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Abstract 

Probably the most famous result obtained by the Italian mathematician, engineer, inventor, musician, 
architect and priest Francesco Faà di Bruno (1825-1888) is a formula for the 𝑚-th derivative of a 
composite, real-valued function 𝐺(𝑡) = 𝑔(𝑓(𝑡)) , generalizing the well-known chain rule, and 
mentioned in books of mathematical statistics, combinatorial analysis, matrix theory, finite 
differential calculus, computer science, partitions, variational calculus and stochastic processes. This 
paper revisits the history and developments of Faà di Bruno’s formula, showing a simple numerical 
example to demonstrate the usefulness of his generalized approach and providing an overview of 
the main applications, from mathematical and engineering fields up to the use of the formula in 
symbolic computational engines like Matlab® and Wolfram (formerly known as Mathematica). This 
work also depicts a historical portrait of the scientist, who embodied in the 19th century a unique 
synthesis of scientific ingenuity, social engagement and religious fervor. 

Keywords: Faà di Bruno; differential calculus; composite functions; m-th order derivatives; 
combinatorics; power series expansions 
 

1. Introduction 

It is well known that the series expansion in powers of h of a properly differentiable composite 
function (𝑔 ∘ 𝑓)(𝑡 + ℎ) = 𝑔൫𝑓(𝑡 + ℎ)൯ is in the form (Taylor’s theorem): 

𝑔൫𝑓(𝑡 + ℎ)൯ = ෍ℎ௞𝑘! 𝑑௞𝑑𝑡௞ 𝑔൫𝑓(𝑡)൯ஶ
௞ୀ଴  (1)

if 𝑔 and 𝑓 are real-valued “nice” functions. How to evaluate the 𝑚-th derivative of 𝑔൫𝑓(𝑡)൯, i.e., 𝑑௠ 𝑑𝑡௠⁄ 𝑔൫𝑓(𝑡)൯  (in Leibniz notation) or (𝑔 ∘ 𝑓)(௠)(𝑡)  (in Lagrange’s notation)? The immediate 
answer to this question is the recursive application of the well-known chain rule for the first 
derivative of composite functions: 𝑑𝑑𝑡 𝑔൫𝑓(𝑡)൯ = 𝑔ᇱ൫𝑓(𝑡)൯𝑓ᇱ(𝑡) (2)

together with Leibniz rule for the first derivative of the product of two functions: 𝑑𝑑𝑡 𝑔(𝑡)𝑓(𝑡) = 𝑔ᇱ(𝑡)𝑓(𝑡) + 𝑔(𝑡)𝑓ᇱ(𝑡) (3)

which can be generalized as follows for the product of 𝑘 differentiable functions 𝑓ଵ(𝑡)𝑓ଶ(𝑡) … 𝑓௞(𝑡): 𝑑𝑑𝑡ෑ𝑓௜(𝑡)௞
௜ୀଵ = ෍𝑓௜ᇱ௞

௜ୀଵ (𝑡)ෑ𝑓௝(𝑡)௝ஷ௜ = 𝑓ଵᇱ𝑓ଶ …𝑓௞ + 𝑓ଵ𝑓ଶᇱ … 𝑓௞ + ⋯+ 𝑓ଵ𝑓ଶ …𝑓௞ିଵ𝑓௞ᇱ (4)
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and for the 𝑚-th derivative of the product of 𝑘 functions: 𝑑௠𝑑𝑡௠ෑ𝑓௜(𝑡)௞
௜ୀଵ = (𝑓ଵ𝑓ଶ …𝑓௞)(௠) = ෍ ቀ 𝑚𝑗ଵ, 𝑗ଶ, … , 𝑗௞ቁ௝భା௝మା⋯ା௝ೖୀ௠ ෑ 𝑓௣൫௝೛൯ଵஸ௣ஸ௞  (5)

where: ቀ 𝑚𝑗ଵ, 𝑗ଶ, … , 𝑗௞ቁ = 𝑚!𝑗ଵ! 𝑗ଶ! … 𝑗௞! (6)

are the multinomial coefficients, which appear in the multinomial theorem, i.e., the expression of the 𝑚-th power of a sum of 𝑘 terms, (𝑥ଵ + 𝑥ଶ + ⋯+ 𝑥௞)௠. The sum in (5) is performed over all 𝑘-tuples 𝑗ଵ, … , 𝑗௞ of nonnegative integers such that ∑ 𝑗௣ = 𝑚௞௣ୀଵ  [1]. 
As a simple example, let 𝑓(𝑡) = sin 𝑡, 𝑔(𝑡) = 𝑒௧, and 𝑚 = 3. Applying (2) and (3) recursively to 

obtain higher-order derivatives of 𝑔൫𝑓(𝑡)൯, after some tedious calculations we obtain for the third 
derivative of 𝑒ୱ୧୬ ௧: 𝑑ଷ𝑑𝑡ଷ 𝑔൫𝑓(𝑡)൯ = 𝑑ଷ𝑑𝑡ଷ 𝑒௦௜௡ ௧ = 𝑒௦௜௡ ௧ 𝑐𝑜𝑠 𝑡 (−1 − 3 𝑠𝑖𝑛 𝑡 + 𝑐𝑜𝑠ଷ 𝑡) (7)

shown in Figure 1 together with (𝑔 ∘ 𝑓)(𝑡). Even in this simple case, recursive application of (2) and 
(3) could lead to cumbersome calculations. For bigger orders of derivation (say, from 5-th order 
derivatives), the large number of terms to be computed makes the calculation by hand a tedious task. 

 
Figure 1. Plots of (𝑔 ∘ 𝑓)(𝑡) = exp(sin 𝑡) (orange curve) and its third derivative (Equation (7)), for 𝑡 from −2𝜋 
to 2𝜋. 

The generalization of (2) for 𝑚 ൐ 1 is the less known - but equally elegant - Faà di Bruno’s 
formula, published in 1855 and 1857, without any proof or references to previous results, in two 
alternative forms. The formula is useful for quicker evaluation of m-th derivatives of composite 
functions without requiring the preliminary evaluation of lesser-order derivatives and with no 
restrictions on the form of 𝑔(𝑡)  and 𝑓(𝑡) . Faà di Bruno’s formula has applications in many 
mathematical and engineering fields, including signal processing issues and mathematical statistics. 

This paper revisits the famous formula and its main implications and applications, and outlines 
a historical portrayal of Faà di Bruno, to make the reader appreciate his versatility and interests, from 
science to philanthropy. The structure of the paper is as follows. This introduction with the statement 
of the problem is followed by Section 2 depicting a short biography of Faà. In Section 3 his formula 
is analyzed in three different forms (factorial, combinatorial and determinantal), reworking the 
simple example of the Introduction to show the calculations to be performed. Section 4 reviews the 
most important applications in several scientific fields. Conclusions and references close the work. 
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2. Historical Notes 

The “Cavaliere” Francesco da Paola Virgilio Secondo Maria Faà di Bruno was one of the most 
original and multifaceted characters of the 19th-century Italian “Risorgimento” (Resurgence), 
synthesizing an extraordinary experience of science, social engagement and religion: a leading, 
internationally renowned mathematician, professor at the University of Turin (Italy), Captain of the 
Royal Army of the Kingdom of Savoy, engineer, inventor, architect, musician and distinguished 
representative of the social Catholicism [2,3]. 

Born in Alessandria (Italy) on March 29, 1825, Francesco Faà di Bruno (Figure 2) was the 
youngest of twelve children -four sons and eight daughters, two of which became nuns - of the 
marquis Luigi Faà di Bruno and Lady Carolina Sappa de’ Milanesi. He was raised in a home 
characterized by love of the arts and special attention to the poor, coming from the strong Catholic 
faith of his family. 

 
Figure 2. Francesco Faà di Bruno (standing on the right) with his four brothers (Alessandro, Carlo Maria, 
Giuseppe Maria and Emilio) (from [2]). 

He joined the “Regia Accademia Militare di Torino” (Royal Military Academy) in 1840 and 
participated in the first Italian independence war in 1848. From 1849 to 1851 and from 1854 to 1856 
Faà di Bruno was in Paris to improve his mathematical knowledge, attending courses at the Sorbonne, 
the Collège de France and the École Politechnique. Studying with Augustin Louis Cauchy, Urbain 
Jean-Joseph Le Verrier (the discoverer of the planet Neptune) Charles Duhamel, Charles F. Sturm, 
Michael Chasles, and starting a lifelong friendship with Charles Hermite (another Catholic 
mathematician, three years older than him), in 1856 Faà di Bruno obtained the title of Docteur ès 
Sciences Mathèmatiques (Figure 3). 
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Figure 3. Faà di Bruno’s “Diplome de Docteur ès Sciences Mathèmatiques” (October 20, 1856) (from [2]). 

He discussed two theses (on the Theory of Elimination in mathematics and on the series 
expansion of the perturbing function in astronomy) with a positive scientific evaluation by Cauchy 
himself, who became Faà’s model for his ability to combine rigorous mathematical research and a 
philosophical and religious theory of knowledge [4], influencing Faà’s conception of the relationship 
between science and faith (“We do not see the centrifugal force, yet we believe in it”). Together with 
Cauchy, the French abbot François-Napoléon-Marie Moigno (Abbé Moigno) (Figure 4) was a great 
inspiration for Faà’s religious and enthusiastic conception of science, making him understand the 
importance of scientific divulgation, a task to which Faà dedicated many years of his academic life 
publicly organizing scientific experiments and writing essays on physics, meteorology and chemistry 
for interested readers, male and female, regardless of their social status [5]. 

  
(a) (b) 

Figure 4. (a) Augustin-Louis Cauchy (1789-1857). (b) François-Napoléon-Marie Moigno (also known as Abbé 
Moigno, 1804-1884). Images from Wikipedia (public domain). 

The Parisian experience marked a fundamental stage in Faà di Bruno’s life: it was in Paris that 
the orientations of his future scientific and religious - charitable and social - activity were outlined. 
The stimulating scientific environment and the first-rate mathematicians with whom he worked lead 
him not only to deal with cutting-edge problems studied by the international scientific community, 
but also to have a broad view of the organization of knowledge, teaching and science popularization. 
Moreover, his relationship with the French catholic world and a European cultural background 
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created a personal vision of the catholic church, involved on religious scenarios as well as education 
and social issues. 

After returning to Italy in 1856, Faà gave mathematics lectures at the University of Turin and at 
the Military Academy, and in 1876 he was appointed professor. Among his most famous students 
were Corrado Segre and the mathematician Giuseppe Peano. In the same year (at age 51, with a 
special support given by Pope Pius IX) he became a catholic priest, carrying out a lot of social and 
philanthropic activities, especially to improve the hard living conditions of female workers in Turin. 
In 1859 he had founded in the San Donato area of Turin the “Opera di Santa Zita”, a shelter for 
unoccupied female workers, using his own money and funds collected in churches, and in 1881 the 
“Congregation of the Minim Sisters of Our Lady of the Suffrage”, helping to establish refuges for the 
elderly and the poor. His scientific and social program, pursued with tireless energy, pioneer’s spirit 
and religious fervor, can be summarized in a sentence that might as well be assumed as his life’s 
motto: 

“Peeling potatoes for the love of God is just as beautiful as building cathedrals of science, faith 
and art” [2] (p. 280). 

Faà di Bruno died in Turin on March 27, 1888, aged 62, a few months after Giovanni Bosco, one 
of the founders of the Society of St. Francis of Sales and a close friend of him. In the early 20th century, 
the cause for his canonization started with the declaration of “Servant of God” by the Archdiocese of 
Turin. In 1971 Pope Paul VI declared him “Venerable”, and on September 25, 1988, he was beatified 
by Pope John-Paul II on the centennial of his death (Figure 5). Since 1998, Faà di Bruno is the patron 
of the Italian Army’s Engineers Corps (“Corpo degli Ingegneri dell’Esercito”). 

  
(a) (b) 

Figure 5. (a) Faà di Bruno in the late 1870s, when he was ordained a Roman Catholic priest. (b) Medal 
commemorating Faà di Bruno’s beatification in 1988. Images from Wikipedia (public domain). 

Faà di Bruno’s contributions to his generation were ascetical writings, several sacred melodies 
(known and appreciated by Franz Liszt), the project and construction of the bell tower of the Turinese 
church “Our Lady of the Suffrage”, the invention of some scientific devices (a differential barometer, 
an electric alarm clock (in Italian, “svegliarino elettrico”), a writing table for the blind), and about 40 
original articles, mostly on elliptic functions and elimination theory, published in journals like the 
“Journal de Mathématiques” (edited by Joseph Liouville), the famous Crelle’s Journal (Journal für 
die reine und angewandte Mathematik, “Journal of Pure and Applied Mathematics”) 
(https://www.degruyterbrill.com/journal/key/crll/html), the “American Journal of Mathematics” of 
the Johns Hopkins University, and others. He also published three books on elimination theory and 
on the theory and applications of elliptic functions: “Théorie Générale de l’elimination”, containing 
an inductive proof of his formula [6], “Calcolo degli errori” (Turin, 1867), translated into French in 
1869 (“Traité élémentaire du calcul des erreurs”), and “Théorie des forms binaries” [7], also translated 
into German (Leipzig, 1881), his most influential mathematical work, which contained (20 years 
later!) a formal proof of his eponymously named formula, presented on page 4 of the book. More 
“modern” proofs of Faà’s result can be found in [8-14]. 
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3. Faà di Bruno’s Formula: Factorial, Combinatorial and Determinantal Forms 

Published in 1855 in a two-page work in the “Annali di Scienze Matematiche e Fisiche” (“Annals 
of Mathematical and Physical Sciences”, Figure 6) [15] and two years later in “The Quarterly Journal 
of Pure and Applied Mathematics” [16]), Faà di Bruno’s formula generalizes the many formulas 
known at his age for the 𝑚 -th derivative of particular composite functions, simplifying the 
demonstration of some results previously obtained by Edward Waring (1736-1798) and Pierre Simon 
de Laplace (1749-1827). 

 

Figure 6. The December 1855 two-page communication of “Annali di Scienze Matematiche e Fisiche” in which 
Faà di Bruno presented his formula (from [15]). Faà uses for the factorial 𝑛! the notation 𝜋(𝑛), and 1.2.3 … . 𝑙 
stands for 𝑙!. 

The formula states that, if 𝑔:𝐴 → ℝ and 𝑓:𝐵 → ℝ are real-valued functions of one variable, 
with 𝑓(𝐵) ⊆ 𝐴 and 𝑔 and 𝑓 with a sufficient number of derivatives, then the 𝑚-th derivative of 𝑔(𝑓(𝑡)), in modern notation, is given by: 𝑑௠𝑑𝑡௠ 𝑔൫𝑓(𝑡)൯ = (𝑔 ∘ 𝑓)(௠)(𝑡) = ෍ 𝑚!𝑏ଵ! 𝑏ଶ! … 𝑏௠!𝑔(௞)൫𝑓(𝑡)൯ ቆ𝑓ᇱ(𝑡)1! ቇ௕భ ቆ𝑓ᇱᇱ(𝑡)2! ቇ௕మ …ቆ𝑓(௠)(𝑡)𝑚! ቇ௕೘ (8)

where the sum is performed over all the nonnegative integer solutions (𝑏ଵ, 𝑏ଶ, … , 𝑏௠) of the equation 𝑏ଵ + 2𝑏ଶ + ⋯+ 𝑚𝑏௠ = 𝑚, and 𝑘, the order of the derivative of 𝑔, is equal to 𝑏ଵ + 𝑏ଶ + ⋯+ 𝑏௠. The 
formula can be proved either by induction or in an elegant alternative form found by Frenkel et al. 
[17]. 

Equation (8) is the so-called “factorial form” of Faà di Bruno’s formula, which is also known in 
a combinatorial form involving Bell polynomials [18,19] and Bell numbers (see later in this paper), 
developed in the middle of the 20th century by J. Riordan [20,21] (Riordan 1946, Riordan 1958), and 
R. Frucht and G.-C. Rota [22,23]: 
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𝑑௠𝑑𝑡௠ 𝑔൫𝑓(𝑡)൯ = (𝑔 ∘ 𝑓)(௠)(𝑡) = ෍ 𝑔(|𝒫|)൫𝑓(𝑡)൯గ∈௉೘ ෑ𝑓(|஻|)(𝑡)஻∈గ  (9)

where the sum is made over the set 𝑃௠  of all the partitions 𝒫  of the set ሼ1,2, … ,𝑚ሽ, |𝒫| is the 
cardinality (i.e., the number of blocks) of the partition 𝒫, the index 𝐵 runs through the list of the 
blocks of the partition 𝒫, and |𝐵| is the cardinality (size) of the block. Despite its elegance, the 
combinatorial form (9) of Faà’s formula leads to redundant calculations of the terms of (𝑔 ∘ 𝑓)(௠), 
whereas the form (8) reduces this redundancy. 

In the combinatorial form (9), the monomial terms can be collected to give an alternate form: 𝑑௠𝑑𝑡௠ 𝑔൫𝑓(𝑡)൯ = (𝑔 ∘ 𝑓)(௠)(𝑡) = ෍𝑔(௜)(𝑓(𝑡))𝑖!௠
௜ୀଵ ෍ቀ 𝑚𝑗ଵ, 𝑗ଶ, … , 𝑗௜ቁෑ𝑓(௝ೖ)(𝑡)௜

௞ୀଵ  (10)

where the second sum is performed over all the choices of positive integers jଵ, jଶ, … , j୧ which satisfy 
the constraint: 𝑗ଵ + 𝑗ଶ + ⋯+ 𝑗௜ = 𝑚 (11)

As thoroughly discussed in [24,25], Faà di Bruno’s formula was anticipated (in 1800, 55 years 
before) by Louis François Antoine Arbogast, a professor of Mathematics in Strasbourg, in his “Traité 
Du Calcul des Dèrivations” [26], and successively by A. Lacroix in 1810 and 1819, T. Knight in 1811, 
H. F. Scherk in 1823, John West in 1838, R. Hoppe in 1845, A. De Morgan in 1846, and J.F.C. Tiburce 
Abadie (an artillery captain also known as “T.A.”) in 1850. However, Faà developed an elegant and 
original version of (8), involving a determinant, never published before: 

𝑑௠𝑑𝑡௠ 𝑔൫𝑓(𝑡)൯ =
ተ
ተ
ተቀ𝑚 − 10 ቁ 𝑓ᇱ𝑔 ቀ𝑚 − 11 ቁ 𝑓ᇱᇱ𝑔 ቀ𝑚 − 12 ቁ 𝑓ᇱᇱᇱ𝑔   −1 ቀ𝑚 − 20 ቁ 𝑓ᇱ𝑔 ቀ𝑚 − 21 ቁ 𝑓ᇱᇱ𝑔       0 −1      ቀ𝑚 − 30 ቁ 𝑓ᇱ𝑔

⋯ ቀ𝑚 − 1𝑚 − 2ቁ 𝑓(௠ିଵ)𝑔 ቀ𝑚 − 1𝑚− 1ቁ 𝑓(௠)𝑔⋯ ቀ𝑚 − 2𝑚 − 3ቁ 𝑓(௠ିଶ)𝑔 ቀ𝑚 − 2𝑚 − 2ቁ 𝑓(௠ିଵ)𝑔⋯ ቀ𝑚 − 3𝑚 − 4ቁ 𝑓(௠ିଷ)𝑔 ቀ𝑚 − 3𝑚 − 3ቁ 𝑓(௠ିଶ)𝑔
   ⋮                    ⋮                     ⋮        0     0  0 0      0 0            ⋮              ⋮              ⋯       ቀ10ቁ 𝑓ᇱ𝑔                 ቀ11ቁ 𝑓ᇱᇱ𝑔                ⋯      −1                       ቀ00ቁ 𝑓ᇱ𝑔             ተ

ተ
ተ
 (12)

where 𝑚 ≥ 1, 𝑓(௜)  denotes 𝑓(௜)(𝑡) and the exponents of 𝑔 , obtained in the development of the 
determinant, are to be considered as differentiation indices (e.g., 𝑔ଶ means 𝑔′′(𝑓(𝑡))). This beautiful 
matrix formulation, also reported in [27], should be considered the “real” Faà di Bruno’s formula. 

It is also worth noting that in 1996 Constantine and Savits presented a multivariate Faà di 
Bruno’s formula, for computing arbitrary partial derivatives of composite functions [28]. In [29] the 
basic bivariate case, with two functions of two variables, i.e., 𝒇(𝒕) = ሾ𝑓ଵ(𝒕),  𝑓ଶ(𝒕)ሿ and 𝒕 = ൣ𝑡ଵ,, 𝑡ଶ൧ is 
developed, generalizing the result for 𝑀 functions of 𝑁 variables. An interesting study of different 
interpretations of Faà di Bruno’s formula can be found in [30], where connections are explored with 
the Lagrange’s inversion formula, Hopf algebras (recently used in quantum field theory [31], Lie 
algebras, combinatorial Hopf algebras, and the formula is interpreted in operadic terms (An operad 
-lexical blend of “operations” and “monad” - is an algebraic structure consisting of abstract 
operations having a given number of arguments, or inputs, and one output, together with rules on 
the composition of these operations [32]). 

3.1. A Numerical Example: Third Derivative of a Composite Function 

Let 𝑚 = 3. To evaluate the third derivative according to the factorial form (8), we look at the 
solutions of the equation 𝑏ଵ + 2𝑏ଶ + 3𝑏ଷ = 3, with 𝑏ଵ,𝑏ଶ,𝑏ଷ nonnegative integers and 𝑘 = 𝑏ଵ + 𝑏ଶ + 𝑏ଷ (recall that 𝑘 is the order of the derivative of the external function 𝑔). 

We have three possible solutions: 
• 𝑏ଵ = 𝑏ଶ = 0, 𝑏ଷ = 1; 
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• 𝑏ଵ = 𝑏ଶ = 1, 𝑏ଷ = 0; 
• 𝑏ଵ = 3, 𝑏ଶ = 𝑏ଷ = 0. 

In the first case, 𝑘 = 1 and we obtain: 3!3! 0! 0!𝑔ᇱ൫𝑓(𝑡)൯ ቆ𝑓ᇱᇱᇱ(𝑡)3! ቇ = 𝑔ᇱ൫𝑓(𝑡)൯𝑓ᇱᇱᇱ(𝑡) (13)

In the second case, 𝑘 = 2 and we get: 3!1! 1! 0!𝑔ᇱᇱ൫𝑓(𝑡)൯ ቆ𝑓ᇱ(𝑡)1! ቇቆ𝑓ᇱᇱ(𝑡)2! ቇ = 3𝑔ᇱᇱ൫𝑓(𝑡)൯𝑓ᇱ(𝑡)𝑓ᇱᇱ(𝑡) (14)

In the third case, 𝑘 = 3 and the corresponding term is: 3!3! 0! 0!𝑔ᇱᇱᇱ൫𝑓(𝑡)൯ ቆ𝑓ᇱ(𝑡)1! ቇଷ = 𝑔ᇱᇱᇱ൫𝑓(𝑡)൯൫𝑓ᇱ(𝑡)൯ଷ (15)

Assembling the terms (13), (14) and (15), the final result is: 𝑑ଷ𝑑𝑡ଷ 𝑔൫𝑓(𝑡)൯ = 𝑔ᇱ൫𝑓(𝑡)൯𝑓ᇱᇱᇱ(𝑡) + 3𝑔ᇱᇱ൫𝑓(𝑡)൯𝑓ᇱ(𝑡)𝑓ᇱᇱ(𝑡) + +𝑔ᇱᇱᇱ൫𝑓(𝑡)൯൫𝑓ᇱ(𝑡)൯ଷ (16)

With the same reasoning, it can be shown that for 𝑚 = 4 we have: 𝑑ସ𝑑𝑡ସ 𝑔൫𝑓(𝑡)൯ = 𝑔ᇱ൫𝑓(𝑡)൯𝑓(ସ)(𝑡) + 3𝑔ᇱᇱ൫𝑓(𝑡)൯൫𝑓ᇱᇱ(𝑡)൯ଶ + 4𝑔ᇱᇱ൫𝑓(𝑡)൯𝑓ᇱᇱᇱ(𝑡)𝑓ᇱ(𝑡)+ 6𝑔ᇱᇱᇱ൫𝑓(𝑡)൯𝑓ᇱᇱ(𝑡)൫𝑓ᇱ(𝑡)൯ଶ + 𝑔(ସ)(𝑡)൫𝑓ᇱ(𝑡)൯ସ 
(17)

For a generic value of 𝑚, every term of (𝑔 ∘ 𝑓)(௠) has the following form: 𝑐𝑔(௝)൫𝑓(𝑡)൯൫𝑓ᇱ(𝑡)൯ఈభ … ቀ𝑓(௠)(𝑡)ቁఈ೘ (18)

with 𝑐, 𝑗, 𝛼1, … , 𝛼𝑚 positive integers (obviously, 𝑗 ≤ 𝑚). 
Looking at the combinatorial form (9) of the formula, we also note that the number of terms is 

equal to |𝒫|, that is, the number of ways of writing the integer 𝑚 as a sum of positive integers, 
without considering the order, which is the same as the number of partitions of the set ሼ1,2, … ,𝑚ሽ. 

The total number of partitions of an 𝑚-element set is the Bell number 𝐵௠ (after the 1934 paper 
by the mathematician and divulgator Eric Temple Bell [33]), defined recursively as [34]: 

𝐵௠ାଵ = ෍ቀ𝑚𝑘ቁ௠
௞ୀ଴ 𝐵௞ (19)

with 𝐵଴ = 0. The first six Bell numbers are 𝐵ଵ = 1,𝐵ଶ = 2,𝐵ଷ = 5,𝐵ସ = 15,𝐵ହ = 52,𝐵଺ = 203. These 
numbers can be computed using the Bell triangle, constructing by copying the first value of each row 
from the last value of the preceding row, and, for the successive values of the row, adding the number 
to the left and to the above left. This rule is similar to the construction rule of Tartaglia’s triangle, 
since each row of the Bell triangle can be viewed as a weighted sum of binomial coefficients [35]. 

The triangle can be computed using the following Mathematica (the well-known symbolic 
computation package, now simply named Wolfram) instruction, which uses the built-in functions 
BellB[n] for the Bell numbers and Binomial[n,m] for the binomial coefficients. As an example, 
the first six rows of the Bell triangle (also called Peirce triangle or Aitken’s array, from the two 
scientists that discovered independently the sequence in 1880 and 1933 respectively [36]) are given 
by the following instruction: 

Column[Table[Sum[Binomial[k,i]*BellB[n-k+i],{i,0,k}],{n,0,5},{k,0,n}]] 

1 1 2 (20)
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     15    20     27    37     52          52     67     87  114   151  203 

where 𝐵଴, … ,𝐵ହ are on the left side, 𝐵ଵ, … ,𝐵଺ on the right side. 
For large 𝑚, we recall that the asymptotic expression of |𝒫| is the wonderful Hardy-Ramanujan 

formula [37]: |𝒫|~ 14𝑚√3 𝑒గටଶ௠ଷ  (21)

In Table 1 the terms of ቀ𝑔∘𝑓ቁ(𝑚)
 for 𝑚 =1 to 5 are shown (Mortini [38] calculates the explicit form 

of Faà di Bruno’s formula for 𝑚 up to 10). It is worth noting that the sums of the coefficients of the 
terms for 𝑚 = 1, … , 5 are equal to the Bell numbers 𝐵ଵ, … ,𝐵ହ respectively. 

Table 1. Terms of the 𝑚-th derivative of composite functions (𝑚 = 1, … , 5) and corresponding Bell numbers. 𝑚,   𝐵௠ (𝑔 ∘ 𝑓)(௠) 
1,  1 𝑓ᇱ𝑔ᇱ 
2,  2 (𝑓ᇱ)ଶ𝑔ᇱᇱ + 𝑓ᇱᇱ𝑔ᇱ 
3,  5 (𝑓ᇱ)ଷ𝑔ᇱᇱᇱ + 3𝑔ᇱᇱ𝑓ᇱᇱ𝑓ᇱ + 𝑓ᇱ′′𝑔ᇱ 
4, 15 (𝑓ᇱ)ସ𝑔(ସ) + 6𝑔ᇱᇱᇱ𝑓ᇱᇱ(𝑓ᇱ)ଶ + 4𝑔ᇱᇱ𝑓ᇱᇱᇱ𝑓ᇱ + 3𝑔ᇱᇱ(𝑓ᇱᇱ)ଶ + 𝑓(ସ)𝑔ᇱ 
5, 52 (𝑓ᇱ)ହ𝑔(ହ) + 10𝑔(ସ)𝑓ᇱᇱ(𝑓ᇱ)ଷ + 10𝑔ᇱᇱᇱ𝑓ᇱᇱᇱ(𝑓ᇱ)ଶ + 15𝑔ᇱᇱᇱ(𝑓ᇱᇱ)ଶ𝑓ᇱ + 5𝑔ᇱᇱ𝑓(ସ)𝑓ᇱ + 10𝑔ᇱᇱ𝑓(ଷ)𝑓ᇱᇱ + 𝑓(ହ)𝑔ᇱ 
We can verify the correctness of the result (16) using iteratively the chain rule (2). Using (16) to 

evaluate the third derivative of our simple 𝑔൫𝑓(𝑡)൯ example of Sec. 1 ൫𝑒ୱ୧୬ ௧൯, we obtain (7) in a more 
effective way. 

4. Applications of Faà di Bruno’s Formula in Engineering Mathematics 

Pure mathematics. Faà di Bruno’s formula has been applied in the integrability theory for 
nonlinear partial differential equations [39], in the inversion of multivariate power series [28,40], in 
modular form theory and differential operators [41], and in the study of inverse relations related to 
power series [42]. 

Combinatorics. The formula has been used to obtain some recurrence formulas for the 
exponential complete Bell polynomials [43], combinatorial identities involving Stirling numbers of 
the first and second kind, 𝑠(𝑛, 𝑘) and 𝑆(𝑛, 𝑘), Lah numbers 𝐿(𝑛, 𝑘) (also known as Stirling numbers 
of the third kind), which are the number of partitions of the set {1,2, … ,𝑛} into k nonempty tuples, 
harmonic numbers [44], and combinatorial determinant evaluation [45]. It also helps solving 
problems involving partitions and arrangements, such as counting labeled structures in graph theory. 
Very recently, several partition-theoretic generating functions, e.g., the theta quotients from 
Ramanujan’s lost notebook, MacMahon’s partition functions, and reciprocal sums of parts in 
partitions, have been revisited through Faà di Bruno’s approach, providing a unified interpretation 
and a useful framework for deriving new identities [46]. 

Mathematical statistics. The formula is used to calculate the 𝑚 -th order moments and 
cumulants of a distribution function 𝐹(𝑥) and the so-called 𝑘-statistics, i.e., symmetric polynomial 
functions of the observations [47]. In [28] the multivariate version of Faà’s formula is used to calculate 
mixed moments of compound nonhomogeneous and filtered nonhomogeneous Poisson processes. 
Hoppe [48] shows that Faà di Bruno’s formula allows one to derive the distribution functions from a 
finite population for sampling with replacement (multinomial) or sampling without replacement 
(multivariate hypergeometric). In physics, examples of these distributions are Fermi-Dirac, Bose-
Einstein and Maxwell-Boltzmann distributions. Moreover, Faà’s formula has a deep relationship with 
some sampling formulas in population genetics (due to Ewens and Pitman) developed in the 1990s. 
Applications of the formula to multivariate normal distributions and distribution of a normalized 
sum of iid (independent, identically distributed) random variables can be found in [49]. 
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Physics and Engineering. Faà di Bruno’s formula finds application in solving complex 
differential equations and modeling physical systems. In nonlinear dynamics, for example, higher-
order derivatives of composite functions often appear in perturbation methods or stability analysis 
[50]. 

Aerospace, telecommunications and signal processing. In the study of waveforms and signals, 
the formula helps compute derivatives of composite functions representing modulated signals. 
Stochastic point processes and spatial clustering models can benefit from Faà di Bruno’s formula for 
variational calculus [51]. Also, higher derivatives of composite functions are involved in approaches 
for deriving algorithms for multiple target tracking from radar systems [52], with practical 
applications using sequential Monte Carlo methods [53] and Gaussian mixture PHD (Probability 
Hypothesis Density) filters [54]. 

Machine Learning and Optimization. In modern applications like machine learning, Faà di 
Bruno’s formula is used in backpropagation algorithms for neural networks and fractional gradient 
computation [55], as well as for theoretical exploration of the structures inherent to the bio-inspired 
spiking neural networks (SNN), recently exploited for neuromorphic computing and sparse 
computation [56]. The formula also underpins techniques for computing higher-order derivatives, 
which are essential in optimization problems and training deep learning models. 

5. Conclusions 

This paper explored the different forms of the famous Faà di Bruno’s formula (12), a brilliant 
generalization of the chain rule, involving the expression of the 𝑚-th derivative of a composite 
function, and elegantly blending calculus with combinatorics, since the formula involves summing 
over partition of integers. We presented the classic 1855 statement of Faà’s formula, together with 
more modern forms involving Bell numbers and Bell polynomials, putting in evidence the deep 
combinatorial structure of the formula and the connections with discrete mathematics and 
probability theory. The usefulness of Faà’s formula has been demonstrated with a simple example 
outlining the calculations to be made. A quick review of the principal applications in pure 
mathematics and several engineering mathematics fields, from control theory, aerospace, 
telecommunications and signal processing to symbolic calculus, automatic differentiation tools in 
computer systems, machine learning and optimization, is also presented. In addition, we provided a 
historical account of the formula and of Faà di Bruno’s original and multifaceted personality, capable 
of harmonizing positivistic instances, religious faith and social engagement and conceiving science 
as a fundamental vehicle of freedom and concord towards the realization of union among peoples. 

Equation (12) and its different forms, extended to multivariate functions, are a cornerstone of 
higher-order calculus and, though intimidating at a first glance, they show beautiful symmetry and 
logic. Faà di Bruno’s formula ability to elegantly handle the complexity of composite functions and 
their higher-order derivatives makes it an indispensable tool for researchers and practitioners alike. 
By bridging the gap between abstract theory and real-world problems, this formula continues to 
demonstrate the timeless relevance of Faà di Bruno’s mathematical ingenuity. 
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