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Abstract. Soil hydraulic properties are often derived indirectly, i.e. computed from easily available soil properties with
pedotransfer functions (PTFs), when those are needed for catchment, regional or continental scale applications. When predicted
soil hydraulic parameters are used for the modelling of the state and flux of water in soils, uncertainty of the computed values
can provide more detailed information when drawing conclusions. The aim of this study was to update the previously published
European PTFs (Toth et al., 2015, euptf v1.4.0) by providing prediction uncertainty calculation built into the transfer functions.
The new set of algorithms was derived for point predictions of soil water content at saturation (0 cm matric potential head),
field capacity (both -100 and -330 cm matric potential head), wilting point (-15.000 cm matric potential head), plant available
water, and saturated hydraulic conductivity, as well as the Mualem-van Genuchten model parameters of the moisture retention
and hydraulic conductivity curve. The minimum set of input properties for the prediction is soil depth and sand, silt and clay
content. The effect of including additional information like soil organic carbon content, bulk density, calcium carbonate
content, pH and cation exchange capacity were extensively analysed. The PTFs were derived adopting the random forest
method. The advantage of the new PTFs is that they i) provide information about prediction uncertainty, ii) are significantly
more accurate than the euptfvl, iii) can be applied for more predictor variable combinations than the euptfvl, 32 instead of 5,
and iv) are now also derived for the prediction of water content at -100 cm matric potential head and plant available water

content.

1 Introduction

Quantitative information on state and flux of water in the critical zone is important for a wide range of environmental process
models and decision support systems related to land surface processes (Lin, 2010; Zhao et al., 2018). Performance of
hydrologic, climate, crop and other models related to soil hydrological processes depends on the quality and resolution of soil

hydraulic input parameters (Vereecken et al., 2015). Simulations of variably saturated moisture fluxes in the vadose zone either
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rely on simple modelling approaches which only require few directly measureable input variables such as porosity, field
capacity, and wilting point, or on the Richards equation. While the former are simple and straightforward to obtain, the
Richards equation requires knowledge about the soil hydraulic properties over the full moisture range. In practice, one of the
most common approaches to describe the water retention and hydraulic conductivity curves required to solve the Richards
equation is arguably (Weber et al., 2019) the Mualem-van Genuchten model (MVG) (van Genuchten, 1980; Mualem, 1976).
Since soil hydraulic measurements in the laboratory or in the field are often time consuming, expensive and difficult, indirect
methods for estimating soil hydraulic properties using widely available surrogate data have been developed (Schaap, 2006).
To date, a large number of pedotransfer functions have become popular to predict soil hydraulic properties and MVG model
parameters (Van Looy et al., 2017).

Information on the uncertainty of the predicted soil hydraulic properties is important for modelling the state and flux of water
in soil. The source of prediction uncertainty can be threefold: it can stem from the i) predictor (e.g. measurement uncertainty,
non-representativeness of a sample), ii) predicted variables (e.g. uncertainty in the estimated soil hydraulic model parameters),
and the iii) algorithm which describes the relation between the two. Information on the uncertainty of the predictor variables
is commonly not available in PTFs derived before the 2000s, but has become a more intensively studied topic in the last decade.
For example, Weynants et al. (2009) quantified uncertainty of derived PTFs related to experimental, model and fitting errors
with the one-step inversion method. Deng et al. (2009) differentiated and quantified intrinsic and input uncertainty of PTFs.
Romén Dobarco et al. (2019) introduced prediction interval coverage probability to assess prediction uncertainty in PTFs
derived on French soils. McNeill et al. (2018) provided estimation of the distribution and confidence intervals of the predicted
soil hydraulic property (i.e. water content at 100 cm and 15000 cm matric potential head and total available water). In the field
of soil mapping it is an even more extensively studied topic where different computational methods have been proposed to
assess uncertainty of the mapped properties. Examples are estimation of the 90% prediction intervals based on a triangular
distribution (Odgers et al. 2014), quantification of mapped soil properties uncertainties by quantile regression forest (Vaysse
and Lagacherie, 2017), and a detailed comparison of uncertainties in mapped soil organic carbon content by different
geostatistical and machine learning methods (Szatmari and Pasztor, 2019).

Machine learning methods can be more robust to construct PTFs in comparison to previous approaches such as linear
regression or simple decision trees if relationship between the predictors and response is highly non-linear (Araya and
Ghezzehei, 2019). The random forest algorithm (Breiman, 2001) is able to outperform other machine learning methods (Olson
et al., 2018), which was also shown for predicting soil properties (Hengl et al., 2018; Nussbaum et al., 2018). Improvements
in computing power, statistical methods and statistical software provide the possibility to apply more easily even complex
models on large datasets. Therefore, complexity of a prediction algorithm is no longer a barrier in selecting a suitable algorithm
to develop and apply PTFs. Most of the recent machine learning algorithms have the built in possibility to compute the
uncertainty in the predicted variable, e.g. by quantile regression forest (Meinshausen, 2006) or generalized boosted regression
(Ridgeway, 2017). If PTFs are derived with these algorithms, the uncertainty of the predicted soil property can be directly
estimated when applying the PTF (Szabo et al., 2019a).
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Despite the above mentioned developments, the euptfvl (To6th et al., 2015) and derived soil hydraulic property maps for Europe
on a 1km and 250m grid (Téth et al., 2017) do not include uncertainties in the prediction. Hence, the aim of our study was to
update the euptfvl by deriving a new set of soil hydraulic PTFs (euptfv2) providing uncertainty calculation built into the PTF
model. For this, we rely heavily on the datasets used in the construction of the euptfvl. Methodologically, we constructed new
soil hydraulic PTFs on the basis of the random forest method which facilitates a quantification of prediction uncertainties. The
predicted variables of interest included soil water content at saturation, field capacity and wilting point, plant available water
content, saturated hydraulic conductivity, MVG parameters of the moisture retention and hydraulic conductivity curves. The
predictions are based on easily available soil properties. The predictor variables were similar to those of euptfvl, except the
topsoil and subsoil distinction, which was replaced by mean soil depth of the sample, since it is typically known, anyway.
Additionally, the improved performance of the euptfv2 was assessed against predictions using the earlier version. Moreover,

we determined the minimum sufficient predictor variables for 32 input variables combinations.

2 Materials and Methods

The construction of a pedotransfer function requires three elements: predictor variables, predicted variables as the property of
interest, and a transfer method between the former two. The predicted variables are in this case directly measured soil hydraulic
properties on samples contained in a large pan-European dataset, ensuring a representativeness of the PTF for Europe.
Additionally, Téth et al. (2015) had fitted MVVG model parameters for each sample dataset individually by inverse modelling,

which we reused in this study.

2.1 Dataset

The European Hydropedological Data Inventory (EU-HYDI) (Weynants et al., 2013) provided the basis for the preparation of
the prediction algorithms. The dataset partitions for training and testing the prediction algorithms were almost identical to the
ones used in Tath et al. (2015), except that the samples had to have information on soil depth as well. Depending on the soil
hydraulic property of interest, 76-99% of the originally selected samples were used to derive the new PTFs. It enabled
comparison of the performance between the EU-PTFs (Toth et al., 2015) — built in the euptfvl (Weynants and Téth, 2014) —

and their improved version (euptfv2). Table 1 shows the number of samples in the training and test sets.

2.2 Predicted soil hydraulic properties

Prediction algorithms were derived for each of the following soil hydraulic properties:
— water content at saturation (THS): water content at 0 cm matric potential head;
— water content at field capacity at
— -100 cm matric potential head (FC_2), and
— -330 cm matric potential head and (FC);
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—  water content at wilting point (WP): water content at -15000 cm matric potential head;
— plant available water content (AWC) based on the following equations:
- AWC =FC—-WP 1)
- AWC2=FC2-WP 2)
— saturated hydraulic conductivity (KS): hydraulic conductivity at 0 cm matric potential head;
—  Mualem-van Genuchten model parameters (VG; for the water retention model only, MVG; for the water retention
and hydraulic conductivity model).
Transformation of predicted variables, and explanation on how (i) the water content at a certain matric potential head values
were harmonized and (ii) the Mualem-van Genuchten model parameters were fitted is provided in great detail in (T6th et al.,
2015). FC_2 was not predicted in euptfvl and was determined in this study as follows. In the EU-HYDI, 8231 samples have
at least one water content observation in the matric potential head range -110 to -95 cm. 86% of those have a measured water
retention value exactly at -100 cm matric potential head. In 10% of the cases, FC_2 was set to the water content measured at
the closest matric potential head in the range [-110, -95]. In the absence of a measured value at -100 cm, in 4 % of the cases,
FC_2 was computed by linear interpolation between the two closest matric potential heads smaller and greater than -100 cm.
In the case of AWC and AWC _2 direct and indirect predictions were analysed, i.e. AWC was once predicted directly from the

predictor variables and once computed from the PTF predicted variables WP, and FC and FC_2, respectively.

2.3 Predictor variables

As predictors we used the following easily available soil properties: the particle size densities (PSD) characterised by the mass-
percentages of clay (<2 um), silt (2-50 um) and sand (50-2000 pm), organic carbon content (OC; mass-%) , bulk density (DB;
g cm), calcium carbonate content (CACO3; mass-%), pH in water (PH_H20; -), cation exchange capacity (CEC; cmol (+)
kg™, and replaced the former topsoil and subsoil distinction in euptfvl with mean soil depth (cm) (DEPTH). At minimum,
the predictor variables, clay, silt and sand content, as well as mean soil depth were used regardless of predicted variable. In
addition to that, we tested every possible combination of the other above mentioned soil properties (predictor variables) to
determine which combination significantly improves the performance of the predictions. A total of 32 different combinations
of predictor variables were studied in their respective ability to predict the nine different properties of interest; i.e. the set of
soil hydraulic properties and model parameters.

Replacing the topsoil/subsoil distinction with depth for the new PTFs was supported by the fact that this information is
commonly available, too, or can be based on expert knowledge. Introducing more accurate information on depth might improve
the performance without using machine learning algorithms for the prediction. However, we did not test this hypothesis,
because our aim was to provide uncertainty of the predictions related to predictor variables of the PTFs. Tested predictor

variables are shown in Table 1 with number of samples used to derive the PTFs and compute their performance.
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2.4 The Random Forest algorithm to derive PTFs

We derived the PTFs adopting the random forest method (Breiman, 2001), implemented in the ‘ranger’ R package (Wright
and Ziegler, 2017). We selected this method, because (i) it is among the best performing prediction algorithms if there is a
complex interaction structure in the dataset (Boulesteix et al., 2012), (ii) it computes quantiles of the predicted values, (iii)
parallel processing is supported which saves significant computation time, and (iv) the initially black-box type algorithm can
be interpreted based on computing variable importance and analysing partial dependence plots implemented in the ‘pdp’ R
package (Greenwell, 2017b).

In the case of a continuous response variable, a random forest is an ensemble of de-correlated regression trees (Breiman, 2001).
The regression tree approach divides the predictor space into non-overlapping regions through minimizing the residual sum of
squares. The aim of the method is to subset the data as homogeneously as possible at each split. The observations can be
assigned to the defined regions in which the mean of the response variable is the predicted value. Single trees of the forest are
noisy and limited in performance, but if many unbiased trees are derived and averaged with bagging, the variance is reduced
and performance of the prediction improves (Hastie et al., 2009). Building of de-correlated trees is achieved by randomization
at two levels. Firstly, each tree of the forest is grown on a randomly selected two thirds of the data with replacement, which is
called bootstrap sample or in-bag fraction. Secondly, at each node of a single tree, randomly selected sets of predictors are
analysed to split the data. This feature of randomization allows correlation between the response variables (Ziegler and Konig,
2014), which is an important advantage in the case of pedotransfer functions where predictors are often highly correlated.
Parameter tuning of the ranger was performed with the ‘caret’ R package (Kuhn et al., 2017, 2018). With the implemented
train function, a fivefold cross-validation was repeated ten times to tune the number of randomly selected predictor variables
at each split (mtry) and find the best performing splitting rule (splitrule) during training. We started the tuning by setting
the number of randomly selected predictor variables to two, then added one by one until the number of all available predictors
for each input variable combination was reached. All three built-in splitting rules in the ranger function were tuned, namely
variance, extratrees and maxstat. The minimum node size was kept to 10. In addition to the tuning options included in
the train function of the caret package, we optimized the number of trees in the forest. The above described tuning was
performed by discretely altering the number of trees in the forest in separate tuning steps to 50, 100, 200, 500 and 1000,
analysing the results and choosing the best number of trees for the random forest.

We analysed the relevance of predictors and their influence on the response variable. The relevance of predictors was
determined by computing the variable importance based on the mean decrease in impurity (Hastie et al., 2009) in the ranger
function. The marginal effect of some selected predictors on the response — soil hydraulic parameters — was analysed with
partial dependence plots (Greenwell, 2017a, 2017b).

The final prediction algorithm was built on the whole training set based on the result of the tuning. For the description of the

uncertainty, quantile regression was performed. Quantiles of the predicted values were estimated as implemented in quantile
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regression forest (Meinshausen, 2006). We analysed the 90% prediction interval for all predictions, but the derived algorithms

(PTFs) provide the possibility to compute the individual predictions of each tree.

2.5 Evaluation of derived PTFs

The performance of the PTFs was calculated using the median values predicted by the random forests. It was described with

the root mean square error (RMSE) (Eg. 3.), and the coefficient of determination (R?) (Eq. 4.) computed for the training and

RMSE = |3, (y,— 507 = VMSE 3)

2 _q _ Sa0i-90?
k" =1 N 0i-»)? )

test sets.

where y; is the measured and §; the predicted soil water content or log-transformed saturated or unsaturated hydraulic
conductivity, y; is the average of y;, N is the number of y; and §; data pairs, and MSE is the mean square error.

For each predicted variable, there was an initial set of 32 predictor combinations (Table 1), whose individual performance for
each of the predicted variables was assessed. Based on the test results, we derived recommendations which PTF should be
used when certain sets of predictor variables are available. We compared the performance of PTFs to quantify if there are
significant differences between the predictions as a consequence of adding certain soil properties to the predictor variables.
We also compared the performance of point and parameter estimations for those input combinations, which reflect the most
frequently available soil property combination from a practical point of view.

Additionally, the performance of the presented random forest based PTFs was compared to that of the euptfvl (T6th et al.,
2015). For comparison, those PTFs from euptfv2 were selected which corresponded to the analysed input variable combination
of the euptfvl.

The comparison of PTFs was done using a non-parametric Kruskal-Wallis test at the 5% significance level applied on the MSE
values — computed on TEST_BASIC and/or TEST_CHEM+ sets (Table 1) — using the R package agricolae (De Mendiburu,
2017). Recommendation of PTFs for a given set of predictor variables was based on the performance of euptfv2 on the test
sets. If there was no significant difference in performance, the PTF derived from the largest population was selected.

All statistical analysis was performed in R [version 3.6.0] (R Core Team, 2019).

3 Results and discussion
3.1 General performance

In the process of tuning the random forest parameters, the number of trees was found to be sufficient when set to 200 in all
cases. The number of candidate predictors was found to be higher than the recommended square root of the number of available
predictor variables (p) in most of the cases, especially when p was greater than 5 (Fig.1). When optimizing the splitting rules
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to build the trees in the forest, overall, the best performance was achieved by the extratrees rule in 54 %, by the variance
rule in 28%, and by the maxstat rule in 18% of the cases (Fig. 1).

The RMSE values were between 0.020 and 0.068 cm® cm™ for THS (Table 2), 0.046 and 0.055 cm?® cm for FC (Table 3),
0.040 and 0.060 cm® cm® for FC_2 (Table 4), 0.037 and 0.048 cm® cm® for WP (Table 5), 0.043 and 0.053 cm? cm for AWC
(Table S1), 0.045 and 0.060 cm® cm2 for AWC_2 (Table S2), and 0.089 and 1.18 logio (cm day™?) for KS (Table 6) in the case
of including different predictor variables computed on the test sets. In the case of VG and MVG, RMSE for the entire matric
potential head range was between 0.041 and 0.068 cm?® cm for the moisture retention (Table 7) and 0.61 and 0.71 logae (cm
day?) for the hydraulic conductivity (Table 8). These RMSE values are within the range of recently published PTFs (McNeill
et al., 2018; Nguyen et al., 2017; Roman Dobarco et al., 2019; Zhang and Schaap, 2017). In the case of the point estimations,
Figures 2, S1 depict the scatterplots of measured and predicted soil hydraulic parameters with 90% prediction interval.
Performance of the worst to best PTFs are shown. The addition of predictors that significantly improve the predictions also
decreases the uncertainty. Figures S2, S4, S6, S8, S10, S12, S14, S16, S19 show the squared error of the derived PTFs
computed on the TEST_BASIC and TEST_CHEM+ sets. The PTFs are ordered based on their performance. Density plots of
measured and predicted soil hydraulic values are included in Figures S3, S5, S7, S9, S11, S13, S15, S17, S20. Plots show the
PTFs that use the most frequently available predictors.

This study strengthens the importance of chemical soil properties in the prediction. CEC was found to be an important predictor
by Pachepsky and Rawls (1999) for FC and WP, by Botula et al. (2013) for water retention at several matric potential head
values, and by Hodnett and Tomasella (2002) for the VG parameters. Hodnett and Tomasella (2002) showed that pH influenced
all four VG parameters. The role of CACO3 was shown to be not significant in the study of (Khodaverdiloo et al., 2011). They
highlight that a possible influence of CACO3 might already have been indirectly included by bulk density. The role of PSD,
BD and OC has been studied extensively by various authors, e.g. Nemes et al. (2003); Rawils et al. (2003); Vereecken et al.
(1989); Weynants et al. (2009); Wasten et al. (1999), which is in line with the general pattern of variable influence we see in
this study.

Table S3 summarizes the recommended PTF for each combination of available predictor variables. The importance and
influence of soil properties on the performance of hydraulic PTFs and results of partial dependence plots are reported below
by predicted soil hydraulic properties.

3.2 Point estimations

The performance of the PTFs was computed for the training and test sets (Tables 2-8 and Tables S1-2) indicating the presence
of significant differences. For each predictor variable, the recommended PTF number is indicated and its predictor variables
are highlighted in bold font in the respective tables. For easier comparison with euptfvl, the corresponding PTF number used
in Téth et al. (2015) is additionally provided in each table. In the following, detailed results of the constructed PTFs for the

individual predicted variables are presented and discussed.
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Water content at saturation

Table 2, Figures S2 and S3 show the performance of the PTFs predicting THS. The best performing random forest is PTFO3.
It is also the one trained on the largest population. It uses PSD, DEPTH and BD as predictors. For the prediction of THS, the
most important variable by far is BD (Fig. 3). When BD is not used for the computation of THS, values above 0.60 cm® cm
are not well predicted (Fig. S3). The addition of OC or CACO3 or PH_H20 to PSD and DEPTH improves significantly the
performance of the PTF. The picture changes if BD is known: if PSD, DEPTH and BD were available, further addition of OC
or CACO3 or PH_H20 or CEC does not significantly improve the prediction, neither do their combinations. Figure 4 shows
the dependence of THS on OC and BD, considering the average effect of the other predictor variables —i.e. PSD and DEPTH.
When BD is lower than 1.5 g cm- changes in OC does not influence THS. If BD is larger than 1.5 g cm, samples with higher
OC have higher THS.

Water content at field capacity

The performance of the PTFs computed on training and test set are shown in Table 3, Figures S4 and S5 for FC_2 and in Table
4, Figures S6 and S7 for FC. The best performing PTF derived from the largest population is the one using i) PSD, DEPTH,
OC, BD and PH_H20 (PTF18) in the case of FC_2, and ii) PSD, DEPTH, OC and BD (PTF07) for FC.

For FC_2, the two most important variables are USSAND and BD (Fig. 3). When BD and USSAND increase, FC_2 decreases
(Fig. 4). Adding OC or BD to PSD and DEPTH significantly improves the prediction of FC_2. If either of CACO3, PH_H20
or CEC is added as a further predictor to PSD and DEPTH, the performance of the PTF does not significantly improve. If PSD,
DEPTH and BD are available, adding OC or CACO3 or PH_H20 does not significantly improve the prediction. Including
CEC as an additional predictor besides PSD, DEPTH and BD, significantly improves the estimation of FC_2.

USSAND and USCLAY are the two most important variables for the prediction of FC (Fig. 3). Instead of analysing these two
soil properties, both characterizing the soil texture, we include OC next to USSAND in the partial dependence plot analysis,
because the amount of OC can be altered due to change in climate, land use, soil and water management, cropping systems,
etc. (Wiesmeier et al., 2019). Within the range of OC in the dataset FC increases with increasing OC regardless of USSAND
content by up to 0.08 cm® cm even when USSAND is greater than 60 % (Fig. 4). Adding OC or CEC to PSD and DEPTH
significantly improves prediction of FC. The effect of CEC on the prediction of FC was also shown by Pachepsky and Rawls
(1999). BD or CaCO3 or PH_H20 do not significantly improve the predictions if PSD, DEPTH, or PSD, DEPTH and OC are
available. Predictions significantly improve when both CaCO3 and PH_H?20 are added as predictors to PSD, DEPTH and OC.

Water content at wilting point

The performance of PTFs derived for WP prediction is shown in Table 5, Figures S8 and S9. Among the best performing
PTFs, PTF09 is derived on the largest training set. It uses PSD, DEPTH, OC and PH_H20O as predictors. Even though the most
important variables for WP prediction were USCLAY and USSAND (Fig. 3), we included OC on the partial dependence plot
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(Fig. 4) as in the FC analysis. USCLAY had the strongest influence on WP. The influence of OC on WP can be detected for
soils with OC less than 4 % and USCLAY less than 50 %. Below 10 % USCLAY, the WP slightly increases with increasing
OC. When USCLAY is between 10 and 50 % and OC is less than 4%, increasing OC generally decreases WP.

OC significantly improves the prediction of WP if added to PSD and DEPTH. If BD or CACO3 or PH_H20 or CEC are added
to PSD and DEPTH, the performance of the prediction does not improve significantly. Adding CACO3 and CEC to PSD,
DEPTH and OC significantly improves the prediction.

Plant available water content

Table S1, S2 and Figures S1, S10-13 show the performance of AWC and AWC _2 predictions. PTFO03 is the best performing
algorithm with largest training set for both. It considers PSD, DEPTH and BD for the prediction. For both AWC and AWC 2,
BD is the most important predictor among the analysed variables (Fig. 3). The second most important variable is USCLAY in
the case of AWC_2 and USSILT for AWC. Increasing BD and USCLAY decreases AWC_2. In the case of AWC, increasing
BD and decreasing USSILT decreases the water content (Fig. 4).

OC and BD significantly improve the prediction of AWC_2 when added as input variables next to PSD and DEPTH. If either
BD or OC is already included, adding the respective other, does not significantly improve the prediction. Neither PH_H20O,
CACO3 nor CEC significantly improve the prediction.

For the prediction of AWC, further addition of only BD or OC or CACO3 or PH_H20 or CEC to PSD and DEPTH does not
significantly improve the prediction. If both OC and BD are included as predictors next to PSD and DEPTH, the prediction
significantly improves.

There is no significant difference between direct and indirect predictions, neither for AWC nor for AWC_2. However, the size
of the test set used for the statistical analysis is limited. There were only 145 samples in the TEST_BASIC set and 64 samples
in TEST_CHEM+ set after merging datasets available for both direct and indirect predictions for analysing AWC, and 70 and
34 samples in the case of AWC_2. Thus, if prediction of FC_2/FC and WP are needed in addition to AWC_2/AWC, we
recommend to compute AWC from those to save on computing time. Variation in AWC could be explained less efficiently
(Table S1, S2) than the other studied water retention values but the performance of the prediction is comparable with that of
published in the literature (Li et al., 2016; Malone et al., 2009).

Saturated hydraulic conductivity

The performance of KS prediction is shown in Table 6, Figure S14 and S15. The predictors of the best performing PTF derived
on largest training set are PSD, DEPTH and OC (PTF02). The prediction of KS significantly improves if OC is included among
the predictor variables next to PSD and DEPTH. No other predictors significantly improve the performance of the PTF. On
the training dataset, when OC is greater than 2.5 %, the influence of clay content on KS is more dominant than that of OC
(Fig. 4). In the case of KS prediction, the simplest best performing PTF has an RMSE of 0.94 logio(cm day™). PSD and CEC

are the most important input variables for the prediction of KS when all nine variables are considered as predictors (Fig. 3). In
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that case, OC is the fifth and BD is only the eighth most important variable. The prediction performance is influenced by the
heterogeneity of measurement methods of KS in the EU-HYDI dataset. When the methods are homogeneous, the RMSE value
is usually around 0.6-0.7 logio (cm day™) (Zhang and Schaap, 2017). Araya and Ghezzehei (2019) report that the PTF with the
highest accuracy in the literature has and RMSE of 0.3-0.4 logio (cm day™). In Lilly et al. (2008), the performance of the KS
predictions and findings were similar to this study. They report an RMSE between 0.95 and 1.09 logio(cm day™?) for the KS
prediction analysed with several input combinations. Even when information on soil structure and crack orientation was
considered — next to topsoil and subsoil distinction, PSD, BD and OC — the RMSE was 0.97 logio(cm day™). BD would be
among the most important variables, but also in their analysis its influence was masked out. They derived the PTFs on the
HYPRES dataset (Wosten et al., 1999), which also includes very diverse methods to determine the saturated hydraulic
conductivity and part of which is also contained in the EU-HYDI. The uncertainty in the predictions (Fig. 2) could be decreased
if the predictions would be differentiated according to the measurement methods, but that might decrease the applicability of
the PTFs. On the contrary, this study indicates the necessity to include saturated hydraulic conductivity values determined

from many different measurement techniques, otherwise the PTFs are expected to lose their generality.

3.3 Parameter estimations

The performance of parametric PTFs are shown in Tables 7 and 8 and Figures 5, 6, S16-S21. Figure 7 illustrates the importance
of variables for the prediction of VG and MVG parameters. The best performing PTF derived on the largest training set is
PTF29 — with PSD, DEPTH, OC, BD, PH_H20 and CEC - for MRC and PTF27 — with PSD, DEPTH, OC, BD, CACO3,
PH_H20 — for HCC.

For 6y, overall, BD is the most important predictor while all other predictors show similar variable importance (Fig. 7).
Interpretation of this parameter is complex, but it was demonstrated that it is influenced by the soil specific surface area
(Assouline and Or, 2013), and the measured data range (Weber et al. 2019). For 65, the most important predictor is by far BD,
similarly to THS. The importance of CEC has to be noted for the prediction of parameters a, n and L. For prediction of
parameter n — which relates to the pore size distribution — USCLAY and USSAND are the most important variables. Ko is
influenced by several soil properties besides those included in the dataset used here, e.g. pore connectivity, tortuosity, primary
pore orientation, some of which are not direction. These properties cannot be directly inferred from other soil properties
limiting the explanatory power of the available properties. The prediction of Ko remains complex and challenging. Variable
importance of all studied predictors is greater than 70%. Moreover, Ky is influenced by the data quality, and; moreover, is
correlated in parameter space, which is not treated, here.

Only a few studies have analysed the importance of CEC for MRC and HCC PTFs (Botula et al., 2013; Hodnett and Tomasella,
2002; Pachepsky and Rawls, 1999) which might be linked to the fact that CEC is rarely available in soil hydraulic datasets. It
is noteworthy to highlight that all best performing MRC PTFs (PTF24, PTF28, PTF29, PTF30, PTF31) include CEC among
the predictors (Table 7). In addition to that, Hodnett and Tomasella (2002) found that CEC was important for the prediction of
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0 and o parameters of the van Genuchten model. This is because CEC provides indirect information on soil mineralogy and

reflects soil specific surface area, charge density and pore size which influence soil water retention (Lal and Shukla, 2004).

Moisture retention curve

If BD or OC or CACO3 or CEC or PH_H20 are added as a predictor to information on PSD and DEPTH, the performance of
the PTF significantly improves (Table 7., Fig. S16). Adding BD next to PSD and DEPTH improves the predictions more than
adding OC (Table 7., Fig. S17). BD and OC together significantly improve the prediction compared to using PSD, DEPTH
together with either BD or OC. Adding OC next to PSD, DEPTH, BD and chemical soil properties (CACO3 and/or CEC and
/or PH_H20) does not significantly improve the prediction. If PSD, DEPTH, CACO3 and CEC are available, further addition
of PH_H20O does not improve the prediction. The best performing PTF includes USSAND, USSILT, USCLAY, DEPTH, BD,
CACO3, CEC. Figure 5 shows a scatterplot of measured and predicted water content values, including the performance of the
worst and the best performing PTF (PTF01 and PTF29). The importance of including chemical properties and most importantly
bulk density among the predictors is visible when measured water contents are greater than 0.50 cm® cm . Those high water
content values are characteristic when the soil is close to saturation, thus indirect information about the structure is needed for
more accurate predictions of those water content values. Parametric PTFs underestimate water content near saturation and
between -200 and -15000 cm matric potential head (Fig. S18). Overestimation occurs between -10 and -50 cm matric potential
head and above 16000 cm matric potential head. When chemical soil properties are included, the degree of underestimation
decreases between -200 and -15000 cm matric potential head, but overestimation increases between -5 and -10 cm with around

0.02 cm3 cm’3,

Hydraulic conductivity curve

OC, CACO03, PH_H20 and CEC significantly improve the prediction of HCC when added to PSD and DEPTH. Adding BD
next to PSD and DEPTH does not improve the predictions (Table 8, Fig. S19, S20). If PSD, DEPTH and OC are used as
predictors, further addition of BD or CACO3 or PH_H20 or CEC does not significantly improve the performance of the PTFs.
However, adding CaCO3 and CEC or PH_H20O significantly improve the prediction. The performance of the worst and the
best performing PTF is shown on Figure 6. The PTF with only PSD and DEPTH underestimate hydraulic conductivity values
smaller than 0.01 cm day*. When OC, BD, PH_H20 and CEC are included, the underestimation decreases. This could be
explained by the fact that these predictors contain indirect information of soil particle surface area and surface characteristics,
which are some of the governing properties of low hydraulic conductivities.

When soil chemical properties are not used as predictors, hydraulic conductivity is underestimated close to saturation and at
matric potential heads smaller than -500 cm; overestimation occurs between -10 and -500 cm matric potential head (Fig. S21).
If chemical properties are also considered, hydraulic conductivity is i) underestimated at matric potential head smaller than -
5000 cm, and ii) overestimated between -5 and -5000 cm. With added information on chemical properties, the degree of

underprediction decreases close to saturation and at the very dry end of the hydraulic conductivity curve. In parts, this is not
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an effect of the PTFs but the limitations inherent to MVG to describe the entire hydraulic conductivity curve (Weber et al.,

2019). Increase in prediction performance for values lower than 0.1 cm day™ is visible also on Figure 6.

3.4 Comparison of point and parameter predictions

We compare the performance of the best point prediction methods (Table 2-5) with the best parameter estimations (Table 7)
on the test sets. In 5 out of 20 cases, point predictions are significantly more accurate. In all other cases, we have no significant
difference between point and parametric PTFs (Table 9). We found similar results in the case of euptfvl (T6th et al., 2015).
Tomasella et al. (2003) and Bgrgesen and Schaap (2005) had comparable findings regarding the performance of point and
parametric PTFs. We recommend to compute THS, FC, FC_2 and WP with the point PTFs, more detailed explanation on it is
included in Té4th et al. (2015).

3.5 Comparison of euptfvl and v2

In 14 out of 19 cases, the PTFs of euptfv2 perform significantly better predicting the test sets than the PTFs of euptfvl. In the
remaining 5 cases there is no significant difference (Table 10). Predictions of FC and MRC improve in all cases. For THS,
WP, and MVG only those PTFs did not improve significantly, for which comparisons on the TEST_CHEM+ set was possible
— which includes reduced number of samples. The improvement of the PTFs is twofold, it is due to i) using random forest
instead of single regression tree or linear regression and ii) including more detailed information on soil sampling depth, not
only distinguishing topsoils and subsoils.

We recommend the use of euptfv2 instead of euptfvl if continuous soil properties are available. If only texture classes — i.e.
no particle size distribution — are available, class PTFs of euptfvl can be used, that is PTF18 for modified FAO texture classes
and PTF19 for USDA texture classes.

4 Conclusions

The updated EU-PTFs — euptfv2 — perform significantly better than euptfvl and are applicable for 32 predictor variables
combinations. Uncertainties of the predicted soil hydraulic properties and model parameters can be computed. These
uncertainties are, without further discrimination, related to the considered input data, predictors and the applied algorithm. The
euptfv2 includes transfer functions to compute soil water content at saturation (0 cm matric potential head), field capacity
(both -100 and -330 cm matric potential head) and wilting point (-15.000 cm matric potential head), plant available water
content computed with field capacity at -100 and -330 cm matric potential head, saturated hydraulic conductivity, and Mualem-
van Genuchten parameters of the moisture retention and hydraulic conductivity curves. For analyses of the impact as well as
the significance of the uncertainties on the predicted soil hydraulic properties and model parameters, further studies are

required.
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Code and data availability. The derived prediction algorithms (PTFs) are freely available for use built in a user friendly web
interface from the Institute for Soil Sciences and Agricultural Chemistry Centre for Agricultural Research

(https://ptfinterface.rissac.hu/, last access: 03 Feb 2020, Szaho et al., 2019b). An open source R software package was

developed (Weber and Szabd, 2019) to assist the implementation of PTFs presented in this article and can be accessed at the

European Soil Data Centre (http://eusoils.jrc.ec.europa.eu/). The PTFs — in RData format — and the R scripts used to derive

them can be freely accessed from a public GitHub repository (https://github.com/TothSzaboBrigitta/euptfv?2).

Supplement. The Supplement related to this article is available online.
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TABLES
Table 1. Number of samples by predictor variable combinations used to derive the new European PTFs (euptfv2). Rows in italic font indicate PTFs

with the same predictor variables as were tested in euptfvl (T6th et al., 2015).

Number of samples in TRAIN set?
THS FC 2 FC WP KS AWC2 AWC VG MVG

Name Predictor variables!

PTE01 PSD+DFPTH 3354 5109 2196 57264 3157 3528 1863 4669 739
PTF02 PSD+DEPTH+OC 2966 4131 1716 4802 2620 3208 1650 3708 407
PTFO3 PSD+DEPTH+BD 3305 5034 2176 5197 3146 3472 1849 4593 726
PTF04 PSD+DEPTH+CACO3 678 1670 1537 1816 639 1548 1531 1671 273
PTFO5 PSD+DEPTH+PH H20 1203 2062 1278 2039 907 1849 1245 1897 230
PTFO6 PSD+DEPTH+CEC 895 1649 1097 1703 567 1550 1092 1488 141
PTFO7 PSD+DEPTH+OC+BD 2959 4117 1711 4786 2609 3197 1645 3695 404
PTF08 PSD+DEPTH+OC+CACO3 673 1586 1340 1599 613 1464 1336 1589 250
PTF0O9 PSD+DEPTH+OC+PH H20 1052 1808 1100 1678 862 1615 1074 1663 224
PTF10 PSD+DEPTH+OC+CEC 744 1437 1001 1459 525 1358 998 1293 138
PTF11 PSD+DEPTH+BD+CACO3 678 1666 1526 1806 639 1545 1522 1670 272
PTF12 PSD+DEPTH+BD+PH H20 1156 2008 1267 1979 898 1796 1236 1847 229
PTF13 PSD+DEPTH+BD+CEC 848 1596 1093 1648 558 1498 1088 1437 140
PTF14 PSD+DEPTH+CACO3+PH H20 678 1314 1235 1375 620 1195 1230 1264 223
PTF15 PSD+DEPTH+CACO3+CEC 373 770 793 831 405 726 791 758 136
PTF16 PSD+DEPTH+PH H20+CEC 894 1350 744 1349 567 1255 739 1188 141
PTF17 PSD+DEPTH+OC+BD+CACO3 673 1585 1338 1596 613 1464 1334 1588 249
PTF18 PSD+DEPTH+OC+BD+PH H20 1047 1799 1098 1667 853 1607 1072 1655 223
PTF19 PSD+DEPTH+OC+BD+CEC 739 1427 998 1447 516 1349 995 1284 137
PTF20 PSD+DEPTH+OC+CACO3+PH H20 673 1249 1062 1183 613 1130 1059 1201 219
PTF21 PSD+DEPTH+OC+CACO3+CEC 369 727 709 743 401 683 707 712 135
PTF22 PSD+DEPTH+OC+PH H20+CEC 744 1142 663 1121 525 1067 660 996 138
PTF23 PSD+DEPTH+BD+CACO3+PH H20 678 1310 1224 1365 620 1192 1221 1263 222
PTF24 PSD+DEPTH+BD+CACO3+CEC 373 768 790 827 405 725 788 757 135
PTF25 PSD+DEPTH+BD+PH H20+CEC 847 1298 741 1295 558 1204 736 1138 140
PTF26 PSD+DEPTH+CACO3+PH H20+CEC 373 727 734 772 405 684 732 717 136
PTF27 PSD+DEPTH+OC+BD+CACO3+PH H20 673 1248 1060 1180 613 1130 1057 1200 218
PTF28 PSD+DEPTH+OC+BD+CACO3+CEC 369 726 707 740 401 683 705 711 134
PTF29 PSD+DEPTH+OC+BD+PH H20+CEC 739 1133 661 1110 516 1059 658 988 137
PTF30 PSD+DEPTH+0OC+CACO3+PH H20+CEC 369 684 655 689 401 641 653 671 135
PTF31 PSD+DEPTH+BD+CACO3+PH H20+CEC 373 725 731 768 405 683 729 716 135
PTF32 PSD+DEPTH+0OC+BD+CACQ3+PH H20+CEC 369 683 653 686 401 641 651 670 134

Number of samples in TEST BASIC set 1247 1762 801 2088 1117 1372 705 1591 176

Number of samples in TEST CHEM+ set 156 296 280 294 169 274 279 288 57

'PSD: particle size distribution (sand, 50-2000 pm; silt, 2-50 pm; clay, <2 pm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g
5 cm™); CACO3: calcium carbonate content (mass %); PH_H20: pH in water (-); CEC: cation exchange capacity (cmol (+) kg™).

2THS: saturated water content (pF 0); FC_2: water content at -100 cm matric potential head (pF 2.0); FC: water content at -330 cm matric potential head (pF 2.5); AWC_2: plant

available water content based on FC_2; AWC: plant available water content based on FC; WP: water content at wilting point (pF 4.2); KS: saturated hydraulic conductivity; VG:

parameters of the van Genuchten model; MV G: parameters of the Mualem — van Genuchten model; TEST_BASIC: samples with measured PSD, DEPTH, OC and BD; TEST_CHEM+:

samples with measured PSD, DEPTH, OC, BD, CACO3, PH_H20 and CEC.
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Table 2. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict water content at saturation
(THS). N: number of samples, RMSE: root mean square error (cm® cm®), and R?: determination coefficient, TEST_BASIC: samples with measured
PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC, BD, CACO3, PH_H20 and CEC. Recommended PTFs
are highlighted in bold.

Training set Test set Sign. difference?
Name of Pair
PTFin  Predictor variables! 5 ) I—I% I—IE < E_(le_?:ommended from
euptfv2 N RMSE R N RMSE R® B8 01?7 euptfvl
Fd FO
PTF01  PSD+DEPTH 3354 0.067 0.366 1274 0.068 0.344 a a PTFO1 -
PTF02  PSD+DEPTH+OC 2966 0.053 0.577 1274 0.056 0.552 b abc PTF02 PTF04
PTFO3  PSD+DEPTH+BD 3305 0.029 0.880 1274 0.031 0.862 c d PTFO3 -
PTF04  PSD+DEPTH+CACO3 678 0.046 0.187 156 0.057 0.053 - bc PTFO04 -
PTFO5  PSD+DEPTH+PH_H20 1203 0.056 0.298 156 0.053 0.193 - bc PTFO5 -
PTF06 PSD+DEPTH+CEC 895 0.055 0.401 156 0.057 0.048 - ab PTFO1 -
PTFO7 PSD+DEPTH+OC+BD 2959 0.027 0.888 1274 0.030 0.869 c d PTFO3 PTFO05
PTF08 PSD+DEPTH+OC+CACO3 673 0.044 0.209 156 0.055 0.118 - bc PTF02 -
PTF09 PSD+DEPTH+OC+PH_H20 1052 0.046 0.457 156 0.050 0.272 - c PTF02 -
PTF10 PSD+DEPTH+OC+CEC 744 0.046 0.519 156 0.051 0.233 - abc PTFO2 -
PTF11 PSD+DEPTH+BD+CACO3 678 0.023 0.791 156 0.022 0.863 - d PTFO3 -
PTF12 PSD+DEPTH+BD+PH_H20 1156 0.027 0.826 156 0.021 0.878 - d PTFO3 -
PTF13 PSD+DEPTH+BD+CEC 848 0.027 0.848 156 0.021 0.873 - d PTFO3 -
PTF14 PSD+DEPTH+CACO3+PH_H20 678 0.045 0.231 156 0.050 0.265 - bc PTFO5 -
PTF15 PSD+DEPTH+CACO3+CEC 373 0.045 0.257 156 0.054 0.164 - abc PTFO4 -
PTF16 PSD+DEPTH+PH_H20+CEC 894 0.052 0.459 156 0.055 0.132 - bc PTFO5 -
PTF17 PSD+DEPTH+OC+BD+CACO3 673 0.019 0.856 156 0.021 0.872 - d PTF03 -
PTF18 PSD+DEPTH+OC+BD+PH_H20 1047 0.024 0.848 156 0.021 0.871 - d PTFO3 PTFO6
PTF19 PSD+DEPTH+OC+BD+CEC 739 0.027 0.837 156 0.021 0.874 - d PTFO03 -
PTF20 PSD+DEPTH+OC+CACO3+PH_H20 673 0.043 0.251 156 0.050 0.285 - c PTF02 -
PTF21 PSD+DEPTH+OC+CACO3+CEC 369 0.043 0.309 156 0.051 0.242 - bc PTF02 -
PTF22 PSD+DEPTH+OC+PH_H20+CEC 744 0.046 0.531 156 0.050 0.280 - bc PTF02 -
PTF23 PSD+DEPTH+BD+CACO3+PH_H20 678 0.023 0.796 156 0.021 0.869 - d PTFO3 -
PTF24 PSD+DEPTH+BD+CACO3+CEC 373 0.021 0.841 156 0.021 0.869 - d PTFO3 -
PTF25 PSD+DEPTH+BD+PH_H20+CEC 847 0.027 0.850 156 0.020 0.883 - d PTFO3 -
PTF26 PSD+DEPTH+CACO3+PH_H20+CEC 373 0.044 0.305 156 0.049 0.308 - abc PTFO5 -
PTF27 PSD+DEPTH+OC+BD+CACO3+PH_H20 673 0.019 0.858 156 0.022 0.865 - d PTFO03 -
PTF28 PSD+DEPTH+OC+BD+CACO3+CEC 369 0.021 0.845 156 0.021 0.874 - d PTFO03 -
PTF29 PSD+DEPTH+OC+BD+PH_H20+CEC 739 0.026 0.843 156 0.020 0.880 - d PTFO03 -
PTF30 PSD+DEPTH+OC+CACO3+PH_H20+CEC 369 0.042 0.356 156 0.049 0.319 - bc PTF02 PTF04
PTF31 PSD+DEPTH+BD+CACO3+PH_H20+CEC 373 0.021 0.843 156 0.021 0.871 - d PTFO3 -
PTF32 PSD+DEPTH+OC+BD+CACO3+PH_H20+CEC 369 0.021 0.844 156 0.021 0.876 - d PTFO3 PTFO6

5 IPSD: particle size distribution (sand, 502000 pum; silt, 2-50 pm; clay, <2 um (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g
cm3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg™).
2Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error;for example performance indicated with the letter c is

significantly better than the one noted with letters b and a.
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Table 3. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict water content at -100 cm matric
potential head (FC_2). N: number of samples, RMSE: root mean square error (cm® cm®), and R?: determination coefficient, TEST_BASIC: samples
with measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC, BD, CACO3, PH_H20 and CEC.
Recommended PTFs are highlighted in bold. FC_2 was not analysed in euptfv1l.

Training set Test set Sign. difference? .

Pair
Name of [ [ Recommended from
PTFin  Predictor variablest ) , F % o E B pTE if
euptfv2 N RMSE R N RMSE R 228 4T o eup

o FO vl

PTF01 PSD+DEPTH 5109 0.062 0.651 1762 0.060 0.669 a a PTFO1 -
PTF02 PSD+DEPTH+OC 4131 0.057 0.711 1762 0.055 0.718 b ab PTF02 -
PTF03 PSD+DEPTH+BD 5034 0.053 0.750 1762 0.052 0.745 bc bedef PTFO3 -
PTF04 PSD+DEPTH+CACO3 1670 0.052 0.566 296 0.054 0.467 - abcd PTFO1 -
PTF05 PSD+DEPTH+PH_H20 2062 0.056 0.630 296 0.056 0.419 - abc PTFO1 -
PTF06 PSD+DEPTH+CEC 1649 0.056 0.658 296 0.054 0.469 - abcde PTFO1 -
PTFO7 PSD+DEPTH+OC+BD 4117 0.051 0.769 1762 0.050 0.769 c bcdefg PTFO3 -
PTF08 PSD+DEPTH+OC+CACO3 1586 0.050 0.589 296 0.049 0.565 - bcdefgh PTF02 -
PTF09 PSD+DEPTH+OC+PH_H20 1808 0.050 0.679 296 0.048 0.581 - bcdefg PTF02 -
PTF10 PSD+DEPTH+0OC+CEC 1437 0.051 0.688 296 0.049 0.554 - cdefghij PTFO6 -
PTF11 PSD+DEPTH+BD+CACO3 1666 0.044 0.701 296 0.046 0.616 - fghijklmn PTFO3 -
PTF12 PSD+DEPTH+BD+PH_H20 2008 0.046 0.746 296 0.043 0.657 - efghijkl PTFO3 -
PTF13 PSD+DEPTH+BD+CEC 1596 0.046 0.763 296 0.046 0.614 - hijklmn PTF13 -
PTF14 PSD+DEPTH+CACO3+PH H20 1314 0.051 0.600 296 0.051 0.528 - bcdef PTFO5 -
PTF15 PSD+DEPTH+CACO3+CEC 770 0.052 0.605 296 0.051 0.520 - cdefghij PTFO4 -
PTF16 PSD+DEPTH+PH H20+CEC 1350 0.053 0.699 296 0.049 0.556 - cdefghi PTFO5 -
PTF17 PSD+DEPTH+OC+BD+CACO3 1585 0.043 0.689 296 0.045 0.634 - ghijklmn PTFO7 -
PTF18 PSD+DEPTH+OC+BD+PH_H20 1799 0.044 0.749 296 0.042 0.679 - ghijklmn PTFO7 -
PTF19 PSD+DEPTH+0OC+BD+CEC 1427 0.045 0.753 296 0.044 0.650 - jklmn PTF13 -
PTF20 PSD+DEPTH+OC+CACO3+PH H20 1249 0.049 0.613 296 0.053 0.483 - bcdefgh PTF02 -
PTF21 PSD+DEPTH+OC+CACO3+CEC 727 0.050 0.603 296 0.046 0.620 - fghijklmn PTF0O8 -
PTF22 PSD+DEPTH+OC+PH_H20+CEC 1142 0.051 0.693 296 0.045 0.630 - efghijklm PTF09 -
PTF23 PSD+DEPTH+BD+CACO3+PH_H20 1310 0.044 0.701 296 0.045 0.629 - defghijkl PTFO3 -
PTF24 PSD+DEPTH+BD+CACO3+CEC 768 0.043 0.722 296 0.043 0.666 - Imn PTF11 -
PTF25 PSD+DEPTH+BD+PH_H20+CEC 1298 0.046 0.773 296 0.043 0.668 - jklmn PTF12 -
PTF26 PSD+DEPTH+CACO3+PH_H20+CEC 727 0.051 0.633 296 0.048 0.587 - defghijk PTFO5 -
PTF27 PSD+DEPTH+OC+BD+CACO3+PH_H20 1248 0.043 0.693 296 0.044 0.653 - efghijklm PTFO7 -
PTF28 PSD+DEPTH+0OC+BD+CACO3+CEC 726 0.044 0.702 296 0.041 0.687 - klmn PTF11 -
PTF29 PSD+DEPTH+OC+BD+PH_H20+CEC 1133 0.046 0.757 296 0.042 0.681 - ijkimn PTF12 -
PTF30 PSD+DEPTH+OC+CACO3+PH_H20+CEC 684 0.050 0.617 296 0.051 0.533 - efghijklm PTF09 -
PTF31 PSD+DEPTH+BD+CACO3+PH_H20+CEC 725 0.043 0.731 296 0.041 0.698 - mn PTF11 -
PTF32 PSD+DEPTH+OC+BD+CACO3+PH H20+CEC 683 0.044 0.712 296 0.040 0.709 - n PTF18 -

5 IPSD: particle size distribution (sand, 502000 um; silt, 2-50 pm; clay, <2 um (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g
cm3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg™).
2Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error;for example performance indicated with the letter c is

significantly better than the one noted with letters b and a.
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Table 4. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict water content at -330 cm matric
potential head, field capacity (FC). N: number of samples, RMSE: root mean square error (cm® cm®), and R?: determination coefficient,
TEST_BASIC: samples with measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC, BD, CACO3,
PH _H20 and CEC. Recommended PTFs are highlighted in bold.

Training set Test set Sign. difference?
Name of Pair
PTFin  Predictor variables! 5 5 I—I% - I—IE = E_(le_?:ommended from
euptfv2 N RMSE R N RMSE R* @28 QT o euptfvl
o = O
PTF01  PSD+DEPTH 2196 0.056 0.639 801 0.054 0.595 a a PTFO1 -
PTF02  PSD+DEPTH+OC 1716 0.049 0.707 801 0.050 0.650 b abc PTF02 PTF09
PTF03  PSD+DEPTH+BD 2176 0.048 0.727 801 0.049 0.668 ab abcd PTFO1 -
PTF04  PSD+DEPTH+CACO3 1537 0.047 0.650 280 0.055 0.591 - abcde PTFO1 -
PTF05 PSD+DEPTH+PH_H20 1278 0.048 0.653 280 0.055 0.586 - ab PTFO1 -
PTF0O6  PSD+DEPTH+CEC 1097 0.046 0.711 280 0.052 0.630 - bedefghi PTF06 -
PTFO7  PSD+DEPTH+OC+BD 1711 0.046 0.736 801 0.048 0.677 b bcdefg PTF02 PTF09
PTF08  PSD+DEPTH+OC+CACO3 1340 0.043 0.678 280 0.053 0.616 - abcdef PTF02 -
PTF09  PSD+DEPTH+OC+PH_H20 1100 0.044 0.687 280 0.052 0.631 - abcde PTF02 -
PTF10 PSD+DEPTH+OC+CEC 1001 0.044 0.720 280 0.052 0.628 - bedefghi PTF02 -
PTF11  PSD+DEPTH+BD+CACO3 1526 0.044 0.696 280 0.051 0.649 - bcdefgh PTFO3 -
PTF12 PSD+DEPTH+BD+PH H20 1267 0.045 0.698 280 0.050 0.658 - bcdefgh PTFO3 -
PTF13 PSD+DEPTH+BD+CEC 1093 0.044 0.741 280 0.049 0.678 - fghi PTF06 -
PTF14  PSD+DEPTH+CACO3+PH H20 1235 0.048 0.667 280 0.053 0.623 - bedef PTF04 -
PTF15 PSD+DEPTH+CACO3+CEC 793 0.047 0.720 280 0.052 0.639 - efghi PTF04 -
PTF16 PSD+DEPTH+PH_H20+CEC 744 0.047 0.726 280 0.051 0.651 - efghi PTFO6 -
PTF17 PSD+DEPTH+OC+BD+CACO3 1338 0.042 0.699 280 0.050 0.667 - cdefghi PTF02 -
PTF18 PSD+DEPTH+OC+BD+PH_H20 1098 0.043 0.704 280 0.050 0.660 - bcdefgh PTF02 PTF09
PTF19 PSD+DEPTH+OC+BD+CEC 998 0.042 0.739 280 0.048 0.684 - fghi PTFO7 -
PTF20 PSD+DEPTH+OC+CACO3+PH_H20 1062 0.044 0.694 280 0.052 0.634 - abcde PTF02 -
PTF21 PSD+DEPTH+OC+CACO3+CEC 709 0.045 0.709 280 0.051 0.652 - efghi PTF04 -
PTF22 PSD+DEPTH+OC+PH_H20+CEC 663 0.046 0.706 280 0.050 0.664 - defghi PTF09 -
PTF23 PSD+DEPTH+BD+CACO3+PH_H20 1224 0.045 0.704 280 0.051 0.651 - bcdefgh PTFO03 -
PTF24 PSD+DEPTH+BD+CACO3+CEC 790 0.044 0.744 280 0.048 0.688 - hi PTF11 -
PTF25 PSD+DEPTH+BD+PH_H20+CEC 741 0.045 0.748 280 0.048 0.682 - hi PTF11 -
PTF26 PSD+DEPTH+CACO3+PH_H20+CEC 734 0.046 0.742 280 0.050 0.658 - fghi PTF14 -
PTF27 PSD+DEPTH+OC+BD+CACO3+PH_H20 1060 0.042 0.712 280 0.049 0.676 - bedefghi PTF02 -
PTF28 PSD+DEPTH+OC+BD+CACO3+CEC 707 0.043 0.731 280 0.048 0.693 - ghi PTFO7 -
PTF29 PSD+DEPTH+OC+BD+PH_H20+CEC 661 0.044 0.725 280 0.046 0.709 - fghi PTFO7 -
PTF30 PSD+DEPTH+OC+CACO3+PH_H20+CEC 655 0.044 0.731 280 0.049 0.672 - fghi PTF08 PTF09
PTF31 PSD+DEPTH+BD+CACO3+PH_H20+CEC 731 0.043 0.763 280 0.047 0.700 - i PTF06 -
PTF32 PSD+DEPTH+OC+BD+CACO3+PH H20+CEC 653 0.043 0.743 280 0.047 0.696 - fghi PTFO7 PTF09

5 PSD: particle size distribution (sand, 50-2000 pmy; silt, 2-50 pm; clay, <2 pm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g
cm3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg™).
2Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error;for example performance indicated with the letter c is

significantly better than the one noted with letters b and a.
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Table 5. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict water content at wilting point
(WP). N: number of samples, RMSE: root mean square error (cm® cm), and R% determination coefficient, TEST_BASIC: samples with measured
PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC, BD, CACO3, PH_H20 and CEC. Recommended PTFs
are highlighted in bold.

Training set Test set Sign. difference?
Name of Pair
PTFin  Predictor variables! 5 5 I—I% - I—IE = E_(le_?:ommended from
euptfv2 N RMSE R N RMSE R°® G288 01?7 euptfvl
o = O
PTFO1 PSD+DEPTH 5264 0.048 0.736 2088 0.048 0.728 a a PTFO1 -
PTF02 PSD+DEPTH+OC 4802 0.047 0.755 2088 0.046 0.745 bc abc PTFO02 PTF12
PTFO3 PSD+DEPTH+BD 5197 0.046 0.757 2088 0.046 0.754 ab ab PTFO1 -
PTF04 PSD+DEPTH+CACO3 1816 0.042 0.693 294 0.042 0.643 - a PTFO1 -
PTF05 PSD+DEPTH+PH H20 2039 0.046 0.673 294 0.044 0.621 - abc PTFO1 -
PTFO6 PSD+DEPTH+CEC 1703 0.043 0.725 294 0.041 0.662 - a PTFO1 -
PTFO7 PSD+DEPTH+OC+BD 4786 0.045 0.769 2088 0.044 0.769 c abc PTFO02 PTF12
PTFO08 PSD+DEPTH+OC+CACO3 1599 0.041 0.695 294 0.041 0.671 - abcd PTF02 -
PTF09 PSD+DEPTH+OC+PH_H20 1678 0.045 0.682 294 0.041 0.661 - abcd PTF02 -
PTFI0  PSD+DEPTH+OC+CEC 1459 0.043 0.704 294 0.040 0.674 - abed  PTFO2 -
PTF11  PSD+DEPTH+BD+CACO3 1806 0.041 0.706 294 0.040 0.682 - abed  PTFOL -
PTF12  PSD+DEPTH+BD+PH H20 1979 0.045 0.691 294 0.041 0.671 - abed  PTFO1 -
PTF13  PSD+DEPTH+BD+CEC 1648 0.042 0.729 294 0.040 0.683 - abed  PTFOL -
PTF14  PSD+DEPTH+CACO3+PH H20 1375 0.043 0.689 294 0.042 0.649 - abed  PTFOL -
PTF15  PSD+DEPTH+CACO3+CEC 831 0.044 0.657 294 0.039 0.694 - abed  PTFO1 -
PTF16  PSD+DEPTH+PH H20+CEC 1349 0.043 0727 294 0.040 0.681 - abc  PTFOL -
PTF17  PSD+DEPTH+OC+BD+CACO3 1596 0.041 0.705 294 0.039 0.702 - abed  PTFO7 -
PTF18 PSD+DEPTH+OC+BD+PH_H20 1667 0.045 0.687 294 0.040 0.674 - abcd PTFO7 PTF12
PTF19 PSD+DEPTH+OC+BD+CEC 1447 0.042 0.714 294 0.039 0.691 - abcd PTFO7 -
PTF20  PSD+DEPTH+OC+CACO3+PH H20 1183 0.042 0.691 294 0.040 0.686 - abed  PTFO2 -
PTF21 PSD+DEPTH+OC+CACO3+CEC 743 0.044 0.638 294 0.037 0.722 - d PTFO8 -
PTF22 PSD+DEPTH+OC+PH_H20+CEC 1121 0.044 0.697 294 0.039 0.701 - abcd PTFO7 -
PTF23 PSD+DEPTH+BD+CACO3+PH_H20 1365 0.042 0.701 294 0.040 0.678 - abcd PTFO1 -
PTF24  PSD+DEPTH+BD+CACO3+CEC 827 0.043 0.673 294 0.038 0.708 - abed  PTFO1 -
PTF25  PSD+DEPTH+BD+PH_H20+CEC 1295 0.043 0.726 294 0.039 0.698 - abed  PTFO1 -
PTF26 PSD+DEPTH+CACO3+PH_H20+CEC 772 0.043 0.680 294 0.039 0.702 - cd PTF05 -
PTF27 PSD+DEPTH+OC+BD+CACO3+PH_H20 1180 0.042 0.698 294 0.039 0.703 - abcd PTFO7 -
PTF28  PSD+DEPTH+OC+BD+CACO3+CEC 740 0.043 0.648 294 0.037 0.732 - bcd  PTF17 -
PTF29  PSD+DEPTH+OC+BD+PH_H20+CEC 1110 0.043 0.699 294 0.038 0.712 - abed  PTFO7 -
PTF30 PSD+DEPTH+OC+CACO3+PH_H20+CEC 689 0.044 0.645 294 0.038 0.719 - abcd PTF02 PTF12
PTF31 PSD+DEPTH+BD+CACO3+PH_H20+CEC 768 0.043 0.678 294 0.037 0.720 - cd PTF05 -
PTF32 PSD+DEPTH+OC+BD+CACO3+PH H20+CEC 686 0.043 0.656 294 0.037 0.723 - d PTFO09 PTF12

5 PSD: particle size distribution (sand, 50-2000 pmy; silt, 2-50 pm; clay, <2 pm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g
cm3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg™).
2Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error;for example performance indicated with the letter c is

significantly better than the one noted with letters b and a.
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Table 6. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict saturated hydraulic conductivity
(KS). N: number of samples, RMSE: root mean square error (logio (cm day™?)), and R?: determination coefficient, TEST_BASIC: samples with
measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC, BD, CACO3, PH_H20 and CEC. Recommended
PTFs are highlighted in bold.

Training set Test set Sign. difference?
Name of Pair
PTFin  Predictor variables! 5 5 I—I% - I—IE = E_(le_?:ommended from
euptfv2 N RMSE R N RMSE R°® G288 01?7 euptfvl
o = O
PTFO1 PSD+DEPTH 3157 1.200 0.434 1117 1.181 0.307 a ab PTFO1 -
PTF02  PSD+DEPTH+OC 2620 0.957 0.566 1117 0.953 0.548 b bc  PTFO2 PTF16
PTFO3  PSD+DEPTH+BD 3146 1.160 0.467 1117 1.170 0.320 a a  PTFO1 -
PTF04 PSD+DEPTH+CACO3 639 0.861 0.241 169 0.959 0.123 - abc PTFO1 -
PTFO5  PSD+DEPTH+PH H20 907 0.875 0.213 169 0.944 0.151 - bc  PTFO1 -
PTFO6  PSD+DEPTH+CEC 567 0.984 0.215 169 0.940 0.157 - bc  PTFO1 -
PTFO7  PSD+DEPTH+OC+BD 2609 0.931 0590 1117 0.939 0.562 b bc  PTFO2 PTF16
PTF08 PSD+DEPTH+OC+CACO3 613 0.872 0.244 169 0.943 0.153 - bc PTF02 -
PTFO9  PSD+DEPTH+OC+PH H20 862 0.847 0.257 169 0.938 0.162 - bc  PTFO2 -
PTF10  PSD+DEPTH+OC+CEC 525 0.977 0.223 169 0.938 0.162 - bc  PTFO2 -
PTF11  PSD+DEPTH+BD+CACO3 639 0.851 0.259 169 0.952 0.136 - bc  PTFO1 -
PTF12  PSD+DEPTH+BD+PH H20 898 0.853 0.256 169 0.947 0.145 - bc  PTFO5 -
PTF13  PSD+DEPTH+BD+CEC 558 0.980 0.230 169 0.941 0.157 - bc  PTFO1 -
PTF14  PSD+DEPTH+CACO3+PH H20 620 0.855 0.267 169 0.923 0.189 - bc  PTFO5 -
PTF15  PSD+DEPTH+CACO3+CEC 405 0.937 0.263 169 0.941 0.156 - abc  PTFO1 -
PTF16  PSD+DEPTH+PH H20+CEC 567 0.942 0.282 169 0.940 0.158 - bc  PTFO1 -
PTF17  PSD+DEPTH+OC+BD+CACO3 613 0.856 0.272 169 0.933 0.171 - bc  PTFO2 -
PTF18 PSD+DEPTH+OC+BD+PH_H20 853 0.831 0.289 169 0.932 0.172 - bc PTF02 PTF16
PTF19 PSD+DEPTH+OC+BD+CEC 516 0.979 0.228 169 0.928 0.179 - c PTF02 -
PTF20  PSD+DEPTH+OC+CACO3+PH H20 613 0.860 0.264 169 0.929 0.177 - bc  PTFO2 -
PTF21  PSD+DEPTH+OC+CACO3+CEC 401 0.935 0.271 169 0.925 0.184 - bc  PTFO2 -
PTF22 PSD+DEPTH+OC+PH_H20+CEC 525 0.931 0.295 169 0.933 0.170 - c PTF02 -
PTF23 PSD+DEPTH+BD+CACO3+PH_H20 620 0.844 0.286 169 0.889 0.247 - c PTF05 -
PTF24  PSD+DEPTH+BD+CACO3+CEC 405 0.922 0.286 169 0.958 0.125 - abc  PTFO1 -
PTF25  PSD+DEPTH+BD+PH_H20+CEC 558 0.944 0.286 169 0.950 0.140 - bc  PTFO5 -
PTF26 PSD+DEPTH+CACO3+PH_H20+CEC 405 0.922 0.286 169 0.922 0.190 - bc PTF05 -
PTF27 PSD+DEPTH+OC+BD+CACO3+PH_H20 613 0.844 0.293 169 0.893 0.241 - c PTF02 -
PTF28  PSD+DEPTH+OC+BD+CACO3+CEC 401 0.926 0.285 169 0.925 0.185 - abc  PTFO02 -
PTF29  PSD+DEPTH+OC+BD+PH_H20+CEC 516 0.932 0.301 169 0.921 0.193 - bc  PTFO2 -
PTF30 PSD+DEPTH+OC+CACO3+PH_H20+CEC 401 0.931 0.278 169 0.887 0.250 - bc PTF02 PTF17
PTF31 PSD+DEPTH+BD+CACO3+PH_H20+CEC 405 0.914 0.298 169 0.912 0.207 - bc PTF05 -
PTF32 PSD+DEPTH+OC+BD+CACO0O3+PH H20+CEC 401 0.921 0.292 169 0.916 0.201 - bc PTF02 PTF17

5 PSD: particle size distribution (sand, 502000 um; silt, 2-50 pm; clay, <2 um (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g
cm3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg™).
2Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error;for example performance indicated with the letter c is

significantly better than the one noted with letters b and a.
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Table 7. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict parameters of the van Genuchten
model to describe soil moisture retention curve (VG). N: number of samples, RMSE: root mean square error (logio (cm day™)), and R?: determination
coefficient, TEST_BASIC: samples with measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC, BD,
CACO3, PH_H20 and CEC. Recommended PTFs are highlighted in bold.

Training set Test set Sign. difference?
Name of Pair
PTFin  Predictor variables! 5 5 I—I% - I—IE = E_(le_?:ommended from
euptfv2 N RMSE R N RMSE R°® G288 01?7 euptfvl
o = O
PTFO1 PSD+DEPTH 4669 0.055 0.846 1591 0.068 0.776 a a PTFO1 -
PTF02 PSD+DEPTH+OC 3708 0.047 0.887 1591 0.060 0.826 b c PTFO02 PTF19
PTFO03 PSD+DEPTH+BD 4593 0.041 0.913 1591 0.056 0.846 c hi PTFO3 -
PTFO4  PSD+DEPTH+CACO3 1671 0.039 0911 288 0.052 0.852 - d  PTF04 -
PTFO05 PSD+DEPTH+PH H20 1897 0.045 0.894 288 0.055 0.834 - b PTFO05 -
PTFO06 PSD+DEPTH+CEC 1488 0.044 0.886 288 0.054 0.839 - d PTFO06 -
PTFO7 PSD+DEPTH+OC+BD 3695 0.037 0.933 1591 0.054 0.859 d fg PTFO7 PTF21
PTFO08 PSD+DEPTH+OC+CACO3 1589 0.036 0.924 288 0.048 0.871 - f PTFO8 -
PTF09 PSD+DEPTH+OC+PH_H20 1663 0.039 0.922 288 0.050 0.865 - gh PTFO09 -
PTF10 PSD+DEPTH+OC+CEC 1293 0.036 0.920 288 0.051 0.858 - fg PTF10 -
PTF11 PSD+DEPTH+BD+CACO3 1670 0.034 0.934 288 0.043 0.900 - mn PTF11 -
PTF12 PSD+DEPTH+BD+PH H20 1847 0.038 0.926 288 0.044 0.892 - | PTF12 -
PTF13 PSD+DEPTH+BD+CEC 1437 0.039 0.908 288 0.044 0.892 - Im PTF13 -
PTF14  PSD+DEPTH+CACO3+PH H20 1264 0.037 0.928 288 0.052 0.854 - e  PTF14 -
PTF15 PSD+DEPTH+CACO3+CEC 758 0.040 0.907 288 0.049 0.870 - ij PTF15 -
PTF16 PSD+DEPTH+PH_H20+CEC 1188 0.042 0.905 288 0.051 0.858 - f PTF16 -
PTF17 PSD+DEPTH+OC+BD+CACO3 1588 0.031 0.944 288 0.042 0.904 - n PTF11 -
PTF18 PSD+DEPTH+OC+BD+PH_H20 1655 0.033 0.943 288 0.043 0.900 - | PTF12 PTF22
PTF19 PSD+DEPTH+OC+BD+CEC 1284 0.033 0.934 288 0.044 0.892 - Im PTF13 -
PTF20  PSD+DEPTH+OC+CACO3+PH H20 1201 0.033 0.943 288 0.048 0.874 - f  PTF09 -
PTF21  PSD+DEPTH+OC+CACO3+CEC 712 0035 0932 288 0.047 0.881 - | PTF21 -
PTF22  PSD+DEPTH+OC+PH_H20+CEC 996 0.033 0.939 288 0.049 0.869 - i PTF22 -
PTF23 PSD+DEPTH+BD+CACO3+PH_H20 1263 0.032 0.948 288 0.044 0.895 - Im PTF11 -
PTF24  PSD+DEPTH+BD+CACO3+CEC 757 0.033 0.939 288 0.041 0.906 - o PTF24 -
PTF25  PSD+DEPTH+BD+PH_H20+CEC 1138 0.038 0.922 288 0.042 0.902 - n  PTF25 -
PTF26 PSD+DEPTH+CACO3+PH_H20+CEC 717 0.037 0.924 288 0.047 0.878 - ik PTF15 -
PTF27 PSD+DEPTH+OC+BD+CACO3+PH_H20 1200 0.030 0.953 288 0.043 0.897 - Im PTF11 -
PTF28  PSD+DEPTH+OC+BD+CACO3+CEC 711 0.032 0.941 288 0.041 0.906 - o PTF24 -
PTF29  PSD+DEPTH+OC+BD+PH_H20+CEC 988 0.032 0.945 288 0.041 0.906 - o  PTF29 -
PTF30 PSD+DEPTH+OC+CACO3+PH_H20+CEC 671 0.031 0.946 288 0.047 0.880 - k PTF21 PTF20
PTF31 PSD+DEPTH+BD+CACO3+PH_H20+CEC 716 0.031 0.948 288 0.042 0.904 - o] PTF24 -
PTF32 _ PSD+DEPTH+OC+BD+CACO3+PH H20+CEC 670 0.031 0.948 288 0.042 0.903 - o PTF29 PTF22

5 PSD: particle size distribution (sand, 502000 um; silt, 2-50 pm; clay, <2 um (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g
cm3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg™).
2Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error;for example performance indicated with the letter c is

significantly better than the one noted with letters b and a.
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Table 8. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict parameters of the Mualem-van
Genuchten model to describe soil moisture retention and hydraulic conductivity curve (MVG). N: number of samples, RMSE: root mean square
error (logio (cm day™?)), and R?: determination coefficient, TEST_BASIC: samples with measured PSD, DEPTH, OC and BD; TEST_CHEM+:
samples with measured PSD, DEPTH, OC, BD, CACO3, PH_H20 and CEC. Recommended PTFs are highlighted in bold.

Training set Test set Sign. difference?
Name of Pair
PTFin  Predictor variables! 5 5 I—I% - I—IE = E_(le_?:ommended from
euptfv2 N RMSE R N RMSE R* @28 QT o euptfvl
o = O
PTF01  PSD+DEPTH 739 0.604 0.804 176 0.708 0.796 a b PTFO1 -
PTF02  PSD+DEPTH+OC 407 0.619 0.829 176 0.676 0.814 b ikl PTF02 PTF19
PTFO3 PSD+DEPTH+BD 726 0.568 0.824 176 0.688 0.808 a ab PTFO1 -
PTF04  PSD+DEPTH+CACO3 273 0.587 0.878 57 0.644 0.863 - ijk PTF04 -
PTFO5  PSD+DEPTH+PH_H20 230 0.578 0.889 57 0.663 0.855 - def PTFO5 -
PTF0O6  PSD+DEPTH+CEC 141 0.672 0.858 57 0.662 0.856 - fghij PTF06 -
PTFO7 PSD+DEPTH+OC+BD 404 0.529 0.873 176 0.659 0.824 b a PTF02 PTF19
PTF08 PSD+DEPTH+0OC+CACO3 250 0.587 0.880 57 0.699 0.839 - b PTF02 -
PTF09 PSD+DEPTH+OC+PH H20 224 0.597 0.882 57 0.686 0.845 - fghi PTF02 -
PTF10 PSD+DEPTH+OC+CEC 138 0.699 0.846 57 0.702 0.837 - cde PTF02 -
PTF11 PSD+DEPTH+BD+CACO3 272 0.542 0.895 57 0.637 0.866 - defg PTF04 -
PTF12  PSD+DEPTH+BD+PH_H20 229 0.520 0.909 57 0.620 0.873 - jKlm PTF12 -
PTF13  PSD+DEPTH+BD+CEC 140 0.644 0.866 57 0.637 0.866 - Im PTF13 -
PTF14 PSD+DEPTH+CACO3+PH H20 223 0.539 0.904 57 0.691 0.842 - c PTF04 -
PTF15 PSD+DEPTH+CACO3+CEC 136 0.735 0.830 57 0.684 0.846 - c PTF04 -
PTF16 PSD+DEPTH+PH_H20+CEC 141 0.666 0.860 57 0.666 0.854 - hijk PTF06 -
PTF17 PSD+DEPTH+OC+BD+CACO3 249 0.526 0.902 57 0.662 0.855 - ab PTF02 -
PTF18 PSD+DEPTH+OC+BD+PH_H20 223 0.553 0.897 57 0.642 0.864 - klm PTF02 PTF19
PTF19 PSD+DEPTH+OC+BD+CEC 137 0.619 0.876 57 0.676 0.849 - b PTF02 -
PTF20  PSD+DEPTH+OC+CACO3+PH H20 219 0.573 0.891 57 0.661 0.856 - n PTF20 -
PTF21  PSD+DEPTH+OC+CACO3+CEC 135 0.730 0.831 57 0.653 0.86 - m PTF21 -
PTF22 PSD+DEPTH+OC+PH_H20+CEC 138 0.699 0.846 57 0.664 0.855 - Im PTF02 -
PTF23  PSD+DEPTH+BD+CACQO3+PH H20 222 0.515 0.911 57 0.639 0.865 - Im PTF23 -
PTF24 PSD+DEPTH+BD+CACO3+CEC 135 0.678 0.852 57 0.656 0.858 - c PTFO4 -
PTF25 PSD+DEPTH+BD+PH_H20+CEC 140 0.595 0.885 57 0.646 0.862 - ghijk PTF12 -
PTF26 PSD+DEPTH+CACO3+PH_H20+CEC 136 0.712 0.841 57 0.669 0.852 - cd PTF04 -
PTF27  PSD+DEPTH+OC+BD+CACO3+PH_H20 218 0.524 0.907 57 0.606 0.879 - 0 PTF27 -
PTF28 PSD+DEPTH+OC+BD+CACO3+CEC 134 0.656 0.860 57 0.639 0.865 - n PTF28 -
PTF29  PSD+DEPTH+OC+BD+PH_H20+CEC 137 0.646 0.865 57 0.638 0.866 - n PTF29 -
PTF30 PSD+DEPTH+OC+CACO3+PH_H20+CEC 135 0.726 0.833 57 0.680 0.847 - fghi PTF20 PTF19
PTF31 PSD+DEPTH+BD+CACO3+PH_H20+CEC 135 0.679 0.851 57 0.668 0.853 - c PTF12 -
PTF32 PSD+DEPTH+OC+BD+CACO3+PH H20+CEC 134 0.645 0.864 57 0.678 0.848 - efgh PTF27 PTF19

5 PSD: particle size distribution (sand, 502000 um; silt, 2-50 pm; clay, <2 um (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g
cm3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg™).
2Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error;for example performance indicated with the letter c is

significantly better than the one noted with letters b and a.
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Table 9. The results of comparing the performance of parametric and point pedotransfer functions (PTFs) on the test sets of
EU-HYDI to predict saturated water content (THS), water content at -100 cm matric potential head (FC_2), water content at -
330 cm matric potential head (FC), water content at wilting point (WP). Rows in italic indicate cases where there was no
significant difference between the two PTFs.

Performance of

Predicted parameter estimation Performance of point 5 £ %
soil - - 2blest (MRC with VG)? estimation 583
hydraulic Available predictor variables ‘El ]
property Recommended RMSE Recommended RMSE = E 7
PTF number PTF number 208

THS PSD+DEPTH_M+0OC PTF022 0.065 PTF022 0.061 216
(cm®*cm?®) PSD+DEPTH_M+0OC+BD PTFO72 0.041 PTFO3® 0.032 216
PSD+DEPTH_M+OC+BD+PH_H20 PTF122 0.028 PTFO3® 0.022 63
PSD+DEPTH_M+0OC+CACO3+PH_H20+CEC PTF212 0.051 PTF022 0.060 63
PSD+DEPTH_M+0OC+BD+CACO3+PH_H20+CEC PTF292 0.028 PTF032 0.022 63

FC_2 PSD+DEPTH_M+0OC PTF022 0.057 PTF02° 0.054 424
(cm®*cm?®) PSD+DEPTH_M+OC+BD PTFO72 0.051 PTF032 0.051 424
PSD+DEPTH_M+OC+BD+PH_H20 PTF122 0.043 PTFO72 0.049 68
PSD+DEPTH_M+0OC+CACO3+PH_H20+CEC PTF212 0.043 PTF092 0.047 68
PSD+DEPTH_M+0OC+BD+CACO3+PH_H20+CEC PTF292 0.036 PTF182 0.043 68

FC PSD+DEPTH_M+0C PTF022 0.057 PTF022 0.048 319
(cm®*cm?®) PSD+DEPTH_M+OC+BD PTFO72 0.056 PTF022 0.048 319
PSD+DEPTH_M+0OC+BD+PH_H20 PTF122 0.047 PTF022 0.047 129
PSD+DEPTH_M+OC+CACO3+PH_H20+CEC PTF212 0.046 PTF082 0.045 129
PSD+DEPTH_M+0OC+BD+CACO3+PH_H20+CEC PTF292 0.041 PTFO72 0.046 129

WP PSD+DEPTH_M+0OC PTFO022 0.064 PTF02° 0.047 429
(cm3cm®) PSD+DEPTH_M+OC+BD PTFO72 0.061 PTF02° 0.047 429
PSD+DEPTH_M+OC+BD+PH_H20 PTF12a 0.053 PTFO72 0.045 91
PSD+DEPTH_M+0OC+CACO3+PH_H20+CEC PTF212 0.051 PTFO72 0.045 91
PSD+DEPTH_M+0OC+BD+CACO3+PH_H20+CEC PTF29?2 0.054 PTF09?2 0.039 91

5 PSD: particle size distribution (sand, 50-2000 pm; silt, 2-50 pm; clay, <2 um (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass
%); BD: bulk density (g cm™); CACO3: calcium carbonate content (mass %); PH_H20O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg™').
2MRC: moisture retention curve; VG: parameters of the van Genuchten model. Different letters in a row indicate significant differences at the 0.05 level
between the accuracy of the methods based on the squared error; for example performance indicated with the letter b is significantly better than the one noted
with letter a. RMSE: root mean squared error.
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Table 10. The results of comparing the performance of euptfvl and euptfv2 on the test sets of EU-HYDI to predict soil
hydraulic properties. Rows in italic indicate cases where there was no significant difference between the two PTFs.

Performance?
Predicted soil . euptfvl euptfv2 Number of
hydraulic property” 6 ofPTF RMSE  Nameof PTF  RMSE Name of testset tz:‘t”:ﬂfassgt's
THS PTF04? 0.063 PTF020 0.056  TEST BASIC 1274
(cm? cm-3) PTFO5? 0.034 PTFO3? 0.031  TEST BASIC 1274
PTFO6° 0.020 PTFO3? 0.024 TEST CHEM+ 156
FC PTF09? 0.054 PTF020 0.050 TEST BASIC 801
(cm? em-3) PTF09? 0.054 PTFO7® 0.048  TEST BASIC 801
PTF09? 0.058 PTFO8? 0.053 TEST CHEM+ 280
WP PTE12? 0.048 PTF020 0.046  TEST BASIC 2088
(cm? cm-?) PTE12? 0.048 PTFO7b 0.044  TEST BASIC 2088
PTF122 0.043 PTF09: 0.041 TEST CHEM+ 204
KS PTF16° 1.06 PTF020 095 TEST BASIC 1117
(logso cm day™) PTF17 1.00 PTFO2 091 TEST CHEM+ 169
VG PTF19° 0.068 PTFO2b 0.060  TEST BASIC 1591
(cm? cm-?) PTF21° 0.064 PTFO7? 0.054 TEST BASIC 1591
PTE22? 0.046 PTF12° 0.044 TEST CHEM+ 288
PTE20? 0.054 PTE21b 0.047 TEST CHEM+ 288
PTE222 0.046 PTE29b 0.041 TEST CHEM+ 288
MVG PTF19° 0.77 PTF020 068  TEST BASIC 176
(logio cm day™) PTF19 0.66 PTF20° 0.66 TEST CHEM+ 57
PTF19 0.66 PTE27 0.61 TEST CHEM+ 57

ITHS: saturated water content (pF 0); FC_2: water content at -100 cm matric potential head (pF 2.0); FC: water content at -330 cm matric potential head (pF

2.5); WP: water content at wilting point (pF 4.2); KS: saturated hydraulic conductivity; VG: parameters of the van Genuchten model; MVG: parameters of
5 the Mualem — van Genuchten model.

2Different letters in a row indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error;for example

performance indicated with the letter b is significantly better than the one noted with letter a. RMSE: root mean squared error; TEST_BASIC: samples with

measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC, BD, CACO3, PH_H20 and CEC; N: number of samples.
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Figure 1. Results of parameter tuning of the random forest: optimization of a) the number of randomly selected predictors at
each split by number of available predictors and b) splitting rule applied to build the trees in the random forest.
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Figure 2. Scatter plot of the measured versus median predicted water retention values of the worst and best performing PTF
with 90% prediction interval on test datasets. THS: saturated water content (PTFO1 vs. PTF03); FC_2: water content at -100
cm matric potential head (PTFO1 vs. PTF18); FC: water content at -330 cm matric potential head (PTFO01 vs. PTFO7); WP:
water content at wilting point (PTFO1 vs. PTF09); log10KS: saturated hydraulic conductivity (PTFO1 vs. PTF02); PSD: particle
size distribution (sand, 50-2000 pm; silt, 2-50 um; clay, <2 pm (mass %)); DEPTH_M: mean soil depth (cm); OC: organic
carbon content (mass %); BD: bulk density (g cm™); PH_H20: pH in water (-).
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Figure 3. Variable importance computed with the random forest algorithm for the prediction of water content with PTF32 at
saturation (THS), at field capacity; -100 (FC_2) and -330 (FC) matric potential head, at wilting point (WP), of the plant
available water content based on FC_2 (AWC_2) and FC (AWC), and the saturated hydraulic conductivity (KS). USSILT: silt
content (2-50 um (mass %)); USSAND: sand content (50—2000 um (mass %)); USCLAY:: clay content ( <2 um (mass %));

PH_H20: pH in water (-); OC: organic carbon content (mass %); DEPTH_M: mean soil depth (cm); OC: organic carbon

content (mass %); CEC: cation exchange capacity (cmol (+) kg™'); CACO3: calcium carbonate content (mass %); BD: bulk

density (g cm3).
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Figure 4. Partial dependence plot computed based on the random forest algorithm (PTFQ7) for the prediction of water content
at saturation (THS), field capacity at -100 (FC_2) and -330 (FC) matric potential head, wilting point (WP), plant available

water content computed with field capacity at -100 and -330 cm matric potential head (AWC_2, AWC) and saturated hydraulic
conductivity (KS) for selected predictors.
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Figure 5. Scatter plot of the measured versus median predicted water retention values computed with the van Genuchten (VG)
model (PTFO1 vs. PTF29, i.e. the worst versus best performing PTF). PSD: particle size distribution (sand, 50-2000 pm; silt,
2-50 um; clay, <2 pm (mass %)); DEPTH_M: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density
(g cm3); PH_H20: pH in water (-); CEC: cation exchange capacity (cmol (+) kg ™).
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Figure 6. Scatter plot of the measured versus median predicted hydraulic conductivity values computed with the Mualem-van
Genuchten (MVG) model (PTFO1 vs. PTF27, i.e. the worst versus best performing PTF). PSD: particle size distribution (sand,
50-2000 pm; silt, 2—50 pm; clay, <2 pm (mass %)); DEPTH_M: mean soil depth (cm); OC: organic carbon content (mass %);
BD: bulk density (g cm™); CACO3: calcium carbonate content (mass %); PH_H20O: pH in water (-).
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Figure 7. Variable importance computed with the random forest algorithm for the prediction of parameters of the van

Genuchten and Mualem-van Genuchten model based on PTF32. 6. residual water content (cm?® cm); 6s: saturated water

content (cm3 cm®); a (cm™), n (-): fitting parameters; Ko: the hydraulic conductivity acting as a matching point at saturation

(cm day1); L: shape parameter related to pore tortuosity (-); USSILT: silt content (2-50 um (mass %)); USSAND: sand content
(50-2000 pum (mass %)); USCLAY: clay content,( <2 um (mass %)); PH_H2O: pH in water (-); OC: organic carbon content

(mass %); DEPTH_M: mean soil depth (cm); OC: organic carbon content (mass %); CEC: cation exchange capacity (cmol (+)

kg');> CACO3: calcium carbonate content (mass %); BD: bulk density (g cm™3).
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