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1. Introduction

Information geometry as a famed theory in geometry is a gadget to peruse spaces
including of probability measures. Nowadays, this interdisciplinary field as a combination
of differential geometry and statistics has impressive role in various science. For instance, a
manifold learning theory in a hypothesis space consisting of models is developed in [12].
The semi-Riemannian metric of this hypothesis space is uniquely derived relied on the
information geometry of the probability distributions. In [2], Amari also presented the
geometrical and statistical ideas for investigating neural networks including invisible units
or unobservable variables. To see more applications of this geometry in other sciences, can
be referred to [5,8].

Suppose that ¢ is an open subset of R" and x is a sample space with parameter
&= (¢',---,&m). A statistical model S is the set of probability density functions defined by

S=1{pid): [y =1, ply8) >0, L L SR,
The Fisher information matrix ¢(&) = [¢5({)] on S is given as
81s(¢) == /)C ilz0slep(y; §)dy = Ep[01£edste], ©)

where E [¢] is the expectation of £(y) with respect to p(y;¢), £z = £(y; &) := logp(y; &) and

d :== a%, The space S with together the information matrices is a statistical manifold.

In 1920, Fisher was the first one who offered (1) as a mathematical purpose of informa-
tion (see [9]). It is observed that (S, ¢) is a Riemannian manifold if all components of ¢ are
converging to real numbers and g is positive-definite. So g is called a Fisher metric on S.
Using g, an affine connection V with respect to p(y; &) is described by

T x = §(V,0s,0k) 1= Ep[(919sLz)0xle]. 2
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Nearly Kahler structures on Riemannian manifolds were specified by Gray [10] to
describe an especial class of almost Hermitian structures in every even dimension. As
an odd-dimensional peer of nearly Kdhler manifolds, nearly Sasakian manifolds were
introduced by Blair, Yano and Showers in [7]. They presented that a normal nearly Sasakian
structure is Sasakian and a hypersurface of a nearly Kahler structure is nearly Sasakian if
and only if it is quasi-umbilical with the (almost) contact form. In particular, S® properly
imbedded in S® inherits a nearly Sasakian structure which is not Sasakian.

A statistical manifold can be considered as an expanse of a Riemannian manifold
such that the compatibility of the Riemannian metric is developed to a general condition.
Applying this opinion in geometry, we create a convenient nearly Sasakian structure on
statistical structures and define a nearly Sasakian statistical manifold.

The purpose of this paper is to present nearly Sasakian and nearly Kéhler structures on
statistical manifolds and show the relation between two geometric notions. To achieve this
goal, the notions and attributes of statistical manifolds are obtained in Section 2. In Section
3, we describe a nearly Sasakian structure on statistical manifolds and give some properties
of them. In Section 4, we investigate nearly Kéhler structures on statistical manifolds. In
this context the conditions for a real hypersurface in a nearly Kéhler statistical manifold
to admit a nearly Sasakian statistical structure are given. Section 6 is devoted to study
(anti-)invariant statistical submanifolds of nearly Sasakian statistical manifolds. Some
conditions under which an invariant submanifold of a nearly Sasakian statistical manifold
is itself a nearly Sasakian statistical manifold are given at the end.

2. Preliminaries

For an n-dimensional manifold N, consider (U, xi), i=1,...,n,as alocal chart of the
point x € U. Considering the coordinates (x') on N, we have the local field % |p as frames
on TpN.

An affine connection V is called Codazzi connection if the Codazzi equations satisfy:

(Vx,8)(X2, X3) = (Vx,8)(X1,X3), (= (Vx;9) (X1, X2)), ®)
for any X1, X5, X3 € I'(TN) where
(Vx;8)(X2, X3) = X18(X2, X3) — 8(Vx, X2, X3) — 8(X2, Vx, X3). 4)

The triplet (N, g, V) also is called a statistical manifold if the Codazzi connection V is a sta-
tistical connection, i.e., a torsion-free Codazzi connection. Moreover, the affine connection
V* as a (dual) conjugate connection of V with respect to g is determined by

X18(Xa, X3) = g(Vx, X2, X3) + g(X2, V¥, X3). )
Considering V¢ as the Levi-Civita connection on N, one can see V& = 1(V + V*) and
V*¢=-Vg.

Thus (N, g, V*) forms a statistical manifold. In particular, the torsion-free Codazzi connec-
tion V reduces to the Levi-Civita connection V¢ if Vg = 0.
A (1,2)-tensor field K on a statistical manifold (N, g, V) is described by

Kx, X2 = Vx, X2 — Vi Xa, (6)
from (2) and (3) we have

1

K=V V" = 2(V-V"). @)
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Hence, it follows that K satisfies
Kx, Xo = Kx, X1,  g(Kx,Xp, X1) = g(X1,Kx,X3). 8)
The curvature tensor RV of a torsion-free linear connection V is described by
RY(X1,X2) = Vx,Vx, = Vi, Vx, — Vix, xo)r )

for any Xj, Xp € T(TN). On a statistical structure (V, g), denote the curvature tensor of V
as RV or R for short, and denote RV" as R* in a similar argument. It is obvious that

R(X1,X2) = —R(X2, X1), (10)
R*(X1, X2) = —R* (X2, X1). (11)

Moreover, setting R (X1, Xp, X3, X4) = g(R(X1, X2) X3, X4), we can see that

R(Xll XZ/ X3/ X4> = _R*(Xll XZ/ X4/ X3)/ (12)
R(Xl, Xz)X3+R(X2,X3)X1 —|—R(X3,X1)X2 =0, (13)
R*(Xl,Xz)X3+R*(X2,X3)X1 +R*(X3, Xl)Xz =0. (14)

The statistical curvature tensor field S of the statistical structure (V, g) is given by
1 "
S(X1,X2)X3 = E{R(Xl,XZ)X:%"‘R (X1, X2)X3}. (15)

By the definition of R, it follows

S(Xl/ XZ/ X3/ X4) = - S(X2I Xlr X3r X4)/
S(X1,Xp,X3,Xy) = —8(Xq, X2, Xy, X3),
S(X1, X2, X3, Xy) = 8(X3, Xy, X1, X2),

where S(X1, Xz, X3, X4) = g(S(Xl, Xz)Xg, X4).
The Lie derivative with respect to a metric tensor g in a statistical manifold (N .8, V),
for any Xi, Xp,v € T(TN) is given by

(£08)(X1, X2) =g(V, v, X2) + g(X1, V§,0)
=g(Vx,v,X2) — g(Kx,v, X2) + g(X1, Vx,0) — g(X1,Kx,0).

The vector field v is said to be the Killing vector field or infinitesimal isometry if £,¢ = 0.
Hence using the above equation and (8), it follows

8(Vx,v, Xa) + 8(X1, Vx,v) = 28(Kx, 0, X3). (16)
Similarly, (7) implies
8(Vx, v, Xa) +8(X1, Vix,0) = —28(Kx, v, X3).

The curvature tensor R¢ of a Riemannian manifold (N, g) admitting a Killing vector
field v, satisfies the following

RE(Xy1,0)Xp = V§ Vi v — v% L (17)

for any Xj, Xp,v € T(TN) [6].
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3. Nearly Sasakian statistical manifolds

An almost contact manifold is a (2n + 1)-dimensional differentiable manifold N
equipped with an almost contact structure (F, v, u) where F is a tensor field of type (1,1),
v a vector field and u a 1-form such that

Fl=—I+u®v, Fou=0, u(v)=1 (18)

Also, N will be called an almost contact metric manifold if it admits a pseudo-Riemannian
metric ¢ with the following condition

Q(FXy, FXp) = g(Xy, Xo) —u(Xq)u(Xz), VXy,X, € T(TN). (19)
Moreover, as in the almost contact case, (19) yields u = g(.,v) and g(., F) = —g(F,.).

Theorem 1. The statistical curvature tensor field S of a statistical manifold (N, g, V) with an
almost contact metric structure (F,v,u,g) such that the vector field v is Killing, satisfies the
equation

28(X1,v) Xy = Vx, Vx,0— VVxlev + Vi, Vi, 0 — V*V,;{lxzv,
forany X1,X, € T(TN).
Proof. According to (10), (12) and (14) we can write

R*(XZI X?)r Xl/ Z)) = - R* (X3/ Xl/ XZ/ 'U) - R*(Xll XZr XB/ U)
:R(X3, Xl/ 0, Xz) + R(Xl,Xz, 0, Xg)
= — R(Xl,Xg, o, Xz) — R(Xz, Xl,U, Xg).

Applying (9) in the above equation we find
R* (X, X3, X1,v) =¢(—=Vx,Vx,0 + Vx,Vx, v+ V%, 3]0 X3) (20)
+8(=Vx,Vx,0+ Vx, Vx,0 + Vi, x,10, X3).
Since v is Killing, differentiating
8(Vx,v,X3) + 8(Xo, Vx,v) = 2¢(Kx,0v, X3),
with respect to X;, we obtain

2X18(Kx, X20) =(Vx,8)(Vx,0, X2) +8(Vx, Vx;0, X2)
+g(VX3v,VX1X2) + (VX18)<VXZU/ X3)
+ g(VXIVXZU, X3) + g(Vsz, VX1X3).

Setting the last equation in (20), it follows

R*(Xp, X3,X1,0) = 2g(VX1VX27), X3) — Zg(valxzv, X3)+ Z(Vxlg) (anv, X3)
+28(Kx,v, Vx, X2) — 2X18(Kx, X2, 0) — 28(Kx, v, [X3, X))
+ 2X3g(KX1X2, U) + 2g(KX2Z), [Xl,X3]) — 2X2g(KX1X3, Z))
+28(Kx,v, Vx,X1) + R(X2, X3,7, X1).


https://doi.org/10.20944/preprints202305.1356.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 May 2023 d0i:10.20944/preprints202305.1356.v1

50f19

As (Vx,8)(Vx,v, Xp) = —2¢(Kx, Vx,v, X2) and using (12) in the above equation we get

R(Xz, X3,0, Xl) = —g(Vlexzv, X3) —l—g(valxzv, Xg) + zg(KX1X2r vaT})

— 8(Kx,v, Vx, X2) — §(Kx,v, [ X1, X3]) + X18(Kx, X2, 0)
+ 8(Kx, v, [X3, Xa]) — X38(Kx, X2,v) + X28(Kx, X3, v)
— g(KX3U, VX2X1)-

Similarly, we find
R* (Xz, X3,0, Xl) = —g(V*Xl V*sz, X3) + g(V*VS*quU’ X3) - 2g(KX1X2, V*ng)

+ g(Kx,v, Vi, X2) + g(Kx, 0, [X1, X3]) — X18(Kx,X2,0)
— 8(Kx,v, [X3, Xp]) + X38(Kx, X2, v) — X»8(Kx, X3,0)
+g(KX3Z), V§(2X1).

Adding the previous relations and using (7) and (15), we have the assertion. O

A nearly Sasakian manifold is an almost contact metric manifold (N, F,v,u, g) if
(VE,F)Xa + (V§,F) X1 = —28(X1, X2)v + u(X1) Xz + u(X2) X1, (21)

for any X, Xy € I'(TN) [7]. In such manifolds, the vector field v is Killing. Moreover, a
tensor field & of type (1,1) is determined by

v§1v = FXq +hX;. (22)
The last equation immediately leads to that / is skew-symmetric and
hoF =—Foh, hv=0, uoh=0,
and
Vih=VEF =Foh= %ﬁz,f.
Moreover, Olszak proved the following formulas in [11]:

R3(FX1, Xp, X3, X4)+RE(X1, FXo, X3, X4)+RE(X1, Xo, FX3, Xa)

+RE(X, Xo, X3, FX4) =0, (23)
RE(FXq, FXo, FX3, FX4) =RE(X1, Xa, X3, X4) —RE(v, X, X3, X4 )u(X7)

+R8(v, X1, X3, Xa)u(Xz), (24)
RE (v, X1) Xy = g(X1 — 12Xy, Xp)v — u(Xp) (X1 — h?Xy), (25)
RS8(FX1, FXz)v =0, (26)

for any Xi, X5, X3, X4 € T(TN).

Lemma 1. For a manifold N with a statistical structure (V,g), and an almost contact metric
structure (F,v,u,g), the following holds

Vi FXo — FVy, X0 + Vi FXi — FVi, X1 = (Y F) X + (VS )X
+ KXl]:XZ + KXZJ:X1 + 2]:KX1X2,

for any X1,X, € T(TN).
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Proof. (6) and (7) imply

Vi, FXo—FVy, Xo+ Vi, F X1 = FVx, X1 =V§ FXa+Kx, FXo—FV§ Xa
+FKx, X2+ V§ FX1 + Kx, F X
—FV§, X1+ FKx, X1
=(V&,F)Xa+(V5, F) X1 +Kx, FXa
+KX2-FX1 +2]:KX1 X5.

Hence, the proof is complete. [J

Definition 1. A nearly Sasakian statistical structure on N is a quintuple (V,g, F, v, u) consisting
of a statistical structure (V,g) and a nearly Sasakian structure (g, F,v, u) satisfying

Kx, FXy 4+ Kx, FX1 = —2FKx, X3, (27)

forany X1, X, € T(TN).

A nearly Sasakian statistical manifold is a manifold which admits a nearly Sasakian
statistical structure.

Remark 1. A multiple (N, V*, g, F,v,u) is also a nearly Sasakian statistical manifold if (N, ¥V, g, F,v, u)
is a nearly Sasakian statistical manifold. In this case, from Lemma 1 and Definition 1, we have

Vi FXa = FVx,Xa + Vi, FX1 = FVx, X1 = (V§ F)Xa + (V§, F) X1,
for any X1, X, € T(TN).
Theorem 2. If (N, V, g) is a statistical manifold, and (g, F,v) an almost contact metric structure

on N, then (V,g, F,v) is a nearly Sasakian statistical structure on N if and only if the following
formulas hold:

Vxl]:Xz — ]:V’)FQXZ + VXZJ:X1 — }'V3}2X1 = u(Xl)Xz + u(Xz)Xl — Zg(Xl, Xz)v, (28)
V*Xl]:Xz - FVx, X2+ V;QJ:X1 — FVx, X1 = u(X1)Xp + u(X2) Xy —28(X1, X2)v, (29)

for any X1, X, € T(TN).

Proof. Let (N, V, g, F,v) be a nearly Sasakian statistical manifold. Applying (21), Lemma
1 and Definition 1, we get (28). Also, (29) follows from Remark 1. Conversely, using (7) and
subtracting the relations (28) and (29), we obtain (27). O

Example 1. Let us consider the 3-dimensional unite sphere S° in the complex two dimensional

space C2. As S3 is isomorphic to the Lie group SU(2), set {ey1, ez, e3} as the basis of the Lie algebra
su(2) of SU(2) obtained by

o Y2(i 0\ V2[00 1) _1/(0 i
=727\ i) %2 2 \-1 0) B2\ o)

So, the Lie bracket are described by
le1,e2] =2e3, [ep,e3] =e1, [e1,e3] = —en.
The Riemannian metric g on S is defined by the following

g(er,e0) = g(er,e3) = glea,e3) =0, gler,e1) = g(ea, e2) = gles, e3) = 1.
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Assume that v = e3 and u is the 1-form described by u(X1) = ¢(Xq,v) for any X; € T(TS?).
Considering F as a (1, 1)-tensor field determined by F(e1) = —ep, F(ep) = ey and F(v) =0,
the above equations imply that (S®, F,v,u, g) is an almost contact metric manifold. Using Koszul's
formula, it follows Vfiej =0,i,j =1,2,3, except

V§le2 =v= —szel, Vflv = —ep, V‘egzv =eq.
According to the above equations we see that
(VEF)ej + (VEF)ei = 0= —2g(e;, e)v -+ ule;)e; + ulej)e;, i,j=1,2,3,

unless

(Vfl]-')el + (V‘fl]-")el = —2v = —2¢(ey,e1)v+uler)e; + u(er)ey,
(V& F)v+ (ViF)er
)
)

(
e1 = —2g(e1,v)v+uler)v+ u(v)ey,
(v(gz]:)eZ + (V§2‘F (5] (
(V&,F)es + (V5 F)es

—2v = —2g(ez, e2)v + u(ey)ex + u(er)ey,

e = —2g(e2, e3)v + u(ez)es + u(es)e,
which gives (g, F,v,u) is a nearly Sasakian structure on S>. Setting
K(ei,e1) =e1, K(e,e2) = K(eg, 1) = —e2, K(ep, €2) = —ey,
while the other cases are zero, one see that K satisfies (8). From (6), it follows
Vee1 =e1, Veer =e3—ey, Veez = —e, Vee1 = —e —e3, Ve,e0 = —e1, Ve,03 = €.
So, we obtain (V..g) (ej, ex) =0,i,j,k=1,2,3, except
(Veg)(eer) = =2, (Veg)(ez e2) = (Vey8)(er,e2) = (Vey8)(e2,1) = 2.
Hence (V,g) is a statistical structure on S°. Moreover, the equations

Ke, F(e1) + K, F(e1) = 260 = —2F K €1,
Kelf(eZ) +K€2]:(€l) =2e1 = —2FK, ez,
KeZ‘F(ez) +K32‘F(62) = _262 = _ZFKEZEZI

hold. Therefore (S®,V, g, F,v,u) is a nearly Sasakian statistical manifold.

Proposition 1. For a nearly Sasakian statistical manifold (N,V, g, F,v,u), the following condi-
tions hold:

i) FKyv =0,
ll) FK]:le = 0,
lll) KUX1 = M(Xl)K-,;Z),
iv) Vx,v= V‘%(lv +u(X1)Kyo,
v) Vx,v = Vilv —u(X1)Kyo,
forany X; € T(TN).
Proof. Setting X; = X» = v in (27), it follows (i). For X, = v in (27), we have

K]:le = —Z.Flel). (30)
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Putting X; = FXj in the last equation and using (18), we get
Kx,v = u(X1)Kyv + 2FKrx, 0. (31)
Applying F yields
FKx,v = —2KFx,v +2u(Krx,v)v.
(30) and the last equation imply
3Krx,v = 4u(Krx,v)v,

which gives us FKrx, v = 0, so (ii) holds. This and (31) yield (iii). From (6), (7) and (iii) we
have (iv) and (v). O

Corollary 1. A nearly Sasakian statistical manifold satisfies the following
M(Xz)KXlKU’U = U(Xl)KXZva = M(KX1X2)KU’U,
forany X1, X, € T(TN).

Proof. (6) and (30) imply
~F*(Vx,0— V¥ 0) =0,

which gives us
Vx,v= Vilv +¢(Vx,v,0)v.

Similarly
Vo= V%}lv +g(Vx,v,0)o.

Then subtracting the above two equations yields
Kx,v = g(Vx,v,0),
which gives us K,v = ¢(V40,v)v. Thus we obtain
u(Xp)Kx, Kov = u(X2)8(Vov,v)Kx, v = u(X1)u(X2)g(Vov, v)Kyv = u(Xy)Kx, Kyv.
Moreover, (iii) implies
u(Kx, X2)Kpv = g(Kx, Xo,v)Kpv = g(Kx, v, X2)Kpv = u(Xq)u(X2)g(Vov,v)Kyv.
So the assertion follows. O

Corollary 2. In a nearly Sasakian statistical manifold N, let X1 € T(TN) and X, Lv. Then
1. KXliJ = 0,
2. Vxov=Vyv=V§o

Proposition 2. On a nearly Sasakian statistical manifold, the following holds
§(Vx,0,X2) + 8(Va,0, X1) = 2u(X1)u(X2)g(Ks,0),
for any X1, X, € T(TN).

Proof. Since v is a Killing vector field in a nearly Sasakian manifold (see [7]), hence we
have

g(V% v, X2) +g(V,0,X1) = 0.
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Setting (6) in the above equation, we have the assertion. [

Lemma 2. Let (N,V,g, F,v) be a nearly Sasakian statistical manifold. Then the statistical
curvature tensor field satisfies

S(0,X1)Xo = g(X1 — X1, Xo)v — u(Xo) (X1 — h*Xy),
forany X1, X, € T(TN).
Proof. According to (6), (7) and Theorem 1, we can write
Vi, V0 = Vg x,0 = Vi, Vi 0 + Vi, (1(X2)Kov) — vé;xlxﬂ —u(Vx, X2)Kov
= Kx, V&, 0+ V& V&, 0 + (Vx,4) XaKov
+ u(X) (Kx, Kov + V5§ Kov) — VgVil %0 vixl X0
Applying (17) in the above equation, we have
Vx, Vx,0— vileU = RE(X1,0) Xz + KX1V§(ZU + (Vx,u) XoKyv
+ u(Xo) (Kx, Kov + v§(1va) - vix] %, 0"
We conclude similarly that
Vi, Vi,0 — V"‘V?(l %0 = RE(X1,0) Xy — Kx, V§ 0 — (Vi 1) XaKov
+ u(Xo) (Kx, Kov — V‘;g(lva) + V%Xl %0
The above two equations imply
Vx, Vx,0 = Vyy x,0+ Vx Vx,0 - V*V%sz
= 2R8(X1,v)Xo — 2u(Kx, X2)Kypv 4 2u(Xo)Kx, Ky0,
from this and Theorem 1, we have
S(X1,v)Xo = RE(Xq,v) Xy — u(Kx, X2)Kov 4 u(X2)Kx, Kov.
Thus the assertion follows from the last equation, (25) and Corollary 1. [
Corollary 3. On a nearly Sasakian statistical manifold N, the following holds

S(X1, X2)v = g(— X1 + 12X, Xo)v + u(X2) (X1 — h2Xy) (32)
+ (X — h* Xy, X1)v — u(X1)(Xy — K2 Xy),
S(le,]'—Xz)”UZO, (33)

for any X1, X, € T(TN).
Proof. We have
S(Xl, Xz)v = *S(U, Xl)Xz — S(Xz, U)Xl.

Applying Lemma 2 in the last equation, it follows (32). To prove (33), putting X; = FX;
and X; = FXj in the above equation and using the skew-symmetric property of /1, we get

S(FXy, FXp)v =¢(—FXq + W FXy, FX2)v 4 §(FXy — 2 F Xy, FX1)v = 0.
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O

Proposition 3. The statistical curvature tensor field S of a nearly Sasakian statistical manifold N,
satisfies the following

S(FX1/X2/X3/X4)+S(X1/~FX2/X3/X4) +S(X11X2/~FX3/X4)
+ S(Xll X2/ X3/ ]:X4) = 0/ (34)

S(FXy, FXo, FX3, FXy) = S(X1, X2, X3, Xy) + u(X2)R8 (v, X1, X3, X4)
— M(Xl)Rg(U, Xz, X3, X4), (35)

forany X1, X, X3, X4 € T(TN).
Proof. Applying (7) in (15), it follows

S(X1,X2)X3 = RE(X1, X2) X3 + [Kx,, Kx,] X3. (36)
Thus using (36) and (23), we can write

S(FXy,Xo, X3, X4)+S(Xq, FXa, X3, Xy) + S(Xq, Xa, FX3, Xy4)
+ S(X1, X2, X3, FXy4)
= ¢(Krx,Kx,X3 — Kx,KFx, X3 + Kx, Krx, X3
— Krx,Kx, X3X3 — Kx,Kx, F X3, X4)
+ KX1KX2]: + g(leKx2X3 — Kx,Kx, X3, FXy). (37)

On the other hand, (27) implies
g(KleXZ + KXZJ:XL Xg) = Zg(le X>, .FX3),
which gives us

§(Krx, Kx, X3 — Kx,Krx, X5 + Kx, Krx, X3 — Krx,Kx, X3 + Kx, Kx, F X3
— Kx,Kx, FX3,X4) + g(Kx,Kx, X3 — Kx,Kx, X3, F X34)

= 2¢(Kx, X3, FKx, Xy) — 28(Kx, X3, FKx, X4) + 28(FKx, X3, Kx, X4)
—2¢(FKx, X3,Kx, X4)

=0.

Putting the above equation in (37), we get (34). Considering X; = FXj in (34) and using
(18), it follows

—S(X1, X3, X3, Xg)Hu(Xq)S (v, Xz, X3, X4) +S(F X1, FX2, X3, X4)
+S(.FX1,X2,.FX3,X4) +8(.FX1,X2,X3,.7:X4):0. (38)

Similarly, setting X, = F X5, X3 = FX3 and Xy = F X4, respectively, we have

S(FXl,fX2,X3,X4>_8(X1,X2,X3,X4)+M(X2)S(X1,'U,X3,X4)
+S(X1,]:X2, FXs, X4)+S(X1, FX5, X3, ]:X4) =0, (39)

S(‘FXl/ XZ/FX3/X4)+ S(Xl/FXZI-FX:’)/X‘L)_S(X1/X2/X3/ X4)
+ M(Xg,)S(Xl, X5,7, X4)+ S(Xl, Xy, F X3, fX4)= 0, (40)
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and

S(]:Xl, X5,X3, .7:X4)+ S(X1,]:X2, X3, .7:X4)—|— S(Xl,Xz, FXs, ]:X4)
— 8(X1, Xo, X3, Xa) + u(X4)S(X1, X2, X3,0) = 0. (41)

By adding (38) and (39), and subtracting the expression obtained from (40) and (41), we
will have

28(]-'X1,]-"X2, X3, X4) — ZS(Xl, Xo, FX3, .7:X4) + M(Xl)S(U, X5, X3, X4)
+ M(Xz)S(Xl, 0, X3, X4) — u(X3)S(X1,X2, 0, X4) — M(X4)S(X1, Xz, X3, Z)) =0.

Replacing X and X, by FX; and FXj, we can rewrite the last equation as

28(F?X1, F?Xa, X3, Xy) — 28(F Xy, FXa, FX3, FXy)
— M(Xg)S(]:Xl, .7:X2, 0, X4) — u(X4)S(.FX1,fX2, X3,Z)) = O.

Applying (33) in the above equation, we get
S(F2X1, F2Xa, X3, X4) = S(FX1, FXa, F X3, F Xs).
On the other hand using (18), it is seen that

S(fZXlI-FQXZ/ X3/ X4) = S(XerZI X3/ X4) - M(XZ)S(Xl,U, X3r X4)
- M(Xl)S(Z), X2, X3, X4>.

According to (32), we have
RE(0, X1, X3, Xy) = R3(X3, X4,0,X1) = 8(X3, Xy,v, X1) = S(0, Xy, X3, Xy).
The above three equations imply (35). O
Corollary 4. The tensor field K in a nearly Sasakian statistical manifold N, satisfies the relation
FIKrx, Krx,]F = [Kx;, Kx, ],
for any X1,X, € T(TN).
Proof. Using (24) and (36), we obtain

8(]:X1, ]:Xz, ]:X3, ]:X4) — S(X1, Xz, X3, X4) — M(Xz)Rg(v, Xl, X3, X4)
+ M(Xl)Rg(vr XZ/ X31 X4)
= ¢(Krx,Krx, F X3 — Krx,Krx, F X3, FXy) — §(Kx,Kx, X3 — Kx,Kx, X3, X34)
= F[Krx,, Krx,|FX3 — [Kx,, Kx,| X3.
Comparing with relation (35) yields the assertion. [J

A statistical manifold is called conjugate symmetric if the curvature tensors of the
connections V and V*, are equal, i.e.,

R(X1,X2) X3 = R* (X1, X2) X3,

for all Xy, X, X3 € T(TN).
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Corollary 5. Let (N,V, g, F,v) be a conjugate symmetric nearly Sasakian statistical manifold.
Then the following holds

R(}—Xl,]‘—Xz, .7'—X3,]'—X4) — T\’,(Xl, X, X3, X4)

= u(X2)R(X3,X4,0, X1) — u(X1)R(X3, X4,v, Xp),
R(X],Xz)v = Rg(Xl, Xz)’(’),

R(FX1, FXp)v =0,

forany Xq,X5, X3, X4 € T(TN).

4. Hypersurfaces in nearly Kihler statistical manifolds

Let N be a smooth manifold. A pair (¢, ]) is said to be an almost Hermitian structure
on N if

PP=-1d, §(JX1,]X2) = §(X1, Xa),

for any X1, X, € ['(TN). Let V&€ denotes the Riemannian connection of §. Then ] is Killing
if and only if

(V& DX2 + (V§,)) X1 = 0.

In this case, the pair (&, ]) is called a nearly Kahler structure and if J is integrable, the
structure is Kdhlerian [7].

Lemma 3. Let (V,§) be a statistical structure, and (§,]) a nearly Kihler structure on N. We
have the following formula:

Vi, JXa= ]V, Xa + Vi, JX1 = [V X1 = (V& ) Xa + (V) X1 + Rx, ] Xa
+ Kx,J X1+ 2]JKx, Xo,

for any X1, Xp € T(TN) where K is given as (8) for (V, §).

Definition 2. A nearly Kihler statistical structure on N is a triple (V,§,]), where (V,§) isa
statistical structure, (¢, ]) is a nearly Kihler structure on N and the following equality is satisfied

Rx, JXo + Kx, ] X1 = —2]Kx, X,
for any X1, X, € T(TN).

Let N be a hypersurface of a statistical manifold (N, §, V, V*). Considering n and
g, respectively as a unit normal vector field and the induced metric on N, the following
relations hold

vX1X2 = VX1X2 + h(Xy, X3)n, len = —AX; + 1t(X1)n, 42)
Vi, X2 = Vi, X2 +h* (X1, Xp)n, Vi n=—A"X;+7(Xq)n, (43)

for any Xj, X, € T(TN). It follows
§(AX1,Xp) =h"(Xy,Xz), §(A™X1,Xo) =h(X1,Xz), 7T(Xq)+7(X1)=0. (44)

Furthermore, the second fundamental form hS is related to the Levi-Civita connections V8
and V¢ by

v§(1X2 = v§<1xz +h8(Xy, X2)n, viln = —A8Xy,
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where g(AgX1,X2) = hg(Xl, Xz).

Remark 2. Let (N, §,]) be a nearly Kihler manifold, and N a hypersurface with a unit normal
vector field n. Let g be the induced metric on N, and consider v, u and F, respectively as a vector
field, a 1-form and a tensor of type (1,1)on N such that

v=—]n, (45)
X1 =FX1 + M(X])n, (46)

forany Xy € T(TN). Then (g, F,v) is an almost contact metric structure on N [7].

Lemma4. Let (N,V,§,]) be a nearly Kihler statistical manifold. If (N, g, F,v) is a hypersurface
with the induced almost contact metric structure as in Remark 2, and (V, §) the induced statistical
structure on N as in (42), then the following hold

i) FAv =0,

ii) g(AXy,v) = u(Av)u(Xy),

lll) AX1 =V, FXq — ]—"V;Xl — .FV;}IZ) + M(Xl)AU,

iv) T(X1) = §(Vx,v,v) — g(X1, Vov) — u(Xq)t(0),

U) VX1]:X2 — .FV}}l Xy + szfxl — ./—"V’f(le = fZg(AXLXz)U + u(Xz)Axl

+u(X1)AXo,
vi) §(Vx,0,X2) + 8(Vx,0, X1) = §(FA™ X1, Xp) + g(FA* X, Xq) — u(Xq)7(X2)
—u(X)t(X1),
forany Xq1,X, € T(TN).
Proof. According to Definition 2 and (45), we can write
0=Vx,Jo—Vxn=]Vy0—Vy]X1 +]V;X1 — Vxn.

Applying (42), (43) and (46) in the above equation, we have

0=J(Vx,v+g(AX1,0)n) — Vo (FXy + u(Xq)n) + (VX1 + g(Av, X1)n)
+ AX1 —1t(X1)n
= F(Vx,0) —gl(
+ {u(Vx,v) — g(

— AXl,U)U - VU]:(Xl) + M(Xl)AU + F(V;Xl) - g(AU, Xl)v + AXl
—g(A*, FXy) —o(u(Xy)) —u(Xq)t(v) + u(VyX1) — 7(Xq1) }n. (47)
Vanishing tangential part yields

AXy = VoF Xy = FV; Xy — FVx, v+ 28(AXy,0)v — u(Xq)Av. (48)
Setting X; = v in the above equation, it follows

Av = u(Av)v, (49)

hence FAv = 0 and implies (i), from which (ii) follows because 0 = g(FAv, FX;) =
g(Av, Xq) — u(Av)u(Xy). From (48) and (49) we have (iii). Vanishing vertical part in (47)

and using (i) and
U(M(Xl)) = g(vler 7)) + g(Xlr vvv)/

we get (iv). As

Vx,JXa = JVx, X2 + Vx,J X1 = V%, X1 =0,
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thus (42), (43), (45) and (46) imply

VXl]:XZ — u(Xz)Axl - f(V}}l Xz) + g(AXl, Xz)U + szfxl — M(X1)AX2 - ]:(V§(2X1)
+g(AX2, Xl)TJ + {g(A*Xl,]:Xz) —i—g(leU, Xz) + M(Xz)T(Xl) —i—g(A*Xz, .FX])
+g(X1rszv) + u(Xl)T(XZ)}n =0.

From the above equation, (v) and (vi) follow. O

Remark 3. In the analogous setting in Lemma 4, we have equations for the dual connection V*.
For example, equation (i) is given as
FA*v =0.

We note to this equation as (i)* for brief if there is no danger of confusion.

Theorem 3. Let (N,V,§,]) be a nearly Kiihler statistical manifold and (N, V, g, F,v) an almost
contact metric statistical hypersurface in N given by (42), (43), (45) and (46). Then (N, V, g, F,v)
is a nearly Sasakian statistical manifold if and only if
AX1=X1+ u(Xl)(Av — U), (50)
A*Xy = X1+ M(Xl)(A*U - U), (51)

forany X; € T(TN).

Proof. Let (V,g, F,v) bea nearly Sasakian statistical structure on N. According to Defini-
tion 1 we have

le]:XZ — FV;}le + VXZ.Fxl — FV§2X1 = —Zg(Xl, Xz)l) + M(Xl)Xz + M(Xz)Xl,
which gives us
Vo FXq — ]—'V;}lv — FViX1 = —u(X1)v+ Xj.

Putting the last equation in the part (iii) of Lemma 4, we obtain (50). Similarly, we can
prove (51). Conversely, let the shape operators satisfy (50). From the part (v) of Lemma 4
yields

Vx, FXo = FVyx Xo+ Vx, FX1 — FVx, X1 = —2¢(X1 + u(X1)(Av — v), Xp)v

+ u(X2)(Xq1 +u(X1)(Av —0))

+ u(X1) (X2 + u(Xz) (Av - 0))

= —2g9(Xq, Xp)v+ u(X1)Xo + u(X2)Xy.

In the same way, (v)* and (51) imply
V;Q}-XZ — }—le X + V§2}'X1 — fVszl = —Zg(Xl, Xz)v + u(X1)X2 + M(Xz)Xl.
According to the above equations and Theorem 2, the proof completes. []

5. Submanifolds of nearly Sasakian statistical manifolds

Let N be a n-dimensional submanifold of an almost contact metric statistical manifold
(N,V,g,F,5,i1). We denote the induced metric on N by ¢. For all U; € T(TN) and
{ € T(T+N), we put FU; = FU, + FU, and F{ = F{ + F{ where FU;, F{ € T(TN)
and FU;, F{ € T(THN). If F(T,N) C T,N and F(T,N) C T, N for any p € N, then N is
called F-invariant and F-anti-invariant, respectively.
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Proposition 4. [13] Any F-invariant submanifold N imbedded in an almost contact metric
manifold (N,V,g, F,9,1) in such a way that the vector field o is always tangent to N has the
induced almost contact metric structure (g, F,v, u).

For any U;, U, € T'(TN), the corresponding Gauss formulas are given by
Vi e = Vi Ua +h(Uy, Wp), ViU = Vi Uz +h* (U, Up). (52)

It is proved that (V, g) and (V*, g) are statistical structures on N and h and h* are sym-
metric and bilinear. The mean curvature vector field with respect to V is described by

H= ltmce(h).
m

The submanifold N is a V-totally umbilical submanifold if h(Uy, Uy) = g(Uy, Up)H for

all Uy, Uy € T(TN). Also, the submanifold N is called V-autoparallel if h(Uy, Up) = 0

for any Uj, U, € T(TN). The submanifold N is said to be dual-autoparallel if it is both

V- and V*-autoparallel, i.e.,, h(Uj, Uy) = h*(Uy, Uy) = 0 for any Uy, U, € T(TN). If

h8 (U, Uy) = 0 for any Uy, Uy € T'(TN), the submanifold N is called totally geodesic.

Moreover, the submanifold N is called V-minimal (V*-minimal) if H = 0 (H* = 0).
Forany U; € T(TN) and { € T(T+N), the Weingarten formulas are

Vu, = =AUy + Dy, Vi, =—AiUy + D, (53)

where D and D* are the normal connections on I'(T+N) and the tensor fields h, h*, A and
A* satisfy

g(Agulz UZ) = g(h*(ulf UZ)/ g)/ g(AZ’ull UZ) = g(h(ull u2)/ g)

Also, the Levi-Civita connections V& and V¢ are associated to the second fundamental
form h$ by

Vi s = Vi U +h8(Uy, W), Vi § = —AfU +Dfy ¢, (54)
where g(AZUy, Uz) = g(hS (Uy, Ua), {).

On a statistical submanifold (N, V, g) of a statistical manifold (N, V, g), for any tan-
gent vector fields Uy, U, € I'(TN), we consider the difference tensor K on N as

2Ky, Uy = Vi, Uz — V’&l U,. (55)
From (7), (52) and the above equation, it follows that
ZKUIUQ = 2Ku1U2 —I—h(U1, UQ) —h*(Ul,Uz). (56)

More precisely, for the tangential part and the normal part we have
_ _ 1 .
(KuyUn) " = KuyUp,  (KuyU)* = S (h(Uy, Uz) = b (Uy, Ua)),

respectively. Similarly, for U; € T(TN) and { € T(T+N) we have
Kulé = (Kulé)—r + (KU1€)l/

where . 1
(K, 0)' = E(Azul — Agly), (K, o) = E(Dulg - Dy, 0)-


https://doi.org/10.20944/preprints202305.1356.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 May 2023 d0i:10.20944/preprints202305.1356.v1

16 of 19

Now suppose that (N,g) be a submanifold of a nearly Sasakian statistical manifold
(N,V,g,F,0). As a tensor field & of type (1,1) on N is described by V85 = F + 1, we can
set hll; = hU; + hUy and h = h{ + hl where hU;, h{ € T(TN) and hlly, h{ € T(T+N) for
any U € T(TN) and { € T(T*+N). Furthermore, if #(T,N) C T,N and /(T,N) C Ty N,
then N is called fi-invariant and f-anti-invariant, respectively.

Proposition 5. Let N be a submanifold of a nearly Sasakian statistical manifold (N,V, g, F,0,1),
where the vector field & is normal to N. Then

g(FUy, Up) = g(Uy, hly), YUy, Uy € T(TN). (57)

Moreover,

i) N is a h-anti-invariant submanifold if and only if N is a F-anti-invariant submanifold.

ii) If h = 0, then N is a F-anti-invariant submanifold.

iii) If N is a h-invariant and F-invariant submanifold, then hU; = —F Uy, for any U; € T(TN).

Proof. Using (22) and Proposition 1 for any Uy, U € I'(TN), we can write
g(FUy + hly, Up) = g(V{; 3,Us) = g(Viy, 0, Uy).
(53) and the above equation imply
§(FUy + Uy, Up) = g(—AsUy + Dy, 0, Up) = —g(Agly, Up) = —g(3,h*(Uy, Uy)).

As h* is symmetric and the operators 1 and g are skew-symmetric, the above equation
yields } . 5 } . )
g(FUy +hly, Up) = g(FUy + hip, Uy) = —g(FU; + hiy, Uy).

Hence g(FU; + hll, Uy) = 0, which gives (57). If Nisa hi-anti-invariant submanifold, we
have g(Uy, hlly) = 0. Thus (i) follows from (57). Similarly, we have (ii) and (iii). O

Lemma 5. Let (N, V,g) be a F-anti-invariant statistical submanifold of a nearly Sasakian statis-
tical manifold (N, V, g, F,6,il) such that the structure (F,v,u) on N is given by Proposition 4.
i) If 0 is tangent to N, then

Vv = u(Uy)Kyo = = V{0, h(Uy,v) = FU; + hUy = h*(Uy,v), YU; € T(TN).
ii) If 0 is normal to N, then
A; =0= A5, Dy d=FU +hU; = Dy, 3, vU; € T(TN).
Proof. Applying (22), (52) and Proposition 1 and using K,v = K,v = ¢(V,0,v)v, we have
FU; + hly + u(Uy)Kyo = Vfllv + u(Uy)Kpv = Vv = Vo +h(Uy, ).
Thus the normal part is h(Us, v) = FUj + hlU; and the tangential partis Vi, 0 = u(U; ) Kyo.
Similarly, we get their dual parts. Hence (i) holds. If  is normal to N, from (22) and (53), it
follows
FU; +hU; = V{Ilﬁ = Vu,0 = — Azl + Dy, 0.

Considering the normal and tangential components of the last equation we get (ii). Since
Vo= Vﬁl v = V{0, we have the dual part of assertion. [J
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Lemma 6. Let (N,V,g) be a F-invariant and h-invariant statistical submanifold of a nearly
Sasakian statistical manifold (N, V,g, F,3,il). Then for any Uy € T(TN) if
i) ¥ is tangent to N, then

Vo = FUy + hly +u(Uy) Koo, Vi o = FUy + hly —u(Uy) Koo,
h(U,v) =0 =h*(Uy,0).
ii) O is normal to N, then
AsUy = —FUy —hly = AjU;, D3 =0=D"0.
Proof. The relations are proved using a same way applied to the proof of Lemma 5. [

Theorem 4. On a nearly Sasakian statistical manifold (N, V, g, F,0,1), if N is a F-anti-invariant
V-totally umbilical statistical submanifold of N and © is tangent to N, then N is \/-minimal in N.

Proof. According to Lemma 5, h(v,v) = 0. As N is a totally umbilical submanifold, thus it
follows
0=nh(v,v) =g(v,v)H =H,

which gives us the assertion. [

Theorem 5. Let N be a F-invariant submanifold of a nearly Sasakian statistical manifold (N, ¥V, g, F,6,1),
where the vector field 7 is tangent to N. If

h8(Uy, FUp) =Fh8(Uy, Uy), (58)
h(Uy, FUp) — h*(Uy, FUp) =Fh* (U, Up) — Fh(Uy, Up), (59)

forall Uy, Uy € T(TN), then (V, g, F,v,u) forms a nearly Sasakian statistical structure on N.

Proof. According to Proposition 4, N has the induced almost contact metric structure
(g, F,v,u). Also, (52) show that (V, g) is a statistical structure on N. Applying (54), we can
write

Vi, Fly =V FU + h8(Uy, FUsy)
:(Vﬁl}")uz + ]-"Vfll U + hé(Uy, FUy).

As h is symmetric, from (58), we have h8(FUj, U;) = h8(U;, FU,). Hence the above
equation implies

Vi, Fla + Vi FUy =(V§, F)Us + (Vi F)Uy + FV Uy + FVE Uy + 208 (Uy, FU).
On the other hand, since N has a nearly Sasakian structure, we have

thfuz + W{Izﬁul

= (V§, F)Uz + (V§, F)U
(Vi F)lz + (vg Fu
= —2¢(Uy, Up)v + u(Up) U,
= —Zg(ul, UZ)U+M( )

Vi, Uz + Vi, Un)

\%7 u2+vg JUn + 208 (U, Uy))

U, )U1+}'(Vg Uy + Vi, U +2h8 (U, Uy))
Uy + FV, u2+fvg Ui + 2708 (Uy, Up).

1+ 7(
1+ F(
2+ u(
2 +u(l

(58) and the above two equations yield

(Vi F)Ua + (Vi F)Us = —2g(Uy, Ua)o + u(Uy ) Uz + u(Ua) Uy
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Thus (N, V8, g, F,v,u) is a nearly Sasakian statistical manifold. For the nearly Sasakian
statistical manifold N, using (27) we have

Ry, FUy + Ry, FUy = —2F Ry, Uy,
for any Uy, Uy € T(TN). Applying (56) in the last equation, it follows
K, FUy + 3 (h(Uy, FUp) b (U, FUn) + Ky FUy + 3 (h(Us, FUy) — b (Uy, FUy))
= —2FKy, Uy + Fh* (Uy, Uy) — Fh(Uy, Uy).
From the above equation and (59), we get
Ky, FUz + Ky, FUy = —2F Ky, Us.

Therefore (N, V¢, g, F,v,u) is a nearly Sasakian statistical manifold. Hence the proof
completes. O

Proposition 6. Let N be a F-invariant and h-invariant statistical submanifold of a nearly Sasakian
statistical manifold (N, N/, g, F,0, 1) such that © is tangent to N. Then

(Vuyh) (Us, 0) = (Vi h) (Uz, 0) = (V, h) (Uy,v) = —h(Ua, FU; + hily),
and
(Vi h*) (Uz,0) = (Vi h*) (Uz, 0) = (V{ h*)(Uz, 0) = —h*(Up, FU; + hlly),
forany Uy, U, € T(TN).
Proof. We have
(Vi h)(Uz, v) = Vi h(Uy, 0) — h(Vy, U, 0) — h(Uy, Vi, 0),

for any Uy, Up € T'(TN). According to Proposition 1, the part (i) of Lemma 6 and the above
equation, we have

(vulh)(UZI U) = *h(Uz, vuﬂ’) = 7h(U2, Fu] + hul + u(ul)K‘l)v) = *h(Uz, ]:ul + hul)
Similarly, other parts are obtained. [

Corollary 6. Let N be a F-invariant and h-invariant statistical submanifold of a nearly Sasakian
statistical manifold (N,V, g, F,0,1). If 3 is tangent to N, then the following conditions are
equivalent

i) h and h* are parallel with respect to the connection V;

ii) N is dual-autoparallel.
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