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Abstract: In this study, we investigate the behavior of randomly moving particles with a defined

average energy, focusing on their biased motion around a specific point. These particles’ velocity

magnitudes follow a Maxwell distribution characterized by certain parameters. Our analysis derives

the stochastic rotation rules for these particles and introduces the Itô equation conditions for biased

stochastic rotation at a given curl value. We also consider the special relativistic-like effects in this

context. The findings are validated through a representative example.
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1. Introduction

For a collection of particles with a defined average energy, their magnitudes of velocities follow a

Maxwell distribution characterized by a specific parameter. When a subset of the particles exhibits

biased motion in their movement direction, they can be characterized as three distinct and prevalent

types of biased stochastic motion (At an extremely large particle count and scale, even scenarios with

exceedingly low probabilities can manifest with notable frequency within a specific region). These

biased motions encompass: 1) stochastic movement with a preferential direction while maintaining

equal probabilities in other directions; 2) stochastic movement favoring a specific spatial point but

equi-probable in alternative directions; and 3) stochastic movement with a predilection for revolving

around a designated rotational center. Within these scenarios of biased stochastic motion, systems

exhibiting characteristics of the first situation display the special relativistic-like effects [1,2]. On the

other hand, biased stochastic motions with higher probabilities directed towards or revolving around a

specific center incorporate these special relativistic-like effects into processes of spatial aggregation [3]

or rotational phenomena [4].

For the rotational effect produced by biased randomly moving particles, the constituent particles

of the rotating body inherently experience a displacement in linear velocity. Consequently, such

motion should also exhibit special relativistic-like effects. Previous research [4] has investigated the

rotational behavior generated by a group (radius is R) of randomly moving particles with consistent

linear velocities c. The conclusion drawn is that the magnitude of the angular velocity produced by

k randomly moving particles follows a Maxwell distribution with a scale parameter of

√
6 c

3R
√

k
. In

actual physical systems, it is more common for these particles to not have perfectly consistent linear

speeds. Instead, when the energy is fixed, their speeds follow a Maxwell distribution determined by a

specific parameter. Furthermore, nearly every celestial body in the universe is rotating. The underlying

mechanism for this rotation might be a result of the collective actions of particles whose speeds follow

a Maxwell distribution. In summary, it is essential to thoroughly investigate the distribution of angular

speeds generated by particles with speeds following a Maxwell distribution as they move randomly in

space. Based on this premise, when the magnitude of the angular velocity is a specific value, particles

undergoing pure random motion transition to biased random motion. Presenting the corresponding

Itô equation expression under this scenario is the primary objective of this paper.
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With the aid of mathematical packages, certain complex theoretical problems can be effortlessly

addressed. Currently, among the world’s most powerful symbolic computation packages are Maple

(Cybernet Systems Co., Ltd., Japan) and Mathematica (Wolfram Research Inc., USA). The intricately

designed algorithms within these platforms have facilitated the work of countless scientists and

engineers worldwide. However, these mathematical packages are neither universal nor omnipotent.

Real-world problems are often intricate, and relying solely on one specific package might not provide

an optimal solution. It is essential to utilize a combination of software tools and appropriately

decompose the actual problem to achieve a comprehensive resolution. In this study, Mathematica

v13.2 was employed for theoretical derivations, while Maple v2023 was utilized for solving the system

of partial differential equations.

This study first examines the distribution of rotational angular velocity magnitudes in a particle

system with a defined average energy, where the magnitudes of the particle velocities follow a Maxwell

distribution with a specific scale parameter. Subsequently, a set of Itô equations that describe the

motion characteristics of biased moving particles with rotational effects is introduced. Finally, an

illustrative example is provided to further elucidate the characteristics of these Itô equations. The

biased moving particles discussed in this study, which exhibit special relativistic-like effects, differ from

the conventional understanding where particle motion must follow the constraints of special relativity.

This study assumes that these particles move at relatively low speeds, essentially unaffected by

special relativistic effects, or they represent ideal particles completely unaffected by special relativistic

effects. In this study, the average speed c represents the mean magnitude of particle velocities rather

than the speed of light. These biased moving particles can exhibit common significant phenomena.

Understanding their essence is crucial for comprehending the effects of special relativity and the

inherent nature behind rotations influenced by special relativistic effects.

2. Results and Discussion

For particle assemblies with consistent magnitudes of velocity and directions arbitrarily dispersed

within a three-dimensional domain, the resultant rotational effects in space have been comprehensively

examined in our prior publication [4]. This study primarily investigates the rotational behavior in

space exhibited by particle assemblies under identical conditions, where the norms of their velocities

follow a Maxwell distribution. Analogous to the investigative approach presented in reference [4], we

first examine the distribution of the norm ‖ΩS‖ of the random angular velocity generated by a random

vector VS with its origin uniformly distributed on a unit sphere S, where the norm of VS follows a

Maxwell distribution with a mean of c (Figure 1). Assuming r is the radius of the unit sphere S, then

ωS = r × vS. (1)

Figure 1. Schematic diagram of the generation method for the vector ω
′. The radius ‖VS‖ of S′ denotes

the mean of norms of the spatial vectors that follow a Maxwell distribution with a parameter
1

2

√

π

2
c.
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Let us establish a 3-dimensional Cartesian coordinate system for S′. Suppose that the disk D′

is perpendicular to the z-axis and consider the random variables Θ ∼ U(−1, 1) and H ∼ U(−π, π).

Then, the norm of the random vector Ω
′ obtained by projecting the uniformly distributed points on

sphere S′ onto disc D′ is
∥

∥Ω
′∥
∥ = ‖VS‖ ·

√

1 − Θ2. (2)

Therefore, the probability of
∥

∥Ω
′∥
∥ is

∥

∥ω
′∥
∥ (x) =



















8xe
−

4x2

πc2

πc2
, x ≥ 0,

0, otherwise.

(3)

Assuming FX(x) is one coordinate X that is equivalent to the three coordinates of R. By taking a

product FX(x) ·
∥

∥Ω
′∥
∥ (x) of random variables, we can obtain the probability density of X, which

represents one of the three equivalent coordinates of the angular velocity ΩS contributed by the

random vector VS, specifically,

ωS,X(x) =































erfc

(

2x

c
√

π

)

c
, x ≥ 0,

erfc

(

2x

c
√

π

)

+ 1

c
, otherwise.

(4)

The probability density of equivalent coordinate ΩB,X of ΩB contributed by VB which is uniformly

distributed throughout the whole unit ball enclosed by the sphere S is

ωB,X(x, r) =































r erfc

(

2rx

c
√

π

)

c
, x ≥ 0,

r

[

erfc

(

2rx

c
√

π

)

+ 1

]

c
, otherwise.

(5)

Thus, the distribution function ΩB,X(r) of the contribution of VB to one of the equivalent coordinates

of ΩB is obtained. Next, ΩB,X(r) is integrated over the whole unit ball and the probability density of

the contribution of VB in the whole unit ball to an equivalent coordinate X of the angular velocity ΩB

can be obtained:

ωB,X(x) =










































3

256cx4







(

3π2c4 − 64x4
)

erf

(

2x

c
√

π

)

− 4cx
(

3πc2 + 8x2
)

e
−

4x2

πc2 + 64x4






, x ≥ 0,

3

256cx4







(

64x4 − 3π2c4
)

erf

(

2x

c
√

π

)

+ 4cx
(

3πc2 + 8x2
)

e
−

4x2

πc2 + 64x4






, otherwise,

(6)
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Next, we extend the analysis to the case in which the radius of the ball has an arbitrary value R. The

probability density of the contribution of the random vector V to the single equivalent coordinate X of

angular velocity Ω is

ωX(x) =










































3

256







(

3π2c3

R3x4
− 64R

c

)

erf

(

2Rx

c
√

π

)

− 4
(

3πc2 + 8R2X2
)

R2x3
e
−

4R2x2

c2π +
64R

c






, x ≥ 0,

3

256







(

64R

c
− 3π2c3

R3x4

)

erf

(

2Rx

c
√

π

)

+
4
(

3πc2 + 8R2X2
)

R2x3
e
−

4R2x2

c2π +
64R

c






, otherwise,

(7)

the standard deviation of which is
c
√

π

2R
. Therefore, when k independent and identically distributed

random vectors V move randomly in space, according to the central limit theorem (when they are

grouped together), the norm ‖Ω‖ of the average angular velocity generated by all of their components

relative to their total centroid follows a Maxwell distribution with scale parameter
c
√

π

2R
√

k
.

Building upon this foundation, we delve into the representation of this stochastic rotation behavior

using the Itô equation, specifically discussing scenarios where the curl assumes a defined value of

(a, b, c), where a, b, c ∈ R. For particle assemblies with a defined energy, the magnitudes of their

velocities follow a Maxwell distribution characterized by specific parameters. Previous research has

provided the form of the Itô equation for particles exhibiting biased random motion in a particular

direction, incorporating the special relativistic-like effects [2]. In this study, we further incorporate the

special relativistic-like effects into the stochastic rotation.

For any given particle, the biased motion around a specific point fundamentally remains a

movement with a linear velocity. Consequently, it still adheres to the velocity reduction inherent of

special relativistic-like. Assuming that at a specific time t, the linear velocity of a particle at position

(x, y, z) is u(t), its projections onto the three coordinate axes are u1(t), u2(t) and u3(t). As per the

description method in the literature [2], the Itô equation at time t can be expressed as:



























dx1(t) = u1(t)dt +

√

c2 − u(t)2

c
σdw1(t),

dx2(t) = u2(t)dt +

√

c2 − u(t)2

c
σdw2(t),

dx3(t) = u3(t)dt +

√

c2 − u(t)2

c
σdw3(t),

(8)

where u(t) =
√

u1(t)2 + u2(t)2 + u3(t)2. Differing from the literature, here we replace u1, u2 and u3

with u1(t), u2(t) and u3(t). From a macroscopic perspective, if the system exhibits rotational effects,

then at a given time t, the velocity u should also be a function of the position (x, y, z). Then, the sum of

integrals of the curl of the velocity over all possible closed loops (Γs) is not zero, that is,

∑
∮

Γ

∇× u 6= 0 (9)

We will not delve extensively into this issue here; instead, we will examine the scenarios in the

microscopic domain when particles show indications of rotation. At a given time t, the velocity u

should also be a function of the position (x, y, z). Then, the velocity components along the three axes
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should satisfy the condition that a non-zero curl, meaning u1(x1, x2, x3), u2(x1, x2, x3) and u3(x1, x2, x3)

are subject to the following constraints:

(

∂u3

∂x2
− ∂u2

∂x3

)

i +

(

∂u1

∂x3
− ∂u3

∂x1

)

j +

(

∂u2

∂x1
− ∂u1

∂x2

)

k 6= 0 (10)

We will focus on the form of the Itô equation when the curl is specified.

To elucidate this problem further, we present a concrete example. Assuming these particles

rotate within the plane (x1, x2, 0) around the axis (0, 0, x3), resulting in a curl value of (0, 0, ω),

and the magnitude of the particle’s linear velocity remains constant at u. We proceed to solve the

following equation:







































∂u3

∂x2
− ∂u2

∂x3
= 0,

∂u1

∂x3
− ∂u3

∂x1
= 0,

∂u2

∂x1
− ∂u1

∂x2
= ω,

u2
1 + u2

2 + u2
3 = u.

(11)

Subsequently, we select a particular solution from the aforementioned equation to illustrate the issue:















u1 = −
√

u2 − ω2x2
1,

u2 = ωx1,

u3 = 0.

(12)

Substituting Equation (12) into Equation (8) and omitting the time term, we obtain



























dx1(t) = −
√

u2 − ω2x2
1 dt +

√
c2 − u2

c
σdw1(t),

dx2(t) = ωx1dt +

√
c2 − u2

c
σdw2(t),

dx3(t) =

√
c2 − u2

c
σdw3(t).

(13)

We substitute the values ω = 0.1, c = 100, u = 60, and σ = 10 into Equation (13) and simulate

with a sample of 100 particles. The results are depicted in Figure 2:

Figure 2. Simulation results of the trajectories of 100 particles randomly moving for 10 s (ω = 0.1,

c = 100, u = 60 and σ = 10).
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In Figure 2, although only the motion of 100 particles starting from the same point is depicted, it is

not difficult to infer the motion scenarios at various points when the starting positions are distributed

across the entire plane. We will not elaborate further with additional examples here.

3. Conclusions

For a set of k particles with a defined average energy, when their velocity magnitudes follow a

Maxwell distribution characterized by the parameter
1

2

√

π

2
c (average speed is c), their random motion

can lead to angular velocity magnitudes that follow a Maxwell distribution with the parameter
c
√

π

2R
√

k
.

Specifically, when the curl of the particles maintains a certain value, their motion must satisfy the

biased conditions defined by Equations (8) and (10). Notably, akin to the scenario where the particle

group moves linearly, these rotation effects are also constrained by the special relativistic-like effects.

Supplementary Materials: The following supporting information can be downloaded at the website of this paper
posted on Preprints.org. Mathematica code for necessary calculation process and graphics.

Data Availability Statement: All data generated or analysed during this study are included in this published
article and its Supplementary Information files.
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