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1. Introduction

Information geometry as a famed theory in geometry is a gadget to peruse spaces
including of probability measures. Nowadays, this interdisciplinary field as a combination
of differential geometry and statistics has impressive role in various science. For instance, a
manifold learning theory in a hypothesis space consisting of models is developed in [12].
The semi-Riemannian metric of this hypothesis space is uniquely derived relied on the
information geometry of the probability distributions. In [2], Amari also presented the
geometrical and statistical ideas for investigating neural networks including invisible units
or unobservable variables. To see more applications of this geometry in other sciences, can
be referred to [5,8].

Suppose that ζ is an open subset of Rn and χ is a sample space with parameter
ξ = (ξ1, · · · , ξn). A statistical model S is the set of probability density functions defined by

S = {p(y; ξ) :
∫

χ
p(y; ξ)dy = 1, p(y; ξ) > 0, ξ ∈ ζ ⊆ Rn}.

The Fisher information matrix g(ξ) = [gls(ξ)] on S is given as

gls(ξ) :=
∫

χ
∂l`ξ∂s`ξ p(y; ξ)dy = Ep[∂l`ξ ∂s`ξ ], (1)

where Ep[`] is the expectation of `(y) with respect to p(y; ξ), `ξ = `(y; ξ) := logp(y; ξ) and
∂l := ∂

∂ξ l . The space S with together the information matrices is a statistical manifold.
In 1920, Fisher was the first one who offered (1) as a mathematical purpose of informa-

tion (see [9]). It is observed that (S, g) is a Riemannian manifold if all components of g are
converging to real numbers and g is positive-definite. So g is called a Fisher metric on S.
Using g, an affine connection ∇ with respect to p(y; ξ) is described by

Γls,k = g(∇∂l
∂s, ∂k) := Ep[(∂l∂s`ξ)∂k`ξ ]. (2)
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Nearly Kähler structures on Riemannian manifolds were specified by Gray [10] to
describe an especial class of almost Hermitian structures in every even dimension. As
an odd-dimensional peer of nearly Kähler manifolds, nearly Sasakian manifolds were
introduced by Blair, Yano and Showers in [7]. They presented that a normal nearly Sasakian
structure is Sasakian and a hypersurface of a nearly Kähler structure is nearly Sasakian if
and only if it is quasi-umbilical with the (almost) contact form. In particular, S5 properly
imbedded in S6 inherits a nearly Sasakian structure which is not Sasakian.

A statistical manifold can be considered as an expanse of a Riemannian manifold
such that the compatibility of the Riemannian metric is developed to a general condition.
Applying this opinion in geometry, we create a convenient nearly Sasakian structure on
statistical structures and define a nearly Sasakian statistical manifold.

The purpose of this paper is to present nearly Sasakian and nearly Kähler structures on
statistical manifolds and show the relation between two geometric notions. To achieve this
goal, the notions and attributes of statistical manifolds are obtained in Section 2. In Section
3, we describe a nearly Sasakian structure on statistical manifolds and give some properties
of them. In Section 4, we investigate nearly Kähler structures on statistical manifolds. In
this context the conditions for a real hypersurface in a nearly Kähler statistical manifold
to admit a nearly Sasakian statistical structure are given. Section 6 is devoted to study
(anti-)invariant statistical submanifolds of nearly Sasakian statistical manifolds. Some
conditions under which an invariant submanifold of a nearly Sasakian statistical manifold
is itself a nearly Sasakian statistical manifold are given at the end.

2. Preliminaries

For an n-dimensional manifold N, consider (U, xi), i = 1, . . . , n, as a local chart of the
point x ∈ U. Considering the coordinates (xi) on N, we have the local field ∂

∂xi |p as frames
on TpN.

An affine connection ∇ is called Codazzi connection if the Codazzi equations satisfy:

(∇X1 g)(X2, X3) = (∇X2 g)(X1, X3), (= (∇X3 g)(X1, X2)), (3)

for any X1, X2, X3 ∈ Γ(TN) where

(∇X1 g)(X2, X3) = X1g(X2, X3)− g(∇X1 X2, X3)− g(X2,∇X1 X3). (4)

The triplet (N, g,∇) also is called a statistical manifold if the Codazzi connection ∇ is a sta-
tistical connection, i.e., a torsion-free Codazzi connection. Moreover, the affine connection
∇∗ as a (dual) conjugate connection of ∇ with respect to g is determined by

X1g(X2, X3) = g(∇X1 X2, X3) + g(X2,∇∗X1
X3). (5)

Considering ∇g as the Levi-Civita connection on N, one can see ∇g = 1
2 (∇+∇∗) and

∇∗g = −∇g.

Thus (N, g,∇∗) forms a statistical manifold. In particular, the torsion-free Codazzi connec-
tion ∇ reduces to the Levi-Civita connection ∇g if ∇g = 0.

A (1, 2)-tensor field K on a statistical manifold (N, g,∇) is described by

KX1 X2 = ∇X1 X2 −∇
g
X1

X2, (6)

from (2) and (3) we have

K = ∇g −∇∗ = 1
2
(∇−∇∗). (7)
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Hence, it follows that K satisfies

KX1 X2 = KX2 X1, g(KX3 X2, X1) = g(X1, KX2 X3). (8)

The curvature tensorR∇ of a torsion-free linear connection ∇ is described by

R∇(X1, X2) = ∇X1∇X2 −∇X2∇X1 −∇[X1,X2]
, (9)

for any X1, X2 ∈ Γ(TN). On a statistical structure (∇, g), denote the curvature tensor of ∇
asR∇ orR for short, and denoteR∇∗ asR∗ in a similar argument. It is obvious that

R(X1, X2) = −R(X2, X1), (10)

R∗(X1, X2) = −R∗(X2, X1). (11)

Moreover, settingR(X1, X2, X3, X4) = g(R(X1, X2)X3, X4), we can see that

R(X1, X2, X3, X4) = −R∗(X1, X2, X4, X3), (12)

R(X1, X2)X3 +R(X2, X3)X1 +R(X3, X1)X2 = 0, (13)

R∗(X1, X2)X3 +R∗(X2, X3)X1 +R∗(X3, X1)X2 = 0. (14)

The statistical curvature tensor field S of the statistical structure (∇, g) is given by

S(X1, X2)X3 =
1
2
{R(X1, X2)X3 +R∗(X1, X2)X3}. (15)

By the definition ofR, it follows

S(X1, X2, X3, X4) =− S(X2, X1, X3, X4),

S(X1, X2, X3, X4) =− S(X1, X2, X4, X3),

S(X1, X2, X3, X4) = S(X3, X4, X1, X2),

where S(X1, X2, X3, X4) = g(S(X1, X2)X3, X4).
The Lie derivative with respect to a metric tensor g in a statistical manifold (N, g,∇),

for any X1, X2, v ∈ Γ(TN) is given by

(£vg)(X1, X2) =g(∇g
X1

v, X2) + g(X1,∇g
X2

v)

=g(∇X1 v, X2)− g(KX1 v, X2) + g(X1,∇X2 v)− g(X1, KX2 v).

The vector field v is said to be the Killing vector field or infinitesimal isometry if £vg = 0.
Hence using the above equation and (8), it follows

g(∇X1 v, X2) + g(X1,∇X2 v) = 2g(KX1 v, X2). (16)

Similarly, (7) implies

g(∇∗X1
v, X2) + g(X1,∇∗X2

v) = −2g(KX1 v, X2).

The curvature tensorRg of a Riemannian manifold (N, g) admitting a Killing vector
field v, satisfies the following

Rg(X1, v)X2 = ∇g
X1
∇g

X2
v−∇g

∇g
X1

X2
v, (17)

for any X1, X2, v ∈ Γ(TN) [6].
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3. Nearly Sasakian statistical manifolds

An almost contact manifold is a (2n + 1)-dimensional differentiable manifold N
equipped with an almost contact structure (F , v, u) where F is a tensor field of type (1, 1),
v a vector field and u a 1-form such that

F 2 = −I + u⊗ v, Fv = 0, u(v) = 1. (18)

Also, N will be called an almost contact metric manifold if it admits a pseudo-Riemannian
metric g with the following condition

g(FX1,FX2) = g(X1, X2)− u(X1)u(X2), ∀X1, X2 ∈ Γ(TN). (19)

Moreover, as in the almost contact case, (19) yields u = g(., v) and g(.,F ) = −g(F , .).

Theorem 1. The statistical curvature tensor field S of a statistical manifold (N, g,∇) with an
almost contact metric structure (F , v, u, g) such that the vector field v is Killing, satisfies the
equation

2S(X1, v)X2 = ∇X1∇X2 v−∇∇X1 X2 v +∇∗X1
∇∗X2

v−∇∗∇∗X1
X2

v,

for any X1, X2 ∈ Γ(TN).

Proof. According to (10), (12) and (14) we can write

R∗(X2, X3, X1, v) =−R∗(X3, X1, X2, v)−R∗(X1, X2, X3, v)

=R(X3, X1, v, X2) +R(X1, X2, v, X3)

=−R(X1, X3, v, X2)−R(X2, X1, v, X3).

Applying (9) in the above equation we find

R∗(X2, X3, X1, v) =g(−∇X1∇X3 v +∇X3∇X1 v +∇[X1,X3]
v, X2) (20)

+ g(−∇X2∇X1 v +∇X1∇X2 v +∇[X2,X1]
v, X3).

Since v is Killing, differentiating

g(∇X2 v, X3) + g(X2,∇X3 v) = 2g(KX2 v, X3),

with respect to X1, we obtain

2X1g(KX3 X2v) =(∇X1 g)(∇X3 v, X2) + g(∇X1∇X3 v, X2)

+ g(∇X3 v,∇X1 X2) + (∇X1 g)(∇X2 v, X3)

+ g(∇X1∇X2 v, X3) + g(∇X2 v,∇X1 X3).

Setting the last equation in (20), it follows

R∗(X2, X3, X1, v) = 2g(∇X1∇X2 v, X3)− 2g(∇∇X1 X2 v, X3) + 2(∇X1 g)(∇X3 v, X2)

+ 2g(KX3 v,∇X1 X2)− 2X1g(KX3 X2, v)− 2g(KX1 v, [X3, X2])

+ 2X3g(KX1 X2, v) + 2g(KX2 v, [X1, X3])− 2X2g(KX1 X3, v)

+ 2g(KX3 v,∇X2 X1) +R(X2, X3, v, X1).
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As (∇X1 g)(∇X3 v, X2) = −2g(KX1∇X3 v, X2) and using (12) in the above equation we get

R(X2, X3, v, X1) = −g(∇X1∇X2 v, X3) + g(∇∇X1 X2 v, X3) + 2g(KX1 X2,∇X3 v)

− g(KX3 v,∇X1 X2)− g(KX2 v, [X1, X3]) + X1g(KX3 X2, v)

+ g(KX1 v, [X3, X2])− X3g(KX1 X2, v) + X2g(KX1 X3, v)

− g(KX3 v,∇X2 X1).

Similarly, we find

R∗(X2, X3, v, X1) = −g(∇∗X1
∇∗X2

v, X3) + g(∇∗∇∗X1
X2

v, X3)− 2g(KX1 X2,∇∗X3
v)

+ g(KX3 v,∇∗X1
X2) + g(KX2 v, [X1, X3])− X1g(KX3 X2, v)

− g(KX1 v, [X3, X2]) + X3g(KX1 X2, v)− X2g(KX1 X3, v)

+ g(KX3 v,∇∗X2
X1).

Adding the previous relations and using (7) and (15), we have the assertion.

A nearly Sasakian manifold is an almost contact metric manifold (N,F , v, u, g) if

(∇g
X1
F )X2 + (∇g

X2
F )X1 = −2g(X1, X2)v + u(X1)X2 + u(X2)X1, (21)

for any X1, X2 ∈ Γ(TN) [7]. In such manifolds, the vector field v is Killing. Moreover, a
tensor field h of type (1, 1) is determined by

∇g
X1

v = FX1 + hX1. (22)

The last equation immediately leads to that h is skew-symmetric and

h ◦ F = −F ◦ h, hv = 0, u ◦ h = 0,

and

∇g
vh = ∇g

vF = F ◦ h =
1
3

£vF .

Moreover, Olszak proved the following formulas in [11]:

Rg(FX1, X2, X3, X4)+Rg(X1,FX2, X3, X4)+Rg(X1, X2,FX3, X4)

+Rg(X1, X2, X3,FX4)=0, (23)

Rg(FX1,FX2,FX3,FX4)=Rg(X1, X2, X3, X4)−Rg(v, X2, X3, X4)u(X1)

+Rg(v, X1, X3, X4)u(X2), (24)

Rg(v, X1)X2 = g(X1 − h2X1, X2)v− u(X2)(X1 − h2X1), (25)

Rg(FX1,FX2)v = 0, (26)

for any X1, X2, X3, X4 ∈ Γ(TN).

Lemma 1. For a manifold N with a statistical structure (∇, g), and an almost contact metric
structure (F , v, u, g), the following holds

∇X1FX2 −F∇∗X1
X2 +∇X2FX1 −F∇∗X2

X1 = (∇g
X1
F )X2 + (∇g

X2
F )X1

+ KX1FX2 + KX2FX1 + 2FKX1 X2,

for any X1, X2 ∈ Γ(TN).
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Proof. (6) and (7) imply

∇X1FX2−F∇∗X1
X2+∇X2FX1−F∇∗X2

X1=∇
g
X1
FX2+KX1FX2−F∇

g
X1

X2

+FKX1 X2 +∇
g
X2
FX1 + KX2FX1

−F∇g
X2

X1 +FKX2 X1

=(∇g
X1
F )X2+(∇g

X2
F )X1+KX1FX2

+KX2FX1+2FKX1 X2.

Hence, the proof is complete.

Definition 1. A nearly Sasakian statistical structure on N is a quintuple (∇, g,F , v, u) consisting
of a statistical structure (∇, g) and a nearly Sasakian structure (g,F , v, u) satisfying

KX1FX2 + KX2FX1 = −2FKX1 X2, (27)

for any X1, X2 ∈ Γ(TN).

A nearly Sasakian statistical manifold is a manifold which admits a nearly Sasakian
statistical structure.

Remark 1. A multiple (N,∇∗, g,F , v, u) is also a nearly Sasakian statistical manifold if (N,∇, g,F , v, u)
is a nearly Sasakian statistical manifold. In this case, from Lemma 1 and Definition 1, we have

∇∗X1
FX2 −F∇X1 X2 +∇∗X2

FX1 −F∇X2 X1 = (∇g
X1
F )X2 + (∇g

X2
F )X1,

for any X1, X2 ∈ Γ(TN).

Theorem 2. If (N,∇, g) is a statistical manifold, and (g,F , v) an almost contact metric structure
on N, then (∇, g,F , v) is a nearly Sasakian statistical structure on N if and only if the following
formulas hold:

∇X1FX2 −F∇∗X1
X2 +∇X2FX1 −F∇∗X2

X1 = u(X1)X2 + u(X2)X1 − 2g(X1, X2)v, (28)

∇∗X1
FX2 −F∇X1 X2 +∇∗X2

FX1 −F∇X2 X1 = u(X1)X2 + u(X2)X1 − 2g(X1, X2)v, (29)

for any X1, X2 ∈ Γ(TN).

Proof. Let (N,∇, g,F , v) be a nearly Sasakian statistical manifold. Applying (21), Lemma
1 and Definition 1, we get (28). Also, (29) follows from Remark 1. Conversely, using (7) and
subtracting the relations (28) and (29), we obtain (27).

Example 1. Let us consider the 3-dimensional unite sphere S3 in the complex two dimensional
space C2. As S3 is isomorphic to the Lie group SU(2), set {e1, e2, e3} as the basis of the Lie algebra
su(2) of SU(2) obtained by

e1 =

√
2

2

(
i 0
0 ī

)
, e2 =

√
2

2

(
0 1
−1 0

)
, e3 =

1
2

(
0 i
i 0

)
.

So, the Lie bracket are described by

[e1, e2] = 2e3, [e2, e3] = e1, [e1, e3] = −e2.

The Riemannian metric g on S3 is defined by the following

g(e1, e2) = g(e1, e3) = g(e2, e3) = 0, g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.
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Assume that v = e3 and u is the 1-form described by u(X1) = g(X1, v) for any X1 ∈ Γ(TS3).
Considering F as a (1, 1)-tensor field determined by F (e1) = −e2,F (e2) = e1 and F (v) = 0,
the above equations imply that (S3,F , v, u, g) is an almost contact metric manifold. Using Koszul’s
formula, it follows ∇g

ei ej = 0, i, j = 1, 2, 3, except

∇g
e1 e2 = v = −∇g

e2 e1, ∇g
e1 v = −e2, ∇g

e2 v = e1.

According to the above equations we see that

(∇g
eiF )ej + (∇g

ejF )ei = 0 = −2g(ei, ej)v + u(ei)ej + u(ej)ei, i, j = 1, 2, 3,

unless

(∇g
e1F )e1 + (∇g

e1F )e1 = −2v = −2g(e1, e1)v + u(e1)e1 + u(e1)e1,

(∇g
e1F )v + (∇g

vF )e1 = e1 = −2g(e1, v)v + u(e1)v + u(v)e1,

(∇g
e2F )e2 + (∇g

e2F )e2 = −2v = −2g(e2, e2)v + u(e2)e2 + u(e2)e2,

(∇g
e2F )e3 + (∇g

e3F )e2 = e2 = −2g(e2, e3)v + u(e2)e3 + u(e3)e2,

which gives (g,F , v, u) is a nearly Sasakian structure on S3. Setting

K(e1, e1) = e1, K(e1, e2) = K(e2, e1) = −e2, K(e2, e2) = −e1,

while the other cases are zero, one see that K satisfies (8). From (6), it follows

∇e1 e1 = e1, ∇e1 e2 = e3 − e2, ∇e1 e3 = −e2, ∇e2 e1 = −e2 − e3, ∇e2 e2 = −e1, ∇e2 e3 = e1.

So, we obtain (∇ei g)(ej, ek) = 0, i, j, k = 1, 2, 3, except

(∇e1 g)(e1, e1) = −2, (∇e1 g)(e2, e2) = (∇e2 g)(e1, e2) = (∇e2 g)(e2, e1) = 2.

Hence (∇, g) is a statistical structure on S3. Moreover, the equations

Ke1F (e1) + Ke1F (e1) = 2e2 = −2FKe1 e1,

Ke1F (e2) + Ke2F (e1) = 2e1 = −2FKe1 e2,

Ke2F (e2) + Ke2F (e2) = −2e2 = −2FKe2 e2,

hold. Therefore (S3,∇, g,F , v, u) is a nearly Sasakian statistical manifold.

Proposition 1. For a nearly Sasakian statistical manifold (N,∇, g,F , v, u), the following condi-
tions hold:

i) FKvv = 0,

ii) FKFX1 v = 0,

iii) KvX1 = u(X1)Kvv,

iv) ∇X1 v = ∇g
X1

v + u(X1)Kvv,

v) ∇∗X1
v = ∇g

X1
v− u(X1)Kvv,

for any X1 ∈ Γ(TN).

Proof. Setting X1 = X2 = v in (27), it follows (i). For X2 = v in (27), we have

KFX1 v = −2FKX1 v. (30)
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Putting X1 = FX1 in the last equation and using (18), we get

KX1 v = u(X1)Kvv + 2FKFX1 v. (31)

Applying F yields

FKX1 v = −2KFX1 v + 2u(KFX1 v)v.

(30) and the last equation imply

3KFX1 v = 4u(KFX1 v)v,

which gives us FKFX1 v = 0, so (ii) holds. This and (31) yield (iii). From (6), (7) and (iii) we
have (iv) and (v).

Corollary 1. A nearly Sasakian statistical manifold satisfies the following

u(X2)KX1 Kvv = u(X1)KX2 Kvv = u(KX1 X2)Kvv,

for any X1, X2 ∈ Γ(TN).

Proof. (6) and (30) imply
−F 2(∇X1 v−∇g

X1
v) = 0,

which gives us
∇X1 v = ∇g

X1
v + g(∇X1 v, v)v.

Similarly
∇∗X1

v = ∇g
X1

v + g(∇∗X1
v, v)v.

Then subtracting the above two equations yields

KX1 v = g(∇X1 v, v)v,

which gives us Kvv = g(∇vv, v)v. Thus we obtain

u(X2)KX1 Kvv = u(X2)g(∇vv, v)KX1 v = u(X1)u(X2)g(∇vv, v)Kvv = u(X1)KX2 Kvv.

Moreover, (iii) implies

u(KX1 X2)Kvv = g(KX1 X2, v)Kvv = g(KX1 v, X2)Kvv = u(X1)u(X2)g(∇vv, v)Kvv.

So the assertion follows.

Corollary 2. In a nearly Sasakian statistical manifold N, let X1 ∈ Γ(TN) and X1⊥v. Then

1. KX1 v = 0,
2. ∇X1 v = ∇∗X1

v = ∇g
X1

v.

Proposition 2. On a nearly Sasakian statistical manifold, the following holds

g(∇X1 v, X2) + g(∇X2 v, X1) = 2u(X1)u(X2)g(Kvv, v),

for any X1, X2 ∈ Γ(TN).

Proof. Since v is a Killing vector field in a nearly Sasakian manifold (see [7]), hence we
have

g(∇g
X1

v, X2) + g(∇g
X2

v, X1) = 0.
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Setting (6) in the above equation, we have the assertion.

Lemma 2. Let (N,∇, g,F , v) be a nearly Sasakian statistical manifold. Then the statistical
curvature tensor field satisfies

S(v, X1)X2 = g(X1 − h2X1, X2)v− u(X2)(X1 − h2X1),

for any X1, X2 ∈ Γ(TN).

Proof. According to (6), (7) and Theorem 1, we can write

∇X1∇X2 v−∇∇X1 X2 v = ∇X1∇
g
X2

v +∇X1(u(X2)Kvv)−∇g
∇X1 X2

v− u(∇X1 X2)Kvv

= KX1∇
g
X2

v +∇g
X1
∇g

X2
v + (∇X1 u)X2Kvv

+ u(X2)(KX1 Kvv +∇g
X1

Kvv)−∇g
∇g

X1
X2

v−∇g
KX1 X2

v.

Applying (17) in the above equation, we have

∇X1∇X2 v−∇∇X1 X2 v = Rg(X1, v)X2 + KX1∇
g
X2

v + (∇X1 u)X2Kvv

+ u(X2)(KX1 Kvv +∇g
X1

Kvv)−∇g
KX1 X2

v.

We conclude similarly that

∇∗X1
∇∗X2

v−∇∗∇∗X1
X2

v = Rg(X1, v)X2 − KX1∇
g
X2

v− (∇∗X1
u)X2Kvv

+ u(X2)(KX1 Kvv−∇g
X1

Kvv) +∇g
KX1 X2

v.

The above two equations imply

∇X1∇X2 v−∇∇X1 X2 v +∇∗X1
∇∗X2

v−∇∗∇∗X1
X2

v

= 2Rg(X1, v)X2 − 2u(KX1 X2)Kvv + 2u(X2)KX1 Kvv,

from this and Theorem 1, we have

S(X1, v)X2 = Rg(X1, v)X2 − u(KX1 X2)Kvv + u(X2)KX1 Kvv.

Thus the assertion follows from the last equation, (25) and Corollary 1.

Corollary 3. On a nearly Sasakian statistical manifold N, the following holds

S(X1, X2)v = g(−X1 + h2X1, X2)v + u(X2)(X1 − h2X1) (32)

+ g(X2 − h2X2, X1)v− u(X1)(X2 − h2X2),

S(FX1,FX2)v=0, (33)

for any X1, X2 ∈ Γ(TN).

Proof. We have

S(X1, X2)v = −S(v, X1)X2 − S(X2, v)X1.

Applying Lemma 2 in the last equation, it follows (32). To prove (33), putting X1 = FX1
and X2 = FX2 in the above equation and using the skew-symmetric property of h, we get

S(FX1,FX2)v =g(−FX1 + h2FX1,FX2)v + g(FX2 − h2FX2,FX1)v = 0.
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Proposition 3. The statistical curvature tensor field S of a nearly Sasakian statistical manifold N,
satisfies the following

S(FX1, X2, X3, X4)+S(X1,FX2, X3, X4) + S(X1, X2,FX3, X4)

+ S(X1, X2, X3,FX4) = 0, (34)

S(FX1,FX2,FX3,FX4) = S(X1, X2, X3, X4) + u(X2)Rg(v, X1, X3, X4)

− u(X1)Rg(v, X2, X3, X4), (35)

for any X1, X2, X3, X4 ∈ Γ(TN).

Proof. Applying (7) in (15), it follows

S(X1, X2)X3 = Rg(X1, X2)X3 + [KX1 , KX2 ]X3. (36)

Thus using (36) and (23), we can write

S(FX1, X2, X3, X4)+S(X1,FX2, X3, X4) + S(X1, X2,FX3, X4)

+ S(X1, X2, X3,FX4)

= g(KFX1 KX2 X3 − KX2 KFX1 X3 + KX1 KFX2 X3

− KFX2 KX1 X3X3 − KX2 KX1FX3, X4)

+ KX1 KX2F + g(KX1 KX2 X3 − KX2 KX1 X3,FX4). (37)

On the other hand, (27) implies

g(KX1FX2 + KX2FX1, X3) = 2g(KX1 X2,FX3),

which gives us

g(KFX1 KX2 X3 − KX2 KFX1 X3 + KX1 KFX2 X3 − KFX2 KX1 X3 + KX1 KX2FX3

− KX2 KX1FX3, X4) + g(KX1 KX2 X3 − KX2 KX1 X3,FX4)

= 2g(KX2 X3,FKX1 X4)− 2g(KX1 X3,FKX2 X4) + 2g(FKX2 X3, KX1 X4)

− 2g(FKX1 X3, KX2 X4)

= 0.

Putting the above equation in (37), we get (34). Considering X1 = FX1 in (34) and using
(18), it follows

−S(X1, X2, X3, X4)+u(X1)S(v, X2, X3, X4)+S(FX1,FX2, X3, X4)

+S(FX1, X2,FX3, X4) + S(FX1, X2, X3,FX4)= 0. (38)

Similarly, setting X2 = FX2, X3 = FX3 and X4 = FX4, respectively, we have

S(FX1,FX2,X3, X4)− S(X1, X2, X3, X4)+u(X2)S(X1, v, X3, X4)

+S(X1,FX2,FX3, X4)+S(X1,FX2, X3,FX4)= 0, (39)

S(FX1, X2,FX3, X4)+ S(X1,FX2,FX3, X4)− S(X1, X2, X3, X4)

+ u(X3)S(X1, X2, v, X4)+ S(X1, X2,FX3,FX4)= 0, (40)
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and

S(FX1, X2,X3,FX4)+ S(X1,FX2, X3,FX4)+ S(X1, X2,FX3,FX4)

− S(X1, X2, X3, X4)+ u(X4)S(X1, X2, X3, v)= 0. (41)

By adding (38) and (39), and subtracting the expression obtained from (40) and (41), we
will have

2S(FX1,FX2, X3, X4)− 2S(X1, X2,FX3,FX4) + u(X1)S(v, X2, X3, X4)

+ u(X2)S(X1, v, X3, X4)− u(X3)S(X1, X2, v, X4)− u(X4)S(X1, X2, X3, v) = 0.

Replacing X1 and X2 by FX1 and FX2, we can rewrite the last equation as

2S(F 2X1,F 2X2, X3, X4)− 2S(FX1,FX2,FX3,FX4)

− u(X3)S(FX1,FX2, v, X4)− u(X4)S(FX1,FX2, X3, v) = 0.

Applying (33) in the above equation, we get

S(F 2X1,F 2X2, X3, X4) = S(FX1,FX2,FX3,FX4).

On the other hand using (18), it is seen that

S(F 2X1,F 2X2, X3, X4) = S(X1, X2, X3, X4)− u(X2)S(X1, v, X3, X4)

− u(X1)S(v, X2, X3, X4).

According to (32), we have

Rg(v, X1, X3, X4) = Rg(X3, X4, v, X1) = S(X3, X4, v, X1) = S(v, X1, X3, X4).

The above three equations imply (35).

Corollary 4. The tensor field K in a nearly Sasakian statistical manifold N, satisfies the relation

F [KFX2 , KFX1 ]F = [KX1 , KX2 ],

for any X1, X2 ∈ Γ(TN).

Proof. Using (24) and (36), we obtain

S(FX1,FX2,FX3,FX4)− S(X1, X2, X3, X4)− u(X2)Rg(v, X1, X3, X4)

+ u(X1)Rg(v, X2, X3, X4)

= g(KFX1 KFX2FX3 − KFX2 KFX1FX3,FX4)− g(KX1 KX2 X3 − KX2 KX1 X3, X4)

= F [KFX2 , KFX1 ]FX3 − [KX1 , KX2 ]X3.

Comparing with relation (35) yields the assertion.

A statistical manifold is called conjugate symmetric if the curvature tensors of the
connections ∇ and ∇∗, are equal, i.e.,

R(X1, X2)X3 = R∗(X1, X2)X3,

for all X1, X2, X3 ∈ Γ(TN).
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Corollary 5. Let (N,∇, g,F , v) be a conjugate symmetric nearly Sasakian statistical manifold.
Then the following holds

R(FX1,FX2,FX3,FX4)−R(X1, X2, X3, X4)

= u(X2)R(X3, X4, v, X1)− u(X1)R(X3, X4, v, X2),

R(X1, X2)v = Rg(X1, X2)v,

R(FX1,FX2)v = 0,

for any X1, X2, X3, X4 ∈ Γ(TN).

4. Hypersurfaces in nearly Kähler statistical manifolds

Let Ñ be a smooth manifold. A pair (g̃, J) is said to be an almost Hermitian structure
on Ñ if

J2 = −Id, g̃(JX1, JX2) = g̃(X1, X2),

for any X1, X2 ∈ Γ(TÑ). Let ∇̃g denotes the Riemannian connection of g̃. Then J is Killing
if and only if

(∇̃g
X1

J)X2 + (∇̃g
X2

J)X1 = 0.

In this case, the pair (g̃, J̃) is called a nearly Kähler structure and if J is integrable, the
structure is Kählerian [7].

Lemma 3. Let (∇̃, g̃) be a statistical structure, and (g̃, J) a nearly Kähler structure on Ñ. We
have the following formula:

∇̃X1 JX2− J∇̃∗X1
X2 + ∇̃X2 JX1 − J∇̃∗X2

X1=(∇̃g
X1

J)X2 + (∇̃g
X2

J)X1 + K̃X1 JX2

+ K̃X2 JX1+ 2JK̃X1 X2,

for any X1, X2 ∈ Γ(TÑ) where K̃ is given as (8) for (∇̃, g̃).

Definition 2. A nearly Kähler statistical structure on Ñ is a triple (∇̃, g̃, J), where (∇̃, g̃) is a
statistical structure, (g̃, J) is a nearly Kähler structure on Ñ and the following equality is satisfied

K̃X1 JX2 + K̃X2 JX1 = −2JK̃X1 X2,

for any X1, X2 ∈ Γ(TÑ).

Let N be a hypersurface of a statistical manifold (Ñ, g̃, ∇̃, ∇̃∗). Considering n and
g, respectively as a unit normal vector field and the induced metric on N, the following
relations hold

∇̃X1 X2 = ∇X1 X2 + h(X1, X2)n, ∇̃X1 n = −AX1 + τ(X1)n, (42)

∇̃∗X1
X2 = ∇∗X1

X2 + h∗(X1, X2)n, ∇̃∗X1
n = −A∗X1 + τ∗(X1)n, (43)

for any X1, X2 ∈ Γ(TN). It follows

g(AX1, X2) = h∗(X1, X2), g(A∗X1, X2) = h(X1, X2), τ(X1) + τ∗(X1) = 0. (44)

Furthermore, the second fundamental form hg is related to the Levi-Civita connections ∇̃g

and ∇g by

∇̃g
X1

X2 = ∇g
X1

X2 + hg(X1, X2)n, ∇̃g
X1

n = −AgX1,
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where g(AgX1, X2) = hg(X1, X2).

Remark 2. Let (Ñ, g̃, J) be a nearly Kähler manifold, and N a hypersurface with a unit normal
vector field n. Let g be the induced metric on N, and consider v, u and F , respectively as a vector
field, a 1-form and a tensor of type (1, 1)on N such that

v =− Jn, (45)

JX1 =FX1 + u(X1)n, (46)

for any X1 ∈ Γ(TN). Then (g,F , v) is an almost contact metric structure on N [7].

Lemma 4. Let (Ñ, ∇̃, g̃, J) be a nearly Kähler statistical manifold. If (N, g,F , v) is a hypersurface
with the induced almost contact metric structure as in Remark 2, and (∇, g) the induced statistical
structure on N as in (42), then the following hold

i) FAv = 0,

ii) g(AX1, v) = u(Av)u(X1),

iii) AX1 = ∇vFX1 −F∇∗vX1 −F∇∗X1
v + u(X1)Av,

iv) τ(X1) = g(∇∗X1
v, v)− g(X1,∇vv)− u(X1)τ(v),

v) ∇X1FX2 −F∇∗X1
X2 +∇X2FX1 −F∇∗X2

X1 = −2g(AX1, X2)v + u(X2)AX1

+ u(X1)AX2,

vi) g(∇X1 v, X2) + g(∇X2 v, X1) = g(FA∗X1, X2) + g(FA∗X2, X1)− u(X1)τ(X2)

− u(X2)τ(X1),

for any X1, X2 ∈ Γ(TN).

Proof. According to Definition 2 and (45), we can write

0 =∇̃X1 Jv− ∇̃X1 n = J∇̃∗X1
v− ∇̃v JX1 + J∇̃∗vX1 − ∇̃X1 n.

Applying (42), (43) and (46) in the above equation, we have

0 = J(∇∗X1
v + g(AX1, v)n)− ∇̃v(FX1 + u(X1)n) + J(∇∗vX1 + g(Av, X1)n)

+ AX1 − τ(X1)n

= F (∇∗X1
v)− g(AX1, v)v−∇vF (X1) + u(X1)Av +F (∇∗vX1)− g(Av, X1)v + AX1

+ {u(∇∗X1
v)− g(A∗v,FX1)− v(u(X1))− u(X1)τ(v) + u(∇∗vX1)− τ(X1)}n. (47)

Vanishing tangential part yields

AX1 = ∇vFX1 −F∇∗vX1 −F∇∗X1
v + 2g(AX1, v)v− u(X1)Av. (48)

Setting X1 = v in the above equation, it follows

Av = u(Av)v, (49)

hence FAv = 0 and implies (i), from which (ii) follows because 0 = g(FAv,FX1) =
g(Av, X1)− u(Av)u(X1). From (48) and (49) we have (iii). Vanishing vertical part in (47)
and using (i) and

v(u(X1)) = g(∇∗vX1, v) + g(X1,∇vv),

we get (iv). As

∇̃X1 JX2 − J∇̃∗X1
X2 + ∇̃X2 JX1 − J∇̃∗X2

X1 = 0,
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thus (42), (43), (45) and (46) imply

∇X1FX2 − u(X2)AX1 −F (∇∗X1
X2) + g(AX1, X2)v +∇X2FX1 − u(X1)AX2 −F (∇∗X2

X1)

+ g(AX2, X1)v + {g(A∗X1,FX2) + g(∇X1 v, X2) + u(X2)τ(X1) + g(A∗X2,FX1)

+ g(X1,∇X2 v) + u(X1)τ(X2)}n = 0.

From the above equation, (v) and (vi) follow.

Remark 3. In the analogous setting in Lemma 4, we have equations for the dual connection ∇∗.
For example, equation (i) is given as

FA∗v = 0.

We note to this equation as (i)∗ for brief if there is no danger of confusion.

Theorem 3. Let (Ñ, ∇̃, g̃, J) be a nearly Kähler statistical manifold and (N,∇, g,F , v) an almost
contact metric statistical hypersurface in Ñ given by (42), (43), (45) and (46). Then (N,∇, g,F , v)
is a nearly Sasakian statistical manifold if and only if

AX1 = X1 + u(X1)(Av− v), (50)

A∗X1 = X1 + u(X1)(A∗v− v), (51)

for any X1 ∈ Γ(TN).

Proof. Let (∇, g,F , v) be a nearly Sasakian statistical structure on N. According to Defini-
tion 1 we have

∇X1FX2 −F∇∗X1
X2 +∇X2FX1 −F∇∗X2

X1 = −2g(X1, X2)v + u(X1)X2 + u(X2)X1,

which gives us

∇vFX1 −F∇∗X1
v−F∇∗vX1 = −u(X1)v + X1.

Putting the last equation in the part (iii) of Lemma 4, we obtain (50). Similarly, we can
prove (51). Conversely, let the shape operators satisfy (50). From the part (v) of Lemma 4
yields

∇X1FX2 −F∇∗X1
X2 +∇X2FX1 −F∇∗X2

X1 = −2g(X1 + u(X1)(Av− v), X2)v

+ u(X2)(X1 + u(X1)(Av− v))

+ u(X1)(X2 + u(X2)(Av− v))

= −2g(X1, X2)v + u(X1)X2 + u(X2)X1.

In the same way, (v)∗ and (51) imply

∇∗X1
FX2 −F∇X1 X2 +∇∗X2

FX1 −F∇X2 X1 = −2g(X1, X2)v + u(X1)X2 + u(X2)X1.

According to the above equations and Theorem 2, the proof completes.

5. Submanifolds of nearly Sasakian statistical manifolds

Let N be a n-dimensional submanifold of an almost contact metric statistical manifold
(Ñ, ∇̃, g, F̃ , ṽ, ũ). We denote the induced metric on N by g. For all U1 ∈ Γ(TN) and
ζ ∈ Γ(T⊥N), we put F̃U1 = FU1 + FU1 and F̃ζ = Fζ + Fζ where FU1,Fζ ∈ Γ(TN)
and FU1,Fζ ∈ Γ(T⊥N). If F̃ (TpN) ⊂ TpN and F̃ (TpN) ⊂ T⊥p N for any p ∈ N, then N is
called F̃ -invariant and F̃ -anti-invariant, respectively.
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Proposition 4. [13] Any F̃ -invariant submanifold N imbedded in an almost contact metric
manifold (Ñ, ∇̃, g, F̃ , ṽ, ũ) in such a way that the vector field ṽ is always tangent to N has the
induced almost contact metric structure (g,F , v, u).

For any U1, U2 ∈ Γ(TN), the corresponding Gauss formulas are given by

∇̃U1U2 = ∇U1U2 + h(U1, U2), ∇̃∗U1
U2 = ∇∗U1

U2 + h∗(U1, U2). (52)

It is proved that (∇, g) and (∇∗, g) are statistical structures on N and h and h∗ are sym-
metric and bilinear. The mean curvature vector field with respect to ∇̃ is described by

H =
1
m

trace(h).

The submanifold N is a ∇̃-totally umbilical submanifold if h(U1, U2) = g(U1, U2)H for
all U1, U2 ∈ Γ(TN). Also, the submanifold N is called ∇̃-autoparallel if h(U1, U2) = 0
for any U1, U2 ∈ Γ(TN). The submanifold N is said to be dual-autoparallel if it is both
∇̃- and ∇̃∗-autoparallel, i.e., h(U1, U2) = h∗(U1, U2) = 0 for any U1, U2 ∈ Γ(TN). If
hg(U1, U2) = 0 for any U1, U2 ∈ Γ(TN), the submanifold N is called totally geodesic.
Moreover, the submanifold N is called ∇̃-minimal (∇̃∗-minimal) if H = 0 (H∗ = 0).

For any U1 ∈ Γ(TN) and ζ ∈ Γ(T⊥N), the Weingarten formulas are

∇̃U1 ζ = −AζU1 + DU1 ζ, ∇̃∗X1
ζ = −A∗ζ U1 + D∗U1

ζ, (53)

where D and D∗ are the normal connections on Γ(T⊥N) and the tensor fields h, h∗, A and
A∗ satisfy

g(AζU1, U2) = g(h∗(U1, U2), ζ), g(A∗ζ U1, U2) = g(h(U1, U2), ζ).

Also, the Levi-Civita connections ∇g and ∇̃g are associated to the second fundamental
form hg by

∇̃g
U1

U2 = ∇g
U1

U2 + hg(U1, U2), ∇̃g
U1

ζ = −Ag
ζ U1 + Dg

U1
ζ, (54)

where g(Ag
ζ U1, U2) = g(hg(U1, U2), ζ).

On a statistical submanifold (N,∇, g) of a statistical manifold (Ñ, ∇̃, g), for any tan-
gent vector fields U1, U2 ∈ Γ(TN), we consider the difference tensor K on N as

2KU1U2 = ∇U1U2 −∇∗U1
U2. (55)

From (7), (52) and the above equation, it follows that

2K̃U1U2 = 2KU1U2 + h(U1, U2)− h∗(U1, U2). (56)

More precisely, for the tangential part and the normal part we have

(K̃U1U2)
> = KU1U2, (K̃U1U2)

⊥ =
1
2
(h(U1, U2)− h∗(U1, U2)),

respectively. Similarly, for U1 ∈ Γ(TN) and ζ ∈ Γ(T⊥N) we have

K̃U1 ζ = (K̃U1 ζ)> + (K̃U1 ζ)⊥,

where
(K̃U1 ζ)> =

1
2
(A∗ζ U1 − AζU1), (K̃U1 ζ)⊥ =

1
2
(DU1 ζ − D∗U1

ζ).
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Now suppose that (N, g) be a submanifold of a nearly Sasakian statistical manifold
(Ñ, ∇̃, g, F̃ , ṽ). As a tensor field h̃ of type (1, 1) on Ñ is described by ∇̃gṽ = F̃ + h̃, we can
set h̃U1 = hU1 + hU1 and h̃ζ = hζ + hζ where hU1, hζ ∈ Γ(TN) and hU1, hζ ∈ Γ(T⊥N) for
any U1 ∈ Γ(TN) and ζ ∈ Γ(T⊥N). Furthermore, if h̃(TpN) ⊂ TpN and h̃(TpN) ⊂ T⊥p N,
then N is called h̃-invariant and h̃-anti-invariant, respectively.

Proposition 5. Let N be a submanifold of a nearly Sasakian statistical manifold (Ñ, ∇̃, g, F̃ , ṽ, ũ),
where the vector field ṽ is normal to N. Then

g(F̃U1, U2) = g(U1, h̃U2), ∀U1, U2 ∈ Γ(TN). (57)

Moreover,
i) N is a h̃-anti-invariant submanifold if and only if N is a F̃ -anti-invariant submanifold.
ii) If h̃ = 0, then N is a F̃ -anti-invariant submanifold.
iii) If N is a h̃-invariant and F̃ -invariant submanifold, then hU1 = −FU1, for any U1 ∈ Γ(TN).

Proof. Using (22) and Proposition 1 for any U1, U2 ∈ Γ(TN), we can write

g(F̃U1 + h̃U1, U2) = g(∇̃g
U1

ṽ, U2) = g(∇̃U1 ṽ, U2).

(53) and the above equation imply

g(F̃U1 + h̃U1, U2) = g(−AṽU1 + DU1 ṽ, U2) = −g(AṽU1, U2) = −g(ṽ, h∗(U1, U2)).

As h∗ is symmetric and the operators h̃ and g are skew-symmetric, the above equation
yields

g(F̃U1 + h̃U1, U2) = g(F̃U2 + h̃U2, U1) = −g(F̃U1 + h̃U1, U2).

Hence g(F̃U1 + h̃U1, U2) = 0, which gives (57). If N is a h̃-anti-invariant submanifold, we
have g(U1, h̃U2) = 0. Thus (i) follows from (57). Similarly, we have (ii) and (iii).

Lemma 5. Let (N,∇, g) be a F̃ -anti-invariant statistical submanifold of a nearly Sasakian statis-
tical manifold (Ñ, ∇̃, g, F̃ , ṽ, ũ) such that the structure (F , v, u) on N is given by Proposition 4.
i) If ṽ is tangent to N, then

∇U1 v = u(U1)Kvv = −∇∗U1
v, h(U1, v) = FU1 + hU1 = h∗(U1, v), ∀U1 ∈ Γ(TN).

ii) If ṽ is normal to N, then

Aṽ = 0 = A∗ṽ , DU1 ṽ = FU1 + hU1 = D∗U1
ṽ, ∀U1 ∈ Γ(TN).

Proof. Applying (22), (52) and Proposition 1 and using K̃vv = Kvv = g(∇vv, v)v, we have

FU1 + hU1 + u(U1)Kvv = ∇̃g
U1

v + u(U1)Kvv = ∇̃U1 v = ∇U1 v + h(U1, v).

Thus the normal part is h(U1, v) = FU1 + hU1 and the tangential part is∇U1 v = u(U1)Kvv.
Similarly, we get their dual parts. Hence (i) holds. If ṽ is normal to N, from (22) and (53), it
follows

FU1 + hU1 = ∇̃g
U1

ṽ = ∇̃U1 ṽ = −AṽU1 + DU1 ṽ.

Considering the normal and tangential components of the last equation we get (ii). Since
∇̃U1 v = ∇̃g

U1
v = ∇̃∗U1

v, we have the dual part of assertion.
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Lemma 6. Let (N,∇, g) be a F̃ -invariant and h̃-invariant statistical submanifold of a nearly
Sasakian statistical manifold (Ñ, ∇̃, g, F̃ , ṽ, ũ). Then for any U1 ∈ Γ(TN) if
i) ṽ is tangent to N, then

∇U1 v = FU1 + hU1 + u(U1)Kvv, ∇∗U1
v = FU1 + hU1 − u(U1)Kvv,

h(U1, v) = 0 = h∗(U1, v).

ii) ṽ is normal to N, then

AṽU1 = −FU1 − hU1 = A∗ṽU1, Dṽ = 0 = D∗ṽ.

Proof. The relations are proved using a same way applied to the proof of Lemma 5.

Theorem 4. On a nearly Sasakian statistical manifold (Ñ, ∇̃, g, F̃ , ṽ, ũ), if N is a F̃ -anti-invariant
∇̃-totally umbilical statistical submanifold of Ñ and ṽ is tangent to N, then N is ∇̃-minimal in Ñ.

Proof. According to Lemma 5, h(v, v) = 0. As N is a totally umbilical submanifold, thus it
follows

0 = h(v, v) = g(v, v)H = H,

which gives us the assertion.

Theorem 5. Let N be a F̃ -invariant submanifold of a nearly Sasakian statistical manifold (Ñ, ∇̃, g, F̃ , ṽ, ũ),
where the vector field ṽ is tangent to N. If

hg(U1,FU2) =F̃hg(U1, U2), (58)

h(U1,FU2)− h∗(U1,FU2) =F̃h∗(U1, U2)− F̃h(U1, U2), (59)

for all U1, U2 ∈ Γ(TN), then (∇, g,F , v, u) forms a nearly Sasakian statistical structure on N.

Proof. According to Proposition 4, N has the induced almost contact metric structure
(g,F , v, u). Also, (52) show that (∇, g) is a statistical structure on N. Applying (54), we can
write

∇̃g
U1
F̃U2 =∇g

U1
FU2 + hg(U1,FU2)

=(∇g
U1
F )U2 +F∇

g
U1

U2 + hg(U1,FU2).

As h is symmetric, from (58), we have hg(FU1, U2) = hg(U1,FU2). Hence the above
equation implies

∇̃g
U1
F̃U2 + ∇̃

g
U2
F̃U1 =(∇g

U1
F )U2 + (∇g

U2
F )U1 +F∇

g
U1

U2 +F∇
g
U2

U1 + 2hg(U1,FU2).

On the other hand, since Ñ has a nearly Sasakian structure, we have

∇̃g
U1
F̃U2 + ∇̃

g
U2
F̃U1

= (∇̃g
U1
F̃ )U2 + (∇̃g

U2
F̃ )U1 + F̃ (∇̃

g
U1

U2 + ∇̃
g
U2

U1)

= (∇̃g
U1
F̃ )U2 + (∇̃g

U2
F̃ )U1 + F̃ (∇

g
U1

U2 +∇
g
U2

U1 + 2hg(U1, U2))

= −2g(U1, U2)v + u(U1)U2 + u(U2)U1 + F̃ (∇
g
U1

U2 +∇
g
U2

U + 2hg(U, U2))

= −2g(U1, U2)v + u(U1)U2 + u(U2)U1 +F∇
g
U1

U2 +F∇
g
U2

U1 + 2F̃hg(U1, U2).

(58) and the above two equations yield

(∇g
U1
F )U2 + (∇g

U2
F )U1 =− 2g(U1, U2)v + u(U1)U2 + u(U2)U1.
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Thus (N,∇g, g,F , v, u) is a nearly Sasakian statistical manifold. For the nearly Sasakian
statistical manifold Ñ, using (27) we have

K̃U1FU2 + K̃U2FU1 = −2F K̃U1U2,

for any U1, U2 ∈ Γ(TN). Applying (56) in the last equation, it follows

KU1FU2 +
1
2
(h(U1,FU2)− h∗(U1,FU2)) + KU2FU1 +

1
2
(h(U2,FU1)− h∗(U2,FU1))

= −2FKU1U2 +Fh∗(U1, U2)−Fh(U1, U2).

From the above equation and (59), we get

KU1FU2 + KU2FU1 = −2FKU1U2.

Therefore (N,∇g, g,F , v, u) is a nearly Sasakian statistical manifold. Hence the proof
completes.

Proposition 6. Let N be a F̃ -invariant and h̃-invariant statistical submanifold of a nearly Sasakian
statistical manifold (Ñ, ∇̃, g, F̃ , ṽ, ũ) such that ṽ is tangent to N. Then

(∇̃U1 h)(U2, v) = (∇̃∗U1
h)(U2, v) = (∇̃g

U1
h)(U2, v) = −h(U2,FU1 + hU1),

and

(∇̃U1 h∗)(U2, v) = (∇̃∗U1
h∗)(U2, v) = (∇̃g

U1
h∗)(U2, v) = −h∗(U2,FU1 + hU1),

for any U1, U2 ∈ Γ(TN).

Proof. We have

(∇̃U1 h)(U2, v) = ∇̃U1 h(U2, v)− h(∇̃U1U2, v)− h(U2, ∇̃U1 v),

for any U1, U2 ∈ Γ(TN). According to Proposition 1, the part (i) of Lemma 6 and the above
equation, we have

(∇̃U1 h)(U2, v) = −h(U2, ∇̃U1 v) = −h(U2,FU1 + hU1 + u(U1)Kvv) = −h(U2,FU1 + hU1).

Similarly, other parts are obtained.

Corollary 6. Let N be a F̃ -invariant and h̃-invariant statistical submanifold of a nearly Sasakian
statistical manifold (Ñ, ∇̃, g, F̃ , ṽ, ũ). If ṽ is tangent to N, then the following conditions are
equivalent
i) h and h∗ are parallel with respect to the connection ∇̃;
ii) N is dual-autoparallel.
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