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Abstract. Soil hydraulic properties are often derived indirectly, i.e. computed from easily available soil properties with 

pedotransfer functions (PTFs), when those are needed for catchment, regional or continental scale applications. When predicted 

soil hydraulic parameters are used for the modelling of the state and flux of water in soils, uncertainty of the computed values 

can provide more detailed information when drawing conclusions. The aim of this study was to update the previously published 

European PTFs (Tóth et al., 2015, euptf v1.4.0) by providing prediction uncertainty calculation built into the transfer functions. 

The new set of algorithms was derived for point predictions of soil water content at saturation (0 cm matric potential head), 

field capacity (both -100 and -330 cm matric potential head), wilting point (-15.000 cm matric potential head), plant available 

water, and saturated hydraulic conductivity, as well as the Mualem-van Genuchten model parameters of the moisture retention 

and hydraulic conductivity curve. The minimum set of input properties for the prediction is soil depth and sand, silt and clay 

content. The effect of including additional information like soil organic carbon content, bulk density, calcium carbonate 

content, pH and cation exchange capacity were extensively analysed. The PTFs were derived adopting the random forest 

method. The advantage of the new PTFs is that they i) provide information about prediction uncertainty, ii) are significantly 

more accurate than the euptfv1, iii) can be applied for more predictor variable combinations than the euptfv1, 32 instead of 5, 

and iv) are now also derived for the prediction of water content at -100 cm matric potential head and plant available water 

content.  

1 Introduction 

Quantitative information on state and flux of water in the critical zone is important for a wide range of environmental process 

models and decision support systems related to land surface processes (Lin, 2010; Zhao et al., 2018). Performance of 

hydrologic, climate, crop and other models related to soil hydrological processes depends on the quality and resolution of soil 

hydraulic input parameters (Vereecken et al., 2015). Simulations of variably saturated moisture fluxes in the vadose zone either 
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rely on simple modelling approaches which only require few directly measureable input variables such as porosity, field 

capacity, and wilting point, or on the Richards equation. While the former are simple and straightforward to obtain, the 

Richards equation requires knowledge about the soil hydraulic properties over the full moisture range. In practice, one of the 

most common approaches to describe the water retention and hydraulic conductivity curves required to solve the Richards 

equation is arguably (Weber et al., 2019) the Mualem-van Genuchten model (MVG) (van Genuchten, 1980; Mualem, 1976). 

Since soil hydraulic measurements in the laboratory or in the field are often time consuming, expensive and difficult, indirect 

methods for estimating soil hydraulic properties using widely available surrogate data have been developed (Schaap, 2006). 

To date, a large number of pedotransfer functions have become popular to predict soil hydraulic properties and MVG model 

parameters (Van Looy et al., 2017). 

Information on the uncertainty of the predicted soil hydraulic properties is important for modelling the state and flux of water 

in soil. The source of prediction uncertainty can be threefold: it can stem from the i) predictor (e.g. measurement uncertainty, 

non-representativeness of a sample), ii) predicted variables (e.g. uncertainty in the estimated soil hydraulic model parameters), 

and the iii) algorithm which describes the relation between the two. Information on the uncertainty of the predictor variables 

is commonly not available in PTFs derived before the 2000s, but has become a more intensively studied topic in the last decade. 

For example, Weynants et al. (2009) quantified uncertainty of derived PTFs related to experimental, model and fitting errors 

with the one-step inversion method. Deng et al. (2009) differentiated and quantified intrinsic and input uncertainty of PTFs. 

Román Dobarco et al. (2019) introduced prediction interval coverage probability to assess prediction uncertainty in PTFs 

derived on French soils. McNeill et al. (2018) provided estimation of the distribution and confidence intervals of the predicted 

soil hydraulic property (i.e. water content at 100 cm and 15000 cm matric potential head and total available water). In the field 

of soil mapping it is an even more extensively studied topic where different computational methods have been proposed to 

assess uncertainty of the mapped properties. Examples are estimation of the 90% prediction intervals based on a triangular 

distribution (Odgers et al. 2014), quantification of mapped soil properties uncertainties by quantile regression forest (Vaysse 

and Lagacherie, 2017), and a detailed comparison of uncertainties in mapped soil organic carbon content by different 

geostatistical and machine learning methods (Szatmári and Pásztor, 2019). 

Machine learning methods can be more robust to construct PTFs in comparison to previous approaches such as linear 

regression or simple decision trees if relationship between the predictors and response is highly non-linear (Araya and 

Ghezzehei, 2019). The random forest algorithm (Breiman, 2001) is able to outperform other machine learning methods (Olson 

et al., 2018), which was also shown for predicting soil properties (Hengl et al., 2018; Nussbaum et al., 2018). Improvements 

in computing power, statistical methods and statistical software provide the possibility to apply more easily even complex 

models on large datasets. Therefore, complexity of a prediction algorithm is no longer a barrier in selecting a suitable algorithm 

to develop and apply PTFs. Most of the recent machine learning algorithms have the built in possibility to compute the 

uncertainty in the predicted variable, e.g. by quantile regression forest (Meinshausen, 2006) or generalized boosted regression 

(Ridgeway, 2017). If PTFs are derived with these algorithms, the uncertainty of the predicted soil property can be directly 

estimated when applying the PTF (Szabó et al., 2019a). 
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Despite the above mentioned developments, the euptfv1 (Tóth et al., 2015) and derived soil hydraulic property maps for Europe 

on a 1km and 250m grid (Tóth et al., 2017) do not include uncertainties in the prediction. Hence, the aim of our study was to 

update the euptfv1 by deriving a new set of soil hydraulic PTFs (euptfv2) providing uncertainty calculation built into the PTF 

model. For this, we rely heavily on the datasets used in the construction of the euptfv1. Methodologically, we constructed new 

soil hydraulic PTFs on the basis of the random forest method which facilitates a quantification of prediction uncertainties. The 

predicted variables of interest included soil water content at saturation, field capacity and wilting point, plant available water 

content, saturated hydraulic conductivity, MVG parameters of the moisture retention and hydraulic conductivity curves. The 

predictions are based on easily available soil properties. The predictor variables were similar to those of euptfv1, except the 

topsoil and subsoil distinction, which was replaced by mean soil depth of the sample, since it is typically known, anyway. 

Additionally, the improved performance of the euptfv2 was assessed against predictions using the earlier version. Moreover, 

we determined the minimum sufficient predictor variables for 32 input variables combinations. 

2 Materials and Methods 

The construction of a pedotransfer function requires three elements: predictor variables, predicted variables as the property of 

interest, and a transfer method between the former two. The predicted variables are in this case directly measured soil hydraulic 

properties on samples contained in a large pan-European dataset, ensuring a representativeness of the PTF for Europe. 

Additionally, Tóth et al. (2015) had fitted MVG model parameters for each sample dataset individually by inverse modelling, 

which we reused in this study. 

2.1 Dataset 

The European Hydropedological Data Inventory (EU-HYDI) (Weynants et al., 2013) provided the basis for the preparation of 

the prediction algorithms. The dataset partitions for training and testing the prediction algorithms were almost identical to the 

ones used in Tóth et al. (2015), except that the samples had to have information on soil depth as well. Depending on the soil 

hydraulic property of interest, 76-99% of the originally selected samples were used to derive the new PTFs. It enabled 

comparison of the performance between the EU-PTFs (Tóth et al., 2015) – built in the euptfv1 (Weynants and Tóth, 2014) – 

and their improved version (euptfv2). Table 1 shows the number of samples in the training and test sets. 

2.2 Predicted soil hydraulic properties 

Prediction algorithms were derived for each of the following soil hydraulic properties: 

‒ water content at saturation (THS): water content at 0 cm matric potential head; 

‒ water content at field capacity at 

‒ -100 cm matric potential head (FC_2), and 

‒ -330 cm matric potential head and (FC); 
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‒ water content at wilting point (WP): water content at -15000 cm matric potential head; 

‒ plant available water content (AWC) based on the following equations: 

‒ 𝐴𝑊𝐶 = 𝐹𝐶 − 𝑊𝑃         (1) 

‒ 𝐴𝑊𝐶_2 = 𝐹𝐶_2 − 𝑊𝑃         (2) 

‒ saturated hydraulic conductivity (KS): hydraulic conductivity at 0 cm matric potential head; 

‒ Mualem-van Genuchten model parameters (VG; for the water retention model only, MVG; for the water retention 

and hydraulic conductivity model). 

Transformation of predicted variables, and explanation on how (i) the water content at a certain matric potential head values 

were harmonized and (ii) the Mualem-van Genuchten model parameters were fitted is provided in great detail in (Tóth et al., 

2015). FC_2 was not predicted in euptfv1 and was determined in this study as follows. In the EU-HYDI, 8231 samples have 

at least one water content observation in the matric potential head range -110 to -95 cm. 86% of those have a measured water 

retention value exactly at -100 cm matric potential head. In 10% of the cases, FC_2 was set to the water content measured at 

the closest matric potential head in the range [-110, -95]. In the absence of a measured value at -100 cm, in 4 % of the cases, 

FC_2 was computed by linear interpolation between the two closest matric potential heads smaller and greater than -100 cm. 

In the case of AWC and AWC_2 direct and indirect predictions were analysed, i.e. AWC was once predicted directly from the 

predictor variables and once computed from the PTF predicted variables WP, and FC and FC_2, respectively. 

2.3 Predictor variables 

As predictors we used the following easily available soil properties: the particle size densities (PSD) characterised by the mass-

percentages of clay (<2 μm), silt (2–50 μm) and sand (50–2000 μm), organic carbon content (OC; mass-%) , bulk density (DB; 

g cm-3), calcium carbonate content (CACO3; mass-%), pH in water  (PH_H2O; -), cation exchange capacity (CEC; cmol (+) 

kg−1), and replaced the former topsoil and subsoil distinction in euptfv1 with mean soil depth (cm) (DEPTH). At minimum, 

the predictor variables, clay, silt and sand content, as well as mean soil depth were used regardless of predicted variable. In 

addition to that, we tested every possible combination of the other above mentioned soil properties (predictor variables) to 

determine which combination significantly improves the performance of the predictions. A total of 32 different combinations 

of predictor variables were studied in their respective ability to predict the nine different properties of interest; i.e. the set of 

soil hydraulic properties and model parameters.  

Replacing the topsoil/subsoil distinction with depth for the new PTFs was supported by the fact that this information is 

commonly available, too, or can be based on expert knowledge. Introducing more accurate information on depth might improve 

the performance without using machine learning algorithms for the prediction. However, we did not test this hypothesis, 

because our aim was to provide uncertainty of the predictions related to predictor variables of the PTFs. Tested predictor 

variables are shown in Table 1 with number of samples used to derive the PTFs and compute their performance. 
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2.4 The Random Forest algorithm to derive PTFs 

We derived the PTFs adopting the random forest method (Breiman, 2001), implemented in the ‘ranger’ R package (Wright 

and Ziegler, 2017). We selected this method, because (i) it is among the best performing prediction algorithms if there is a 

complex interaction structure in the dataset (Boulesteix et al., 2012), (ii) it computes quantiles of the predicted values, (iii) 

parallel processing is supported which saves significant computation time, and (iv) the initially black-box type algorithm can 

be interpreted based on computing variable importance and analysing partial dependence plots implemented in the ‘pdp’ R 

package (Greenwell, 2017b). 

In the case of a continuous response variable, a random forest is an ensemble of de-correlated regression trees (Breiman, 2001). 

The regression tree approach divides the predictor space into non-overlapping regions through minimizing the residual sum of 

squares. The aim of the method is to subset the data as homogeneously as possible at each split. The observations can be 

assigned to the defined regions in which the mean of the response variable is the predicted value. Single trees of the forest are 

noisy and limited in performance, but if many unbiased trees are derived and averaged with bagging, the variance is reduced 

and performance of the prediction improves (Hastie et al., 2009). Building of de-correlated trees is achieved by randomization 

at two levels. Firstly, each tree of the forest is grown on a randomly selected two thirds of the data with replacement, which is 

called bootstrap sample or in-bag fraction. Secondly, at each node of a single tree, randomly selected sets of predictors are 

analysed to split the data. This feature of randomization allows correlation between the response variables (Ziegler and König, 

2014), which is an important advantage in the case of pedotransfer functions where predictors are often highly correlated. 

Parameter tuning of the ranger was performed with the ‘caret’ R package (Kuhn et al., 2017, 2018). With the implemented 

train function, a fivefold cross-validation was repeated ten times to tune the number of randomly selected predictor variables 

at each split (𝑚𝑡𝑟𝑦) and find the best performing splitting rule (𝑠𝑝𝑙𝑖𝑡𝑟𝑢𝑙𝑒) during training. We started the tuning by setting 

the number of randomly selected predictor variables to two, then added one by one until the number of all available predictors 

for each input variable combination was reached. All three built-in splitting rules in the ranger function were tuned, namely 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒, 𝑒𝑥𝑡𝑟𝑎𝑡𝑟𝑒𝑒𝑠 and 𝑚𝑎𝑥𝑠𝑡𝑎𝑡. The minimum node size was kept to 10. In addition to the tuning options included in 

the train function of the caret package, we optimized the number of trees in the forest. The above described tuning was 

performed by discretely altering the number of trees in the forest in separate tuning steps to 50, 100, 200, 500 and 1000, 

analysing the results and choosing the best number of trees for the random forest. 

We analysed the relevance of predictors and their influence on the response variable. The relevance of predictors was 

determined by computing the variable importance based on the mean decrease in impurity (Hastie et al., 2009) in the ranger 

function. The marginal effect of some selected predictors on the response – soil hydraulic parameters – was analysed with 

partial dependence plots (Greenwell, 2017a, 2017b). 

The final prediction algorithm was built on the whole training set based on the result of the tuning. For the description of the 

uncertainty, quantile regression was performed. Quantiles of the predicted values were estimated as implemented in quantile 
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regression forest (Meinshausen, 2006). We analysed the 90% prediction interval for all predictions, but the derived algorithms 

(PTFs) provide the possibility to compute the individual predictions of each tree. 

2.5 Evaluation of derived PTFs 

The performance of the PTFs was calculated using the median values predicted by the random forests. It was described with 

the root mean square error (RMSE) (Eq. 3.), and the coefficient of determination (R2) (Eq. 4.) computed for the training and 

test sets. 

𝑹𝑴𝑺𝑬 = √
𝟏

𝑵
∑ (𝒚𝒊 − 𝒚̂𝒊)

𝟐𝑵
𝒊=𝟏 = √𝑴𝑺𝑬     (3) 

𝑹𝟐 = 𝟏 −
∑ (𝒚𝒊−𝒚̂𝒊)𝟐𝑵

𝒊=𝟏

∑ (𝒚𝒊−𝒚̅)𝟐𝑵
𝒊=𝟏

      (4) 

where 𝑦𝑖  is the measured and ŷ𝑖  the predicted soil water content or log-transformed saturated or unsaturated hydraulic 

conductivity, 𝑦̅𝑖  is the average of 𝑦𝑖 , N is the number of 𝑦𝑖  and ŷ𝑖 data pairs, and MSE is the mean square error. 

For each predicted variable, there was an initial set of 32 predictor combinations (Table 1), whose individual performance for 

each of the predicted variables was assessed. Based on the test results, we derived recommendations which PTF should be 

used when certain sets of predictor variables are available. We compared the performance of PTFs to quantify if there are 

significant differences between the predictions as a consequence of adding certain soil properties to the predictor variables. 

We also compared the performance of point and parameter estimations for those input combinations, which reflect the most 

frequently available soil property combination from a practical point of view. 

Additionally, the performance of the presented random forest based PTFs was compared to that of the euptfv1 (Tóth et al., 

2015). For comparison, those PTFs from euptfv2 were selected which corresponded to the analysed input variable combination 

of the euptfv1. 

The comparison of PTFs was done using a non-parametric Kruskal-Wallis test at the 5% significance level applied on the MSE 

values – computed on TEST_BASIC and/or TEST_CHEM+ sets (Table 1) – using the R package agricolae (De Mendiburu, 

2017). Recommendation of PTFs for a given set of predictor variables was based on the performance of euptfv2 on the test 

sets. If there was no significant difference in performance, the PTF derived from the largest population was selected. 

All statistical analysis was performed in R [version 3.6.0] (R Core Team, 2019). 

3 Results and discussion 

3.1 General performance 

In the process of tuning the random forest parameters, the number of trees was found to be sufficient when set to 200 in all 

cases. The number of candidate predictors was found to be higher than the recommended square root of the number of available 

predictor variables (p) in most of the cases, especially when p was greater than 5 (Fig.1). When optimizing the splitting rules 
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to build the trees in the forest, overall, the best performance was achieved by the 𝑒𝑥𝑡𝑟𝑎𝑡𝑟𝑒𝑒𝑠 rule in 54 %, by the 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

rule in 28%, and by the 𝑚𝑎𝑥𝑠𝑡𝑎𝑡 rule in 18% of the cases (Fig. 1). 

The RMSE values were between 0.020 and 0.068 cm3 cm-3 for THS (Table 2), 0.046 and 0.055 cm3 cm-3 for FC (Table 3), 

0.040 and 0.060 cm3 cm-3 for FC_2 (Table 4), 0.037 and 0.048 cm3 cm-3 for WP (Table 5), 0.043 and 0.053 cm3 cm-3 for AWC 

(Table S1), 0.045 and 0.060 cm3 cm-3 for AWC_2 (Table S2), and 0.089 and 1.18 log10 (cm day-1) for KS (Table 6) in the case 

of including different predictor variables computed on the test sets. In the case of VG and MVG, RMSE for the entire matric 

potential head range was between 0.041 and 0.068 cm3 cm-3 for the moisture retention (Table 7) and 0.61 and 0.71 log10 (cm 

day-1) for the hydraulic conductivity (Table 8). These RMSE values are within the range of recently published PTFs (McNeill 

et al., 2018; Nguyen et al., 2017; Román Dobarco et al., 2019; Zhang and Schaap, 2017). In the case of the point estimations, 

Figures 2, S1 depict the scatterplots of measured and predicted soil hydraulic parameters with 90% prediction interval. 

Performance of the worst to best PTFs are shown. The addition of predictors that significantly improve the predictions also 

decreases the uncertainty. Figures S2, S4, S6, S8, S10, S12, S14, S16, S19 show the squared error of the derived PTFs 

computed on the TEST_BASIC and TEST_CHEM+ sets. The PTFs are ordered based on their performance. Density plots of 

measured and predicted soil hydraulic values are included in Figures S3, S5, S7, S9, S11, S13, S15, S17, S20. Plots show the 

PTFs that use the most frequently available predictors. 

This study strengthens the importance of chemical soil properties in the prediction. CEC was found to be an important predictor 

by Pachepsky and Rawls (1999) for FC and WP, by Botula et al. (2013) for water retention at several matric potential head 

values, and by Hodnett and Tomasella (2002) for the VG parameters. Hodnett and Tomasella (2002) showed that pH influenced 

all four VG parameters. The role of CACO3 was shown to be not significant in the study of (Khodaverdiloo et al., 2011). They 

highlight that a possible influence of CACO3 might already have been indirectly included by bulk density. The role of PSD, 

BD and OC has been studied extensively by various authors, e.g. Nemes et al. (2003); Rawls et al. (2003); Vereecken et al. 

(1989); Weynants et al. (2009); Wösten et al. (1999), which is in line with the general pattern of variable influence we see in 

this study. 

Table S3 summarizes the recommended PTF for each combination of available predictor variables. The importance and 

influence of soil properties on the performance of hydraulic PTFs and results of partial dependence plots are reported below 

by predicted soil hydraulic properties. 

3.2 Point estimations 

The performance of the PTFs was computed for the training and test sets (Tables 2-8 and Tables S1-2) indicating the presence 

of significant differences. For each predictor variable, the recommended PTF number is indicated and its predictor variables 

are highlighted in bold font in the respective tables. For easier comparison with euptfv1, the corresponding PTF number used 

in Tóth et al. (2015) is additionally provided in each table. In the following, detailed results of the constructed PTFs for the 

individual predicted variables are presented and discussed. 
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Water content at saturation 

Table 2, Figures S2 and S3 show the performance of the PTFs predicting THS. The best performing random forest is PTF03. 

It is also the one trained on the largest population. It uses PSD, DEPTH and BD as predictors. For the prediction of THS, the 

most important variable by far is BD (Fig. 3). When BD is not used for the computation of THS, values above 0.60 cm3 cm-3 

are not well predicted (Fig. S3). The addition of OC or CACO3 or PH_H2O to PSD and DEPTH improves significantly the 

performance of the PTF. The picture changes if BD is known: if PSD, DEPTH and BD were available, further addition of OC 

or CACO3 or PH_H2O or CEC does not significantly improve the prediction, neither do their combinations. Figure 4 shows 

the dependence of THS on OC and BD, considering the average effect of the other predictor variables – i.e. PSD and DEPTH. 

When BD is lower than 1.5 g cm-3 changes in OC does not influence THS. If BD is larger than 1.5 g cm-3, samples with higher 

OC have higher THS. 

Water content at field capacity 

The performance of the PTFs computed on training and test set are shown in Table 3, Figures S4 and S5 for FC_2 and in Table 

4, Figures S6 and S7 for FC. The best performing PTF derived from the largest population is the one using i) PSD, DEPTH, 

OC, BD and PH_H2O (PTF18) in the case of FC_2, and ii) PSD, DEPTH, OC and BD (PTF07) for FC. 

For FC_2, the two most important variables are USSAND and BD (Fig. 3). When BD and USSAND increase, FC_2 decreases 

(Fig. 4). Adding OC or BD to PSD and DEPTH significantly improves the prediction of FC_2. If either of CACO3, PH_H2O 

or CEC is added as a further predictor to PSD and DEPTH, the performance of the PTF does not significantly improve. If PSD, 

DEPTH and BD are available, adding OC or CACO3 or PH_H2O does not significantly improve the prediction. Including 

CEC as an additional predictor besides PSD, DEPTH and BD, significantly improves the estimation of FC_2. 

USSAND and USCLAY are the two most important variables for the prediction of FC (Fig. 3). Instead of analysing these two 

soil properties, both characterizing the soil texture, we include OC next to USSAND in the partial dependence plot analysis, 

because the amount of OC can be altered due to change in climate, land use, soil and water management, cropping systems, 

etc. (Wiesmeier et al., 2019). Within the range of OC in the dataset FC increases with increasing OC regardless of USSAND 

content by up to 0.08 cm3 cm-3 even when USSAND is greater than 60 % (Fig. 4). Adding OC or CEC to PSD and DEPTH 

significantly improves prediction of FC. The effect of CEC on the prediction of FC was also shown by Pachepsky and Rawls 

(1999). BD or CaCO3 or PH_H2O do not significantly improve the predictions if PSD, DEPTH, or PSD, DEPTH and OC are 

available. Predictions significantly improve when both CaCO3 and PH_H2O are added as predictors to PSD, DEPTH and OC. 

Water content at wilting point 

The performance of PTFs derived for WP prediction is shown in Table 5, Figures S8 and S9. Among the best performing 

PTFs, PTF09 is derived on the largest training set. It uses PSD, DEPTH, OC and PH_H2O as predictors. Even though the most 

important variables for WP prediction were USCLAY and USSAND (Fig. 3), we included OC on the partial dependence plot 
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(Fig. 4) as in the FC analysis. USCLAY had the strongest influence on WP. The influence of OC on WP can be detected for 

soils with OC less than 4 % and USCLAY less than 50 %. Below 10 % USCLAY, the WP slightly increases with increasing 

OC. When USCLAY is between 10 and 50 % and OC is less than 4%, increasing OC generally decreases WP.  

OC significantly improves the prediction of WP if added to PSD and DEPTH. If BD or CACO3 or PH_H2O or CEC are added 

to PSD and DEPTH, the performance of the prediction does not improve significantly. Adding CACO3 and CEC to PSD, 

DEPTH and OC significantly improves the prediction. 

Plant available water content 

Table S1, S2 and Figures S1, S10-13 show the performance of AWC and AWC_2 predictions. PTF03 is the best performing 

algorithm with largest training set for both. It considers PSD, DEPTH and BD for the prediction. For both AWC and AWC_2, 

BD is the most important predictor among the analysed variables (Fig. 3). The second most important variable is USCLAY in 

the case of AWC_2 and USSILT for AWC. Increasing BD and USCLAY decreases AWC_2. In the case of AWC, increasing 

BD and decreasing USSILT decreases the water content (Fig. 4). 

OC and BD significantly improve the prediction of AWC_2 when added as input variables next to PSD and DEPTH. If either 

BD or OC is already included, adding the respective other, does not significantly improve the prediction. Neither PH_H2O, 

CACO3 nor CEC significantly improve the prediction.  

For the prediction of AWC, further addition of only BD or OC or CACO3 or PH_H2O or CEC to PSD and DEPTH does not 

significantly improve the prediction. If both OC and BD are included as predictors next to PSD and DEPTH, the prediction 

significantly improves. 

There is no significant difference between direct and indirect predictions, neither for AWC nor for AWC_2. However, the size 

of the test set used for the statistical analysis is limited. There were only 145 samples in the TEST_BASIC set and 64 samples 

in TEST_CHEM+ set after merging datasets available for both direct and indirect predictions for analysing AWC, and 70 and 

34 samples in the case of AWC_2. Thus, if prediction of FC_2/FC and WP are needed in addition to AWC_2/AWC, we 

recommend to compute AWC from those to save on computing time. Variation in AWC could be explained less efficiently 

(Table S1, S2) than the other studied water retention values but the performance of the prediction is comparable with that of 

published in the literature (Li et al., 2016; Malone et al., 2009). 

Saturated hydraulic conductivity 

The performance of KS prediction is shown in Table 6, Figure S14 and S15. The predictors of the best performing PTF derived 

on largest training set are PSD, DEPTH and OC (PTF02). The prediction of KS significantly improves if OC is included among 

the predictor variables next to PSD and DEPTH. No other predictors significantly improve the performance of the PTF. On 

the training dataset, when OC is greater than 2.5 %, the influence of clay content on KS is more dominant than that of OC 

(Fig. 4). In the case of KS prediction, the simplest best performing PTF has an RMSE of 0.94 log10(cm day-1). PSD and CEC 

are the most important input variables for the prediction of KS when all nine variables are considered as predictors (Fig. 3). In 
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that case, OC is the fifth and BD is only the eighth most important variable. The prediction performance is influenced by the 

heterogeneity of measurement methods of KS in the EU-HYDI dataset. When the methods are homogeneous, the RMSE value 

is usually around 0.6-0.7 log10 (cm day-1) (Zhang and Schaap, 2017). Araya and Ghezzehei (2019) report that the PTF with the 

highest accuracy in the literature has and RMSE of 0.3-0.4 log10 (cm day-1). In Lilly et al. (2008), the performance of the KS 

predictions and findings were similar to this study. They report an RMSE between 0.95 and 1.09 log10(cm day-1) for the KS 

prediction analysed with several input combinations. Even when information on soil structure and crack orientation was 

considered – next to topsoil and subsoil distinction, PSD, BD and OC – the RMSE was 0.97 log10(cm day-1). BD would be 

among the most important variables, but also in their analysis its influence was masked out. They derived the PTFs on the 

HYPRES dataset (Wösten et al., 1999), which also includes very diverse methods to determine the saturated hydraulic 

conductivity and part of which is also contained in the EU-HYDI. The uncertainty in the predictions (Fig. 2) could be decreased 

if the predictions would be differentiated according to the measurement methods, but that might decrease the applicability of 

the PTFs. On the contrary, this study indicates the necessity to include saturated hydraulic conductivity values determined 

from many different measurement techniques, otherwise the PTFs are expected to lose their generality. 

3.3 Parameter estimations 

The performance of parametric PTFs are shown in Tables 7 and 8 and Figures 5, 6, S16-S21. Figure 7 illustrates the importance 

of variables for the prediction of VG and MVG parameters. The best performing PTF derived on the largest training set is 

PTF29 – with PSD, DEPTH, OC, BD, PH_H2O and CEC – for MRC and PTF27 – with PSD, DEPTH, OC, BD, CACO3, 

PH_H2O – for HCC. 

For θr, overall, BD is the most important predictor while all other predictors show similar variable importance (Fig. 7). 

Interpretation of this parameter is complex, but it was demonstrated that it is influenced by the soil specific surface area 

(Assouline and Or, 2013), and the measured data range (Weber et al. 2019). For θs, the most important predictor is by far BD, 

similarly to THS. The importance of CEC has to be noted for the prediction of parameters α, n and L. For prediction of 

parameter n – which relates to the pore size distribution – USCLAY and USSAND are the most important variables. K0 is 

influenced by several soil properties besides those included in the dataset used here, e.g. pore connectivity, tortuosity, primary 

pore orientation, some of which are not direction. These properties cannot be directly inferred from other soil properties 

limiting the explanatory power of the available properties. The prediction of K0 remains complex and challenging. Variable 

importance of all studied predictors is greater than 70%. Moreover, K0 is influenced by the data quality, and; moreover, is 

correlated in parameter space, which is not treated, here. 

Only a few studies have analysed the importance of CEC for MRC and HCC PTFs (Botula et al., 2013; Hodnett and Tomasella, 

2002; Pachepsky and Rawls, 1999) which might be linked to the fact that CEC is rarely available in soil hydraulic datasets. It 

is noteworthy to highlight that all best performing MRC PTFs (PTF24, PTF28, PTF29, PTF30, PTF31) include CEC among 

the predictors (Table 7). In addition to that, Hodnett and Tomasella (2002) found that CEC was important for the prediction of 
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θr and α parameters of the van Genuchten model. This is because CEC provides indirect information on soil mineralogy and 

reflects soil specific surface area, charge density and pore size which influence soil water retention (Lal and Shukla, 2004).  

Moisture retention curve 

If BD or OC or CACO3 or CEC or PH_H2O are added as a predictor to information on PSD and DEPTH, the performance of 

the PTF significantly improves (Table 7., Fig. S16). Adding BD next to PSD and DEPTH improves the predictions more than 

adding OC (Table 7., Fig. S17). BD and OC together significantly improve the prediction compared to using PSD, DEPTH 

together with either BD or OC. Adding OC next to PSD, DEPTH, BD and chemical soil properties (CACO3 and/or CEC and 

/or PH_H2O) does not significantly improve the prediction. If PSD, DEPTH, CACO3 and CEC are available, further addition 

of PH_H2O does not improve the prediction. The best performing PTF includes USSAND, USSILT, USCLAY, DEPTH, BD, 

CACO3, CEC. Figure 5 shows a scatterplot of measured and predicted water content values, including the performance of the 

worst and the best performing PTF (PTF01 and PTF29). The importance of including chemical properties and most importantly 

bulk density among the predictors is visible when measured water contents are greater than 0.50 cm3 cm-3. Those high water 

content values are characteristic when the soil is close to saturation, thus indirect information about the structure is needed for 

more accurate predictions of those water content values. Parametric PTFs underestimate water content near saturation and 

between -200 and -15000 cm matric potential head (Fig. S18). Overestimation occurs between -10 and -50 cm matric potential 

head and above 16000 cm matric potential head. When chemical soil properties are included, the degree of underestimation 

decreases between -200 and -15000 cm matric potential head, but overestimation increases between -5 and -10 cm with around 

0.02 cm3 cm-3. 

Hydraulic conductivity curve 

OC, CACO3, PH_H2O and CEC significantly improve the prediction of HCC when added to PSD and DEPTH. Adding BD 

next to PSD and DEPTH does not improve the predictions (Table 8, Fig. S19, S20). If PSD, DEPTH and OC are used as 

predictors, further addition of  BD or CACO3 or PH_H2O or CEC does not significantly improve the performance of the PTFs. 

However, adding CaCO3 and CEC or PH_H2O significantly improve the prediction. The performance of the worst and the 

best performing PTF is shown on Figure 6. The PTF with only PSD and DEPTH underestimate hydraulic conductivity values 

smaller than 0.01 cm day-1. When OC, BD, PH_H2O and CEC are included, the underestimation decreases. This could be 

explained by the fact that these predictors contain indirect information of soil particle surface area and surface characteristics, 

which are some of the governing properties of low hydraulic conductivities. 

When soil chemical properties are not used as predictors, hydraulic conductivity is underestimated close to saturation and at 

matric potential heads smaller than -500 cm; overestimation occurs between -10 and -500 cm matric potential head (Fig. S21). 

If chemical properties are also considered, hydraulic conductivity is i) underestimated at matric potential head smaller than -

5000 cm, and ii) overestimated between -5 and -5000 cm. With added information on chemical properties, the degree of 

underprediction decreases close to saturation and at the very dry end of the hydraulic conductivity curve. In parts, this is not 
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an effect of the PTFs but the limitations inherent to MVG to describe the entire hydraulic conductivity curve (Weber et al., 

2019). Increase in prediction performance for values lower than 0.1 cm day-1 is visible also on Figure 6. 

3.4 Comparison of point and parameter predictions 

We compare the performance of the best point prediction methods (Table 2-5) with the best parameter estimations (Table 7) 

on the test sets. In 5 out of 20 cases, point predictions are significantly more accurate. In all other cases, we have no significant 

difference between point and parametric PTFs (Table 9). We found similar results in the case of euptfv1 (Tóth et al., 2015). 

Tomasella et al. (2003) and Børgesen and Schaap (2005) had comparable findings regarding the performance of point and 

parametric PTFs. We recommend to compute THS, FC, FC_2 and WP with the point PTFs, more detailed explanation on it is 

included in Tóth et al. (2015). 

3.5 Comparison of euptfv1 and v2 

In 14 out of 19 cases, the PTFs of euptfv2 perform significantly better predicting the test sets than the PTFs of euptfv1. In the 

remaining 5 cases there is no significant difference (Table 10). Predictions of FC and MRC improve in all cases. For THS, 

WP, and MVG only those PTFs did not improve significantly, for which comparisons on the TEST_CHEM+ set was possible 

– which includes reduced number of samples. The improvement of the PTFs is twofold, it is due to i) using random forest 

instead of single regression tree or linear regression and ii) including more detailed information on soil sampling depth, not 

only distinguishing topsoils and subsoils. 

We recommend the use of euptfv2 instead of euptfv1 if continuous soil properties are available. If only texture classes – i.e. 

no particle size distribution – are available, class PTFs of euptfv1 can be used, that is PTF18 for modified FAO texture classes 

and PTF19 for USDA texture classes. 

4 Conclusions 

The updated EU-PTFs – euptfv2 – perform significantly better than euptfv1 and are applicable for 32 predictor variables 

combinations. Uncertainties of the predicted soil hydraulic properties and model parameters can be computed. These 

uncertainties are, without further discrimination, related to the considered input data, predictors and the applied algorithm. The 

euptfv2 includes transfer functions to compute soil water content at saturation (0 cm matric potential head), field capacity 

(both -100 and -330 cm matric potential head) and wilting point (-15.000 cm matric potential head), plant available water 

content computed with field capacity at -100 and -330 cm matric potential head, saturated hydraulic conductivity, and Mualem-

van Genuchten parameters of the moisture retention and hydraulic conductivity curves. For analyses of the impact as well as 

the significance of the uncertainties on the predicted soil hydraulic properties and model parameters, further studies are 

required. 
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Code and data availability. The derived prediction algorithms (PTFs) are freely available for use built in a user friendly web 

interface from the Institute for Soil Sciences and Agricultural Chemistry Centre for Agricultural Research  

(https://ptfinterface.rissac.hu/, last access: 03 Feb 2020, Szabó et al., 2019b). An open source R software package was 

developed (Weber and Szabó, 2019) to assist the implementation of PTFs presented in this article and can be accessed at the 

European Soil Data Centre (http://eusoils.jrc.ec.europa.eu/). The PTFs – in RData format – and the R scripts used to derive 

them can be freely accessed from a public GitHub repository (https://github.com/TothSzaboBrigitta/euptfv2). 

Supplement. The Supplement related to this article is available online. 
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TABLES 

Table 1. Number of samples by predictor variable combinations used to derive the new European PTFs (euptfv2). Rows in italic font indicate PTFs 

with the same predictor variables as were tested in euptfv1 (Tóth et al., 2015). 

Name  Predictor variables1 
Number of samples in TRAIN set2 

THS FC_2 FC WP KS AWC_2 AWC VG MVG 

PTF01 PSD+DEPTH 3354 5109 2196 5264 3157 3528 1863 4669 739 
PTF02 PSD+DEPTH+OC 2966 4131 1716 4802 2620 3208 1650 3708 407 
PTF03 PSD+DEPTH+BD 3305 5034 2176 5197 3146 3472 1849 4593 726 
PTF04 PSD+DEPTH+CACO3 678 1670 1537 1816 639 1548 1531 1671 273 
PTF05 PSD+DEPTH+PH_H2O 1203 2062 1278 2039 907 1849 1245 1897 230 
PTF06 PSD+DEPTH+CEC 895 1649 1097 1703 567 1550 1092 1488 141 
PTF07 PSD+DEPTH+OC+BD 2959 4117 1711 4786 2609 3197 1645 3695 404 
PTF08 PSD+DEPTH+OC+CACO3 673 1586 1340 1599 613 1464 1336 1589 250 
PTF09 PSD+DEPTH+OC+PH_H2O 1052 1808 1100 1678 862 1615 1074 1663 224 
PTF10 PSD+DEPTH+OC+CEC 744 1437 1001 1459 525 1358 998 1293 138 
PTF11 PSD+DEPTH+BD+CACO3 678 1666 1526 1806 639 1545 1522 1670 272 
PTF12 PSD+DEPTH+BD+PH_H2O 1156 2008 1267 1979 898 1796 1236 1847 229 
PTF13 PSD+DEPTH+BD+CEC 848 1596 1093 1648 558 1498 1088 1437 140 
PTF14 PSD+DEPTH+CACO3+PH_H2O 678 1314 1235 1375 620 1195 1230 1264 223 
PTF15 PSD+DEPTH+CACO3+CEC 373 770 793 831 405 726 791 758 136 
PTF16 PSD+DEPTH+PH_H2O+CEC 894 1350 744 1349 567 1255 739 1188 141 
PTF17 PSD+DEPTH+OC+BD+CACO3 673 1585 1338 1596 613 1464 1334 1588 249 
PTF18 PSD+DEPTH+OC+BD+PH_H2O 1047 1799 1098 1667 853 1607 1072 1655 223 
PTF19 PSD+DEPTH+OC+BD+CEC 739 1427 998 1447 516 1349 995 1284 137 
PTF20 PSD+DEPTH+OC+CACO3+PH_H2O 673 1249 1062 1183 613 1130 1059 1201 219 
PTF21 PSD+DEPTH+OC+CACO3+CEC 369 727 709 743 401 683 707 712 135 
PTF22 PSD+DEPTH+OC+PH_H2O+CEC 744 1142 663 1121 525 1067 660 996 138 
PTF23 PSD+DEPTH+BD+CACO3+PH_H2O 678 1310 1224 1365 620 1192 1221 1263 222 
PTF24 PSD+DEPTH+BD+CACO3+CEC 373 768 790 827 405 725 788 757 135 
PTF25 PSD+DEPTH+BD+PH_H2O+CEC 847 1298 741 1295 558 1204 736 1138 140 
PTF26 PSD+DEPTH+CACO3+PH_H2O+CEC 373 727 734 772 405 684 732 717 136 
PTF27 PSD+DEPTH+OC+BD+CACO3+PH_H2O 673 1248 1060 1180 613 1130 1057 1200 218 
PTF28 PSD+DEPTH+OC+BD+CACO3+CEC 369 726 707 740 401 683 705 711 134 
PTF29 PSD+DEPTH+OC+BD+PH_H2O+CEC 739 1133 661 1110 516 1059 658 988 137 
PTF30 PSD+DEPTH+OC+CACO3+PH_H2O+CEC 369 684 655 689 401 641 653 671 135 
PTF31 PSD+DEPTH+BD+CACO3+PH_H2O+CEC 373 725 731 768 405 683 729 716 135 
PTF32 PSD+DEPTH+OC+BD+CACO3+PH_H2O+CEC 369 683 653 686 401 641 651 670 134 

 Number of samples in TEST_BASIC set 1247 1762 801 2088 1117 1372 705 1591 176 

 Number of samples in TEST_CHEM+ set 156 296 280 294 169 274 279 288 57 
1PSD: particle size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g 

cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 5 
2THS: saturated water content (pF 0); FC_2: water content at -100 cm matric potential head (pF 2.0); FC: water content at -330 cm matric potential head (pF 2.5); AWC_2: plant 

available water content based on FC_2; AWC: plant available water content based on FC; WP: water content at wilting point (pF 4.2); KS: saturated hydraulic conductivity; VG: 

parameters of the van Genuchten model; MVG: parameters of the Mualem – van Genuchten model; TEST_BASIC: samples with measured PSD, DEPTH, OC and BD; TEST_CHEM+: 

samples with measured PSD, DEPTH, OC, BD, CACO3, PH_H2O and CEC. 
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Table 2. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict water content at saturation 

(THS). N: number of samples, RMSE: root mean square error (cm3 cm-3), and R2: determination coefficient, TEST_BASIC: samples with measured 

PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC, BD, CACO3, PH_H2O and CEC. Recommended PTFs 

are highlighted in bold. 

Name of 

PTF in 

euptfv2 

Predictor variables1 

Training set Test set Sign. difference2 
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PTF 
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PTF01 PSD+DEPTH 3354 0.067 0.366 1274 0.068 0.344 a a PTF01 - 

PTF02 PSD+DEPTH+OC 2966 0.053 0.577 1274 0.056 0.552 b abc PTF02 PTF04 

PTF03 PSD+DEPTH+BD 3305 0.029 0.880 1274 0.031 0.862 c d PTF03 - 

PTF04 PSD+DEPTH+CACO3 678 0.046 0.187 156 0.057 0.053 - bc PTF04 - 

PTF05 PSD+DEPTH+PH_H2O 1203 0.056 0.298 156 0.053 0.193 - bc PTF05 - 

PTF06 PSD+DEPTH+CEC 895 0.055 0.401 156 0.057 0.048 - ab PTF01 - 

PTF07 PSD+DEPTH+OC+BD 2959 0.027 0.888 1274 0.030 0.869 c d PTF03 PTF05 

PTF08 PSD+DEPTH+OC+CACO3 673 0.044 0.209 156 0.055 0.118 - bc PTF02 - 

PTF09 PSD+DEPTH+OC+PH_H2O 1052 0.046 0.457 156 0.050 0.272 - c PTF02 - 

PTF10 PSD+DEPTH+OC+CEC 744 0.046 0.519 156 0.051 0.233 - abc PTF02 - 

PTF11 PSD+DEPTH+BD+CACO3 678 0.023 0.791 156 0.022 0.863 - d PTF03 - 

PTF12 PSD+DEPTH+BD+PH_H2O 1156 0.027 0.826 156 0.021 0.878 - d PTF03 - 

PTF13 PSD+DEPTH+BD+CEC 848 0.027 0.848 156 0.021 0.873 - d PTF03 - 

PTF14 PSD+DEPTH+CACO3+PH_H2O 678 0.045 0.231 156 0.050 0.265 - bc PTF05 - 

PTF15 PSD+DEPTH+CACO3+CEC 373 0.045 0.257 156 0.054 0.164 - abc PTF04 - 

PTF16 PSD+DEPTH+PH_H2O+CEC 894 0.052 0.459 156 0.055 0.132 - bc PTF05 - 

PTF17 PSD+DEPTH+OC+BD+CACO3 673 0.019 0.856 156 0.021 0.872 - d PTF03 - 

PTF18 PSD+DEPTH+OC+BD+PH_H2O 1047 0.024 0.848 156 0.021 0.871 - d PTF03 PTF06 

PTF19 PSD+DEPTH+OC+BD+CEC 739 0.027 0.837 156 0.021 0.874 - d PTF03 - 

PTF20 PSD+DEPTH+OC+CACO3+PH_H2O 673 0.043 0.251 156 0.050 0.285 - c PTF02 - 

PTF21 PSD+DEPTH+OC+CACO3+CEC 369 0.043 0.309 156 0.051 0.242 - bc PTF02 - 

PTF22 PSD+DEPTH+OC+PH_H2O+CEC 744 0.046 0.531 156 0.050 0.280 - bc PTF02 - 

PTF23 PSD+DEPTH+BD+CACO3+PH_H2O 678 0.023 0.796 156 0.021 0.869 - d PTF03 - 

PTF24 PSD+DEPTH+BD+CACO3+CEC 373 0.021 0.841 156 0.021 0.869 - d PTF03 - 

PTF25 PSD+DEPTH+BD+PH_H2O+CEC 847 0.027 0.850 156 0.020 0.883 - d PTF03 - 

PTF26 PSD+DEPTH+CACO3+PH_H2O+CEC 373 0.044 0.305 156 0.049 0.308 - abc PTF05 - 

PTF27 PSD+DEPTH+OC+BD+CACO3+PH_H2O 673 0.019 0.858 156 0.022 0.865 - d PTF03 - 

PTF28 PSD+DEPTH+OC+BD+CACO3+CEC 369 0.021 0.845 156 0.021 0.874 - d PTF03 - 

PTF29 PSD+DEPTH+OC+BD+PH_H2O+CEC 739 0.026 0.843 156 0.020 0.880 - d PTF03 - 

PTF30 PSD+DEPTH+OC+CACO3+PH_H2O+CEC 369 0.042 0.356 156 0.049 0.319 - bc PTF02 PTF04 

PTF31 PSD+DEPTH+BD+CACO3+PH_H2O+CEC 373 0.021 0.843 156 0.021 0.871 - d PTF03 - 

PTF32 PSD+DEPTH+OC+BD+CACO3+PH_H2O+CEC 369 0.021 0.844 156 0.021 0.876 - d PTF03 PTF06 
1PSD: particle size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g 5 

cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 

2Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error;for example performance indicated with the letter c is 

significantly better than the one noted with letters b and a. 
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Table 3. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict water content at -100 cm matric 

potential head (FC_2). N: number of samples, RMSE: root mean square error (cm3 cm-3), and R2: determination coefficient, TEST_BASIC: samples 

with measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC, BD, CACO3, PH_H2O and CEC. 

Recommended PTFs are highlighted in bold. FC_2 was not analysed in euptfv1. 
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PTF01 PSD+DEPTH 5109 0.062 0.651 1762 0.060 0.669 a a PTF01 - 
PTF02 PSD+DEPTH+OC 4131 0.057 0.711 1762 0.055 0.718 b ab PTF02 - 
PTF03 PSD+DEPTH+BD 5034 0.053 0.750 1762 0.052 0.745 bc bcdef PTF03 - 
PTF04 PSD+DEPTH+CACO3 1670 0.052 0.566 296 0.054 0.467 - abcd PTF01 - 
PTF05 PSD+DEPTH+PH_H2O 2062 0.056 0.630 296 0.056 0.419 - abc PTF01 - 
PTF06 PSD+DEPTH+CEC 1649 0.056 0.658 296 0.054 0.469 - abcde PTF01 - 
PTF07 PSD+DEPTH+OC+BD 4117 0.051 0.769 1762 0.050 0.769 c bcdefg PTF03 - 
PTF08 PSD+DEPTH+OC+CACO3 1586 0.050 0.589 296 0.049 0.565 - bcdefgh PTF02 - 
PTF09 PSD+DEPTH+OC+PH_H2O 1808 0.050 0.679 296 0.048 0.581 - bcdefg PTF02 - 
PTF10 PSD+DEPTH+OC+CEC 1437 0.051 0.688 296 0.049 0.554 - cdefghij PTF06 - 
PTF11 PSD+DEPTH+BD+CACO3 1666 0.044 0.701 296 0.046 0.616 - fghijklmn PTF03 - 
PTF12 PSD+DEPTH+BD+PH_H2O 2008 0.046 0.746 296 0.043 0.657 - efghijkl PTF03 - 
PTF13 PSD+DEPTH+BD+CEC 1596 0.046 0.763 296 0.046 0.614 - hijklmn PTF13 - 
PTF14 PSD+DEPTH+CACO3+PH_H2O 1314 0.051 0.600 296 0.051 0.528 - bcdef PTF05 - 
PTF15 PSD+DEPTH+CACO3+CEC 770 0.052 0.605 296 0.051 0.520 - cdefghij PTF04 - 
PTF16 PSD+DEPTH+PH_H2O+CEC 1350 0.053 0.699 296 0.049 0.556 - cdefghi PTF05 - 
PTF17 PSD+DEPTH+OC+BD+CACO3 1585 0.043 0.689 296 0.045 0.634 - ghijklmn PTF07 - 
PTF18 PSD+DEPTH+OC+BD+PH_H2O 1799 0.044 0.749 296 0.042 0.679 - ghijklmn PTF07 - 
PTF19 PSD+DEPTH+OC+BD+CEC 1427 0.045 0.753 296 0.044 0.650 - jklmn PTF13 - 
PTF20 PSD+DEPTH+OC+CACO3+PH_H2O 1249 0.049 0.613 296 0.053 0.483 - bcdefgh PTF02 - 
PTF21 PSD+DEPTH+OC+CACO3+CEC 727 0.050 0.603 296 0.046 0.620 - fghijklmn PTF08 - 
PTF22 PSD+DEPTH+OC+PH_H2O+CEC 1142 0.051 0.693 296 0.045 0.630 - efghijklm PTF09 - 
PTF23 PSD+DEPTH+BD+CACO3+PH_H2O 1310 0.044 0.701 296 0.045 0.629 - defghijkl PTF03 - 
PTF24 PSD+DEPTH+BD+CACO3+CEC 768 0.043 0.722 296 0.043 0.666 - lmn PTF11 - 
PTF25 PSD+DEPTH+BD+PH_H2O+CEC 1298 0.046 0.773 296 0.043 0.668 - jklmn PTF12 - 
PTF26 PSD+DEPTH+CACO3+PH_H2O+CEC 727 0.051 0.633 296 0.048 0.587 - defghijk PTF05 - 
PTF27 PSD+DEPTH+OC+BD+CACO3+PH_H2O 1248 0.043 0.693 296 0.044 0.653 - efghijklm PTF07 - 
PTF28 PSD+DEPTH+OC+BD+CACO3+CEC 726 0.044 0.702 296 0.041 0.687 - klmn PTF11 - 
PTF29 PSD+DEPTH+OC+BD+PH_H2O+CEC 1133 0.046 0.757 296 0.042 0.681 - ijklmn PTF12 - 
PTF30 PSD+DEPTH+OC+CACO3+PH_H2O+CEC 684 0.050 0.617 296 0.051 0.533 - efghijklm PTF09 - 
PTF31 PSD+DEPTH+BD+CACO3+PH_H2O+CEC 725 0.043 0.731 296 0.041 0.698 - mn PTF11 - 
PTF32 PSD+DEPTH+OC+BD+CACO3+PH_H2O+CEC 683 0.044 0.712 296 0.040 0.709 - n PTF18 - 
1PSD: particle size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g 5 

cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 

2Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error;for example performance indicated with the letter c is 

significantly better than the one noted with letters b and a. 
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Table 4. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict water content at -330 cm matric 

potential head, field capacity (FC). N: number of samples, RMSE: root mean square error (cm3 cm-3), and R2: determination coefficient, 

TEST_BASIC: samples with measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC, BD, CACO3, 

PH_H2O and CEC. Recommended PTFs are highlighted in bold. 
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PTF01 PSD+DEPTH 2196 0.056 0.639 801 0.054 0.595 a a PTF01 - 
PTF02 PSD+DEPTH+OC 1716 0.049 0.707 801 0.050 0.650 b abc PTF02 PTF09 
PTF03 PSD+DEPTH+BD 2176 0.048 0.727 801 0.049 0.668 ab abcd PTF01 - 
PTF04 PSD+DEPTH+CACO3 1537 0.047 0.650 280 0.055 0.591 - abcde PTF01 - 
PTF05 PSD+DEPTH+PH_H2O 1278 0.048 0.653 280 0.055 0.586 - ab PTF01 - 
PTF06 PSD+DEPTH+CEC 1097 0.046 0.711 280 0.052 0.630 - bcdefghi PTF06 - 
PTF07 PSD+DEPTH+OC+BD 1711 0.046 0.736 801 0.048 0.677 b bcdefg PTF02 PTF09 
PTF08 PSD+DEPTH+OC+CACO3 1340 0.043 0.678 280 0.053 0.616 - abcdef PTF02 - 
PTF09 PSD+DEPTH+OC+PH_H2O 1100 0.044 0.687 280 0.052 0.631 - abcde PTF02 - 
PTF10 PSD+DEPTH+OC+CEC 1001 0.044 0.720 280 0.052 0.628 - bcdefghi PTF02 - 
PTF11 PSD+DEPTH+BD+CACO3 1526 0.044 0.696 280 0.051 0.649 - bcdefgh PTF03 - 
PTF12 PSD+DEPTH+BD+PH_H2O 1267 0.045 0.698 280 0.050 0.658 - bcdefgh PTF03 - 
PTF13 PSD+DEPTH+BD+CEC 1093 0.044 0.741 280 0.049 0.678 - fghi PTF06 - 
PTF14 PSD+DEPTH+CACO3+PH_H2O 1235 0.048 0.667 280 0.053 0.623 - bcdef PTF04 - 
PTF15 PSD+DEPTH+CACO3+CEC 793 0.047 0.720 280 0.052 0.639 - efghi PTF04 - 
PTF16 PSD+DEPTH+PH_H2O+CEC 744 0.047 0.726 280 0.051 0.651 - efghi PTF06 - 
PTF17 PSD+DEPTH+OC+BD+CACO3 1338 0.042 0.699 280 0.050 0.667 - cdefghi PTF02 - 
PTF18 PSD+DEPTH+OC+BD+PH_H2O 1098 0.043 0.704 280 0.050 0.660 - bcdefgh PTF02 PTF09 
PTF19 PSD+DEPTH+OC+BD+CEC 998 0.042 0.739 280 0.048 0.684 - fghi PTF07 - 
PTF20 PSD+DEPTH+OC+CACO3+PH_H2O 1062 0.044 0.694 280 0.052 0.634 - abcde PTF02 - 
PTF21 PSD+DEPTH+OC+CACO3+CEC 709 0.045 0.709 280 0.051 0.652 - efghi PTF04 - 
PTF22 PSD+DEPTH+OC+PH_H2O+CEC 663 0.046 0.706 280 0.050 0.664 - defghi PTF09 - 
PTF23 PSD+DEPTH+BD+CACO3+PH_H2O 1224 0.045 0.704 280 0.051 0.651 - bcdefgh PTF03 - 
PTF24 PSD+DEPTH+BD+CACO3+CEC 790 0.044 0.744 280 0.048 0.688 - hi PTF11 - 
PTF25 PSD+DEPTH+BD+PH_H2O+CEC 741 0.045 0.748 280 0.048 0.682 - hi PTF11 - 
PTF26 PSD+DEPTH+CACO3+PH_H2O+CEC 734 0.046 0.742 280 0.050 0.658 - fghi PTF14 - 
PTF27 PSD+DEPTH+OC+BD+CACO3+PH_H2O 1060 0.042 0.712 280 0.049 0.676 - bcdefghi PTF02 - 
PTF28 PSD+DEPTH+OC+BD+CACO3+CEC 707 0.043 0.731 280 0.048 0.693 - ghi PTF07 - 
PTF29 PSD+DEPTH+OC+BD+PH_H2O+CEC 661 0.044 0.725 280 0.046 0.709 - fghi PTF07 - 
PTF30 PSD+DEPTH+OC+CACO3+PH_H2O+CEC 655 0.044 0.731 280 0.049 0.672 - fghi PTF08 PTF09 
PTF31 PSD+DEPTH+BD+CACO3+PH_H2O+CEC 731 0.043 0.763 280 0.047 0.700 - i PTF06 - 
PTF32 PSD+DEPTH+OC+BD+CACO3+PH_H2O+CEC 653 0.043 0.743 280 0.047 0.696 - fghi PTF07 PTF09 
1PSD: particle size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g 5 

cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 

2Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error;for example performance indicated with the letter c is 

significantly better than the one noted with letters b and a. 
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Table 5. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict water content at wilting point 

(WP). N: number of samples, RMSE: root mean square error (cm3 cm-3), and R2: determination coefficient, TEST_BASIC: samples with measured 

PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC, BD, CACO3, PH_H2O and CEC. Recommended PTFs 

are highlighted in bold. 
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PTF01 PSD+DEPTH 5264 0.048 0.736 2088 0.048 0.728 a a PTF01 - 
PTF02 PSD+DEPTH+OC 4802 0.047 0.755 2088 0.046 0.745 bc abc PTF02 PTF12 
PTF03 PSD+DEPTH+BD 5197 0.046 0.757 2088 0.046 0.754 ab ab PTF01 - 
PTF04 PSD+DEPTH+CACO3 1816 0.042 0.693 294 0.042 0.643 - a PTF01 - 
PTF05 PSD+DEPTH+PH_H2O 2039 0.046 0.673 294 0.044 0.621 - abc PTF01 - 
PTF06 PSD+DEPTH+CEC 1703 0.043 0.725 294 0.041 0.662 - a PTF01 - 
PTF07 PSD+DEPTH+OC+BD 4786 0.045 0.769 2088 0.044 0.769 c abc PTF02 PTF12 
PTF08 PSD+DEPTH+OC+CACO3 1599 0.041 0.695 294 0.041 0.671 - abcd PTF02 - 
PTF09 PSD+DEPTH+OC+PH_H2O 1678 0.045 0.682 294 0.041 0.661 - abcd PTF02 - 
PTF10 PSD+DEPTH+OC+CEC 1459 0.043 0.704 294 0.040 0.674 - abcd PTF02 - 
PTF11 PSD+DEPTH+BD+CACO3 1806 0.041 0.706 294 0.040 0.682 - abcd PTF01 - 
PTF12 PSD+DEPTH+BD+PH_H2O 1979 0.045 0.691 294 0.041 0.671 - abcd PTF01 - 
PTF13 PSD+DEPTH+BD+CEC 1648 0.042 0.729 294 0.040 0.683 - abcd PTF01 - 
PTF14 PSD+DEPTH+CACO3+PH_H2O 1375 0.043 0.689 294 0.042 0.649 - abcd PTF01 - 
PTF15 PSD+DEPTH+CACO3+CEC 831 0.044 0.657 294 0.039 0.694 - abcd PTF01 - 
PTF16 PSD+DEPTH+PH_H2O+CEC 1349 0.043 0.727 294 0.040 0.681 - abc PTF01 - 
PTF17 PSD+DEPTH+OC+BD+CACO3 1596 0.041 0.705 294 0.039 0.702 - abcd PTF07 - 
PTF18 PSD+DEPTH+OC+BD+PH_H2O 1667 0.045 0.687 294 0.040 0.674 - abcd PTF07 PTF12 
PTF19 PSD+DEPTH+OC+BD+CEC 1447 0.042 0.714 294 0.039 0.691 - abcd PTF07 - 
PTF20 PSD+DEPTH+OC+CACO3+PH_H2O 1183 0.042 0.691 294 0.040 0.686 - abcd PTF02 - 
PTF21 PSD+DEPTH+OC+CACO3+CEC 743 0.044 0.638 294 0.037 0.722 - d PTF08 - 
PTF22 PSD+DEPTH+OC+PH_H2O+CEC 1121 0.044 0.697 294 0.039 0.701 - abcd PTF07 - 
PTF23 PSD+DEPTH+BD+CACO3+PH_H2O 1365 0.042 0.701 294 0.040 0.678 - abcd PTF01 - 
PTF24 PSD+DEPTH+BD+CACO3+CEC 827 0.043 0.673 294 0.038 0.708 - abcd PTF01 - 
PTF25 PSD+DEPTH+BD+PH_H2O+CEC 1295 0.043 0.726 294 0.039 0.698 - abcd PTF01 - 
PTF26 PSD+DEPTH+CACO3+PH_H2O+CEC 772 0.043 0.680 294 0.039 0.702 - cd PTF05 - 
PTF27 PSD+DEPTH+OC+BD+CACO3+PH_H2O 1180 0.042 0.698 294 0.039 0.703 - abcd PTF07 - 
PTF28 PSD+DEPTH+OC+BD+CACO3+CEC 740 0.043 0.648 294 0.037 0.732 - bcd PTF17 - 
PTF29 PSD+DEPTH+OC+BD+PH_H2O+CEC 1110 0.043 0.699 294 0.038 0.712 - abcd PTF07 - 
PTF30 PSD+DEPTH+OC+CACO3+PH_H2O+CEC 689 0.044 0.645 294 0.038 0.719 - abcd PTF02 PTF12 
PTF31 PSD+DEPTH+BD+CACO3+PH_H2O+CEC 768 0.043 0.678 294 0.037 0.720 - cd PTF05 - 
PTF32 PSD+DEPTH+OC+BD+CACO3+PH_H2O+CEC 686 0.043 0.656 294 0.037 0.723 - d PTF09 PTF12 
1PSD: particle size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g 5 

cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 

2Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error;for example performance indicated with the letter c is 

significantly better than the one noted with letters b and a. 
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Table 6. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict saturated hydraulic conductivity 

(KS). N: number of samples, RMSE: root mean square error (log10 (cm day-1)), and R2: determination coefficient, TEST_BASIC: samples with 

measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC, BD, CACO3, PH_H2O and CEC. Recommended 

PTFs are highlighted in bold. 

Name of 

PTF in 

euptfv2 

Predictor variables1 

Training set Test set Sign. difference2 
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PTF01 PSD+DEPTH 3157 1.200 0.434 1117 1.181 0.307 a ab PTF01 - 
PTF02 PSD+DEPTH+OC 2620 0.957 0.566 1117 0.953 0.548 b bc PTF02 PTF16 
PTF03 PSD+DEPTH+BD 3146 1.160 0.467 1117 1.170 0.320 a a PTF01 - 
PTF04 PSD+DEPTH+CACO3 639 0.861 0.241 169 0.959 0.123 - abc PTF01 - 
PTF05 PSD+DEPTH+PH_H2O 907 0.875 0.213 169 0.944 0.151 - bc PTF01 - 
PTF06 PSD+DEPTH+CEC 567 0.984 0.215 169 0.940 0.157 - bc PTF01 - 
PTF07 PSD+DEPTH+OC+BD 2609 0.931 0.590 1117 0.939 0.562 b bc PTF02 PTF16 
PTF08 PSD+DEPTH+OC+CACO3 613 0.872 0.244 169 0.943 0.153 - bc PTF02 - 
PTF09 PSD+DEPTH+OC+PH_H2O 862 0.847 0.257 169 0.938 0.162 - bc PTF02 - 
PTF10 PSD+DEPTH+OC+CEC 525 0.977 0.223 169 0.938 0.162 - bc PTF02 - 
PTF11 PSD+DEPTH+BD+CACO3 639 0.851 0.259 169 0.952 0.136 - bc PTF01 - 
PTF12 PSD+DEPTH+BD+PH_H2O 898 0.853 0.256 169 0.947 0.145 - bc PTF05 - 
PTF13 PSD+DEPTH+BD+CEC 558 0.980 0.230 169 0.941 0.157 - bc PTF01 - 
PTF14 PSD+DEPTH+CACO3+PH_H2O 620 0.855 0.267 169 0.923 0.189 - bc PTF05 - 
PTF15 PSD+DEPTH+CACO3+CEC 405 0.937 0.263 169 0.941 0.156 - abc PTF01 - 
PTF16 PSD+DEPTH+PH_H2O+CEC 567 0.942 0.282 169 0.940 0.158 - bc PTF01 - 
PTF17 PSD+DEPTH+OC+BD+CACO3 613 0.856 0.272 169 0.933 0.171 - bc PTF02 - 
PTF18 PSD+DEPTH+OC+BD+PH_H2O 853 0.831 0.289 169 0.932 0.172 - bc PTF02 PTF16 
PTF19 PSD+DEPTH+OC+BD+CEC 516 0.979 0.228 169 0.928 0.179 - c PTF02 - 
PTF20 PSD+DEPTH+OC+CACO3+PH_H2O 613 0.860 0.264 169 0.929 0.177 - bc PTF02 - 
PTF21 PSD+DEPTH+OC+CACO3+CEC 401 0.935 0.271 169 0.925 0.184 - bc PTF02 - 
PTF22 PSD+DEPTH+OC+PH_H2O+CEC 525 0.931 0.295 169 0.933 0.170 - c PTF02 - 
PTF23 PSD+DEPTH+BD+CACO3+PH_H2O 620 0.844 0.286 169 0.889 0.247 - c PTF05 - 
PTF24 PSD+DEPTH+BD+CACO3+CEC 405 0.922 0.286 169 0.958 0.125 - abc PTF01 - 
PTF25 PSD+DEPTH+BD+PH_H2O+CEC 558 0.944 0.286 169 0.950 0.140 - bc PTF05 - 
PTF26 PSD+DEPTH+CACO3+PH_H2O+CEC 405 0.922 0.286 169 0.922 0.190 - bc PTF05 - 
PTF27 PSD+DEPTH+OC+BD+CACO3+PH_H2O 613 0.844 0.293 169 0.893 0.241 - c PTF02 - 
PTF28 PSD+DEPTH+OC+BD+CACO3+CEC 401 0.926 0.285 169 0.925 0.185 - abc PTF02 - 
PTF29 PSD+DEPTH+OC+BD+PH_H2O+CEC 516 0.932 0.301 169 0.921 0.193 - bc PTF02 - 
PTF30 PSD+DEPTH+OC+CACO3+PH_H2O+CEC 401 0.931 0.278 169 0.887 0.250 - bc PTF02 PTF17 
PTF31 PSD+DEPTH+BD+CACO3+PH_H2O+CEC 405 0.914 0.298 169 0.912 0.207 - bc PTF05 - 
PTF32 PSD+DEPTH+OC+BD+CACO3+PH_H2O+CEC 401 0.921 0.292 169 0.916 0.201 - bc PTF02 PTF17 
1PSD: particle size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g 5 

cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 

2Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error;for example performance indicated with the letter c is 

significantly better than the one noted with letters b and a. 
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Table 7. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict parameters of the van Genuchten 

model to describe soil moisture retention curve (VG). N: number of samples, RMSE: root mean square error (log10 (cm day-1)), and R2: determination 

coefficient, TEST_BASIC: samples with measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC, BD, 

CACO3, PH_H2O and CEC. Recommended PTFs are highlighted in bold. 
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PTF01 PSD+DEPTH 4669 0.055 0.846 1591 0.068 0.776 a a PTF01 - 
PTF02 PSD+DEPTH+OC 3708 0.047 0.887 1591 0.060 0.826 b c PTF02 PTF19 
PTF03 PSD+DEPTH+BD 4593 0.041 0.913 1591 0.056 0.846 c hi PTF03 - 
PTF04 PSD+DEPTH+CACO3 1671 0.039 0.911 288 0.052 0.852 - d PTF04 - 
PTF05 PSD+DEPTH+PH_H2O 1897 0.045 0.894 288 0.055 0.834 - b PTF05 - 
PTF06 PSD+DEPTH+CEC 1488 0.044 0.886 288 0.054 0.839 - d PTF06 - 
PTF07 PSD+DEPTH+OC+BD 3695 0.037 0.933 1591 0.054 0.859 d fg PTF07 PTF21 
PTF08 PSD+DEPTH+OC+CACO3 1589 0.036 0.924 288 0.048 0.871 - f PTF08 - 
PTF09 PSD+DEPTH+OC+PH_H2O 1663 0.039 0.922 288 0.050 0.865 - gh PTF09 - 
PTF10 PSD+DEPTH+OC+CEC 1293 0.036 0.920 288 0.051 0.858 - fg PTF10 - 
PTF11 PSD+DEPTH+BD+CACO3 1670 0.034 0.934 288 0.043 0.900 - mn PTF11 - 
PTF12 PSD+DEPTH+BD+PH_H2O 1847 0.038 0.926 288 0.044 0.892 - l PTF12 - 
PTF13 PSD+DEPTH+BD+CEC 1437 0.039 0.908 288 0.044 0.892 - lm PTF13 - 
PTF14 PSD+DEPTH+CACO3+PH_H2O 1264 0.037 0.928 288 0.052 0.854 - e PTF14 - 
PTF15 PSD+DEPTH+CACO3+CEC 758 0.040 0.907 288 0.049 0.870 - ij PTF15 - 
PTF16 PSD+DEPTH+PH_H2O+CEC 1188 0.042 0.905 288 0.051 0.858 - f PTF16 - 
PTF17 PSD+DEPTH+OC+BD+CACO3 1588 0.031 0.944 288 0.042 0.904 - n PTF11 - 
PTF18 PSD+DEPTH+OC+BD+PH_H2O 1655 0.033 0.943 288 0.043 0.900 - l PTF12 PTF22 
PTF19 PSD+DEPTH+OC+BD+CEC 1284 0.033 0.934 288 0.044 0.892 - lm PTF13 - 
PTF20 PSD+DEPTH+OC+CACO3+PH_H2O 1201 0.033 0.943 288 0.048 0.874 - f PTF09 - 
PTF21 PSD+DEPTH+OC+CACO3+CEC 712 0.035 0.932 288 0.047 0.881 - l PTF21 - 
PTF22 PSD+DEPTH+OC+PH_H2O+CEC 996 0.033 0.939 288 0.049 0.869 - i PTF22 - 
PTF23 PSD+DEPTH+BD+CACO3+PH_H2O 1263 0.032 0.948 288 0.044 0.895 - lm PTF11 - 
PTF24 PSD+DEPTH+BD+CACO3+CEC 757 0.033 0.939 288 0.041 0.906 - o PTF24 - 
PTF25 PSD+DEPTH+BD+PH_H2O+CEC 1138 0.038 0.922 288 0.042 0.902 - n PTF25 - 
PTF26 PSD+DEPTH+CACO3+PH_H2O+CEC 717 0.037 0.924 288 0.047 0.878 - jk PTF15 - 
PTF27 PSD+DEPTH+OC+BD+CACO3+PH_H2O 1200 0.030 0.953 288 0.043 0.897 - lm PTF11 - 
PTF28 PSD+DEPTH+OC+BD+CACO3+CEC 711 0.032 0.941 288 0.041 0.906 - o PTF24 - 
PTF29 PSD+DEPTH+OC+BD+PH_H2O+CEC 988 0.032 0.945 288 0.041 0.906 - o PTF29 - 
PTF30 PSD+DEPTH+OC+CACO3+PH_H2O+CEC 671 0.031 0.946 288 0.047 0.880 - k PTF21 PTF20 
PTF31 PSD+DEPTH+BD+CACO3+PH_H2O+CEC 716 0.031 0.948 288 0.042 0.904 - o PTF24 - 
PTF32 PSD+DEPTH+OC+BD+CACO3+PH_H2O+CEC 670 0.031 0.948 288 0.042 0.903 - o PTF29 PTF22 
1PSD: particle size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g 5 

cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 

2Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error;for example performance indicated with the letter c is 

significantly better than the one noted with letters b and a. 
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Table 8. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict parameters of the Mualem-van 

Genuchten model to describe soil moisture retention and hydraulic conductivity curve (MVG). N: number of samples, RMSE: root mean square 

error (log10 (cm day-1)), and R2: determination coefficient, TEST_BASIC: samples with measured PSD, DEPTH, OC and BD; TEST_CHEM+: 

samples with measured PSD, DEPTH, OC, BD, CACO3, PH_H2O and CEC. Recommended PTFs are highlighted in bold. 
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PTF01 PSD+DEPTH 739 0.604 0.804 176 0.708 0.796 a b PTF01 - 
PTF02 PSD+DEPTH+OC 407 0.619 0.829 176 0.676 0.814 b jkl PTF02 PTF19 
PTF03 PSD+DEPTH+BD 726 0.568 0.824 176 0.688 0.808 a ab PTF01 - 
PTF04 PSD+DEPTH+CACO3 273 0.587 0.878 57 0.644 0.863 - ijk PTF04 - 
PTF05 PSD+DEPTH+PH_H2O 230 0.578 0.889 57 0.663 0.855 - def PTF05 - 
PTF06 PSD+DEPTH+CEC 141 0.672 0.858 57 0.662 0.856 - fghij PTF06 - 
PTF07 PSD+DEPTH+OC+BD 404 0.529 0.873 176 0.659 0.824 b a PTF02 PTF19 
PTF08 PSD+DEPTH+OC+CACO3 250 0.587 0.880 57 0.699 0.839 - b PTF02 - 
PTF09 PSD+DEPTH+OC+PH_H2O 224 0.597 0.882 57 0.686 0.845 - fghi PTF02 - 
PTF10 PSD+DEPTH+OC+CEC 138 0.699 0.846 57 0.702 0.837 - cde PTF02 - 
PTF11 PSD+DEPTH+BD+CACO3 272 0.542 0.895 57 0.637 0.866 - defg PTF04 - 
PTF12 PSD+DEPTH+BD+PH_H2O 229 0.520 0.909 57 0.620 0.873 - jklm PTF12 - 
PTF13 PSD+DEPTH+BD+CEC 140 0.644 0.866 57 0.637 0.866 - lm PTF13 - 
PTF14 PSD+DEPTH+CACO3+PH_H2O 223 0.539 0.904 57 0.691 0.842 - c PTF04 - 
PTF15 PSD+DEPTH+CACO3+CEC 136 0.735 0.830 57 0.684 0.846 - c PTF04 - 
PTF16 PSD+DEPTH+PH_H2O+CEC 141 0.666 0.860 57 0.666 0.854 - hijk PTF06 - 
PTF17 PSD+DEPTH+OC+BD+CACO3 249 0.526 0.902 57 0.662 0.855 - ab PTF02 - 
PTF18 PSD+DEPTH+OC+BD+PH_H2O 223 0.553 0.897 57 0.642 0.864 - klm PTF02 PTF19 
PTF19 PSD+DEPTH+OC+BD+CEC 137 0.619 0.876 57 0.676 0.849 - b PTF02 - 
PTF20 PSD+DEPTH+OC+CACO3+PH_H2O 219 0.573 0.891 57 0.661 0.856 - n PTF20 - 
PTF21 PSD+DEPTH+OC+CACO3+CEC 135 0.730 0.831 57 0.653 0.86 - m PTF21 - 
PTF22 PSD+DEPTH+OC+PH_H2O+CEC 138 0.699 0.846 57 0.664 0.855 - lm PTF02 - 
PTF23 PSD+DEPTH+BD+CACO3+PH_H2O 222 0.515 0.911 57 0.639 0.865 - lm PTF23 - 
PTF24 PSD+DEPTH+BD+CACO3+CEC 135 0.678 0.852 57 0.656 0.858 - c PTF04 - 
PTF25 PSD+DEPTH+BD+PH_H2O+CEC 140 0.595 0.885 57 0.646 0.862 - ghijk PTF12 - 
PTF26 PSD+DEPTH+CACO3+PH_H2O+CEC 136 0.712 0.841 57 0.669 0.852 - cd PTF04 - 
PTF27 PSD+DEPTH+OC+BD+CACO3+PH_H2O 218 0.524 0.907 57 0.606 0.879 - o PTF27 - 
PTF28 PSD+DEPTH+OC+BD+CACO3+CEC 134 0.656 0.860 57 0.639 0.865 - n PTF28 - 
PTF29 PSD+DEPTH+OC+BD+PH_H2O+CEC 137 0.646 0.865 57 0.638 0.866 - n PTF29 - 
PTF30 PSD+DEPTH+OC+CACO3+PH_H2O+CEC 135 0.726 0.833 57 0.680 0.847 - fghi PTF20 PTF19 
PTF31 PSD+DEPTH+BD+CACO3+PH_H2O+CEC 135 0.679 0.851 57 0.668 0.853 - c PTF12 - 
PTF32 PSD+DEPTH+OC+BD+CACO3+PH_H2O+CEC 134 0.645 0.864 57 0.678 0.848 - efgh PTF27 PTF19 
1PSD: particle size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g 5 

cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 

2Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error;for example performance indicated with the letter c is 

significantly better than the one noted with letters b and a. 
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Table 9. The results of comparing the performance of parametric and point pedotransfer functions (PTFs) on the test sets of 

EU-HYDI to predict saturated water content (THS), water content at -100 cm matric potential head (FC_2), water content at -

330 cm matric potential head (FC), water content at wilting point (WP). Rows in italic indicate cases where there was no 

significant difference between the two PTFs. 

Predicted 

soil 

hydraulic 

property 

Available predictor variables1 

Performance of 

parameter estimation 

(MRC with VG)2 

Performance of point 

estimation 
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Recommended 

PTF number 
RMSE 

Recommended 

PTF number 
RMSE 

THS PSD+DEPTH_M+OC PTF02a 0.065 PTF02a 0.061 216 

(cm3 cm-3) PSD+DEPTH_M+OC+BD PTF07a 0.041 PTF03b 0.032 216 

 PSD+DEPTH_M+OC+BD+PH_H2O PTF12a 0.028 PTF03b 0.022 63 

 PSD+DEPTH_M+OC+CACO3+PH_H2O+CEC PTF21a 0.051 PTF02a 0.060 63 

 PSD+DEPTH_M+OC+BD+CACO3+PH_H2O+CEC PTF29a 0.028 PTF03a 0.022 63 

FC_2 PSD+DEPTH_M+OC PTF02a 0.057 PTF02b 0.054 424 

(cm3 cm-3) PSD+DEPTH_M+OC+BD PTF07a 0.051 PTF03a 0.051 424 

 PSD+DEPTH_M+OC+BD+PH_H2O PTF12a 0.043 PTF07a 0.049 68 

 PSD+DEPTH_M+OC+CACO3+PH_H2O+CEC PTF21a 0.043 PTF09a 0.047 68 

 PSD+DEPTH_M+OC+BD+CACO3+PH_H2O+CEC PTF29a 0.036 PTF18a 0.043 68 

FC PSD+DEPTH_M+OC PTF02a 0.057 PTF02a 0.048 319 

(cm3 cm-3) PSD+DEPTH_M+OC+BD PTF07a 0.056 PTF02a 0.048 319 

 PSD+DEPTH_M+OC+BD+PH_H2O PTF12a 0.047 PTF02a 0.047 129 

 PSD+DEPTH_M+OC+CACO3+PH_H2O+CEC PTF21a 0.046 PTF08a 0.045 129 

 PSD+DEPTH_M+OC+BD+CACO3+PH_H2O+CEC PTF29a 0.041 PTF07a 0.046 129 

WP PSD+DEPTH_M+OC PTF02a 0.064 PTF02b 0.047 429 

(cm3 cm-3) PSD+DEPTH_M+OC+BD PTF07a 0.061 PTF02b 0.047 429 

 PSD+DEPTH_M+OC+BD+PH_H2O PTF12a 0.053 PTF07a 0.045 91 

 PSD+DEPTH_M+OC+CACO3+PH_H2O+CEC PTF21a 0.051 PTF07a 0.045 91 

 PSD+DEPTH_M+OC+BD+CACO3+PH_H2O+CEC PTF29a 0.054 PTF09a 0.039 91 
1PSD: particle size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass 5 

%); BD: bulk density (g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 

2MRC: moisture retention curve; VG: parameters of the van Genuchten model. Different letters in a row indicate significant differences at the 0.05 level 

between the accuracy of the methods based on the squared error; for example performance indicated with the letter b is significantly better than the one noted 

with letter a. RMSE: root mean squared error. 
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Table 10. The results of comparing the performance of euptfv1 and euptfv2 on the test sets of EU-HYDI to predict soil 

hydraulic properties. Rows in italic indicate cases where there was no significant difference between the two PTFs. 

Predicted soil 

hydraulic property1 

Performance2 

euptfv1 euptfv2 
Name of test set  

Number of 

samples in 

test datasets 
Name of PTF RMSE Name of PTF RMSE 

THS PTF04a 0.063 PTF02b 0.056 TEST_BASIC 1274 

(cm3 cm-3) PTF05a 0.034 PTF03b 0.031 TEST_BASIC 1274 

 PTF06a 0.020 PTF03a 0.024 TEST_CHEM+ 156 

FC PTF09a 0.054 PTF02b 0.050 TEST_BASIC 801 

(cm3 cm-3) PTF09a 0.054 PTF07b 0.048 TEST_BASIC 801 

 PTF09a 0.058 PTF08b 0.053 TEST_CHEM+ 280 

WP PTF12a 0.048 PTF02b 0.046 TEST_BASIC 2088 

(cm3 cm-3) PTF12a 0.048 PTF07b 0.044 TEST_BASIC 2088 

 PTF12a 0.043 PTF09a 0.041 TEST_CHEM+ 294 

KS PTF16a 1.06 PTF02b 0.95 TEST_BASIC 1117 

(log10 cm day-1) PTF17a 1.00 PTF02a 0.91 TEST_CHEM+ 169 

VG PTF19a 0.068 PTF02b 0.060 TEST_BASIC 1591 

(cm3 cm-3) PTF21a 0.064 PTF07b 0.054 TEST_BASIC 1591 

 PTF22a 0.046 PTF12b 0.044 TEST_CHEM+ 288 

 PTF20a 0.054 PTF21b 0.047 TEST_CHEM+ 288 

 PTF22a 0.046 PTF29b 0.041 TEST_CHEM+ 288 

MVG PTF19a 0.77 PTF02b 0.68 TEST_BASIC 176 

(log10 cm day-1) PTF19a 0.66 PTF20a 0.66 TEST_CHEM+ 57 

 PTF19a 0.66 PTF27a 0.61 TEST_CHEM+ 57 
1THS: saturated water content (pF 0); FC_2: water content at -100 cm matric potential head (pF 2.0); FC: water content at -330 cm matric potential head (pF 

2.5); WP: water content at wilting point (pF 4.2); KS: saturated hydraulic conductivity; VG: parameters of the van Genuchten model; MVG: parameters of 

the Mualem – van Genuchten model. 5 
2Different letters in a row indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error;for example 

performance indicated with the letter b is significantly better than the one noted with letter a. RMSE: root mean squared error; TEST_BASIC: samples with 

measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC, BD, CACO3, PH_H2O and CEC; N: number of samples. 
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FIGURES 

 

 

Figure 1. Results of parameter tuning of the random forest: optimization of a) the number of randomly selected predictors at 

each split by number of available predictors and b) splitting rule applied to build the trees in the random forest. 
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Figure 2. Scatter plot of the measured versus median predicted water retention values of the worst and best performing PTF 

with 90% prediction interval on test datasets. THS: saturated water content (PTF01 vs. PTF03); FC_2: water content at -100 

cm matric potential head (PTF01 vs. PTF18); FC: water content at -330 cm matric potential head (PTF01 vs. PTF07); WP: 

water content at wilting point (PTF01 vs. PTF09); log10KS: saturated hydraulic conductivity (PTF01 vs. PTF02); PSD: particle 

size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH_M: mean soil depth (cm); OC: organic 

carbon content (mass %); BD: bulk density (g cm−3); PH_H2O: pH in water (-). 
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Figure 3. Variable importance computed with the random forest algorithm for the prediction of water content with PTF32 at 

saturation (THS), at field capacity; -100 (FC_2) and -330 (FC) matric potential head, at wilting point (WP), of the plant 

available water content based on FC_2 (AWC_2) and FC (AWC), and the saturated hydraulic conductivity (KS). USSILT: silt 

content (2–50 μm (mass %)); USSAND: sand content (50–2000 μm (mass %)); USCLAY: clay content ( <2 μm (mass %)); 

PH_H2O: pH in water (-); OC: organic carbon content (mass %); DEPTH_M: mean soil depth (cm); OC: organic carbon 

content (mass %); CEC: cation exchange capacity (cmol (+) kg−1); CACO3: calcium carbonate content (mass %); BD: bulk 

density (g cm−3). 
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Figure 4. Partial dependence plot computed based on the random forest algorithm (PTF07) for the prediction of water content 

at saturation (THS), field capacity at -100 (FC_2) and -330 (FC) matric potential head, wilting point (WP), plant available 

water content computed with field capacity at -100 and -330 cm matric potential head (AWC_2, AWC) and saturated hydraulic 

conductivity (KS) for selected predictors. 
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Figure 5. Scatter plot of the measured versus median predicted water retention values computed with the van Genuchten (VG) 

model (PTF01 vs. PTF29, i.e. the worst versus best performing PTF). PSD: particle size distribution (sand, 50–2000 μm; silt, 

2–50 μm; clay, <2 μm (mass %)); DEPTH_M: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density 

(g cm−3); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 

 

 

 

Figure 6. Scatter plot of the measured versus median predicted hydraulic conductivity values computed with the Mualem-van 

Genuchten (MVG) model (PTF01 vs. PTF27, i.e. the worst versus best performing PTF). PSD: particle size distribution (sand, 

50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH_M: mean soil depth (cm); OC: organic carbon content (mass %); 

BD: bulk density (g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-). 
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Figure 7. Variable importance computed with the random forest algorithm for the prediction of parameters of the van 

Genuchten and Mualem-van Genuchten model based on PTF32. θr: residual water content (cm³ cm-3); θs: saturated water 

content (cm³ cm-3); α (cm-1), n (-): fitting parameters; K0: the hydraulic conductivity acting as a matching point at saturation 

(cm day-1); L: shape parameter related to pore tortuosity (-); USSILT: silt content (2–50 μm (mass %)); USSAND: sand content 

(50–2000 μm (mass %)); USCLAY: clay content,( <2 μm (mass %)); PH_H2O: pH in water (-); OC: organic carbon content 

(mass %); DEPTH_M: mean soil depth (cm); OC: organic carbon content (mass %); CEC: cation exchange capacity (cmol (+) 

kg−1);> CACO3: calcium carbonate content (mass %); BD: bulk density (g cm−3). 
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