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Abstract: In this study, we investigate the behavior of randomly moving particles with a defined
average energy, focusing on their biased motion around a specific point. These particles’ velocity
magnitudes follow a Maxwell distribution characterized by certain parameters. Our analysis derives
the stochastic rotation rules for these particles and introduces the It6 equation conditions for biased
stochastic rotation at a given curl value. We also consider the special relativistic-like effects in this
context. The findings are validated through a representative example.
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1. Introduction

For a collection of particles with a defined average energy, their magnitudes of velocities follow a
Maxwell distribution characterized by a specific parameter. When a subset of the particles exhibits
biased motion in their movement direction, they can be characterized as three distinct and prevalent
types of biased stochastic motion (At an extremely large particle count and scale, even scenarios with
exceedingly low probabilities can manifest with notable frequency within a specific region). These
biased motions encompass: 1) stochastic movement with a preferential direction while maintaining
equal probabilities in other directions; 2) stochastic movement favoring a specific spatial point but
equi-probable in alternative directions; and 3) stochastic movement with a predilection for revolving
around a designated rotational center. Within these scenarios of biased stochastic motion, systems
exhibiting characteristics of the first situation display the special relativistic-like effects [1,2]. On the
other hand, biased stochastic motions with higher probabilities directed towards or revolving around a
specific center incorporate these special relativistic-like effects into processes of spatial aggregation [3]
or rotational phenomena [4].

For the rotational effect produced by biased randomly moving particles, the constituent particles
of the rotating body inherently experience a displacement in linear velocity. Consequently, such
motion should also exhibit special relativistic-like effects. Previous research [4] has investigated the
rotational behavior generated by a group (radius is R) of randomly moving particles with consistent
linear velocities c¢. The conclusion drawn is that the magnitude of the angular velocity produced by
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actual physical systems, it is more common for these particles to not have perfectly consistent linear
speeds. Instead, when the energy is fixed, their speeds follow a Maxwell distribution determined by a
specific parameter. Furthermore, nearly every celestial body in the universe is rotating. The underlying
mechanism for this rotation might be a result of the collective actions of particles whose speeds follow
a Maxwell distribution. In summary, it is essential to thoroughly investigate the distribution of angular
speeds generated by particles with speeds following a Maxwell distribution as they move randomly in
space. Based on this premise, when the magnitude of the angular velocity is a specific value, particles
undergoing pure random motion transition to biased random motion. Presenting the corresponding
Itd equation expression under this scenario is the primary objective of this paper.

k randomly moving particles follows a Maxwell distribution with a scale parameter of
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With the aid of mathematical packages, certain complex theoretical problems can be effortlessly
addressed. Currently, among the world’s most powerful symbolic computation packages are Maple
(Cybernet Systems Co., Ltd., Japan) and Mathematica (Wolfram Research Inc., USA). The intricately
designed algorithms within these platforms have facilitated the work of countless scientists and
engineers worldwide. However, these mathematical packages are neither universal nor omnipotent.
Real-world problems are often intricate, and relying solely on one specific package might not provide
an optimal solution. It is essential to utilize a combination of software tools and appropriately
decompose the actual problem to achieve a comprehensive resolution. In this study, Mathematica
v13.2 was employed for theoretical derivations, while Maple v2023 was utilized for solving the system
of partial differential equations.

This study first examines the distribution of rotational angular velocity magnitudes in a particle
system with a defined average energy, where the magnitudes of the particle velocities follow a Maxwell
distribution with a specific scale parameter. Subsequently, a set of 1td equations that describe the
motion characteristics of biased moving particles with rotational effects is introduced. Finally, an
illustrative example is provided to further elucidate the characteristics of these Itd equations. The
biased moving particles discussed in this study, which exhibit special relativistic-like effects, differ from
the conventional understanding where particle motion must follow the constraints of special relativity.
This study assumes that these particles move at relatively low speeds, essentially unaffected by
special relativistic effects, or they represent ideal particles completely unaffected by special relativistic
effects. In this study, the average speed ¢ represents the mean magnitude of particle velocities rather
than the speed of light. These biased moving particles can exhibit common significant phenomena.
Understanding their essence is crucial for comprehending the effects of special relativity and the
inherent nature behind rotations influenced by special relativistic effects.

2. Results and Discussion

For particle assemblies with consistent magnitudes of velocity and directions arbitrarily dispersed
within a three-dimensional domain, the resultant rotational effects in space have been comprehensively
examined in our prior publication [4]. This study primarily investigates the rotational behavior in
space exhibited by particle assemblies under identical conditions, where the norms of their velocities
follow a Maxwell distribution. Analogous to the investigative approach presented in reference [4], we
first examine the distribution of the norm ||s]| of the random angular velocity generated by a random
vector Vs with its origin uniformly distributed on a unit sphere S, where the norm of Vg follows a
Maxwell distribution with a mean of ¢ (Figure 1). Assuming r is the radius of the unit sphere S, then

wg =1 X vs. 1

Figure 1. Schematic diagram of the generation method for the vector w’. The radius ||Vs|| of S’ denotes

1 /m
the mean of norms of the spatial vectors that follow a Maxwell distribution with a parameter 51/ 3¢
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Let us establish a 3-dimensional Cartesian coordinate system for S'. Suppose that the disk D’/
is perpendicular to the z-axis and consider the random variables ® ~ U(—1,1) and H ~ U(—m, 7).
Then, the norm of the random vector 2’ obtained by projecting the uniformly distributed points on

sphere S’ onto disc D’ is
||| = |[Vs|| - V1 - @2, @)

Therefore, the probability of || (|| is

4x?
8xe7ﬁ
|| () =9~z *=20 3)
0, otherwise.

Assuming Fx(x) is one coordinate X that is equivalent to the three coordinates of R. By taking a
product Fx(x) - ||'|| (x) of random variables, we can obtain the probability density of X, which
represents one of the three equivalent coordinates of the angular velocity €25 contributed by the
random vector Vg, specifically,

erfc<2x>
J’ X 2 O,

C
ws x(x) = ¢ 4)

erfc Z—X +1
o/
c

The probability density of equivalent coordinate Qg x of Qg contributed by Vg which is uniformly
distributed throughout the whole unit ball enclosed by the sphere S is

rerfc< 2rx >
o \wn) >0

wpx(x,1) = ¢ ®)

r {erfc <C2\r/3%> + 1]

c

, otherwise.

, otherwise.

Thus, the distribution function Qg x(7) of the contribution of Vj to one of the equivalent coordinates
of 0p is obtained. Next, Qg x(r) is integrated over the whole unit ball and the probability density of
the contribution of V3 in the whole unit ball to an equivalent coordinate X of the angular velocity g
can be obtained:

wle(x) =
5 | 2 42 ]
e | (7 —oa)erf( ) —dex ot 1) e 7@ roaet |, 20,
: e ©)
25637 (643(4 — 37T2C4) erf(cf/x%> _|_ 4cx (37TC2 _|_ 8x2) eiﬁ + 64:x4 , Otherwise,
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Next, we extend the analysis to the case in which the radius of the ball has an arbitrary value R. The
probability density of the contribution of the random vector V to the single equivalent coordinate X of
angular velocity € is

wx(x) =
[ 4R2y2 7
3 | (37 64R 2Rx\ 4 (37mc® +8R?X?) —— 64R
o 22 ) erf — e m 1220, x>0,
256 |\ R3x* ¢ W R2L3 ;
: : )
4R?x?
3 64R  37%c3 ¢ 2Rx 4 (37c* + 8R?X?) - 3, 64R e
256 c rRext ) N\ eym + R23 e +—— |, otherwise,

NG

2R
random vectors V move randomly in space, according to the central limit theorem (when they are

grouped together), the norm || Q2|| of the average angular velocity generated by all of their components
/7T
2RV

Building upon this foundation, we delve into the representation of this stochastic rotation behavior
using the Itd equation, specifically discussing scenarios where the curl assumes a defined value of
(a,b,c), where a,b,c € R. For particle assemblies with a defined energy, the magnitudes of their
velocities follow a Maxwell distribution characterized by specific parameters. Previous research has
provided the form of the Itd equation for particles exhibiting biased random motion in a particular
direction, incorporating the special relativistic-like effects [2]. In this study, we further incorporate the
special relativistic-like effects into the stochastic rotation.

For any given particle, the biased motion around a specific point fundamentally remains a

c
the standard deviation of which is

. Therefore, when k independent and identically distributed

relative to their total centroid follows a Maxwell distribution with scale parameter

movement with a linear velocity. Consequently, it still adheres to the velocity reduction inherent of
special relativistic-like. Assuming that at a specific time ¢, the linear velocity of a particle at position
(x,y,z) is u(t), its projections onto the three coordinate axes are uj(t), up(t) and uz(t). As per the
description method in the literature [2], the It6 equation at time ¢ can be expressed as:

Ay (£) = wy (H)dt + 7\/C2_Cwadwl(t),
Ao (t) = up(£)dt + 7”2_6”(”20@2(”,

cZ —u(t)?

®)

dxz(t) = ug(t)dt + odws(t),

where u(t) = \/u1 ()2 + ua(t)? + uz(t)2. Differing from the literature, here we replace u1, u, and u3
with uy(t), u(t) and u3(t). From a macroscopic perspective, if the system exhibits rotational effects,
then at a given time ¢, the velocity u should also be a function of the position (x,y, z). Then, the sum of
integrals of the curl of the velocity over all possible closed loops (I's) is not zero, that is,

vaXu¢o )
T

We will not delve extensively into this issue here; instead, we will examine the scenarios in the
microscopic domain when particles show indications of rotation. At a given time ¢, the velocity u
should also be a function of the position (x,y, z). Then, the velocity components along the three axes
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should satisfy the condition that a non-zero curl, meaning 1 (x1, x2, x3), uz(x1, x2, x3) and uz(x1, x2, x3)
are subject to the following constraints:

(22 (22 (2B -

axz aX3 aX3 axl ax1 axz

We will focus on the form of the It6 equation when the curl is specified.

To elucidate this problem further, we present a concrete example. Assuming these particles
rotate within the plane (x1,x,0) around the axis (0,0, x3), resulting in a curl value of (0,0,w),
and the magnitude of the particle’s linear velocity remains constant at . We proceed to solve the
following equation:

dus _ Jup _

ox, dxz

our _ ou _

ox3 dox; 11
i o _ "
8x1 axz o

u% + u% + u% =u.

Subsequently, we select a particular solution from the aforementioned equation to illustrate the issue:
Uy = —y/u? — w?x2,
Uy = wixq, (12)
usz = 0.

Substituting Equation (12) into Equation (8) and omitting the time term, we obtain

JZ 2
dxy(t) = —\/u? — w2x2dt + %wal(t),
2,2

dxy(t) = wxidt + %waz(t), (13)
2 _ 42
dus (1) = %waw).

We substitute the values w = 0.1,c = 100, u = 60, and ¢ = 10 into Equation (13) and simulate
with a sample of 100 particles. The results are depicted in Figure 2:

Figure 2. Simulation results of the trajectories of 100 particles randomly moving for 10 s (w = 0.1,
¢ =100, u = 60 and ¢ = 10).
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In Figure 2, although only the motion of 100 particles starting from the same point is depicted, it is
not difficult to infer the motion scenarios at various points when the starting positions are distributed
across the entire plane. We will not elaborate further with additional examples here.

3. Conclusions
For a set of k particles with a defined average energy, when their velocity magnitudes follow a

1 |/
Maxwell distribution characterized by the parameter 51/ 3¢ (average speed is c), their random motion

cy/1
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Specifically, when the curl of the particles maintains a certain value, their motion must satisfy the
biased conditions defined by Equations (8) and (10). Notably, akin to the scenario where the particle
group moves linearly, these rotation effects are also constrained by the special relativistic-like effects.

can lead to angular velocity magnitudes that follow a Maxwell distribution with the parameter
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posted on Preprints.org. Mathematica code for necessary calculation process and graphics.

Data Availability Statement: All data generated or analysed during this study are included in this published
article and its Supplementary Information files.

Acknowledgments: The author is thankful for Maplesoft Inc. and Wolfram Inc.

References

1. Guo, T. Study on the average speed of particles from a particle swarm derived from a stationary particle
swarm. Scientific Reports 2021, 11, 1-4.

2. Guo, T. Biased Random Process of Randomly Moving Particles with Fixed Mean and Group Velocities. AIP
Advances 2023, 13, 045006.

3. Guo, T. Dynamics of stochastic-constrained particles. Scientific Reports 2023, 13, 2759.

4. Yang, T.; Guo, T. The angular speed distribution of randomly moving-particle group. AIP Advances 2022,
12, 045005.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://www.preprints.org/
https://doi.org/10.20944/preprints202309.0454.v1

	Introduction
	Results and Discussion
	Conclusions
	References

