and
processing logic, then test these models in a simulation engine before deployment.

• Transition from Simulation to Execution: DEVS enables migration from simulated environments
to real-world execution by transitioning from abstract simulation time to real-time execution.
DEVS models can be mapped to real-time platforms, ensuring that the timing, coordination, and
decision-making behaviors observed in simulation are maintained during execution. Through
real-time DEVS (RT-DEVS), the same IoCT models can be integrated into embedded systems,
middleware, and cloud environments without major alterations. For example, a DEVS-based
traffic monitoring system tested in a simulation environment can be directly deployed onto
real-world IoCT infrastructure while maintaining its event-driven behavior [40].

• Support for Diverse Implementation Platforms: DEVS models can be executed across a wide
range of hardware and software platforms, including: (i) Embedded systems (IoCT devices,
microcontrollers) (ii) Edge and fog computing environments (iii) Cloud-based IoCT platforms and
(iv) Distributed simulation frameworks [41]. This adaptability ensures that the same IoCT model
can be scaled and reused across multiple deployment scenarios. For example, a DEVS-based
smart grid model can be tested in a cloud-based simulation environment and later deployed onto
real-time distributed IoCT systems while preserving model fidelity.

• Model Validation and Conflict Resolution: DEVS simulation helps verify and validate execution
strategies, ensuring that an IoCT system’s operational behavior remains consistent with its
design [42]. At the Operational Model level, DEVS supports conflict actuation management,
helping resolve issues such as resource contention, sensor conflicts, and dynamic adaptation. For
example, a smart building IoCT system modeled in DEVS can simulate conflicting temperature
control settings before deployment, ensuring smooth operation.

• Dynamic Adaptation and Evolution: IoCT systems can reconfigure themselves autonomously,
reducing the need for human intervention. This self-management is vital in complex environ-
ments, as highlighted in studies on self-adaptive software systems [43]. Through Dynamic
Structure DEVS (DS-DEVS), models can adapt to environmental changes in real-time, allowing
IoCT systems to be self-reconfigurable. This ensures that model continuity extends beyond
initial deployment, supporting evolution and updates without requiring full redesigns. For
example, an IoCT-based disaster response system modeled with DS-DEVS can dynamically adjust
communication patterns and resource allocation in response to changing emergency conditions.

Table 2 lists transitions from the Design stage to the Simulation stage and from the latter to the
Execution stage for which DEVS model continuity supports development of IoCT systems. The table
also considers the diversity of implementation that DEVS can work within.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 doi:10.20944/preprints202505.1355.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1355.v1
http://creativecommons.org/licenses/by/4.0/

19 of 24

Table 2. Model Continuity: Ability to Transition the “Same” Description from Stage to Stage.

Inter-stage Transitions DEVS Model Continuity Features
Migration from Design to
Simulation

The DEVS Simulation engine is coded in a variety of
programming and higher level languages for design
and simulation

Migration from Simula-
tion to Execution

DEVS Simulation engine can be transformed from
its abstract time base to real-time bases and DEVS
models can be converted to hardware or middleware
forms for real-time execution

Diversity of implementa-
tion media

The DEVS simulation engine can be mapped to mid-
dleware implementations enabling straightforward
integration with IoCT infrastructures, DEVS sup-
ports deployment across diverse hardware platforms
with varying timing characteristics, underscoring
its adaptability and portability, DEVS Execution en-
gines can be implemented in diverse technologies
such as virtualization, hardware, embedded systems,
and bioware

5.2. Comparison with Other Formalisms

It is important to compare are other modeling formalisms that aim to achieve expressiveness and
continuity in IoCT systems, including Class Diagrams, State Machines, and Petri Nets [44]. While
each formalism has its strengths, they do not fully address the unique challenges of IoCT systems
in the same way that DEVS does. In this section, we explore how some of these popular formalisms
compare with DEVS in terms of expressiveness, continuity, and support for IoCT system features.
Appendix 1 reviews these formalisms in relation to DEVS in detail. Table 3 compares these formalisms
for expressiveness and model continuity in IoCT system design. In summary, while each of these
formalisms offers valuable features — for static structure, control flow, concurrency, or complex systems
modeling - they generally do not provide the same level of temporal expressiveness, modularity, and
integrated execution support that DEVS delivers for dynamic IoCT systems.

Table 3. Comparison of Different Formalisms with DEVS.

Formalism Strengths Limitations Compared to DEVS
Class Diagrams Good for static structure

modeling
Lacks temporal dynamics, reactivity,
and execution models

State Machines Effective for sequential con-
trol and finite states

No support for concurrency, hierar-
chical design, or modularity

Petri Nets Excellent for concurrency
and synchronization

Limited modularity, no inherent sup-
port for dynamic structures or exe-
cution strategies

SysML Useful for complex system-
of-systems modeling

Lacks native simulation support and
real-time execution capabilities

6. Conclusion and Future Directions
In this paper, we have demonstrated that the DEVS formalism, coupled with the System Entity

Structure, SES, possesses the necessary expressiveness and continuity to serve as a robust design
language for IoCT systems. Through illustrative examples, such as home automation, solar sensor farm
management, conflict resolution mechanisms, and dynamic unmanned swarm systems, we highlighted
how DEVS supports adaptive and complex behaviors with hierarchical modularity, synchronization,
and dynamic structure capabilities. Furthermore, the continuity inherent in DEVS enables seamless
transitions from design and simulation to real-world implementation, making it a powerful tool for
bridging the gap between conceptual models and operational systems.

While we have demonstrated the capability of DEVS to support simulation-based design of
IoCT systems, there remain limitations in the design of such systems. In this context, model-driven

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 doi:10.20944/preprints202505.1355.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1355.v1
http://creativecommons.org/licenses/by/4.0/

20 of 24

engineering (MDE) [45] can play a significant role in augmenting DEVS-based design of such systems
from the aspects of higher level support for expressiveness and continuity. More specifically, MDE
provides a formal methodology to apply DEVS-based design capabilities to address the challenges
of expressiveness and continuity in IoCT system design. On the expressiveness side, MDE supports
the use of Domain-Specific Languages (DSLs), which provide customized abstractions to empower
designers to articulate complex IoCT behaviors at a higher level, aligning the system design more
closely with its functional requirements. Moreover, MDE promotes modular design and validation
through formal methods, features that can significantly augment simulation-based equivalents when
tractable. MDE also supports automated model transformations—converting models from design to
simulation and then from simulation to execution—ensuring that a consistent system description is
maintained at every stage. This consistency is further reinforced by traceability mechanisms that link
different levels of abstraction, guaranteeing that changes in one phase are accurately propagated to
subsequent phases.

By allowing for high-level abstractions, modular design, and seamless transitions between stages
of development, MDE can augment the expressive and continuity capabilities of DEVS to significantly
enhance the efficiency and accuracy of IoCT system development, from initial design through to
real-world deployment.

On the other hand, more research needs to be done to improve the expressive capability of DEVS
while improving the user experience at the same time. Developments such as non-standard DEVS
point the way to such tool development [46].

Looking ahead, we envision expanding DEVS applications to encompass even more diverse IoCT
domains, emphasizing its scalability, flexibility, and integration potential with emerging technologies.
By leveraging these strengths with the support of MDE methodology, DEVS is poised to play a pivotal
role in the evolution of intelligent, adaptive systems within the rapidly advancing IoCT ecosystem.

Author Contributions: Conceptualization, B.P Zeigler; methodology, B.P Zeigler; investigation, L. Capocchi and
J.F Santucci; writing—original draft preparation, B.P Zeigler; writing—review and editing, B.P Zeigler and L.
Capocchi and J.F Santucci; supervision, B.P Zeigler; All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DEVS Discret Event system Specification
CPS Cyber Physical System
IoT Internet of Things
IoCT Internet of Cyber-Things
SES System Entity Structure
M&S Modeling and Simulation
DSL Domain-Specific Languages

Appendix A Comparing Modeling formalisms and DEVS
There are several modeling formalisms—such as Class Diagrams, State Machines, Petri Nets, and

SysML—that aim to provide expressiveness and continuity in IoCT systems. Although each of these
formalisms has its own strengths, they often fall short in addressing the unique challenges of IoCT
systems compared to DEVS. Below is a comparison of these popular formalisms with DEVS in terms
of expressiveness, continuity, and support for key IoCT features:

• Class Diagrams (UML): Class Diagrams are commonly used in Unified Modeling Language (UML)
to represent the structure of systems through classes, attributes, operations, and relationships

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 doi:10.20944/preprints202505.1355.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1355.v1
http://creativecommons.org/licenses/by/4.0/

21 of 24

between classes. They are valuable for defining the static structure of IoCT systems, particularly
for object-oriented design and database schema representation [47].

– Strengths: Static structure definition: Ideal for capturing the hierarchical relationships and
data organization within an IoCT system (e.g., sensor data models, device classes). Widely
adopted: A well-understood formalism, especially in enterprise and software system design.

–
– Limitations compared to DEVS: Lack of Temporal Dynamics: Class diagrams do not inher-

ently model time-dependent behavior or event-driven interactions that are crucial in IoCT
systems. This makes them less suitable for modeling asynchronous events and temporal
dependencies. Limited Reactivity: Class diagrams are static and do not easily model reactive
behavior—the ability of a system to respond to external stimuli or events in real time. No
explicit support for Execution Models: Class diagrams do not specify how an IoCT system
behaves over time, which limits their support for execution strategies or model validation in
dynamic, event-driven environments.

• State Machines: State Machines (or Finite State Machines, FSM) are widely used to model discrete
states and state transitions based on input events. They are effective for describing control flow
and sequential behavior, which makes them applicable to certain types of IoCT systems (e.g.,
simple control systems, state-based devices) [48].

– Strengths: Clear Representation of Control Flow: Good for modeling sequential logic and
finite state transitions, which are common in IoCT devices (e.g., a smart thermostat with
states like "heating," "cooling," and "idle"). Simple and Intuitive: Easy to understand and
implement, making them suitable for small systems or components with straightforward
behaviors.

–
– Limitations compared to DEVS: Limited Modularity: While state machines can model

transitions, they lack the modular design inherent to DEVS. Complex IoCT systems that
involve multiple interacting components may become difficult to manage using only state
machines. No Support for Concurrency: Traditional state machines are inherently sequential
and do not handle concurrent events well, which is a core feature in IoCT systems where
multiple components interact simultaneously. Lack of Hierarchical Abstraction: DEVS allows
for hierarchical modeling, which enables nested behavior and system decomposition—this is
particularly useful in IoCT systems that have multiple layers (e.g., sensor networks, cloud
services, edge devices). State machines generally do not support this level of abstraction.

• Petri Nets: Petri Nets are a graphical and mathematical formalism used to model concurrent,
asynchronous, and distributed systems. They have been used in modeling communication
protocols, process control, and IoCT systems [49].

– Strengths: Concurrency and Synchronization: Petri nets are strong in modeling parallelism,
concurrency, and synchronization of events, which is crucial in IoCT systems where multiple
devices and sensors may operate simultaneously. Well-Suited for Event-Driven Systems:
They handle event-driven behaviors well and can model complex resource-sharing and
token-passing mechanisms, which are common in IoCT systems.

–
– Limitations compared to DEVS: Lack of Modularity: While Petri nets can model concurrency,

they do not support the modular composition of IoCT systems in the same way DEVS does.
They can be complex to manage when dealing with large systems with many interacting
components. Limited Focus on Execution Models: Petri nets model state transitions and
events, but they do not inherently support execution strategies, such as mapping a model to
real-time platforms or handling issues like timing constraints or adaptive reconfiguration.
Partial Support for Dynamic Structure: While Petri nets can model system dynamics, they do

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 doi:10.20944/preprints202505.1355.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1355.v1
http://creativecommons.org/licenses/by/4.0/

22 of 24

not inherently support dynamic structure changes or self-adaptation in the same way DEVS
with DS-DEVS does.

• SysML (Systems Modeling Language): SysML, an extension of UML, is used for modeling complex
systems of systems, and it includes state diagrams, activity diagrams, and block definition
diagrams. SysML is frequently used in engineering and embedded systems [50].

– Strengths: Supports Complex Systems: SysML is suited for representing multi-domain
systems (e.g., electrical, mechanical, and software components), which is useful in large IoCT
systems. State Transitions and Behavior Modeling: Like UML state machines, SysML can
represent state-based behaviors.

– Limitations compared to DEVS: Limited Simulation Support: SysML does not natively
include simulation capabilities as part of the formalism. For IoCT systems, DEVS provides
simulation and validation tools that allow for dynamic, event-driven analysis. Lack of
Real-Time Behavior Modeling: SysML does not inherently support the real-time execution
of systems as DEVS does. IoCT systems often require not just simulation but also direct
mapping to real-time execution environments, which DEVS provides seamlessly.

References
1. Fortino, G.; Savaglio, C.; Spezzano, G.; Zhou, M. Internet of Things as System of Systems: A Review of

Methodologies, Frameworks, Platforms, and Tools. IEEE Transactions on Systems, Man, and Cybernetics:
Systems 2021, 51, 223–236. https://doi.org/10.1109/TSMC.2020.3042898.

2. Javed, A.; Malhi, A.; Kinnunen, T.; Främling, K. Scalable IoT Platform for Heterogeneous Devices in Smart
Environments. IEEE Access 2020, 8, 211973–211985. https://doi.org/10.1109/ACCESS.2020.3039368.

3. Zeigler, B.P.; Muzy, A.; Kofman, E. Theory of Modeling and Simulation: Discrete Event & Iterative System
Computational Foundations; Academic Press: San Diego, CA, 2018.

4. Zeigler BP, Mittal S, T.M. MBSE with/out Simulation: State of the Art and Way Forward. Systems 2018, 6.
https://doi.org/https://doi.org/10.3390/systems6040040.

5. Zeigler, B.; Mittal, S.; Traoré, M. Fundamental Requirements and DEVS Approach for Modeling and
Simulation of Complex Adaptive System of Systems: Healthcare Reform. In Proceedings of the Proc. of the
Symposium on Modeling and Simulation of Complexity in Intelligent, Adaptive and Autonomous Systems,
Baltimore, MD, 2021.

6. Booker, L.; Forrest, S.; Mitchell, M.; Riolo, R. Perspectives on Adaptation in Natural and Artificial Systems; Oxford
University Press: Oxford, United Kingdom, 2005. https://doi.org/10.1093/oso/9780195162929.001.0001.

7. Fattahi, A., IoT System Design Process and Main Components. In IoT Product Design and Development: Best
Practices for Industrial, Consumer, and Business Applications; 2023; pp. 95–161. https://doi.org/10.1002/978111
9787686.ch5.

8. Arslan, S.; Ozkaya, M.; Kardas, G. Modeling Languages for Internet of Things (IoT) Applications: A
Comparative Analysis Study. Mathematics 2023, 11. https://doi.org/10.3390/math11051263.

9. Alavi Fazel, I.; Wainer, G. Discrete Event System Specification for IoT Applications. Sensors 2024, 24.
https://doi.org/10.3390/s24237784.

10. Hu, X.; Zeigler, B.; Couretas, J. DEVS-on-a-chip: implementing DEVS in real-time Java on a tiny Internet
interface for scalable factory automation. In Proceedings of the 2001 IEEE International Conference on
Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236),
2001, Vol. 5, pp. 3051–3056 vol.5. https://doi.org/10.1109/ICSMC.2001.971984.

11. Zeigler, B.P.; Sarjoughian, H. Guide to Modeling and Simulation of System of Systems; Springer: New York, NY,
2017.

12. Wymore, A. A Mathematical Theory of Systems Engineering: The Elements; Krieger: Huntington, NY, 1967.
13. Kaplan, W. Topics in Mathematical System Theory (Rudolf E. Kalman, Peter L. Falb and Michael A. Arbib).

SIAM Review 1970, 12, 157–158, [https://doi.org/10.1137/1012030]. https://doi.org/10.1137/1012030.
14. Bulcão-Neto, R.; Teixeira, P.; Lebtag, B.; Graciano-Neto, V.; Macedo, A.; Zeigler, B. Simulation of iot-oriented

fall detection systems architectures for in-home patients. IEEE Latin America Transactions 2023, 21, 16–26.
15. Samuel, K.G.; Bouare, N.D.M.; Maïga, O.; Traoré, M.K. A DEVS-based pivotal modeling

formalism and its verification and validation framework. SIMULATION 2020, 96, 969–992,
[https://doi.org/10.1177/0037549720958056]. https://doi.org/10.1177/0037549720958056.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 doi:10.20944/preprints202505.1355.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1109/TSMC.2020.3042898
https://doi.org/10.1109/ACCESS.2020.3039368
https://doi.org/https://doi.org/10.3390/systems6040040
https://doi.org/10.1093/oso/9780195162929.001.0001
https://doi.org/10.1002/9781119787686.ch5
https://doi.org/10.1002/9781119787686.ch5
https://doi.org/10.3390/math11051263
https://doi.org/10.3390/s24237784
https://doi.org/10.1109/ICSMC.2001.971984
http://arxiv.org/abs/https://doi.org/10.1137/1012030
https://doi.org/10.1137/1012030
http://arxiv.org/abs/https://doi.org/10.1177/0037549720958056
https://doi.org/10.1177/0037549720958056
https://doi.org/10.20944/preprints202505.1355.v1
http://creativecommons.org/licenses/by/4.0/

23 of 24

16. Uhrmacher, A.M. Dynamic structures in modeling and simulation: a reflective approach. ACM Trans. Model.
Comput. Simul. 2001, 11, 206–232. https://doi.org/10.1145/384169.384173.

17. Zhang, W.; Li, Q.; Xu, X.; Li, W. Modeling and Simulation of Unmanned Swarm System Based on Dynamic
Structure DEVS. Journal of Physics: Conference Series 2024, 2755, 1–18. https://doi.org/10.1088/1742-6596/27
55/1/012021.

18. Sehili, S.; Capocchi, L.; Santucci, J.F.; Lavirotte, S.; Tigli, J.Y. Discrete Event Modeling and Simulation for IoT
Efficient Design Combining WComp and DEVSimPy Framework. In Proceedings of the Proceedings of the
5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications,
Setubal, PRT, 2015; SIMULTECH 2015, p. 26–34. https://doi.org/10.5220/0005538300440052.

19. Risco-Martín, J.L.; Prado-Rujas, I.I.; Campoy, J.; Pérez, M.S.; Olcoz, K. Advanced simulation-based predictive
modelling for solar irradiance sensor farms. Journal of Simulation 2024, 0, 1–18. https://doi.org/10.1080/17
477778.2024.2333775.

20. Zhang, L.; Zhao, C. Modeling and Simulation Based Systems Engineering; WORLD SCIENTIFIC: Singapore,
2023; [https://www.worldscientific.com/doi/pdf/10.1142/12960]. https://doi.org/10.1142/12960.

21. Capocchi, L.; Santucci, J.F.; Tigli, J.Y.; Gomnin, T.; Lavirotte, S.; Rocher, G. Actuation Conflict Management in
Internet of Things Systems DevOps: A Discrete Event Modeling and Simulation Approach. In Proceedings
of the Internet of Things; Rey, G.; Tigli, J.Y.; Franquet, E., Eds., Cham, 2025; pp. 189–206.

22. Capocchi, L. DEVSimPy. https://github.com/capocchi/DEVSimPy, 2024. Software available on GitHub.
23. Capocchi, L.; Santucci, J.; Poggi, B.; Nicolai, C. DEVSimPy: A Collaborative Python Software for Modeling

and Simulation of DEVS Systems. In Proceedings of the 2011 IEEE 20th International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises, 2011, pp. 170–175. https://doi.org/10.1109/
WETICE.2011.31.

24. M, C.J.E.; Orna, G.; Daniel, K.; Doron, P.; Helmut, V. Model Checking; MIT Press: Cambridge, MA, 2018.
25. Fang, Z.; Fu, H.; Gu, T.; Qian, Z.; Jaeger, T.; Hu, P.; Mohapatra, P. A model checking-based security

analysis framework for IoT systems. High-Confidence Computing 2021, 1, 100004. https://doi.org/https:
//doi.org/10.1016/j.hcc.2021.100004.

26. Widyawati, D.K.; Ambarwari, A.; Wahyudi, A. Design and Prototype Development of Internet of Things
for Greenhouse Monitoring System. In Proceedings of the 2020 3rd International Seminar on Research
of Information Technology and Intelligent Systems (ISRITI), 2020, pp. 389–393. https://doi.org/10.1109/
ISRITI51436.2020.9315487.

27. Harrand, N.; Fleurey, F.; Morin, B.; Husa, K.E. ThingML: A Language and Code Generation Framework for
Heterogeneous Targets. In Proceedings of the Proceedings of the ACM/IEEE 19th International Conference
on Model Driven Engineering Languages and Systems, New York, NY, USA, 2016; MODELS ’16, p. 125–135.
https://doi.org/10.1145/2976767.2976812.

28. Dominici, A.; Capocchi, L.; De Gentili, E.; Santucci, J.F. Discrete Event Modeling and Simulation of Smart
Parking Conflict Management. In Proceedings of the 24th International Congress on Modelling and
Simulation, Sydney, Australia, 2021; Modsim’21, pp. 246–252. https://doi.org/https://doi.org/10.36334
/modsim.2021.E3.dominici.

29. Kate, C. Internet of Things and Beyond: Cyber-Physical Systems, 2016. https://iot.ieee.org/articles-
publications/newsletter/may-2016/internet-of-things-and-beyond-cyber-physical-systemsy.

30. Zeigler, B. DEVS-based building blocks and architectural patterns for intelligent hybrid cyberphysical
system design. Information 2021, 12, 531.

31. Castro, R.; Marcosig, E.P.; Giribet, J.I. Simulation model continuity for efficient development of embedded
controllers in cyber-physical systems. Complexity Challenges in Cyber Physical Systems: Using Modeling and
Simulation (M&S) to Support Intelligence, Adaptation and Autonomy 2019, p. 8193.

32. Fazel, I.A.; Wainer, G. A DEVS-Based Methodology for Simulation and Model-Driven Development of
IoT. In Proceedings of the Simulation Tools and Techniques; Guisado-Lizar, J.L.; Riscos-Núñez, A.; Morón-
Fernández, M.J.; Wainer, G., Eds., Cham, 2024; pp. 3–17.

33. Rainey, L.; Holland, O., Eds. Emergent Behavior in System of Systems Engineering: Real-World Applications, 1st
ed.; CRC Press, 2022. https://doi.org/10.1201/9781003160816.

34. Risco-Martín, J.L.; Mittal, S.; Henares, K.; Cardenas, R.; Arroba, P. xDEVS: A toolkit for interoperable
modeling and simulation of formal discrete event systems. Software: Practice and Experience 2023, 53, 748–789,
[https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3168]. https://doi.org/https://doi.org/10.1002/
spe.3168.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 doi:10.20944/preprints202505.1355.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1145/384169.384173
https://doi.org/10.1088/1742-6596/2755/1/012021
https://doi.org/10.1088/1742-6596/2755/1/012021
https://doi.org/10.5220/0005538300440052
https://doi.org/10.1080/17477778.2024.2333775
https://doi.org/10.1080/17477778.2024.2333775
http://arxiv.org/abs/https://www.worldscientific.com/doi/pdf/10.1142/12960
https://doi.org/10.1142/12960
https://github.com/capocchi/DEVSimPy
https://doi.org/10.1109/WETICE.2011.31
https://doi.org/10.1109/WETICE.2011.31
https://doi.org/https://doi.org/10.1016/j.hcc.2021.100004
https://doi.org/https://doi.org/10.1016/j.hcc.2021.100004
https://doi.org/10.1109/ISRITI51436.2020.9315487
https://doi.org/10.1109/ISRITI51436.2020.9315487
https://doi.org/10.1145/2976767.2976812
https://doi.org/https://doi.org/10.36334/modsim.2021.E3.dominici
https://doi.org/https://doi.org/10.36334/modsim.2021.E3.dominici
https://iot.ieee.org/articles-publications/newsletter/may-2016/internet-of-things-and-beyond-cyber-physical-systemsy
https://iot.ieee.org/articles-publications/newsletter/may-2016/internet-of-things-and-beyond-cyber-physical-systemsy
https://doi.org/10.1201/9781003160816
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3168
https://doi.org/https://doi.org/10.1002/spe.3168
https://doi.org/https://doi.org/10.1002/spe.3168
https://doi.org/10.20944/preprints202505.1355.v1
http://creativecommons.org/licenses/by/4.0/

24 of 24

35. Capocchi, L.; Santucci, J.F.; Fericean, J.; Zeigler, B.P. DEVS Model Design for Simulation Web App
Deployment. In Proceedings of the 2022 Winter Simulation Conference (WSC), 2022, pp. 2154–2165.
https://doi.org/10.1109/WSC57314.2022.10015469.

36. Trabes, G.G. Efficient DEVS Simulations Design on Heterogeneous Platforms 2023. https://doi.org/10.222
15/etd/2023-15536.

37. Lee, E.; Seo, Y.D.; Kim, Y.G. Self-Adaptive Framework With Master–Slave Architecture for Internet of Things.
IEEE Internet of Things Journal 2022, 9, 16472–16493. https://doi.org/10.1109/JIOT.2022.3150598.

38. Wang, Y.; Zheng, L.; He, J.; Cui, Z. Adaptive IoT Decision Making in Uncertain Environments . In
Proceedings of the 2023 IEEE International Conference on Smart Internet of Things (SmartIoT), Los Alamitos,
CA, USA, 2023; pp. 265–269. https://doi.org/10.1109/SmartIoT58732.2023.00048.

39. An, H.; Park, W.; Park, S.; Lee, E. Logical Space Composition of IoT for a Scalable and Adaptable Smart
Environment. In Proceedings of the 2024 International Conference on Information Networking (ICOIN),
2024, pp. 614–618. https://doi.org/10.1109/ICOIN59985.2024.10572086.

40. Earle, B.; Bjornson, K.; Ruiz-Martin, C.; Wainer, G. Development of A Real-Time Devs Kernel: RT-Cadmium.
In Proceedings of the 2020 Spring Simulation Conference (SpringSim), 2020, pp. 1–12. https://doi.org/10.2
2360/SpringSim.2020.CPS.002.

41. Risco-Martín, J.L.; Mittal, S.; Fabero, J.C.; Malagón, P.; Ayala, J.L. Real-time hardware/software co-design
using devs-based transparent M&S framework. In Proceedings of the Proceedings of the Summer Computer
Simulation Conference, San Diego, CA, USA, 2016; SCSC ’16.

42. Hwang, K.; Lee, M.; Han, S.; Yoon, J.; You, Y.; Kim, S.; Nah, Y. The devs integrated development environment
for simulation-based battle experimentation. Journal of the Korea Society for Simulation 2013, 22, 39–47.
https://doi.org/10.9709/jkss.2013.22.4.039.

43. Matusek, D. Towards Resilient Execution of Adaptation in Decentralized Self-Adaptive Software Systems.
In Proceedings of the 2022 IEEE International Conference on Autonomic Computing and Self-Organizing
Systems Companion (ACSOS-C), 2022, pp. 74–75. https://doi.org/10.1109/ACSOSC56246.2022.00036.

44. Alhirabi, N.; Rana, O.; Perera, C. Security and Privacy Requirements for the Internet of Things: A Survey.
ACM Trans. Internet Things 2021, 2. https://doi.org/10.1145/3437537.

45. Doddapaneni, K.; Ever, E.; Gemikonakli, O.; Malavolta, I.; Mostarda, L.; Muccini, H. A model-driven
engineering framework for architecting and analysing wireless sensor networks. In Proceedings of the 2012
Third International Workshop on Software Engineering for Sensor Network Applications (SESENA). IEEE,
2012, pp. 1–7.

46. Junglas, P.; Jammer, D.; Pawletta, T.; Pawletta, S. Using component-based discrete-event modeling with
NSA-DEVS – an invitation. In Proceedings of the ASIM 2024 Tagungsband Langbeiträge, 27. Symposium
Simulationstechnik, Univ. d. Bundeswehr München, 4.-6.9.2024. ASIM, 2024.

47. Reggio, G. A UML-based proposal for IoT system requirements specification. In Proceedings of the
Proceedings of the 10th International Workshop on Modelling in Software Engineering, New York, NY, USA,
2018; MiSE ’18, p. 9–16. https://doi.org/10.1145/3193954.3193956.

48. Xiao, R.; Wu, Z.; Wang, D. A Finite-State-Machine model driven service composition architecture for internet
of things rapid prototyping. Future Generation Computer Systems 2019, 99, 473–488. https://doi.org/https:
//doi.org/10.1016/j.future.2019.04.050.

49. da Silva Fonseca, J.P.; de Sousa, A.R.; de Souza Tavares, J.J.P.Z. Modeling and controlling IoT-based devices’
behavior with high-level Petri nets. Procedia Computer Science 2023, 217, 1462–1469. 4th International
Conference on Industry 4.0 and Smart Manufacturing, https://doi.org/https://doi.org/10.1016/j.procs.20
22.12.345.

50. Escamilla-Ambrosio, P.J.; Robles-Ramírez, D.A.; Tryfonas, T.; Rodríguez-Mota, A.; Gallegos-García, G.;
Salinas-Rosales, M. IoTsecM: A UML/SysML Extension for Internet of Things Security Modeling. IEEE
Access 2021, 9, 154112–154135. https://doi.org/10.1109/ACCESS.2021.3125979.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 doi:10.20944/preprints202505.1355.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1109/WSC57314.2022.10015469
https://doi.org/10.22215/etd/2023-15536
https://doi.org/10.22215/etd/2023-15536
https://doi.org/10.1109/JIOT.2022.3150598
https://doi.org/10.1109/SmartIoT58732.2023.00048
https://doi.org/10.1109/ICOIN59985.2024.10572086
https://doi.org/10.22360/SpringSim.2020.CPS.002
https://doi.org/10.22360/SpringSim.2020.CPS.002
https://doi.org/10.9709/jkss.2013.22.4.039
https://doi.org/10.1109/ACSOSC56246.2022.00036
https://doi.org/10.1145/3437537
https://doi.org/10.1145/3193954.3193956
https://doi.org/https://doi.org/10.1016/j.future.2019.04.050
https://doi.org/https://doi.org/10.1016/j.future.2019.04.050
https://doi.org/https://doi.org/10.1016/j.procs.2022.12.345
https://doi.org/https://doi.org/10.1016/j.procs.2022.12.345
https://doi.org/10.1109/ACCESS.2021.3125979
https://doi.org/10.20944/preprints202505.1355.v1
http://creativecommons.org/licenses/by/4.0/

